PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

Certification of Calibration

Object D835V2 – SN:4d133

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extended Calibration date: October 18, 2019

Description: SAR Validation Dipole at 835 MHz.

Calibration Equipment used:

Manufacturer	Model	Description		Cal Interval	Cal Due	Serial Number
Control Company	4040	Therm./Clock/Humidity Monitor	6/29/2019	Biennial	6/29/2021	192291470
Control Company	4352	Ultra Long Stem Thermometer	8/2/2018	Biennial	8/2/2020	181334684
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	7/2/2019	Annual	7/2/2020	MY53401181
Rohde & Schwarz	ZNLE6	Vector Network Analyzer	10/11/2019	Annual	10/11/2020	101307
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
SPEAG	DAKS-3.5	Portable Dielectric Assessment Kit	8/13/2019	Annual	8/13/2020	1041
Anritsu	MA2411B	Pulse Power Sensor	8/14/2019	Annual	8/14/2020	1315051
Anritsu	MA2411B	Pulse Power Sensor	8/8/2019	Annual	8/8/2020	1339008
Anritsu	ML2495A	Power Meter	11/20/2018	Annual	11/20/2019	1039008
Agilent	N5182A	MXG Vector Signal Generator	8/19/2019	Annual	8/19/2020	MY47420837
Seekonk	NC-100	Torque Wrench	5/9/2018	Biennial	5/9/2020	22217
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
MiniCircuits	ZHDC-16-63-S+	Bidirectional Coupler	CBT	N/A	CBT	N/A
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
SPEAG	EX3DV4	SAR Probe	9/19/2019	Annual	9/19/2020	7551
SPEAG	EX3DV4	SAR Probe	4/24/2019	Annual	4/24/2020	7357
SPEAG	DAE4	Dasy Data Acquisition Electronics	9/17/2019	Annual	9/17/2020	1333
SPEAG	DAE4	Dasy Data Acquisition Electronics	4/18/2019	Annual	4/18/2020	1407

Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path.

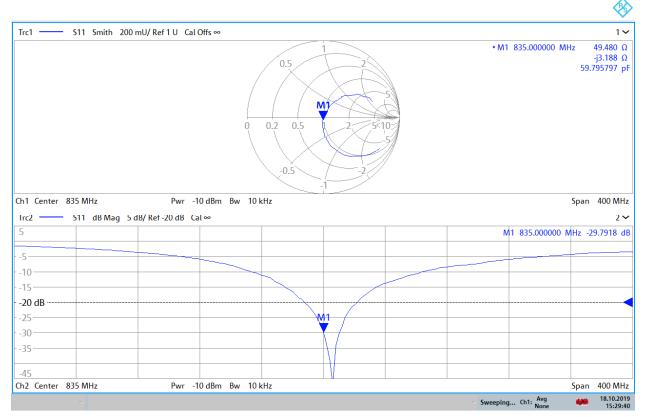
Measurement Uncertainty = ±23% (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Team Lead Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	304

Object:	Date Issued:	Page 1 of 4
D835V2 - SN:4d133	10/18/2019	Page 1 of 4

DIPOLE CALIBRATION EXTENSION

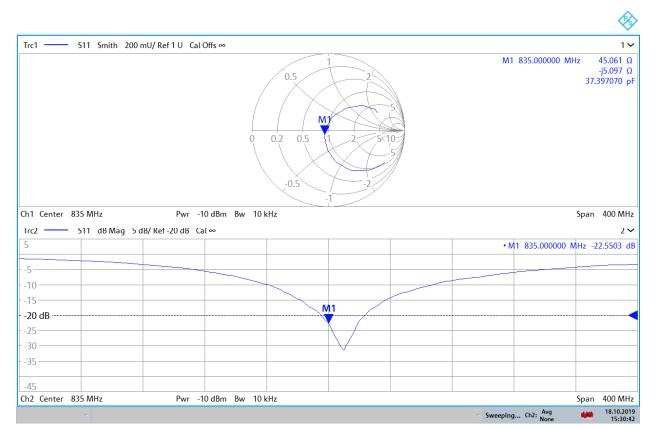
Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:


- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 23.0 dBm	Head SAR (1g)		Certificate SAR Target Head (10g) W/kg @ 23.0 dBm	(10a) W/ka @	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
10/19/2018	10/18/2019	1.397	1.886	2.03	7.64%	1.22	1.32	8.20%	50.6	49.5	1.1	-2.4	-3.2	0.8	-32.2	-29.8	7.50%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 23.0 dBm	Measured Body SAR (1g) W/kg @ 23.0 dBm		Certificate SAR Target Body (10g) W/kg @ 23.0 dBm	(40-) M(4 ©	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
10/19/2018	10/18/2019	1.397	1.95	2.07	6.15%	1.28	1.36	6.25%	45	45.1	0.1	-6.7	-5.1	1.6	-21.1	-22.6	-6.90%	PASS

Object:	Date Issued:	Page 2 of 4
D835V2 - SN:4d133	10/18/2019	Fage 2 01 4


Impedance & Return-Loss Measurement Plot for Head TSL

15:29:41 18.10.2019

Object:	Date Issued:	Page 2 of 4
D835V2 - SN:4d133	10/18/2019	Page 3 of 4

Impedance & Return-Loss Measurement Plot for Body TSL

15:30:43 18.10.2019

Object:	Date Issued:	Page 4 of 4
D835V2 - SN:4d133	10/18/2019	raye 4 01 4

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client

C Test

Certificate No: D1750V2-1150_Oct18

CALIBRATION	<u> COERTIFICATIE</u>
Object	D1750V2 - SN:1150
Calibration procedure(s)	OA CAL-05 v10 Calibration procedure for dipole validation kits above 700 MHz
Calibration date:	October 22, 2018

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Reference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dsc-18
DAE4	SN: 601	04-Oct-18 (No. DAE4-601_Oct18)	Oct-19
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-18)	in house check: Oct-20
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19
	Name	Function	Signature
Calibrated by:	Michael Weber	Laboratory Technician	MNOSET
Approved by:	Katja Pokovic	Technical Manager	WKC-

issued: October 22, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1750V2-1150_Oct18

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	1750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.8 ± 6 %	1.33 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.02 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	36.5 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	4.76 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	19.2 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity		
Nominal Body TSL parameters	22.0 °C	53.4	1.49 mho/m		
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.5 ± 6 %	1.46 mho/m ± 6 %		
Body TSL temperature change during test	< 0.5 °C				

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.04 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	36.6 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	4.82 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	19.4 W/kg ± 16.5 % (k=2)

Certificate No: D1750V2-1150_Oct18 Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.9 Ω - 0.4 jΩ					
Return Loss	- 40.1 dB					

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.6 Ω - 0.1 jΩ
Return Loss	- 29.2 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.217 ns	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	April 10, 2015

DASY5 Validation Report for Head TSL

Date: 22.10.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1150

Communication System: UID 0 - CW; Frequency: 1750 MHz

Medium parameters used: f = 1750 MHz; $\sigma = 1.33 \text{ S/m}$; $\varepsilon_r = 38.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(8.5, 8.5, 8.5) @ 1750 MHz; Calibrated: 30.12.2017

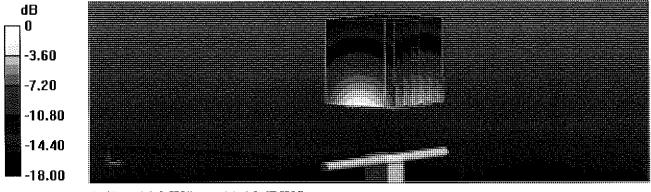
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electromics: DAE4 Sn601; Calibrated: 04.10.2018

• Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

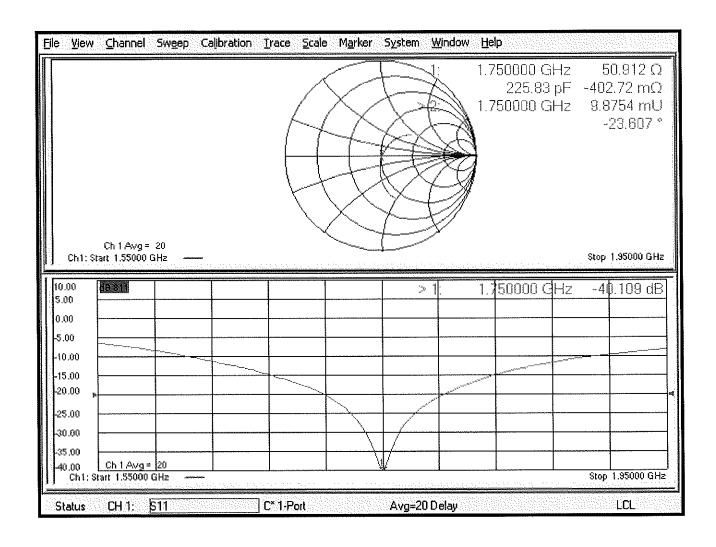
• DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 108.1 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 16.7 W/kg


SAR(1 g) = 9.02 W/kg; SAR(10 g) = 4.76 W/kg

Maximum value of SAR (measured) = 14.0 W/kg

0 dB = 14.0 W/kg = 11.46 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 22.10.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1150

Communication System: UID 0 - CW; Frequency: 1750 MHz

Medium parameters used: f = 1750 MHz; $\sigma = 1.46 \text{ S/m}$; $\varepsilon_r = 53.5$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(8.35, 8.35, 8.35) @ 1750 MHz; Calibrated: 30.12.2017

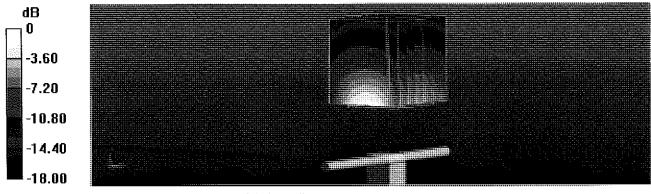
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 04.10.2018

Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002

DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 102.1 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 16.0 W/kg

SAR(1 g) = 9.04 W/kg; SAR(10 g) = 4.82 W/kg

Maximum value of SAR (measured) = 13.6 W/kg

0 dB = 13.6 W/kg = 11.34 dBW/kg

Impedance Measurement Plot for Body TSL

PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

Certification of Calibration

Object D1750V2 – SN:1150

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extended Calibration date: October 18, 2019

Description: SAR Validation Dipole at 1750 MHz.

Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Control Company	4040	Therm./Clock/Humidity Monitor	6/29/2019	Biennial	6/29/2021	192291470
Control Company	4352	Ultra Long Stem Thermometer	8/2/2018	Biennial	8/2/2020	181334684
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	7/2/2019	Annual	7/2/2020	MY53401181
Rohde & Schwarz	ZNLE6	Vector Network Analyzer	10/11/2019	Annual	10/11/2020	101307
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
SPEAG	PEAG DAKS-3.5 Portable Dielectric Assessment Kit				8/13/2020	1041
Anritsu	MA2411B	Pulse Power Sensor	8/14/2019	Annual	8/14/2020	1315051
Anritsu	MA2411B	Pulse Power Sensor	8/8/2019	Annual	8/8/2020	1339008
Anritsu	ML2495A	Power Meter	11/20/2018	Annual	11/20/2019	1039008
Agilent	N5182A MXG Vector Signal Generator		8/19/2019	Annual	8/19/2020	MY47420837
Seekonk	NC-100	Torque Wrench	5/9/2018	Biennial	5/9/2020	22217
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
MiniCircuits	ZHDC-16-63-S+	Bidirectional Coupler	CBT	N/A	CBT	N/A
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
SPEAG	SPEAG EX3DV4 SAR Probe		8/16/2019	Annual	8/16/2020	7308
SPEAG	EX3DV4	SAR Probe	4/24/2019	Annual	4/24/2020	7357
SPEAG	DAE4	Dasy Data Acquisition Electronics	4/18/2019	Annual	4/18/2020	1407
SPEAG	DAE4	Dasy Data Acquisition Electronics	8/14/2019	Annual	8/14/2020	1450

Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path.

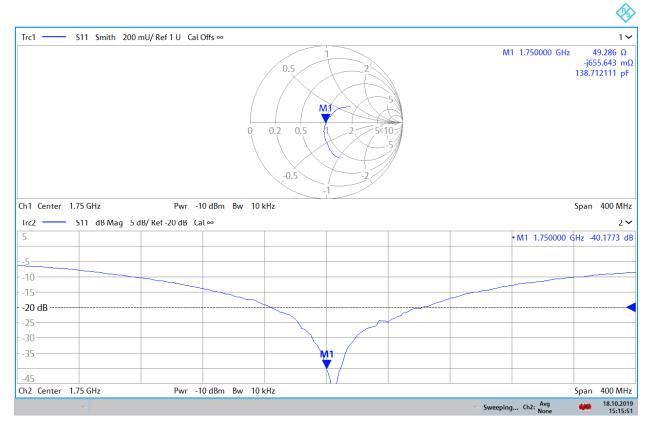
Measurement Uncertainty = ±23% (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Team Lead Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	20K

Object:	Date Issued:	Page 1 of 4
D1750V2 - SN:1150	10/18/2019	Page 1 of 4

DIPOLE CALIBRATION EXTENSION

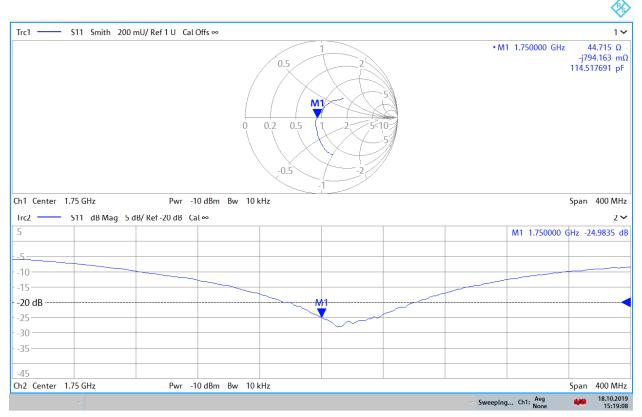
Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:


- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 20.0 dBm	Measured Head SAR (1g) W/kg @ 20.0 dBm		Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	(10a) W/ka @	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
10/22/2018	10/18/2019	1.217	3.65	3.8	4.11%	1.92	2	4.17%	50.9	49.3	1.6	0.4	-0.7	1.1	-40.1	-40.2	-0.20%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 20.0 dBm	Measured Body SAR (1g) W/kg @ 20.0 dBm		Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	(10a) W/ka @	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
10/22/2018	10/18/2019	1.217	3.66	3.82	4.37%	1.94	2.02	4.12%	46.6	44.7	1.9	-0.1	-0.8	0.7	-29.2	-25	14.40%	PASS

Object:	Date Issued:	Page 2 of 4	
D1750V2 - SN:1150	10/18/2019	Fage 2 01 4	


Impedance & Return-Loss Measurement Plot for Head TSL

15:15:52 18.10.2019

Object:	Date Issued:	Page 3 of 4
D1750V2 - SN:1150	10/18/2019	raye 3 01 4

Impedance & Return-Loss Measurement Plot for Body TSL

15:19:09 18.10.2019

Object:	Date Issued:	Page 4 of 4
D1750V2 - SN:1150	10/18/2019	Page 4 of 4

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurlch, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client

PC Test

Certificate No: D1900V2=5d148_Feb19

		.Ce	milicate No: E/1900V/2-50 148 FED 19
CALIBRATION C	ERTIFICATI		
Object	D1900V2 - SN:5	d148	
Calibration procedure(s)	QA CAL-05.v11 Calibration Proc	edure for SAR Validation	Sources between 0.7-3 GHz
Calibration date:	February 21, 20	(9	Physical units of measurements (SI). $0.2-26-2$
This calibration certificate docume The measurements and the uncert	nts the traceability to nat tainties with confidence p	ional standards, which realize the p probability are given on the followin	physical units of measurements (SI). 02-26-2 g pages and are part of the certificate.
All calibrations have been conduct			
Calibration Equipment used (M&TE	E critical for calibration)		
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Callbration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/0267	73) Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
ype-N mlsmatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Reference Probe EX3DV4	SN: 7349	31-Dec-18 (No. EX3-7349_Dec	
DAE4	SN: 601	04-Oct-18 (No. DAE4-601_Oct1	· · · · · · · · · · · · · · · · · · ·
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
ower meter E4419B	SN: GB39512475	07-Oct-15 (in house check Feb-	*·····································
ower sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-	,
ower sensor HP 8481A	SN: MY41092317	07-Oct-15 (In house check Oct-	,
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-	
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-	·
	Nome	سر	
Colibrated but	Name	Function	Signature
Calibrated by:	Manu Seltz	Laboratory Technici	lan J
Approved by:	Kalja Pokovic	Technical Manager	
 40			Issued: February 21, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1900V2-5d148_Feb19

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1900V2-5d148_Feb19

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.9 ± 6 %	1.38 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.65 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	39.1 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.05 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.4 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.6 ± 6 %	1.47 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.56 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	39.1 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.05 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.5 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.8 Ω + 6.8 jΩ
Return Loss	- 23.2 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$48.4 \Omega + 7.8 j\Omega$			
Return Loss	- 21.9 dB			

General Antenna Parameters and Design

Electrical Delay (one direction)	4 4 = 0
Licetical Delay (one direction)	1.170 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-	

DASY5 Validation Report for Head TSL

Date: 21.02,2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d148

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.38 \text{ S/m}$; $\varepsilon_r = 40.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(8.26, 8.26, 8.26) @ 1900 MHz; Calibrated: 31.12.2018

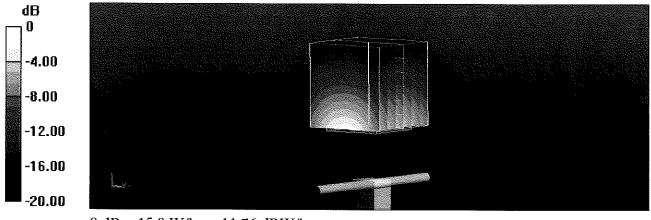
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 04.10.2018

Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

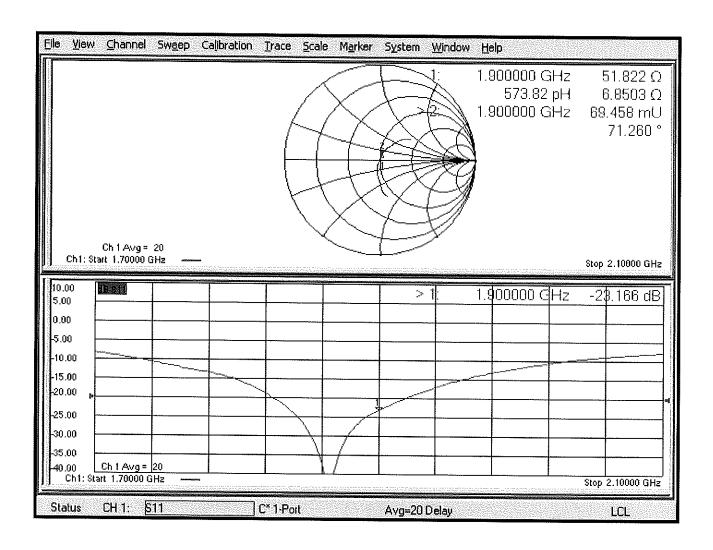
DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 109.4 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 17.8 W/kg


SAR(1 g) = 9.65 W/kg; SAR(10 g) = 5.05 W/kg

Maximum value of SAR (measured) = 15.0 W/kg

0 dB = 15.0 W/kg = 11.76 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 21.02.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d148

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.47 \text{ S/m}$; $\varepsilon_r = 53.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(8.23, 8.23, 8.23) @ 1900 MHz; Calibrated: 31.12.2018

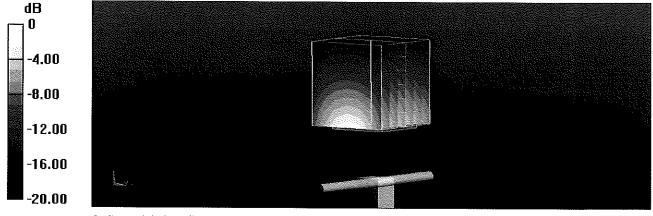
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 04.10,2018

Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002

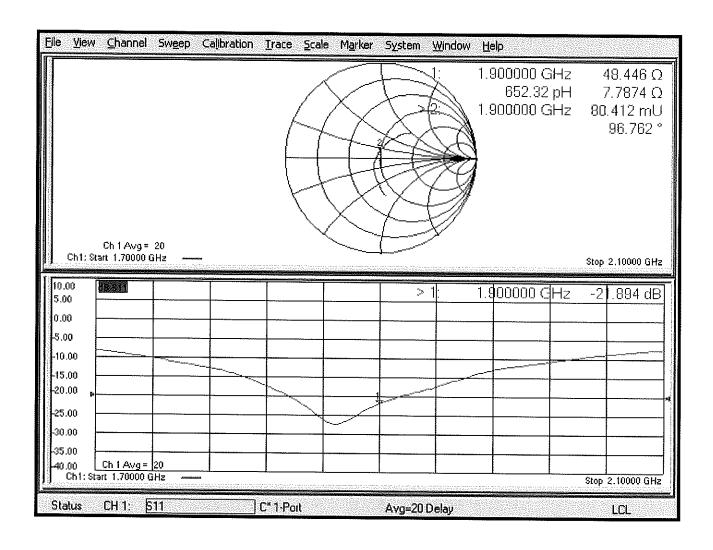
DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 103.7 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 17.0 W/kg


SAR(1 g) = 9.56 W/kg; SAR(10 g) = 5.05 W/kg

Maximum value of SAR (measured) = 14.4 W/kg

0 dB = 14.4 W/kg = 11.58 dBW/kg

Impedance Measurement Plot for Body TSL

PCTEST

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

Certification of Calibration

Object D1900V2 – SN: 5d148

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extension Calibration date: 2/21/2020

Description: SAR Validation Dipole at 1900 MHz.

Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Control Company	4040	Therm./Clock/Humidity Monitor	6/29/2019	Biennial	6/29/2021	192291470
Control Company	4352	Ultra Long Stem Thermometer	8/2/2018	Biennial	8/2/2020	181334684
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	7/2/2019	Annual	7/2/2020	MY53401181
Rohde & Schwarz	ZNLE6	Vector Network Analyzer	10/11/2019	Annual	10/11/2020	101307
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
SPEAG	DAKS-3.5	Portable DAK	9/10/2019	Annual	9/10/2020	1045
Anritsu	MA2411B	Pulse Power Sensor	8/14/2019	Annual	8/14/2020	1315051
Anritsu	MA2411B	Pulse Power Sensor	8/8/2019	Annual	8/8/2020	1339008
Anritsu	ML2495A	Power Meter	12/17/2019	Annual	12/17/2020	941001
Agilent	N5182A	MXG Vector Signal Generator	8/19/2019	Annual	8/19/2020	MY47420837
Seekonk	NC-100	Torque Wrench	5/9/2018	Biennial	5/9/2020	22217
MiniCircuits	ZHDC-16-63-S+	Bidirectional Coupler	CBT	N/A	CBT	N/A
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
SPEAG	EX3DV4	SAR Probe	9/19/2019	Annual	9/19/2020	7551
SPEAG	EX3DV4	SAR Probe	7/16/2019	Annual	7/16/2020	7410
SPEAG	DAE4	Dasy Data Acquisition Electronics	9/17/2019	Annual	9/17/2020	1333
SPEAG	DAE4	Dasy Data Acquisition Electronics	7/11/2019	Annual	7/11/2020	1322

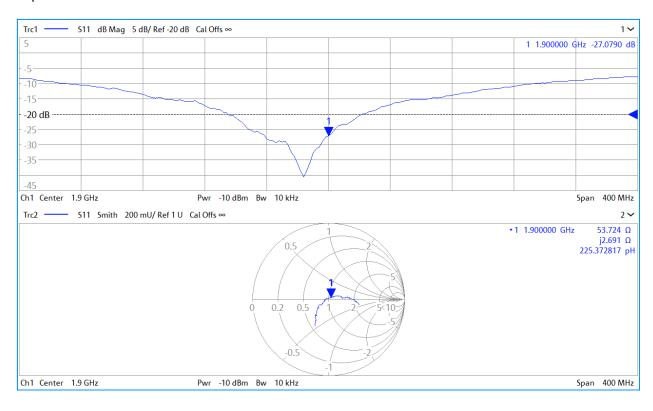
Measurement Uncertainty = ±23% (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Test Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	306

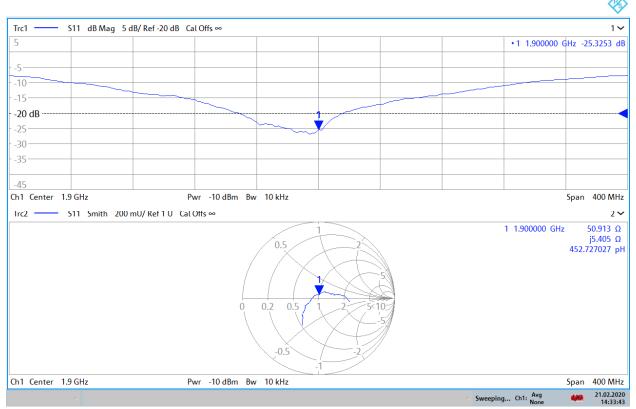
Object:	Date Issued:	Page 1 of 4
D1900V2 - SN: 5d148	02/21/2020	Page 1 of 4

DIPOLE CALIBRATION EXTENSION

Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:


- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:


Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 20.0 dBm	Measured Head SAR (1g) W/kg @ 20.0 dBm	(0/)	Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	(40-) M(4 ©	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
2/21/2019	2/21/2020	1.17	3.91	4.15	6.14%	2.04	2.13	4.41%	51.8	53.7	1.9	6.8	2.7	4.1	-23.2	-27.1	-16.70%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 20.0 dBm	Measured Body SAR (1g) W/kg @ 20.0 dBm	(0/)	Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	(40-) M(4 @	Deviation 10g (%)		Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
2/21/2019	2/21/2020	1.17	3.91	4.06	3.84%	2.05	2.08	1.46%	48.4	50.9	2.5	7.8	5.4	2.4	-21.9	-25.3	-15.60%	PASS

Object:	Date Issued:	Page 2 of 4	
D1900V2 – SN: 5d148	02/21/2020	Faye 2 01 4	

Impedance & Return-Loss Measurement Plot for Head TSL

Impedance & Return-Loss Measurement Plot for Body TSL

14:33:44 21.02.2020

Object:	Date Issued:	Page 4 of 4
D1900V2 - SN: 5d148	02/21/2020	Page 4 of 4

Calibration Laboratory of Schmid & Partner Engineering AG

Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Certificate No: D2450V2-882_Feb20

CALIBRATION CERTIFICATE

Object

D2450V2 - SN:882

Calibration procedure(s)

QA CAL-05.v11

Calibration Procedure for SAR Validation Sources between 0.7-3 GHz

Calibration date:

February 10, 2020

BN 02-26-202

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	03-Apr-19 (No. 217-02892/02893)	Apr-20
Power sensor NRP-Z91	SN: 103244	03-Apr-19 (No. 217-02892)	Apr-20
Power sensor NRP-Z91	SN: 103245	03-Apr-19 (No. 217-02893)	Apr-20
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-19 (No. 217-02894)	Apr-20
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-19 (No. 217-02895)	Apr-20
Reference Probe EX3DV4	SN: 7349	31-Dec-19 (No. EX3-7349_Dec19)	Dec-20
DAE4	SN: 601	27-Dec-19 (No. DAE4-601_Dec19)	Dec-20
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Feb-19)	In house check: Oct-20
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-19)	In house check: Oct-20
	Name	Function	Signature
Calibrated by:	Michael Weber	Laboratory Technician	Mileser
Approved by:	Katja Pokovic	Technical Manager	My

Issued: February 11, 2020

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2450V2-882_Feb20

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-882_Feb20

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

-	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.4 ± 6 %	1.86 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.5 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.9 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.22 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.6 W/kg ± 16.5 % (k=2)

Body TSL parameters ...

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.4 ± 6 %	2.03 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.2 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	51.5 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.14 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.2 W/kg ± 16.5 % (k=2)

Certificate No: D2450V2-882_Feb20

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.7 Ω + 2.3 jΩ
Return Loss	- 26.0 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$51.4 \Omega + 3.8 jΩ$
Return Loss	- 28.0 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.157 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

DASY5 Validation Report for Head TSL

Date: 10.02.2020

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:882

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.86$ S/m; $\varepsilon_r = 38.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(7.98, 7.98, 7.98) @ 2450 MHz; Calibrated: 31.12.2019

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 27.12.2019

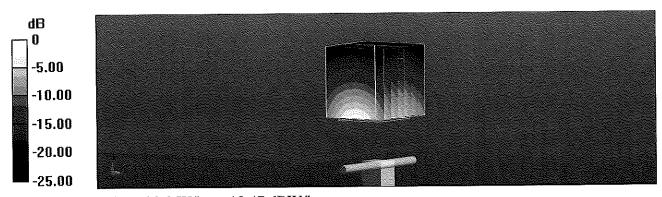
Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

• DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

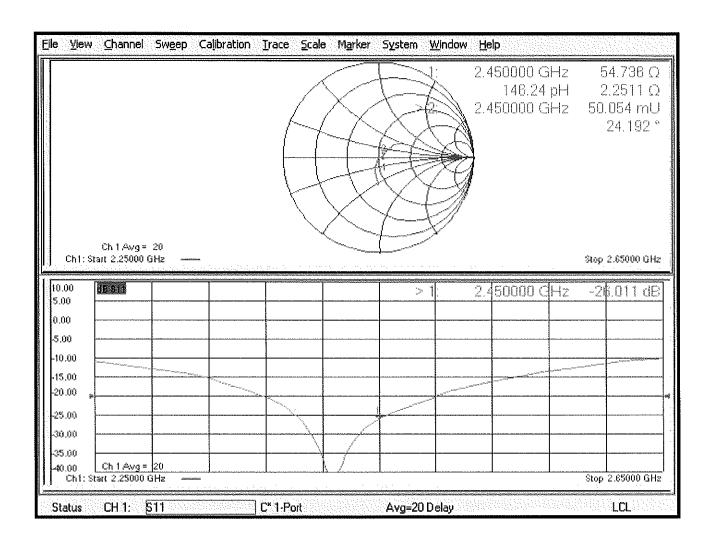
Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 118.2 V/m; Power Drift = 0.04 dB


Peak SAR (extrapolated) = 26.8 W/kg

SAR(1 g) = 13.5 W/kg; SAR(10 g) = 6.22 W/kg

Smallest distance from peaks to all points 3 dB below = 9 mm


Ratio of SAR at M2 to SAR at M1 = 50.3%

Maximum value of SAR (measured) = 22.2 W/kg

0 dB = 22.2 W/kg = 13.47 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 10.02.2020

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:882

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 2.03 \text{ S/m}$; $\varepsilon_r = 51.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(8.02, 8.02, 8.02) @ 2450 MHz; Calibrated: 31.12.2019

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 27.12.2019

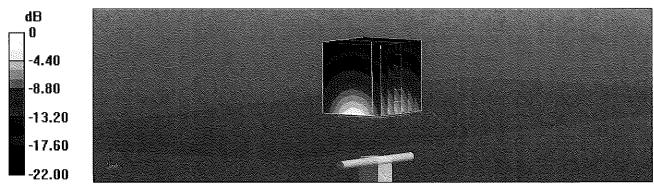
Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002

• DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

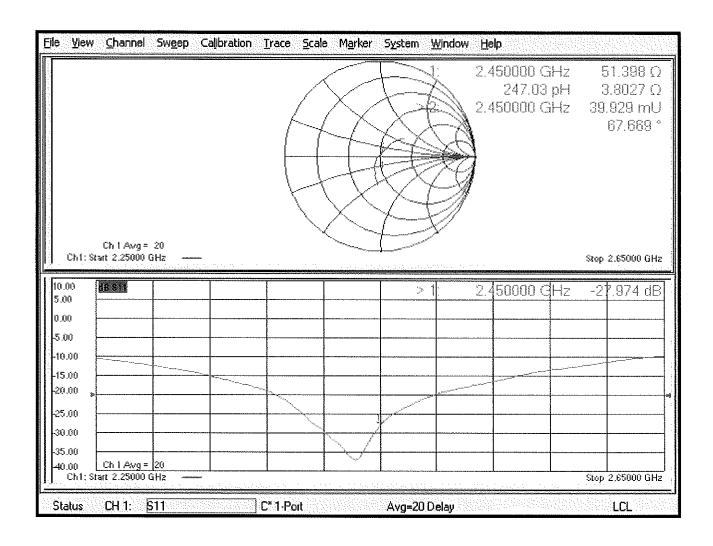
Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 110.1 V/m; Power Drift = -0.05 dB


Peak SAR (extrapolated) = 25.0 W/kg

SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.14 W/kg

Smallest distance from peaks to all points 3 dB below = 9 mm


Ratio of SAR at M2 to SAR at M1 = 53.5%

Maximum value of SAR (measured) = 21.1 W/kg

0 dB = 21.1 W/kg = 13.24 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kallbrierdienst
C Service sulsse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client

PC Test

Certificate No: D2450V2-797_Sep17

Object	D2450V2 - SN:7	97	•
Calibration procedure(s)	QA CAL-05.v9 Calibration proce	edure for dipole validation kits abo)£0 0 <i>j</i>
Callbration date:	September 11, 2	017	Extended PM/ 9/20/0
ine measurements and the unce	rtainties with confidence p	ional standards, which realize the physical un robability are given on the following pages ar	Its of measurements (SI). Its of measurements (SI). BN are part of the certificate.
All calibrations have been condu	cted in the closed laborato	ry facility: environment temperature (22 \pm 3)°(C and humidity < 70%,
Calibration Equipment used (M&	TE critical for calibration)		
	FE critical for calibration)	Cal Date (Certificate No.)	
Primary Standards	1	Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522)	Scheduled Calibration
Primary Standards Power meter NRP Power sensor NRP-Z91	ID#		Scheduled Calibration Apr-18
Primary Standards Power meler NRP Power sensor NRP-Z91	ID # SN: 104778	04-Apr-17 (No. 217-02521/02522)	Scheduled Calibration Apr-18 Apr-18
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91	ID # SN: 104778 SN: 103244	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521)	Scheduled Calibration Apr-18 Apr-18 Apr-18
Primary Standards Power meier NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination	ID # SN: 104778 SN: 103244 SN: 103245	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522)	Scheduled Calibration Apr-18 Apr-18 Apr-18 Apr-18 Apr-18
Primary Standards Power meier NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k)	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529)	Scheduled Calibration Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Apr-18
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528)	Scheduled Calibration Apr-18 Apr-18 Apr-18 Apr-18 Apr-18
Primary Standards Power meier NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02529) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601_Mar17)	Scheduled Calibration Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18
Primary Standards Power meler NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02529) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601_Mar17)	Scheduled Calibration Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 May-18 Mar-18
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02529) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601_Mar17) Cheok Date (in house) 07-Oct-15 (in house check Oct-16)	Scheduled Calibration Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check In house check: Oct-18
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02529) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16)	Scheduled Calibration Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check In house check: Oct-18 In house check: Oct-18
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02529) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16)	Scheduled Calibration Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A RF generator R&S SMT-06	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02529) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16)	Scheduled Calibration Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check In house check: Oct-18 In house check: Oct-18
Primary Standards Power meier NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02529) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16)	Scheduled Calibration Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check In house check: Oct-18

Issued: September 11, 2017

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Katja Pokovic

Certificate No: D2450V2-797_Sep17

Approved by:

Technical Manager

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerlscher Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,v,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	-
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.8 ± 6 %	1.86 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	-	Mhana

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.5 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.7 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.28 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.8 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.9 ± 6 %	2.04 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	N.S. o. o.	

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.1 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	51.1 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.14 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.2 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.8 Ω + 7.4 jΩ
Return Loss	- 21.9 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.7 Ω + 9.1 jΩ
Return Loss	- 20,9 dB

General Antenna Parameters and Design

	<u>,</u>
I Floatrical Delay (one direction)	l 1.152 ns l
Electrical Delay (one direction)	I 1.152 ns I

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	January 24, 2006

-در در در

DASY5 Validation Report for Head TSL

Date: 11.09.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 797

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.86$ S/m; $\varepsilon_r = 37.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(8.12, 8.12, 8.12); Calibrated: 31.05.2017;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 28.03.2017

Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

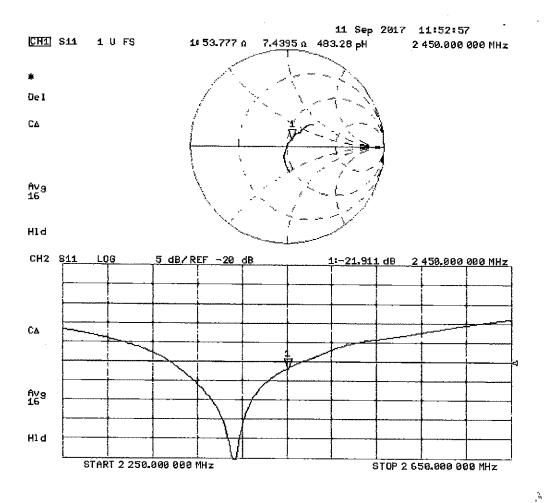
DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 113.5 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 26.9 W/kg


SAR(1 g) = 13.5 W/kg; SAR(10 g) = 6.28 W/kg

Maximum value of SAR (measured) = 21.6 W/kg

0 dB = 21.6 W/kg = 13.34 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 11.09.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 797

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 2.04$ S/m; $\epsilon_r = 51.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(8.1, 8.1, 8.1); Calibrated: 31.05.2017;

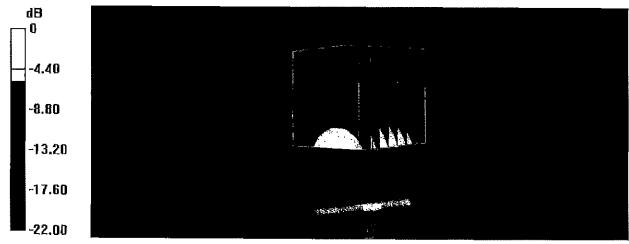
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 28.03.2017

Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002

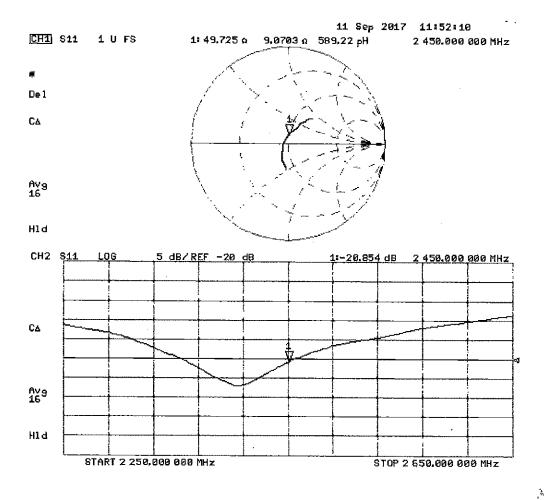
DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 105.4 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 25.6 W/kg


SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6.14 W/kg

Maximum value of SAR (measured) = 20.3 W/kg

0 dB = 20.3 W/kg = 13.07 dBW/kg

Impedance Measurement Plot for Body TSL

PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

Certification of Calibration

Object

D2450V2 - SN: 797

Calibration procedure(s)

Procedure for Calibration Extension for SAR Dipoles.

Extended Calibration date:

September 11, 2018

Description:

SAR Validation Dipole at 2450 MHz.

Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Control Company	4040	Therm./Clock/Humidity Monitor	3/31/2017	Blennial	3/31/2019	170232394
Control Company	4352	Ultra Long Stem Thermometer	5/2/2017	8iennial	5/2/2019	170330156
Amplifier Research	15S1G6	Amplifler	CBT	N/A	CBT	433971
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/4/2018	Annual	6/4/2019	MY53401181
Agilent	8753ES	S-Parameter Vector Network Analyzer	8/30/2018	Annuai	8/30/2019	MY40003841
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
SPEAG	DAK-3.5	Dielectric Assessment Kit	5/15/2018	Annual	5/15/2019	1070
SPEAG	EX3DV4	SAR Probe	7/20/2018	Annual	7/20/2019	7410
SPEAG	DAE4	Dasy Data Acquisition Electronics	7/11/2018	Annual	7/11/2019	1322
SPEAG	ES3DV3	SAR Probe	3/13/2018	Annual	3/13/2019	3319
SPEAG	DAE4	Dasy Data Acquisition Electronics	3/7/2018	Annual	3/7/2019	1368
Anritsu	MA2411B	Pulse Power Sensor	3/2/2018	Annual	3/2/2019	1207364
Anritsu	MA2411B	Pulse Power Sensor	3/2/2018	Annual	3/2/2019	1339018
Anritsu	ML2495A	Power Meter	10/22/2017	Annuəl	10/22/2018	1328004
Agllent	N5182A	MXG Vector Signal Generator	4/18/2018	Annual	4/18/2019	MY47420800
Seekonk	NC-100	Torque Wrench	7/11/2018	Annual	7/11/2019	N/A
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	СВТ	N/A
Narda	4014C-6	4 - 8 GHz SMA 6 dB Directional Coupler	CBT	N/A	CBT	N/A

Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path.

Measurement Uncertainty = $\pm 23\%$ (k=2)

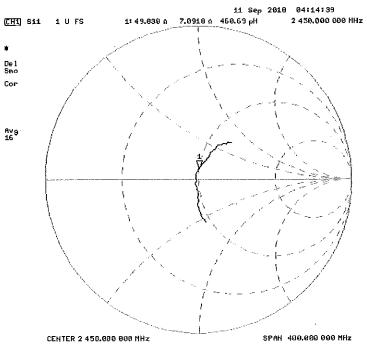
	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Team Lead Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	304

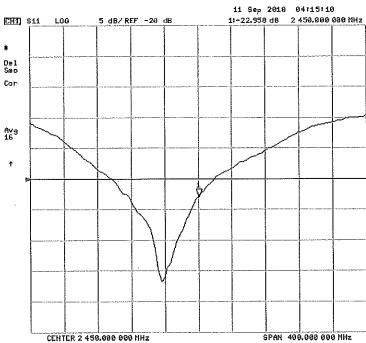
		1
Object:	Date Issued:	Dago 1 of 4
D2450V2 - SN: 797	09/11/2018	rage 1 014

DIPOLE CALIBRATION EXTENSION

Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

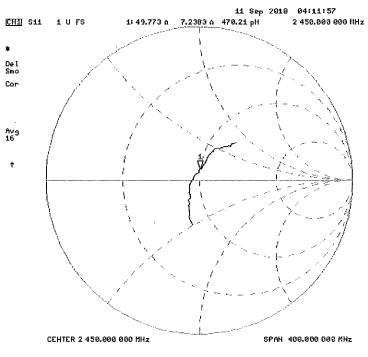
- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

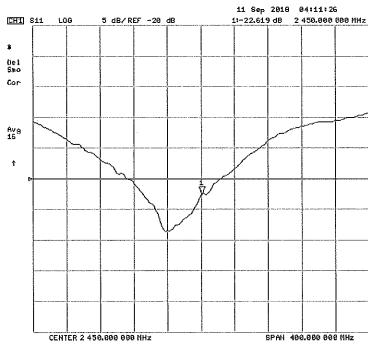

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:


Calibration Date	Extension Date		Certificate SAR Target Head (1g) W/kg @ 20.0 dBm	Measured Head SAR (1g) W/kg @ 20.0 dBm	(%)	Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	(10a) W/ka @	Deviation 10g (%)						Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
9/11/2017	9/11/2018	1.152	5.27	5.52	4.74%	2.48	2.54	2.42%	53.8	49.8	4	7.4	7.1	0.3	-21.9	-23	-4.80%	PASS

	Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 20.0 dBm	Body SAR (1g)	(%)	Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	Measured Body SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)		Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
ſ	9/11/2017	9/11/2018	1.152	5.11	5.17	1.17%	2.42	2.37	-2.07%	49.7	49.8	0.1	9.1	7.2	1.9	-20.9	-22.6	-8.20%	PASS
				•															

Object:	Date Issued:	Page 2 of 4
D2450V2 – SN: 797	09/11/2018	Fage 2 01 4


Impedance & Return-Loss Measurement Plot for Head TSL



Object:	Date Issued:	Page 3 of 4
D2450V2 SN: 797	09/11/2018	r ago o or r

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Page 4 of 4
D2450V2 - SN: 797	09/11/2018	Page 4 of 4

PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

Certification of Calibration

Object D2450V2 – SN: 797

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extended Calibration date: September 9, 2019

Description: SAR Validation Dipole at 2450 MHz.

Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8753ES	S-Parameter Network Analyzer	10/2/2018	Annual	10/2/2019	US39170118
Agilent	N5182A	MXG Vector Signal Generator	6/27/2019	Annual	6/27/2020	US46240505
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	343972
Anritsu	ML2495A	Power Meter	10/21/2018	Annual	10/21/2019	941001
Anritsu	MA2411B	Pulse Power Sensor	10/30/2018	Annual	10/30/2019	1207470
Anritsu	MA2411B	Pulse Power Sensor	11/20/2018	Annual	11/20/2019	1339007
Control Company	4040	Temperature / Humidity Monitor	2/28/2018	Biennial	2/28/2020	150761911
Control Company	4352	Ultra Long Stem Thermometer	2/28/2018	Biennial	2/28/2020	170330160
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	7/2/2019	Annual	7/2/2020	MY53401181
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	NC-100	Torque Wrench	5/23/2018	Biennial	5/23/2020	N/A
SPEAG	EX3DV4	SAR Probe	2/19/2019	Annual	2/19/2020	7417
SPEAG	DAE4	Dasy Data Acquisition Electronics	2/13/2019	Annual	2/13/2020	665
SPEAG	EX3DV4	SAR Probe	7/15/2019	Annual	7/15/2020	7547
SPEAG	DAE4	Dasy Data Acquisition Electronics	7/11/2019	Annual	7/11/2020	1323
SPEAG	DAK-3.5	Dielectric Assessment Kit	9/11/2018	Annual	9/11/2019	1091

Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path.

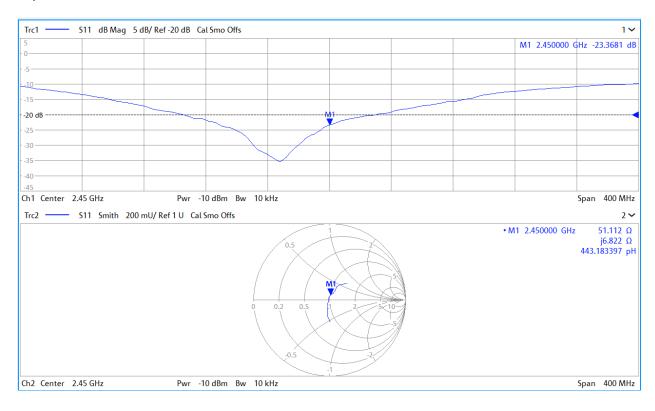
Measurement Uncertainty = ±23% (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Team Lead Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	304

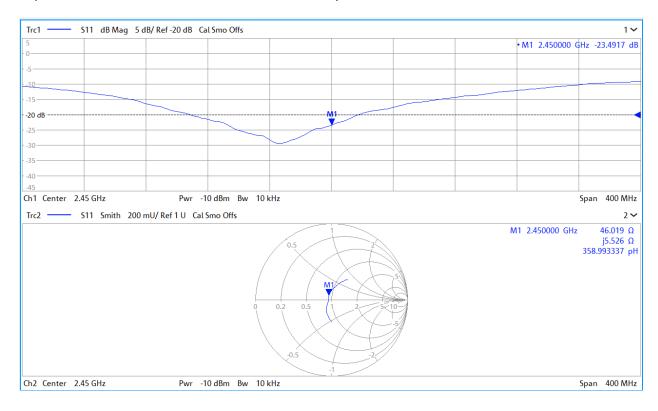
Object:	Date Issued:	Page 1 of 4
D2450V2 – SN: 797	09/9/2019	Page 1 of 4

DIPOLE CALIBRATION EXTENSION

Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:


- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 3-year calibration period from the calibration date:


Calibration Date	Extension Date		Certificate SAR Target Head (1g) W/kg @ 20.0 dBm	Measured Head SAR (1g) W/kg @ 20.0 dBm	(0/)		(40-) M(4 G)	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
9/11/2017	9/9/2019	1.152	5.27	5.19	-1.52%	2.48	2.41	-2.82%	53.8	51.1	2.7	7.4	6.8	0.6	-21.9	-23.4	-6.70%	PASS
Calibration Date	Extension Date		Certificate SAR Target Body (1g) W/kg @ 20.0 dBm	Measured Body SAR (1g) W/kg @ 20.0 dBm	(0/)	Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	(40-) M(4 (-)	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
9/11/2017	9/9/2019	1.152	5.11	5.17	1.17%	2.42	2.38	-1.65%	49.7	46	3.7	9.1	5.5	3.6	-20.9	-23.5	-12.40%	PASS

Object:	Date Issued:	Page 2 of 4
D2450V2 – SN: 797	09/9/2019	Fage 2 01 4

Impedance & Return-Loss Measurement Plot for Head TSL

Impedance & Return-Loss Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client

PC Test

Certificate No: D2600V2-1064_Jun19

CALIBRATION CERTIFICATE

Object

D2600V2 - SN:1064

Calibration procedure(s)

QA CAL-05.v11

Calibration Procedure for SAR Validation Sources between 0.7-3 GHz

44 06-70-7

Calibration date:

June 14, 2019

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3) °C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	03-Apr-19 (No. 217-02892/02893)	Apr-20
Power sensor NRP-Z91	SN: 103244	03-Apr-19 (No. 217-02892)	Apr-20
Power sensor NRP-Z91	SN: 103245	03-Apr-19 (No. 217-02893)	Apr-20
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-19 (No. 217-02894)	Apr-20
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-19 (No. 217-02895)	Apr-20
Reference Probe EX3DV4	SN: 7349	29-May-19 (No. EX3-7349_May19)	May-20
DAE4	SN: 601	30-Apr-19 (No. DAE4-601_Apr19)	Apr-20
Secondary Oter Andr	l.s.	0	
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Feb-19)	In house check: Oct-20
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19
	Name	Function	Signature
Calibrated by:	Michael Weber	Laboratory Technician	//11//
			MIKKS
Approved by:	Katja Pokovic	Technical Manager	an
			/ Le 1/3-

Issued: June 20, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S

C

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A not ap

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	2600 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.0	1.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.3 ± 6 %	2.03 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	14.9 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	58.1 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.59 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	26.0 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.5	2.16 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	50.5 ± 6 %	2.22 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	14.2 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	55.6 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.33 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	25.0 W/kg ± 16.5 % (k=2)

Certificate No: D2600V2-1064_Jun19 Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.8 Ω - 6.9 jΩ	
Return Loss	- 23.2 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.6 Ω - 4.4 jΩ	
Return Loss	- 24.9 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.151 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: D2600V2-1064_Jun19 Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 14.06.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1064

Communication System: UID 0 - CW; Frequency: 2600 MHz

Medium parameters used: f = 2600 MHz; $\sigma = 2.03 \text{ S/m}$; $\varepsilon_r = 37.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(7.69, 7.69, 7.69) @ 2600 MHz; Calibrated: 29.05.2019

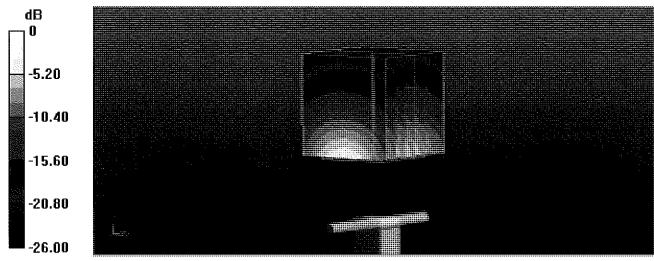
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 30.04.2019

Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

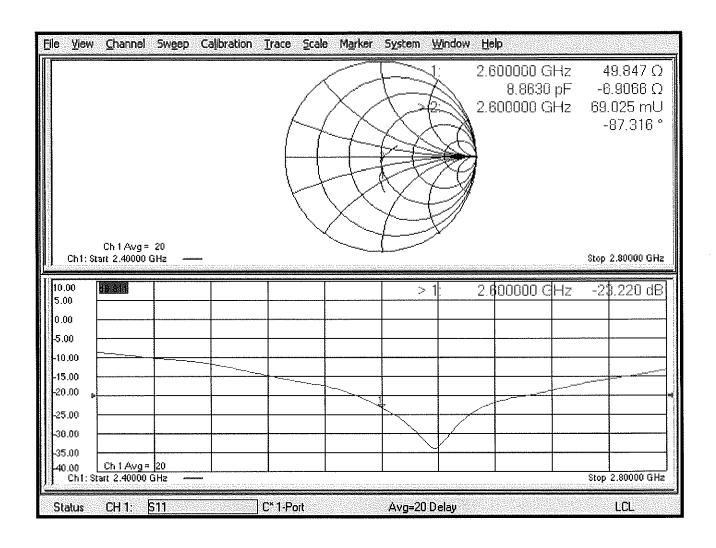
DASY52 52.10.2(1504); SEMCAD X 14.6.12(7470)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 120.9 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 30.2 W/kg


SAR(1 g) = 14.9 W/kg; SAR(10 g) = 6.59 W/kg

Maximum value of SAR (measured) = 25.1 W/kg

0 dB = 25.1 W/kg = 14.00 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 14.06.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1064

Communication System: UID 0 - CW; Frequency: 2600 MHz

Medium parameters used: f = 2600 MHz; $\sigma = 2.22 \text{ S/m}$; $\varepsilon_r = 50.5$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(7.8, 7.8, 7.8) @ 2600 MHz; Calibrated: 29.05.2019

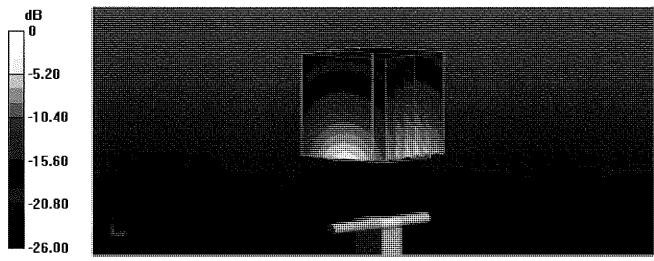
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 30.04.2019

Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002

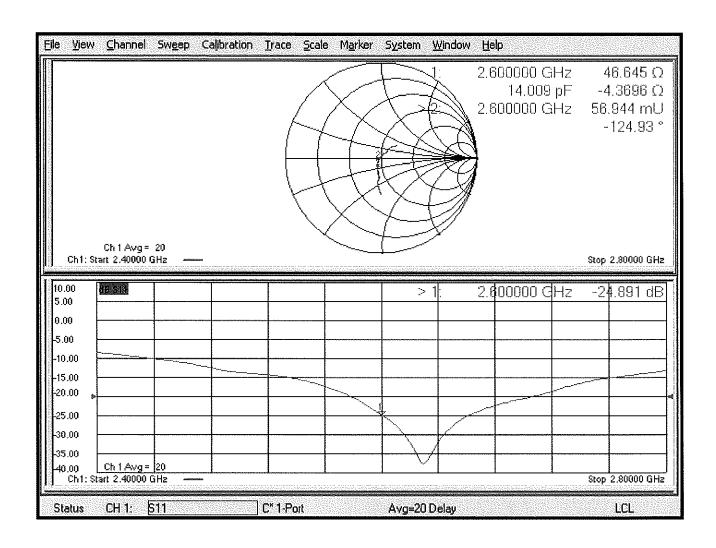
DASY52 52.10.2(1504); SEMCAD X 14.6.12(7470)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 110.6 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 28.9 W/kg


SAR(1 g) = 14.2 W/kg; SAR(10 g) = 6.33 W/kg

Maximum value of SAR (measured) = 23.6 W/kg

0 dB = 23.6 W/kg = 13.73 dBW/kg

Impedance Measurement Plot for Body TSL

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

Certification of Calibration

Object D2600V2 – SN: 1064

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extended Calibration date: June 14, 2020

Description: SAR Validation Dipole at 2600 MHz.

Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Control Company	4040	Therm./Clock/Humidity Monitor	6/29/2019	Biennial	6/29/2021	192291470
Control Company	4352	Ultra Long Stem Thermometer	8/2/2018	Biennial	8/2/2020	181334684
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	7/2/2019	Annual	7/2/2020	MY53401181
Rohde & Schwarz	ZNLE6	Vector Network Analyzer	10/11/2019	Annual	10/11/2020	101307
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
SPEAG	DAKS-3.5	Portable DAK	9/10/2019	Annual	9/10/2020	1045
Anritsu	MA2411B	Pulse Power Sensor	8/14/2019	Annual	8/14/2020	1315051
Anritsu	MA2411B	Pulse Power Sensor	8/8/2019	Annual	8/8/2020	1339008
Anritsu	ML2495A	Power Meter	12/17/2019	Annual	12/17/2020	941001
Agilent	N5182A	MXG Vector Signal Generator	8/19/2019	Annual	8/19/2020	MY47420837
Seekonk	NC-100	Torque Wrench	7/18/2019	Annual	7/18/2020	N/A
MiniCircuits	ZHDC-16-63-S+	Bidirectional Coupler	CBT	N/A	CBT	N/A
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
SPEAG	EX3DV4	SAR Probe	1/21/2020	Annual	1/21/2021	3589
SPEAG	EX3DV4	SAR Probe	7/15/2019	Annual	7/15/2020	7547
SPEAG	DAE4	Dasy Data Acquisition Electronics	7/11/2019	Annual	7/11/2020	1323
SPEAG	DAE4	Dasy Data Acquisition Electronics	1/13/2020	Annual	1/13/2021	1558

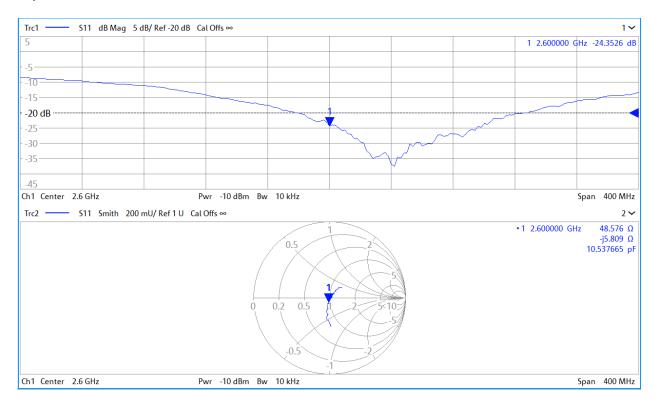
Measurement Uncertainty = ±23% (k=2)

	Name	Function	Signature
Calibrated By:	Test Engineer	Test Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Managing Director	20K

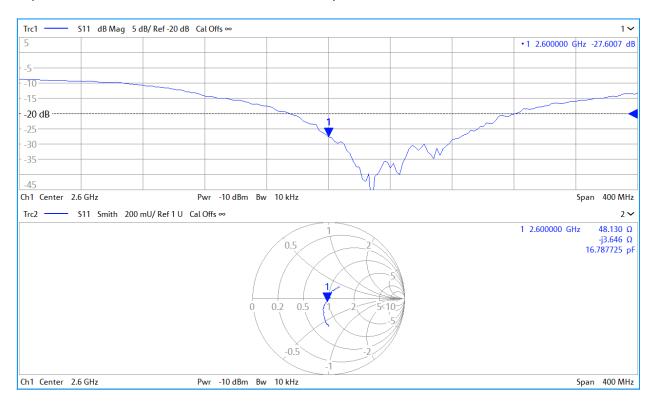
Object:	Date Issued:	Page 1 of 4
D2600V2 – SN: 1064	6/14/2020	Page 1 of 4

DIPOLE CALIBRATION EXTENSION

Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:


- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:


Calibration Date	Extension Date	Certificate Electrical Delay (ns)		Measured Head SAR (1g) W/kg @ 20.0 dBm	Deviation 1g (%)	Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	Measured Head SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
6/14/2019	6/14/2020	1.151	5.81	5.68	-2.24%	2.6	2.56	-1.54%	49.8	48.6	1.2	-6.9	-5.8	1.1	-23.2	-24.4	-5.00%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)		Measured Body SAR (1g) W/kg @ 20.0 dBm	Deviation 1g (%)	Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	Measured Body SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
6/14/2019	6/14/2020	1.151	5.56	5.43	-2.34%	2.5	2.39	-4.40%	46.6	48.1	1.5	-4.4	-3.6	0.8	-24.9	-27.6	-10.80%	PASS

Object:	Date Issued:	Page 2 of 4
D2600V2 – SN: 1064	6/14/2020	Fage 2 01 4

Impedance & Return-Loss Measurement Plot for Head TSL

Impedance & Return-Loss Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client **PC Test** Certificate No: D5GHzV2-1057_Jan18

CALIBRATION CERTIFICATE

Object

D5GHzV2 - SN:1057

Calibration procedure(s)

QA CAL-22,v2

Calibration procedure for dipole validation kits between 3-6 GHz

Issued: January 18, 2018

Calibration date:

January 16, 2018

8105-55-10

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

BNV 02106/2019 BN 01/17/2020

Primery Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02522)	Apr-18
Reference 20 dB Atlenuator	SN: 5058 (20k)	07-Apr-17 (No. 217-02528)	Apr-18
Type-N mismatch combination	SN: 5047.2 / 06327	07-Apr-17 (No. 217-02529)	Apr-18
Reference Probe EX3DV4	SN: 3503	30-Dec-17 (No. EX3-3503_Dec17)	Dec-16
DAE4	SN: 601	26-Oct-17 (No. DAE4-601_Oct17)	Oct-18
		•	
.	1		
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (In house check Oct-16)	in house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	in house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check; Oct-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-17)	In house check: Oct-18
	Name	Function	Signature
Calibrated by:	Leif Klysner	Laboratory Technician	9. IM.
		•	as plan
Approved by:	Katja Pokovic	Technical Manager	11111

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S

C

Schweizerischer Kalibrierdienst Service sulsse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5200 MHz ± 1 MHz 5250 MHz ± 1 MHz 5600 MHz ± 1 MHz 5750 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5250 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.2 ± 6 %	4.55 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.91 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	79.2 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.28 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.8 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1057_Jan18

Head TSL parameters at 5600 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.8 ± 6 %	4.90 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.41 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	84.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.40 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.0 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5750 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.5 ± 6 %	5.06 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.06 W /kg
SAR for nominal Head TSL parameters	normalized to 1W	80.5 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.30 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.0 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.0	5.30 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.3 ± 6 %	5.41 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.36 W /kg
SAR for nominal Body TSL parameters	normalized to 1W	73.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.06 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.4 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.36 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.2 ± 6 %	5.48 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.64 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	75.9 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.13 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.1 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5600 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.6 ± 6 %	5.94 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	8.05 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	79.9 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.25 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	22.3 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5750 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.3	5.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.3 ± 6 %	6.15 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5750 MHz

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.72 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	76.7 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.14 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.2 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5800 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.2 ± 6 %	6.22 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.68 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	76.3 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.13 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.1 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1057_Jan18

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	50.0 Ω - 5.5 jΩ
Return Loss	- 25.2 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	54.7 Ω - 2.1 jΩ
Return Loss	- 26.2 dB

Antenna Parameters with Head TSL at 5750 MHz

Impedance, transformed to feed point	$52.7 \Omega + 0.0 j\Omega$
Return Loss	- 31.5 dB

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	49.3 Ω - 6.7 jΩ
Return Loss	- 23.4 dB

Antenna Parameters with Body TSL at 5250 MHz

Impedance, transformed to feed point	48.4 Ω - 3.9 jΩ
Return Loss	- 27.4 dB

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	55.3 Ω - 1.6 jΩ
Return Loss	- 25.6 dB

Antenna Parameters with Body TSL at 5750 MHz

Impedance, transformed to feed point	52.6 Ω + 1.1 jΩ
Return Loss	- 31.2 dB

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	51.8 Ω - 0.4 jΩ
Return Loss	- 34.9 dB

Certificate No: D5GHzV2-1057_Jan18

General Antenna Parameters and Design

Electrical Delay (one direction)	1.203 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	November 27, 2006

Appendix (Additional assessments outside the scope of SCS 0108)

Measurement Conditions (f=5200 MHz)

DASY system configuration, as far as not given on page 1 and 3.

Phantom SAM Head Phantom For usage with cSAR3DV	2-R/L
---	-------

SAR result with SAM Head (Top)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.24 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	82.6 W/kg ± 20.3 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.35 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.6 W/kg ± 19.9 % (k=2)

SAR result with SAM Head (Mouth)

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.54 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	85.6 W/kg ± 20.3 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.37 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.7 W/kg ± 19.9 % (k=2)

SAR result with SAM Head (Neck)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.14 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	81.6 W/kg ± 20.3 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.37 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.7 W/kg ± 19.9 % (k=2)

SAR result with SAM Head (Ear)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	5.16 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	51.7 W/kg ± 20.3 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	1.76 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	17.7 W/kg ± 19.9 % (k=2)

Certificate No: D5GHzV2-1057_Jan18

Measurement Conditions (f=5800 MHz)

DASY system configuration, as far as not given on page 1 and 3.

Phantom	SAM Head Phantom	For usage with cSAR3DV2-R/L
---------	------------------	-----------------------------

SAR result with SAM Head (Top)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.62 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	86.3 W/kg ± 20.3 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.41 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.1 W/kg ± 19.9 % (k=2)

SAR result with SAM Head (Mouth)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.88 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	88.9 W/kg ± 20.3 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.44 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.4 W/kg ± 19.9 % (k=2)

SAR result with SAM Head (Neck)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.33 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	83.4 W/kg ± 20.3 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.35 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.5 W/kg ± 19.9 % (k=2)

SAR result with SAM Head (Ear)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	5.68 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	56.8 W/kg ± 20.3 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	1.89 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	18.9 W/kg ± 19.9 % (k=2)

Certificate No: D5GHzV2-1057_Jan18

DASY5 Validation Report for Head TSL

Date: 11.01.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1057

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz

Medium parameters used: f = 5250 MHz; $\sigma = 4.55$ S/m; $\varepsilon_r = 36.2$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 4.9$ S/m; $\varepsilon_r = 35.8$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5750 MHz; $\sigma = 5.06$ S/m; $\varepsilon_r = 35.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.51, 5.51, 5.51); Calibrated: 30.12.2017, ConvF(5.05, 5.05, 5.05); Calibrated: 30.12.2017, ConvF(4.98, 4.98, 4.98); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601 modified; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 72.54 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 27.5 W/kg

SAR(1 g) = 7.91 W/kg; SAR(10 g) = 2.28 W/kg

Maximum value of SAR (measured) = 17.7 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 72.77 V/m; Power Drift = -0.07 dB

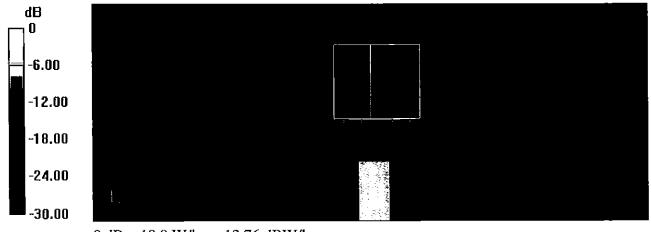
Peak SAR (extrapolated) = 32.2 W/kg

SAR(1 g) = 8.41 W/kg; SAR(10 g) = 2.4 W/kg

Maximum value of SAR (measured) = 19.7 W/kg

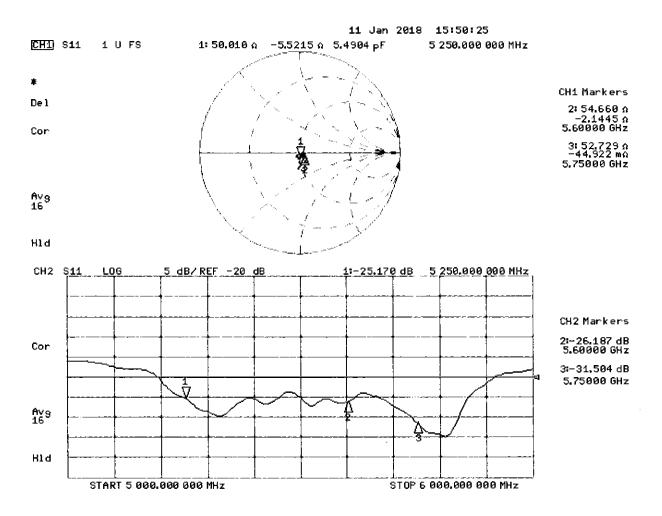
Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm


Reference Value = 70.93 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 31.4 W/kg

SAR(1 g) = 8.06 W/kg; SAR(10 g) = 2.3 W/kg


Maximum value of SAR (measured) = 18.9 W/kg

Certificate No: D5GHzV2-1057_Jan18

0 dB = 18.9 W/kg = 12.76 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 10.01.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1057

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5250 MHz, Frequency: 5600

MHz, Frequency: 5750 MHz, Frequency: 5800 MHz

Medium parameters used: f = 5200 MHz; $\sigma = 5.41 \text{ S/m}$; $\varepsilon_r = 47.3$; $\rho = 1000 \text{ kg/m}^3$

Medium parameters used: f = 5250 MHz; $\sigma = 5.48 \text{ S/m}$; $\varepsilon_r = 47.2$; $\rho = 1000 \text{ kg/m}^3$,

Medium parameters used: f = 5600 MHz; $\sigma = 5.94 \text{ S/m}$; $\varepsilon_r = 46.6$; $\rho = 1000 \text{ kg/m}^3$

Medium parameters used: f = 5750 MHz; $\sigma = 6.15 \text{ S/m}$; $\varepsilon_r = 46.3$; $\rho = 1000 \text{ kg/m}^3$

Medium parameters used: f = 5800 MHz; $\sigma = 6.22 \text{ S/m}$; $\varepsilon_r = 46.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.35, 5.35, 5.35); Calibrated: 30.12.2017, ConvF(5.26, 5.26, 5.26); Calibrated: 30.12.2017, ConvF(4.65, 4.65, 4.65); Calibrated: 30.12.2017, ConvF(4.57, 4.57, 4.57); Calibrated: 30.12.2017, ConvF(4.53, 4.53, 4.53); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 64.05 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 27.6 W/kg

SAR(1 g) = 7.36 W/kg; SAR(10 g) = 2.06 W/kg

Maximum value of SAR (measured) = 17.1 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 64.53 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 29.4 W/kg

SAR(1 g) = 7.64 W/kg; SAR(10 g) = 2.13 W/kg

Maximum value of SAR (measured) = 17.9 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 65.09 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 34.0 W/kg

SAR(1 g) = 8.05 W/kg; SAR(10 g) = 2.25 W/kg

Maximum value of SAR (measured) = 19.5 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan,

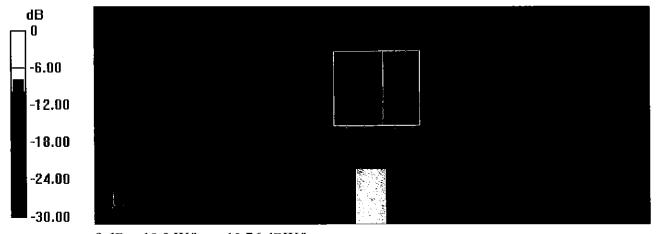
dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 63.45 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 32.9 W/kg

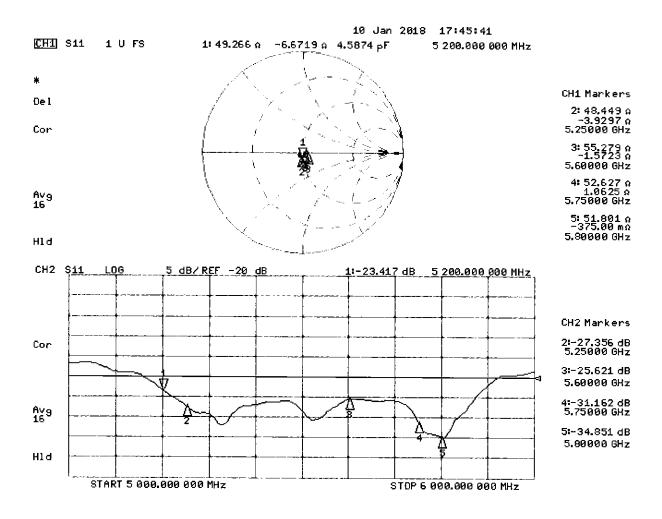
SAR(1 g) = 7.72 W/kg; SAR(10 g) = 2.14 W/kg

Maximum value of SAR (measured) = 18.9 W/kg


Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 63.14 V/m; Power Drift = -0.08 dB


Peak SAR (extrapolated) = 33.3 W/kg

SAR(1 g) = 7.68 W/kg; SAR(10 g) = 2.13 W/kg

0 dB = 18.9 W/kg = 12.76 dBW/kg

Impedance Measurement Plot for Body TSL

DASY5 Validation Report for SAM Head

Date: 16.01.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN:1057

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; σ = 4.59 S/m; ϵr = 36.5; ρ = 1000 kg/m³, Medium parameters used: f = 5800 MHz; σ = 5.28 S/m; ϵr = 35.4; ρ = 1000 kg/m³

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.75, 5.75, 5.75); Calibrated: 30.12.2017, ConvF(4.96, 4.96, 4.96); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: SAM Head
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

SAM Head/Top - 5200/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 72.99 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 30.6 W/kg

SAR(1 g) = 8.24 W/kg; SAR(10 g) = 2.35 W/kg

Maximum value of SAR (measured) = 19.7 W/kg

SAM Head/Top - 5800/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 73.00 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 36.5 W/kg

SAR(1 g) = 8.62 W/kg; SAR(10 g) = 2.41 W/kg

Maximum value of SAR (measured) = 21.9 W/kg

SAM Head/Mouth - 5200/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 72.79 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 29.5 W/kg

SAR(1 g) = 8.54 W/kg; SAR(10 g) = 2.37 W/kg

Maximum value of SAR (measured) = 20.7 W/kg

SAM Head/Mouth - 5800/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm,

dz=1.4mm

Reference Value = 71.69 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 34.9 W/kg

SAR(1 g) = 8.88 W/kg; SAR(10 g) = 2.44 W/kg

Maximum value of SAR (measured) = 23.0 W/kg

SAM Head/Neck - 5200/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm,

dz=1.4mm

Reference Value = 72.48 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 27.9 W/kg

SAR(1 g) = 8.14 W/kg; SAR(10 g) = 2.37 W/kg

Maximum value of SAR (measured) = 19.3 W/kg

SAM Head/Neck - 5800/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 72.90 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 33.4 W/kg

SAR(1 g) = 8.33 W/kg; SAR(10 g) = 2.35 W/kg

Maximum value of SAR (measured) = 21.8 W/kg

SAM Head/Ear - 5200/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

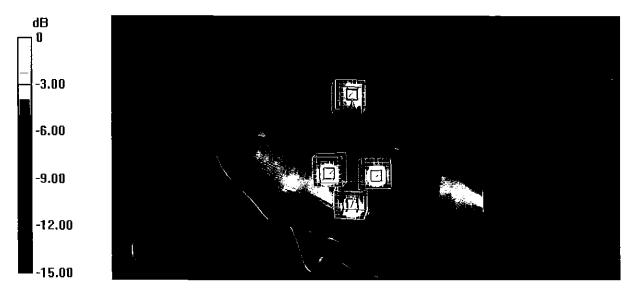
Reference Value = 54.68 V/m; Power Drift = 0.03 dB

D 1 CAD (1 1 1) 16 2 W/I

Peak SAR (extrapolated) = 16.3 W/kg

SAR(1 g) = 5.16 W/kg; SAR(10 g) = 1.76 W/kg

Maximum value of SAR (measured) = 11.1 W/kg


SAM Head/Ear - 5800/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 56.96 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 21.2 W/kg

SAR(1 g) = 5.68 W/kg; SAR(10 g) = 1.89 W/kg

Maximum value of SAR (measured) = 13.8 W/kg

0 dB = 13.8 W/kg = 11.40 dBW/kg

PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

Certification of Calibration

Object D5GHzV2 – SN: 1057

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extension Calibration date: 1/16/2019

Description: SAR Validation Dipole at 5250, 5600, and 5750 MHz.

Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8753ES	S-Parameter Network Analyzer	2/8/2018	Annual	2/8/2019	US39170122
Agilent	N5182A	MXG Vector Signal Generator	4/18/2018	Annual	4/18/2019	MY47420800
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Anritsu	MA2411B	Pulse Power Sensor	3/2/2018	Annual	3/2/2019	1207364
Anritsu	MA2411B	Pulse Power Sensor	3/2/2018	Annual	3/2/2019	1339018
Anritsu	ML2495A	Power Meter	10/21/2018	Annual	10/21/2019	941001
Control Company	4040	Therm./Clock/Humidity Monitor	3/31/2017	Biennial	3/31/2019	170232394
Control Company	4352	Ultra Long Stem Thermometer	5/2/2017	Biennial	5/2/2019	170330156
Keysight	772D	Dual Directional Coupler		N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/4/2018	Annual	6/4/2019	MY53401181
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
Seekonk	NC-100	Torque Wrench	7/11/2018	Annual	7/11/2019	N/A
SPEAG	DAE4	Dasy Data Acquisition Electronics	10/3/2018	Annual	10/3/2019	1558
SPEAG	DAE4	Dasy Data Acquisition Electronics	6/18/2018	Annual	6/18/2019	1334
SPEAG	DAK-3.5	Dielectric Assessment Kit	9/11/2018	Annual	9/11/2019	1091
SPEAG	EX3DV4	SAR Probe	8/23/2018	Annual	8/23/2019	7308
SPEAG	EX3DV4	SAR Probe	6/25/2018	Annual	6/25/2019	7409

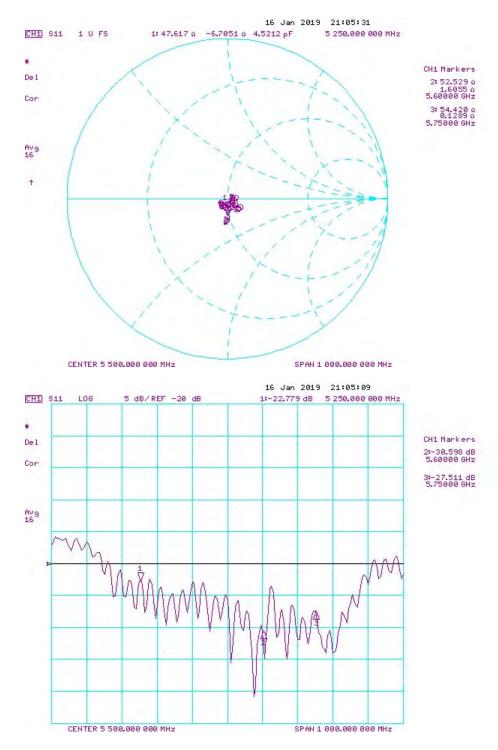
Measurement Uncertainty = ±23% (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Test Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	20K

Object:	Date Issued:	Page 1 of 4
D5GHzV2 – SN: 1057	01/16/2019	Page 1 of 4

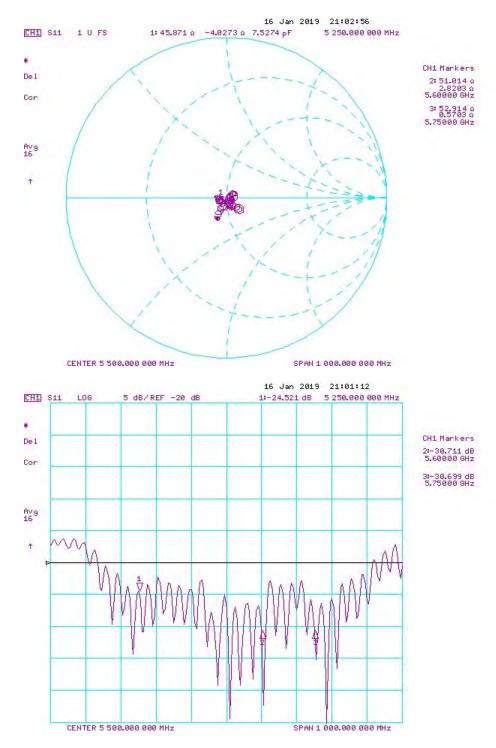
DIPOLE CALIBRATION EXTENSION

Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:


- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

Frequency (MHz)	Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 17.0 dBm	(1a) W/ka @	Deviation 1g (%)	Certificate SAR Target Head (10g) W/kg @ 17.0 dBm	(40a) W//ka @	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
5250	1/16/2018	1/16/2019	1.203	3.96	3.63	-8.33%	1.14	1.04	-8.77%	50	47.6	2.4	-5.5	-6.7	1.2	-25.2	-22.8	9.60%	PASS
5600	1/16/2018	1/16/2019	1.203	4.205	3.84	-8.68%	1.2	1.09	-9.17%	54.7	52.5	2.2	-2.1	1.6	3.7	-26.2	-30.6	-16.80%	PASS
5750	1/16/2018	1/16/2019	1.203	4.025	3.76	-6.58%	1.15	1.07	-6.96%	52.7	54.4	1.7	0	0.1	0.1	-31.5	-27.5	12.70%	PASS
Frequency (MHz)	Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 17.0 dBm	(1a) M/ka @	Deviation 1g (%)	Certificate SAR Target Body (10g) W/kg @ 17.0 dBm	(40a) W//ka @	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
5250	1/16/2018	1/16/2019	1.203	3.795	3.73	-1.71%	1.06	1.03	-2.37%	48.4	45.9	2.5	-3.9	-4	0.1	-27.4	-24.5	10.50%	PASS
5600	1/16/2018	1/16/2019	1.203	3.995	4.06	1.63%	1.12	1.12	0.45%	55.3	51	4.3	-1.6	2.8	4.4	-25.6	-30.7	-20.00%	PASS
5750	1/16/2018	1/16/2019	1.203	3.835	3.65	-4.82%	1.06	1.02	-3.77%	52.6	52.9	0.3	1.1	0.6	0.5	-31.2	-30.7	1.60%	PASS


Object:	Date Issued:	Page 2 of 4	
D5GHzV2 – SN: 1057	01/16/2019	Fage 2 01 4	

Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Page 3 of 4
D5GHzV2 – SN: 1057	01/16/2019	rage 3 or 4

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Page 4 of 4
D5GHzV2 – SN: 1057	01/16/2019	Page 4 of 4

- 1

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

Certification of Calibration

Object D5GHzV2 – SN: 1057

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extension Calibration date: 1/16/2020

Description: SAR Validation Dipole at 5250, 5600, and 5750 MHz.

Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Control Company	4040	Therm./Clock/Humidity Monitor	6/29/2019	Biennial	6/29/2021	192291470
Control Company	4352	Ultra Long Stem Thermometer	8/2/2018	Biennial	8/2/2020	181334684
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	7/2/2019	Annual	7/2/2020	MY53401181
Rohde & Schwarz	ZNLE6	Vector Network Analyzer	10/11/2019	Annual	10/11/2020	101307
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
SPEAG	DAKS-3.5	Portable DAK	9/10/2019	Annual	9/10/2020	1045
Anritsu	MA2411B	Pulse Power Sensor	8/14/2019	Annual	8/14/2020	1315051
Anritsu	MA2411B	Pulse Power Sensor	8/8/2019	Annual	8/8/2020	1339008
Anritsu	ML2495A	Power Meter	1/15/2020	Annual	1/15/2021	1328004
Agilent	N5182A	MXG Vector Signal Generator	8/19/2019	Annual	8/19/2020	MY47420837
Seekonk	NC-100	Torque Wrench	5/9/2018	Biennial	5/9/2020	22217
MiniCircuits	ZHDC-16-63-S+	Bidirectional Coupler	CBT	N/A	CBT	N/A
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
SPEAG	EX3DV4	SAR Probe	5/16/2019	Annual	5/16/2020	7406
SPEAG	EX3DV4	SAR Probe	6/19/2019	Annual	6/19/2020	7409
SPEAG	DAE4	Dasy Data Acquisition Electronics	6/20/2019	Annual	6/20/2020	1334
SPEAG	DAE4	Dasy Data Acquisition Electronics	5/8/2019	Annual	5/8/2020	728

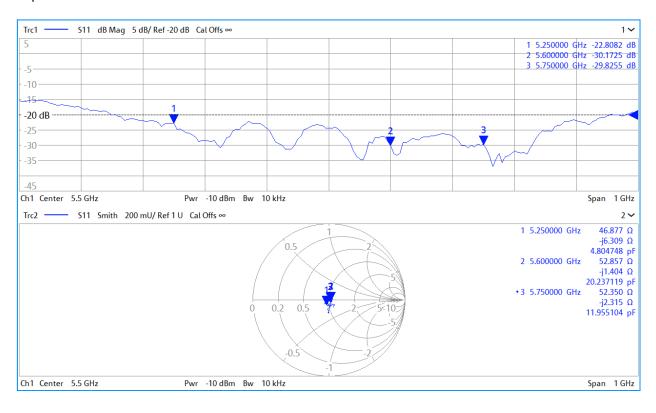
Measurement Uncertainty = ±23% (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Test Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	20K

Object:	Date Issued:	Page 1 of 4
D5GHzV2 – SN: 1057	01/16/2020	Page 1 of 4

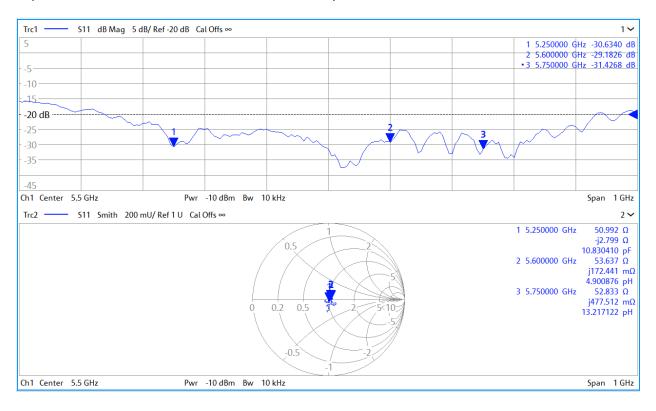
DIPOLE CALIBRATION EXTENSION

Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:


- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 3-year calibration period from the calibration date:

Freque (MHz		Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 17.0 dBm	W/kg @ 17.0	Deviation 1g (%)	Certificate SAR Target Head (10g) W/kg @ 17.0 dBm	(40a) M//ka @	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
5250	1/16/2018	1/16/2020	1.203	3.96	3.72	-6.06%	1.14	1.05	-7.89%	50	46.9	3.1	-5.5	-6.3	8.0	-25.2	-22.8	9.50%	PASS
5600	1/16/2018	1/16/2020	1.203	4.205	3.91	-7.02%	1.2	1.11	-7.50%	54.7	52.9	1.8	-2.1	-1.4	0.7	-26.2	-30.2	-15.20%	PASS
5750	1/16/2018	1/16/2020	1.203	4.025	3.72	-7.58%	1.15	1.05	-8.70%	52.7	52.4	0.4	0	-2.3	2.3	-31.5	-29.8	5.30%	PASS
Freque (MH		Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 17.0 dBm	W/kg @ 17.0	Deviation 1g (%)		Measured Body SAR (10g) W/kg @ 17.0 dBm	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
5250	1/16/2018	1/16/2020	1.203	3.795	3.75	-1.19%	1.06	1.04	-1.42%	48.4	51	2.6	-3.9	-2.8	1.1	-27.4	-30.6	-11.80%	PASS
5600	1/16/2018	1/16/2020	1.203	3.995	3.98	-0.38%	1.12	1.1	-1.35%	55.3	53.6	1.7	-1.6	0.2	1.8	-25.6	-29.2	-14.00%	PASS
5750	1/16/2018	1/16/2020	1.203	3.835	3.87	0.91%	1.06	1.06	0.00%	52.6	52.8	0.2	1.1	0.5	0.6	-31.2	-31.4	-0.20%	PASS


Object:	Date Issued:	Page 2 of 4
D5GHzV2 – SN: 1057	01/16/2020	raye 2 01 4

Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Page 3 of 4	
D5GHzV2 – SN: 1057	01/16/2020	rage 3 01 4	

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Page 4 of 4
D5GHzV2 – SN: 1057	01/16/2020	Page 4 of 4

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Accreditation No.: SCS 0108

Certificate No: D750V3-1054_Mar20

CALIBRATION CERTIFICATE

Object

D750V3 - SN:1054

Calibration procedure(s)

QA CAL-05.v11

Calibration Procedure for SAR Validation Sources between 0.7-3 GHz

Calibration date:

March 11, 2020

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). V The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	03-Apr-19 (No. 217-02892/02893)	Apr-20
Power sensor NRP-Z91	SN: 103244	03-Apr-19 (No. 217-02892)	Apr-20
Power sensor NRP-Z91	SN: 103245	03-Apr-19 (No. 217-02893)	Apr-20
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-19 (No. 217-02894)	Apr-20
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-19 (No. 217-02895)	Apr-20
Reference Probe EX3DV4	SN: 7349	31-Dec-19 (No. EX3-7349_Dec19)	Dec-20
DAE4	SN: 601	27-Dec-19 (No. DAE4-601_Dec19)	Dec-20
	ı		
Secondary Standards	1D #	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Feb-19)	In house check: Oct-20
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-19)	In house check: Oct-20
	Name	Function	Signature
Calibrated by:	Claudio Leubler	ent processor and the State Market State and the control of the co	A STATE OF THE STA
Calibrated by.	Ciaddio Fedhiei	Laboratory Technician	1 Ku
			40
Approved by:	Katja Pok o vic	Technical Manager	

Issued: March 19, 2020

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D750V3-1054_Mar20

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D750V3-1054 Mar20

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.9	0.89 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.5 ± 6 %	0.88 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.13 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.63 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.41 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.69 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.5	0.96 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.7 ± 6 %	0.96 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.14 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	8.53 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.41 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	5.63 W/kg ± 16.5 % (k=2)

Certificate No: D750V3-1054_Mar20

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.6 Ω - 1.9 jΩ
Return Loss	- 28.2 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.8 Ω - 4.7 jΩ
Return Loss	- 26.6 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.005 ==
, (=====	1.035 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
	J SFLAG

DASY5 Validation Report for Head TSL

Date: 11.03.2020

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1054

Communication System: UID 0 - CW; Frequency: 750 MHz

Medium parameters used: f = 750 MHz; $\sigma = 0.88$ S/m; $\epsilon_r = 42.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(10.07, 10.07, 10.07) @ 750 MHz; Calibrated: 31.12.2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 27.12.2019

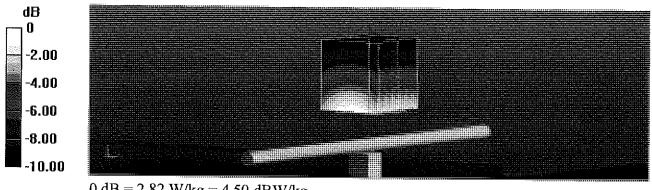
Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001

DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

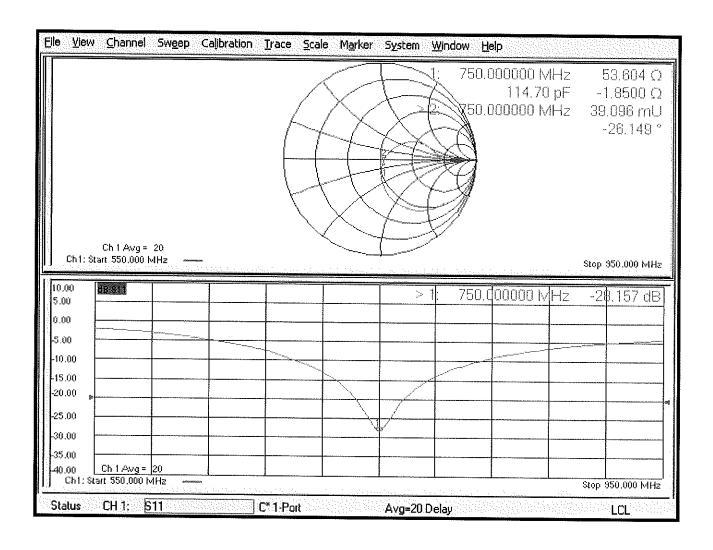
Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 59.98 V/m; Power Drift = -0.01 dB


Peak SAR (extrapolated) = 3.19 W/kg

SAR(1 g) = 2.13 W/kg; SAR(10 g) = 1.41 W/kg

Smallest distance from peaks to all points 3 dB below = 17.1 mm


Ratio of SAR at M2 to SAR at M1 = 66.8%

Maximum value of SAR (measured) = 2.82 W/kg

0 dB = 2.82 W/kg = 4.50 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 11.03.2020

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1054

Communication System: UID 0 - CW; Frequency: 750 MHz

Medium parameters used: f = 750 MHz; $\sigma = 0.96$ S/m; $\varepsilon_r = 54.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(10.61, 10.61, 10.61) @ 750 MHz; Calibrated: 31.12.2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 27,12,2019

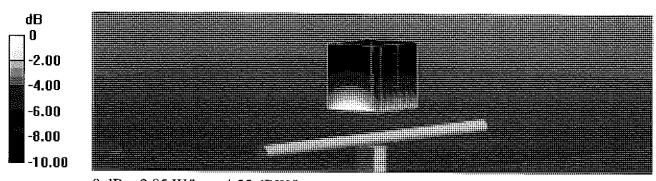
Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005

DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

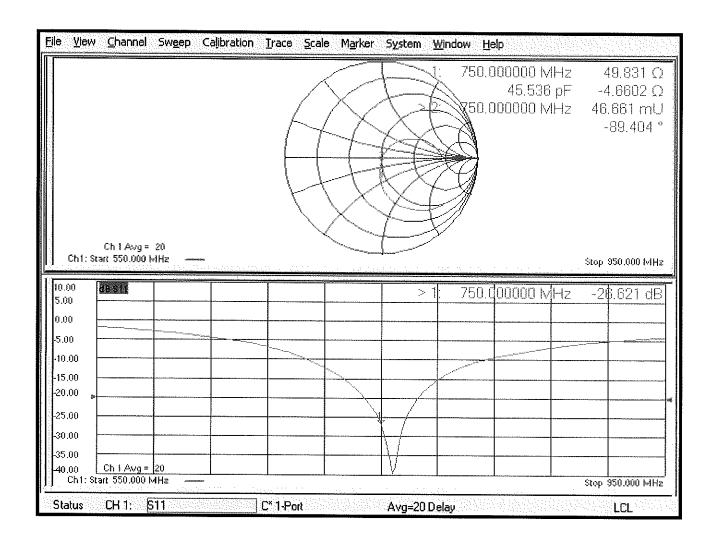
Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.15 V/m; Power Drift = -0.02 dB


Peak SAR (extrapolated) = 3.22 W/kg

SAR(1 g) = 2.14 W/kg; SAR(10 g) = 1.41 W/kg

Smallest distance from peaks to all points 3 dB below = 16.1 mm


Ratio of SAR at M2 to SAR at M1 = 66.7%

Maximum value of SAR (measured) = 2.85 W/kg

0 dB = 2.85 W/kg = 4.55 dBW/kg

Impedance Measurement Plot for Body TSL

Appendix: Transfer Calibration at Four Validation Locations on SAM Head¹

Evaluation Condition

Phantom	SAM Head Phantom	For usage with cSAR3D v2 -R/L

SAR result with SAM Head (Top \cong C0)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	normalized to 1W	7.66 W/kg ± 17.5 % (k=2)
SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
CARC	Soriation	

SAR for nominal Head TSL parameters normalized to 1W 5.14 W/kg ± 16.9 % (k=2)

SAR result with SAM Head (Mouth ≅ F90)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	normalized to 1W	8.42 W/kg ± 17.5 % (k=2)
SAR averaged over 10 cm³ (10 g) of Head TSL	condition	

SAR result with SAM Head (Neck \cong H0)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	normalized to 1W	7.89 W/kg ± 17.5 % (k=2)
SAR averaged over 10 cm³ (10 g) of Head TSL	condition	

SAR result with SAM Head (Ear \cong D90)

SAR for nominal Head TSL parameters normalized to 1W 6.82 W/kg ± 17.	5 % (k=2)

SAR for nominal Head TSL parameters normalized to 1W 4.63 W/kg ± 16.9 % (k=2)

Certificate No: D750V3-1054_Mar20

 $^{^{\}mathrm{1}}$ Additional assessments outside the current scope of SCS 0108

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst
CService suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

_

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Certificate No: D1750V2-1148_May20

CALIBRATION CERTIFICATE

Object

D1750V2 - SN:1148

Calibration procedure(s)

QA CAL-05.v11

Calibration Procedure for SAR Validation Sources between 0.7-3 GHz

BN -222

Calibration date:

May 12, 2020

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	01-Apr-20 (No. 217-03100/03101)	Apr-21
Power sensor NRP-Z91	SN: 103244	01-Apr-20 (No. 217-03100)	Apr-21
Power sensor NRP-Z91	SN: 103245	01-Apr-20 (No. 217-03101)	Apr-21
Reference 20 dB Attenuator	SN: BH9394 (20k)	31-Mar-20 (No. 217-03106)	Apr-21
Type-N mismatch combination	SN: 310982 / 06327	31-Mar-20 (No. 217-03104)	Apr-21
Reference Probe EX3DV4	SN: 7349	31-Dec-19 (No. EX3-7349_Dec19)	Dec-20
DAE4	SN: 601	27-Dec-19 (No. DAE4-601_Dec19)	Dec-20
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Feb-19)	In house check: Oct-20
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-19)	In house check: Oct-20
	Name	Function	Signature
Calibrated by:	Jeffrey Katzman	Laboratory Technician	11-1
			J. Kyro
Approved by:	Katja Pokovic	Technical Manager	
			ac at

Issued: May 13, 2020

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurlch, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A

sensitivity in TSL / NORM x,y,z

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	**************************************
Frequency	1750 MHz ± 1 MHz	1,7754WW 1,7754WW

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.3 ± 6 %	1.35 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	8.88 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	35.9 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	· · · · · · · · · · · · · · · · · · ·
SAR measured	250 mW input power	4.69 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	18.9 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.4	1.49 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.1 ± 6 %	1.47 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	8.98 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	36.3 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	4.80 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	19.3 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.2 Ω - 1.9 jΩ
Return Loss	- 33.6 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	45.0 Ω - 1.7 jΩ
Return Loss	- 25.2 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.222 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: D1750V2-1148_May20 Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 12.05.2020

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1148

Communication System: UID 0 - CW; Frequency: 1750 MHz

Medium parameters used: f = 1750 MHz; $\sigma = 1.35 \text{ S/m}$; $\varepsilon_r = 40.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(8.76, 8.76, 8.76) @ 1750 MHz; Calibrated: 31.12.2019

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 27.12.2019

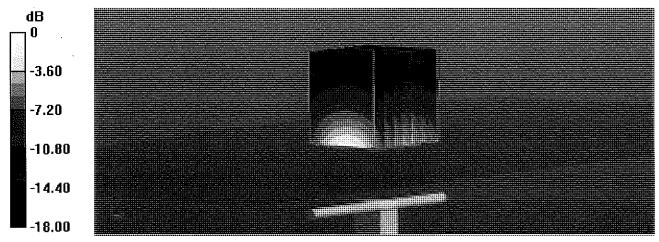
• Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

• DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

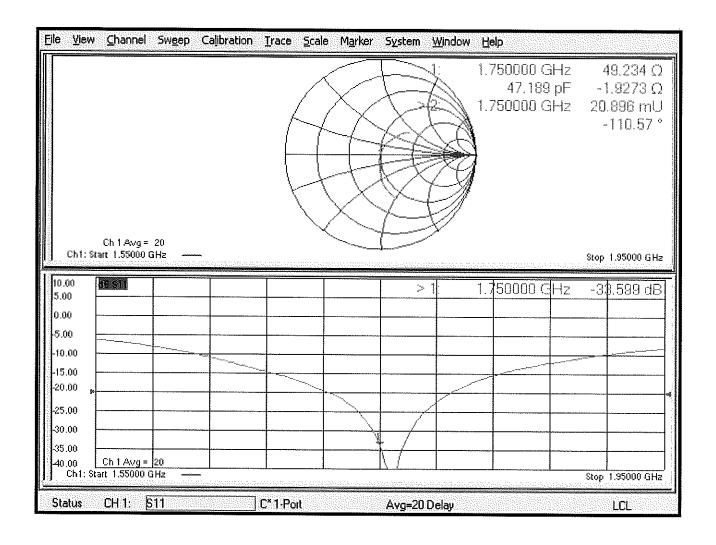
Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 105.6 V/m; Power Drift = -0.03 dB


Peak SAR (extrapolated) = 16.4 W/kg

SAR(1 g) = 8.88 W/kg; SAR(10 g) = 4.69 W/kg

Smallest distance from peaks to all points 3 dB below = 10 mm


Ratio of SAR at M2 to SAR at M1 = 54.4%

Maximum value of SAR (measured) = 13.8 W/kg

0 dB = 13.8 W/kg = 11.40 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 12.05.2020

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1148

Communication System: UID 0 - CW; Frequency: 1750 MHz

Medium parameters used: f = 1750 MHz; $\sigma = 1.47$ S/m; $\epsilon_r = 54.1$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(8.61, 8.61, 8.61) @ 1750 MHz; Calibrated: 31.12.2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 27.12.2019

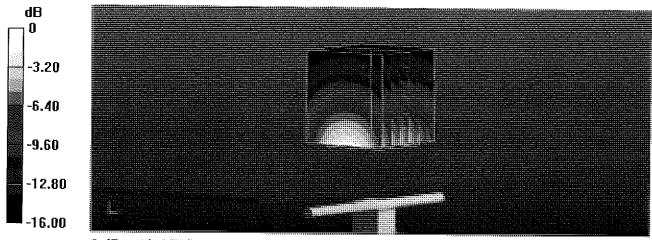
Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002

• DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

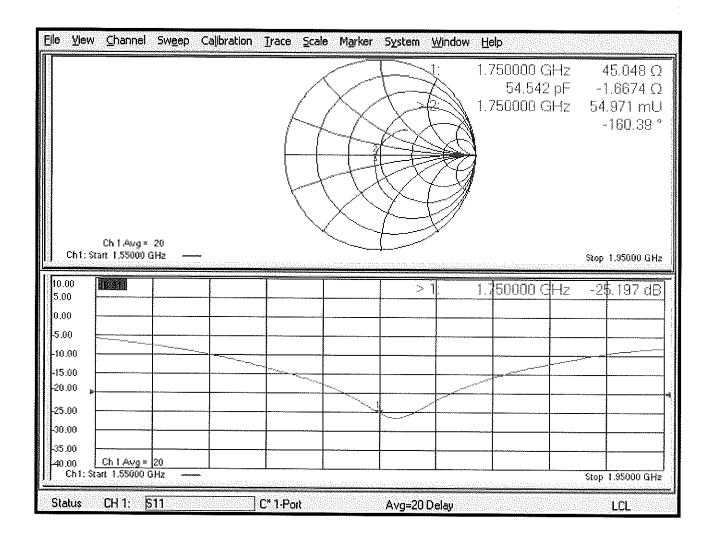
Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 99.95 V/m; Power Drift = -0.05 dB


Peak SAR (extrapolated) = 16.1 W/kg

SAR(1 g) = 8.98 W/kg; SAR(10 g) = 4.8 W/kg

Smallest distance from peaks to all points 3 dB below = 10 mm


Ratio of SAR at M2 to SAR at M1 = 57.1%

Maximum value of SAR (measured) = 13.6 W/kg

0 dB = 13.6 W/kg = 11.34 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

C

Schweizerischer Kalibrierdienst Service sulsse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service**

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108

Client

Certificate No: D1900V2-5d080_Oct18

CALIBRATION C			
Dbject	D1900V2 - SN:50	1080	
Calibration procedure(s)	QA CAL-05 v10		
	Calibration proce	dure for dipole validation kits al	DOVE 700 WITZ
			BN
Calibration date:	October 23, 2018		BN 10-30-2018 BN 10-30-2018
			BNV
	•	onal standards, which realize the physical	units of theastrements (51). 10 -
he measurements and the uncert	aintles with confidence p	robability are given on the following pages	and are part of the certificate.
All calibrations have been conducte	ed in the closed laborato	y facility; environment temperature (22 \pm 3	s)°C and humidity < 70%.
Calibration Equipment used (M&TE	aritical for calibration		
Salibration Editibulant read (Motte	conicarior campianory		
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	S N: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
ype-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Reference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18 ·
DAE4	SN: 601	04-Oct-18 (No. DAE4-601_Oct18)	Oct-19
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	in house check: Oct-20
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	te la
Approved by:	Katja Pokovic	Technical Manager	
			Issued: October 23, 2018

Certificate No: D1900V2-5d080_Oct18

Page 1 of 8

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1900V2-5d080_Oct18 Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2	
Extrapolation	Advanced Extrapolation		
Phantom	Modular Flat Phantom		
Distance Dipole Center - TSL	10 mm	with Spacer	
Zoom Scan Resolution	dx, dy, dz = 5 mm		
Frequency	1900 MHz ± 1 MHz		

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.3 ± 6 %	1.40 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	do to to	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.93 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	39.8 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.18 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.7 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.9 ± 6 %	1.47 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	, , , , , ,
SAR measured	250 mW input power	9.62 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	39.2 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.09 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.6 W/kg ± 16.5 % (k=2)

Certificate No: D1900V2-5d080_Oct18

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.5 Ω + 7.9 jΩ
Return Loss	- 21.8 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.1 Ω + 8.1 jΩ
Return Loss	- 21.5 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.193 ns	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	June 28, 2006

Certificate No: D1900V2-5d080_Oct18

DASY5 Validation Report for Head TSL

Date: 23.10.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d080

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.4 \text{ S/m}$; $\varepsilon_r = 40.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(8.18, 8.18, 8.18) @ 1900 MHz; Calibrated: 30.12.2017

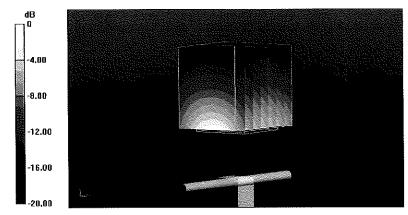
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 04.10.2018

• Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

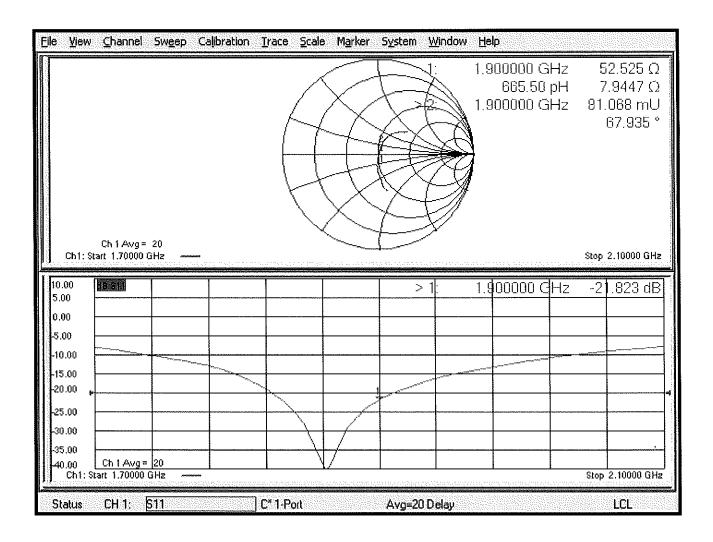
• DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 110.0 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 18.7 W/kg


SAR(1 g) = 9.93 W/kg; SAR(10 g) = 5.18 W/kg

Maximum value of SAR (measured) = 15.6 W/kg

0 dB = 15.6 W/kg = 11.93 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 23.10.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d080

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.47 \text{ S/m}$; $\varepsilon_r = 52.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(8.15, 8.15, 8.15) @ 1900 MHz; Calibrated: 30.12.2017

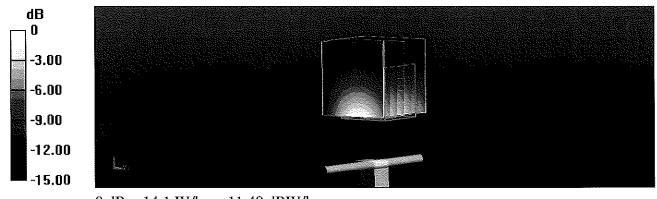
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 04.10.2018

Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002

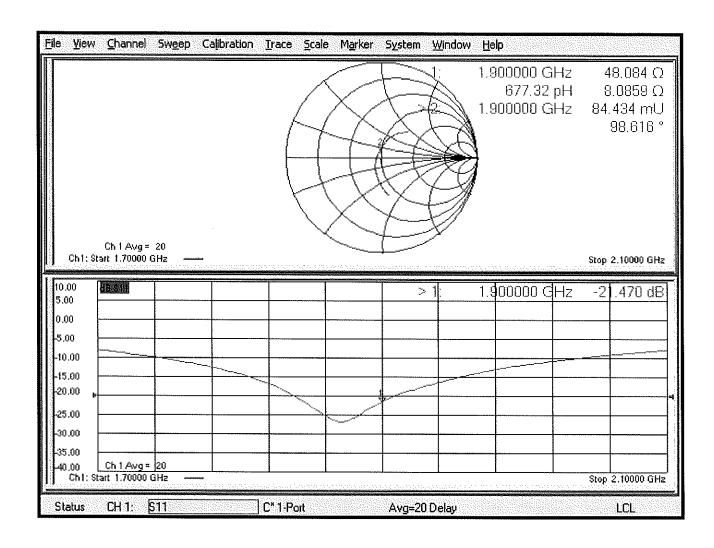
• DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 99.86 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 17.3 W/kg


SAR(1 g) = 9.62 W/kg; SAR(10 g) = 5.09 W/kg

Maximum value of SAR (measured) = 14.1 W/kg

0 dB = 14.1 W/kg = 11.49 dBW/kg

Impedance Measurement Plot for Body TSL

PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

Certification of Calibration

Object D1900V2 – SN:5d080

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extended Calibration date: October 18, 2019

Description: SAR Validation Dipole at 1900 MHz.

Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Control Company	4040	Therm./Clock/Humidity Monitor	6/29/2019	Biennial	6/29/2021	192291470
Control Company	4352	Ultra Long Stem Thermometer	8/2/2018	Biennial	8/2/2020	181334684
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	7/2/2019	Annual	7/2/2020	MY53401181
Rohde & Schwarz	ZNLE6	Vector Network Analyzer	10/11/2019	Annual	10/11/2020	101307
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
SPEAG	DAKS-3.5	Portable Dielectric Assessment Kit	8/13/2019	Annual	8/13/2020	1041
Anritsu	MA2411B	Pulse Power Sensor	8/14/2019	Annual	8/14/2020	1315051
Anritsu	MA2411B	Pulse Power Sensor	8/8/2019	Annual	8/8/2020	1339008
Anritsu	ML2495A	Power Meter	11/20/2018	Annual	11/20/2019	1039008
Agilent	N5182A	MXG Vector Signal Generator	8/19/2019	Annual	8/19/2020	MY47420837
Seekonk	NC-100	Torque Wrench	5/9/2018	Biennial	5/9/2020	22217
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
MiniCircuits	ZHDC-16-63-S+	Bidirectional Coupler	CBT	N/A	CBT	N/A
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
SPEAG	EX3DV4	SAR Probe	2/19/2019	Annual	2/19/2020	3914
SPEAG	EX3DV4	SAR Probe	5/16/2019	Annual	5/16/2020	7406
SPEAG	DAE4	Dasy Data Acquisition Electronics	5/8/2019	Annual	5/8/2020	859
SPEAG	DAE4	Dasy Data Acquisition Electronics	2/14/2019	Annual	2/14/2020	1272

Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path.

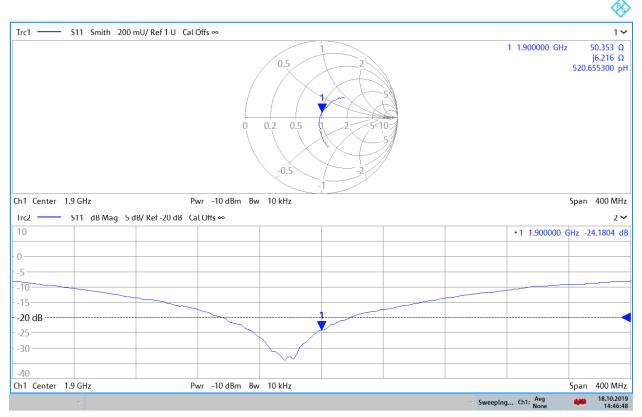
Measurement Uncertainty = ±23% (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Team Lead Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	20K

Object:	Date Issued:	Page 1 of 4
D1900V2 - SN: 5d080	10/18/2019	Page 1 of 4

DIPOLE CALIBRATION EXTENSION

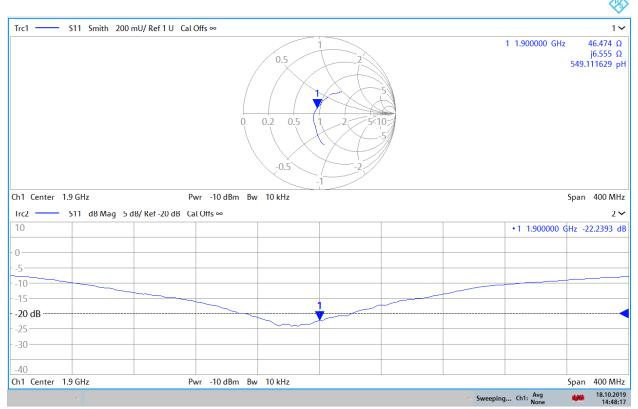
Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:


- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

Calibration Date	Extension Date	Certificate Electrical Delay (ns)		Measured Head SAR (1g) W/kg @ 20.0 dBm	(0/)	Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	(40-) M(4 G)	Deviation 10g (%)		Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
10/23/2018	10/18/2019	1.193	3.98	4.16	4.52%	2.07	2.13	2.90%	52.5	50.4	2.1	7.9	6.2	1.7	-21.8	-24.2	-10.90%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)		Measured Body SAR (1g) W/kg @ 20.0 dBm	(0/)		(40-) M(4 (-)	Deviation 10g (%)		Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
10/23/2018	10/18/2019	1.193	3.92	4.21	7.40%	2.06	2.16	4.85%	48.1	46.5	1.6	8.1	6.6	1.5	-21.5	-22.2	-3.40%	PASS

Object:	Date Issued:	Page 2 of 4
D1900V2 - SN: 5d080	10/18/2019	raye 2 01 4


Impedance & Return-Loss Measurement Plot for Head TSL

14:46:49 18.10.2019

Object:	Date Issued:	Page 3 of 4
D1900V2 - SN: 5d080	10/18/2019	rage 3 01 4

Impedance & Return-Loss Measurement Plot for Body TSL

14:48:18 18.10.2019

Object:	Date Issued:	Page 4 of 4
D1900V2 - SN: 5d080	10/18/2019	Page 4 of 4

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

C

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client

PC Test

Certificate No: D1900V2-5d149_Oct18

Object	D1900V2-SN:50	1149	
	and the challenge of th		
Calibration procedure(s)	QA CAL-05.v10	dura for dipola validation bits abo	wo 700 MB>
	Gailbrailon proce	dure for dipole validation kits abo	IVE 700 MITZ
			$\rho_{ m N}V$
	Total Control of the		BNV 10-30-2018 10-20-20
Calibration date:	October 23, 2018	3	10-30-
			BNY
The state of the s			10-20-1
	•	ional standards, which realize the physical uni	• •
he measurements and the uncert	tainties with confidence p	robability are given on the following pages an	d are part of the certificate.
All actibrations have been analyst			O I b I-da- 2700/
ui caidiations have been conque	ed in the closed laborato	ry facility: environment temperature (22 ± 3)°C	Jana numidity < 70%.
Colibration Equipment used (MRT)	E critical for calibration)		
Jauniauon Equipinen used (Mai)			
Januarion Equipment used (Math	cided for calibrationy		
, ,	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Primary Standards	1	Cal Date (Certificate No.) 04-Apr-18 (No. 217-02672/02673)	Scheduled Calibration Apr-19
Primary Standards Power meter NRP	ID#		
Primary Standards Power meter NRP Power sensor NRP-Z91	ID# SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91	ID # SN: 104778 SN: 103244	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672)	Apr-19 Apr-19
Calibration Equipment used (M&TI Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination	ID # SN: 104778 SN: 103244 SN: 103245	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673)	Apr-19 Apr-19 Apr-19
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k)	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682)	Apr-19 Apr-19 Apr-19 Apr-19
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683)	Apr-19 Apr-19 Apr-19 Apr-19 Apr-19
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18)	Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-19
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house)	Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-19 Scheduled Check
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house)	Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-19 Scheduled Check In house check: Oct-20
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (in house check Oct-18)	Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-19 Scheduled Check In house check: Oct-20 In house check: Oct-20
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18)	Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-19 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Recondary Standards Power meter EPM-442A Power sensor HP 8481A Recomer sensor HP 8481A Recomer sensor HP 8481A Recomer sensor HP 8481A	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18)	Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-19 Scheduled Check In house check: Oct-20
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18)	Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-19 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Recondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18)	Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-19 Scheduled Check In house check: Oct-20
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Recondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-18)	Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-19 Scheduled Check In house check: Oct-20 In house check: Oct-19
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 Name	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-18)	Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-19 Scheduled Check In house check: Oct-20 In house check: Oct-19
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Recondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 Name	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-18)	Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-19 Scheduled Check In house check: Oct-20 In house check: Oct-19

Certificate No: D1900V2-5d149_Oct18

Page 1 of 8

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S

C

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.3 ± 6 %	1.40 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		MALE

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.80 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	39.3 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.11 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.5 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.9 ± 6 %	1.47 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.68 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	39.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.11 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.7 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.9 Ω + 6.3 jΩ
Return Loss	- 23.4 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.5 Ω + 8.2 jΩ
Return Loss	- 21.5 dB

General Antenna Parameters and Design

Electrical Dela	y (one direction)	1.193 ns	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	March 11, 2011

Certificate No: D1900V2-5d149_Oct18

DASY5 Validation Report for Head TSL

Date: 23.10.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d149

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.4 \text{ S/m}$; $\varepsilon_r = 40.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(8.18, 8.18, 8.18) @ 1900 MHz; Calibrated: 30.12.2017

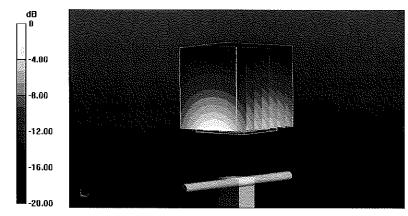
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 04.10.2018

Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

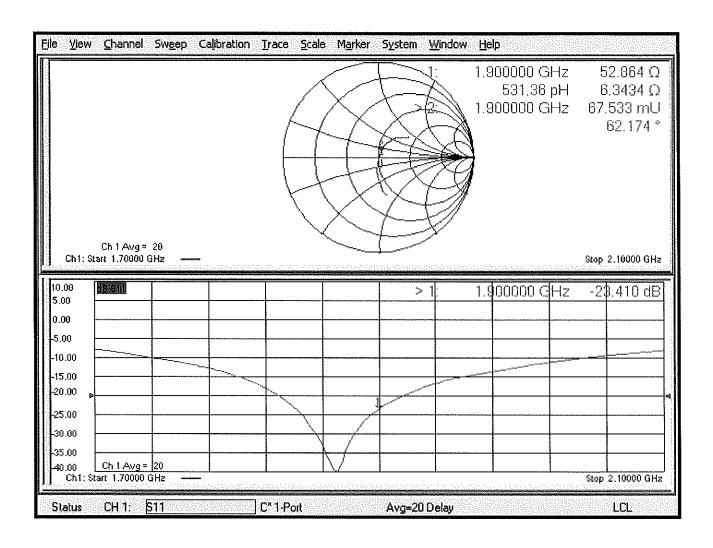
DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 110.0 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 18.5 W/kg


SAR(1 g) = 9.8 W/kg; SAR(10 g) = 5.11 W/kg

Maximum value of SAR (measured) = 15.4 W/kg

0 dB = 15.4 W/kg = 11.88 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 23,10,2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d149

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.47 \text{ S/m}$; $\varepsilon_r = 52.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(8.15, 8.15, 8.15) @ 1900 MHz; Calibrated: 30.12.2017

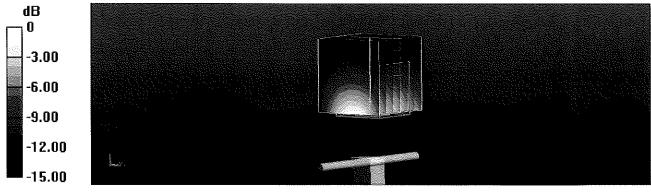
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 04.10.2018

• Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002

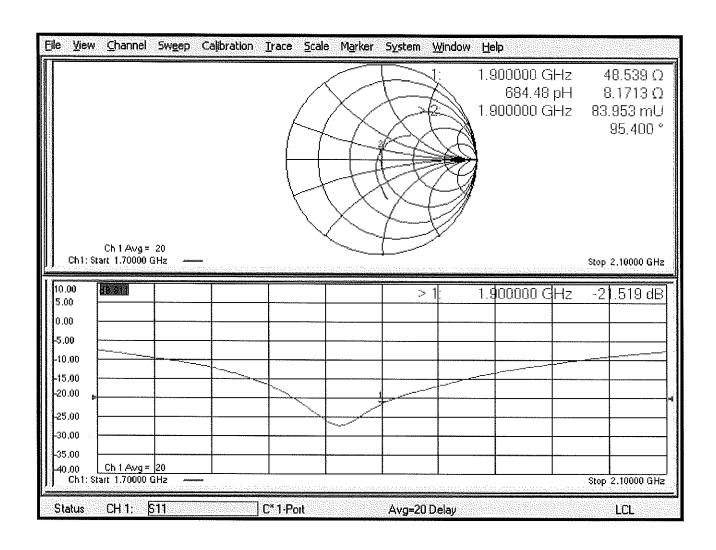
• DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 103.1 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 17.5 W/kg


SAR(1 g) = 9.68 W/kg; SAR(10 g) = 5.11 W/kg

Maximum value of SAR (measured) = 14.2 W/kg

0 dB = 14.2 W/kg = 11.52 dBW/kg

Impedance Measurement Plot for Body TSL

PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

Certification of Calibration

Object D1900V2 – SN:5d149

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extended Calibration date: October 18, 2019

Description: SAR Validation Dipole at 1900 MHz.

Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Control Company	4040	Therm./Clock/Humidity Monitor	6/29/2019	Biennial	6/29/2021	192291470
Control Company	4352	Ultra Long Stem Thermometer	8/2/2018	Biennial	8/2/2020	181334684
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	7/2/2019	Annual	7/2/2020	MY53401181
Rohde & Schwarz	ZNLE6	Vector Network Analyzer	10/11/2019	Annual	10/11/2020	101307
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
SPEAG	DAKS-3.5	Portable Dielectric Assessment Kit	8/13/2019	Annual	8/13/2020	1041
Anritsu	MA2411B	Pulse Power Sensor	8/14/2019	Annual	8/14/2020	1315051
Anritsu	MA2411B	Pulse Power Sensor	8/8/2019	Annual	8/8/2020	1339008
Anritsu	ML2495A	Power Meter	11/20/2018	Annual	11/20/2019	1039008
Agilent	N5182A	MXG Vector Signal Generator	8/19/2019	Annual	8/19/2020	MY47420837
Seekonk	NC-100	Torque Wrench	5/9/2018	Biennial	5/9/2020	22217
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
MiniCircuits	ZHDC-16-63-S+	Bidirectional Coupler	CBT	N/A	CBT	N/A
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
SPEAG	EX3DV4	SAR Probe	2/19/2019	Annual	2/19/2020	3914
SPEAG	EX3DV4	SAR Probe	5/16/2019	Annual	5/16/2020	7406
SPEAG	DAE4	Dasy Data Acquisition Electronics	5/8/2019	Annual	5/8/2020	859
SPEAG	DAE4	Dasy Data Acquisition Electronics	2/14/2019	Annual	2/14/2020	1272

Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path.

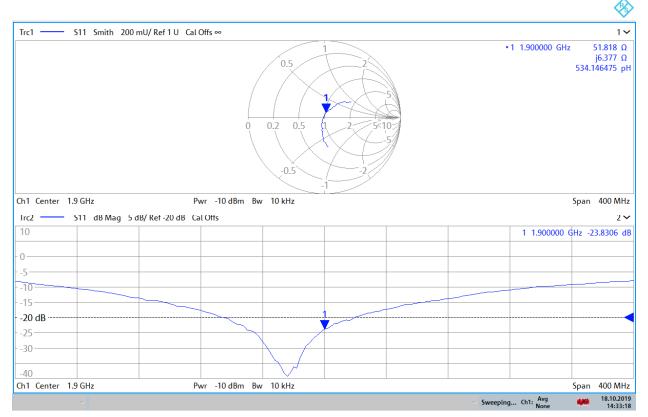
Measurement Uncertainty = ±23% (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Team Lead Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	304

Object:	Date Issued:	Page 1 of 4
D1900V2 - SN: 5d149	10/18/2019	Page 1 of 4

DIPOLE CALIBRATION EXTENSION

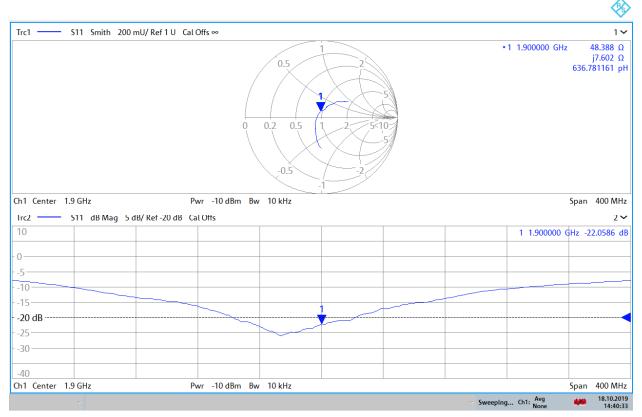
Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:


- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 20.0 dBm	Head SAR (1g)		Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	(10a) W/ka @	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
10/23/2018	10/18/2019	1.193	3.93	4.24	7.89%	2.05	2.18	6.34%	52.9	51.8	1.1	6.3	6.4	0.1	-23.4	-23.8	-1.80%	Pass
Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 20.0 dBm	Measured Body SAR (1g) W/kg @ 20.0 dBm	Deviation 1g (%)	Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	(40-) M(4 ©	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
10/23/2018	10/18/2019	1.193	3.94	4.2	6.60%	2.07	2.15	3.86%	48.5	48.4	0.1	8.2	7.6	0.6	-21.5	-22.1	-2.60%	PASS

Object:	Date Issued:	Page 2 of 4
D1900V2 - SN: 5d149	10/18/2019	Fage 2 01 4


Impedance & Return-Loss Measurement Plot for Head TSL

14:33:19 18.10.2019

Object:	Date Issued:	Page 3 of 4
D1900V2 - SN: 5d149	10/18/2019	Page 3 of 4

Impedance & Return-Loss Measurement Plot for Body TSL

14:40:34 18.10.2019

Object:	Date Issued:	Page 4 of 4
D1900V2 - SN: 5d149	10/18/2019	Page 4 of 4

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client

PC Test

Certificate No: D2450V2-981_Aug18

CALIBRATION CERTIFICATE

Object

D2450V2 - SN:981

Calibration procedure(s)

QA CAL-05.v10

Calibration procedure for dipole validation kits above 700 MHz

BN V 09-06/201

Calibration date:

August 16, 2018

BNV 08/10/2016

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3) °C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)		Apr-19
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02682)	Apr-19
Reference Probe EX3DV4	SN: 7349	04-Apr-18 (No. 217-02683)	Apr-19
DAE4	1	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18
UAL-	SN: 601	26-Oct-17 (No. DAE4-601_Oct17)	Oct-18
Secondary Standards	₹D#	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check, Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-17)	In house check: Oct-18
-	,	or marity (in house check Oct-17)	In house check: Oct-18
	Name	Function	Signature
Calibrated by:	Leif Klysner	Laboratory Technician	D 1 42/4
		•	Sel Tile
Approved by:	Katja Pokovic	Technical Manager	
	*		ASE COS

Issued: August 23, 2018

Certificate No: D2450V2-981_Aug18

Page 1 of 11

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura

Servizio svizzero di taratur
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the size.

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.1
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5.0 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.7 ± 6 %	1.86 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.4 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.3 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.20 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.4 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.8 ± 6 %	2.02 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.0 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	50.9 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.11 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.2 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	55.0 Ω + 2.3 jΩ
Return Loss	- 25.6 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.2 Ω + 4.7 jΩ	
Return Loss	- 26.6 dB	

General Antenna Parameters and Design

Electrical Delay (one direction) 1.162 ns	Electrical Delay (one direction)	1.162 ns
---	----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	December 30, 2014	

Certificate No: D2450V2-981_Aug18

Appendix (Additional assessments outside the scope of SCS 0108)

Measurement Conditions

DASY system configuration, as far as not given on page 1 and 3.

Phantom	0.4144	
riiantoiii	SAM Head Phantom	For usage with cSAR3DV2-R/L
		1 0 404g0 Will OOA 10D VZ-11/L

SAR result with SAM Head (Top)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.6 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	54.0 W/kg ± 17.5 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.33 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	25.2 W/kg ± 16.9 % (k=2)

SAR result with SAM Head (Mouth)

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.6 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	54.0 W/kg ± 17.5 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.35 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	25.3 W/kg ± 16.9 % (k=2)

SAR result with SAM Head (Neck)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	12.9 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	51.2 W/kg ± 17.5 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.11 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.4 W/kg ± 16.9 % (k=2)

SAR result with SAM Head (Ear)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	8.74 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	34.7 W/kg ± 17.5 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	4.40 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	17.5 W/kg ± 16.9 % (k=2)

Certificate No: D2450V2-981_Aug18

DASY5 Validation Report for Head TSL

Date: 13.08.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:981

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.86$ S/m; $\epsilon_r = 37.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(7.88, 7.88, 7.88) @ 2450 MHz; Calibrated: 30.12.2017

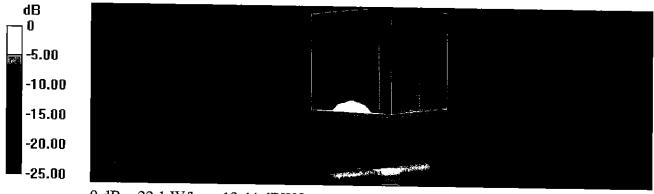
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 26.10.2017

Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

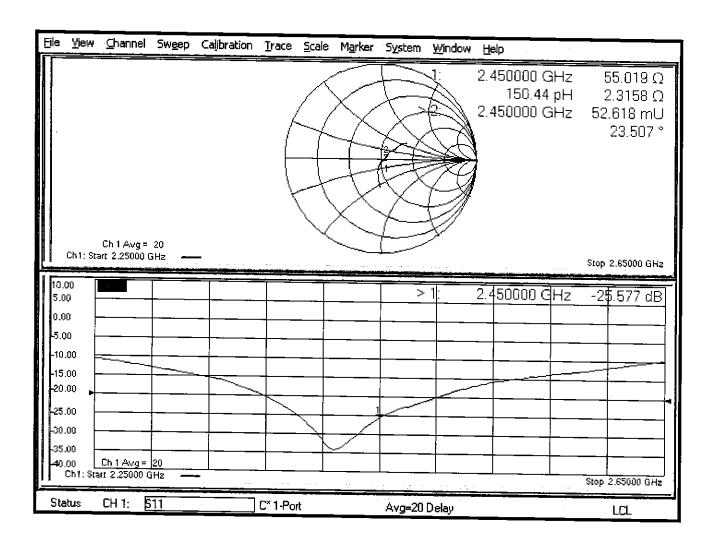
• DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 116.6 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 26.7 W/kg


SAR(1 g) = 13.4 W/kg; SAR(10 g) = 6.2 W/kg

Maximum value of SAR (measured) = 22.1 W/kg

0 dB = 22.1 W/kg = 13.44 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 13.08.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:981

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 2.02$ S/m; $\epsilon_r = 51.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(8.01, 8.01, 8.01) @ 2450 MHz; Calibrated: 30.12.2017

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 26.10.2017

Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002

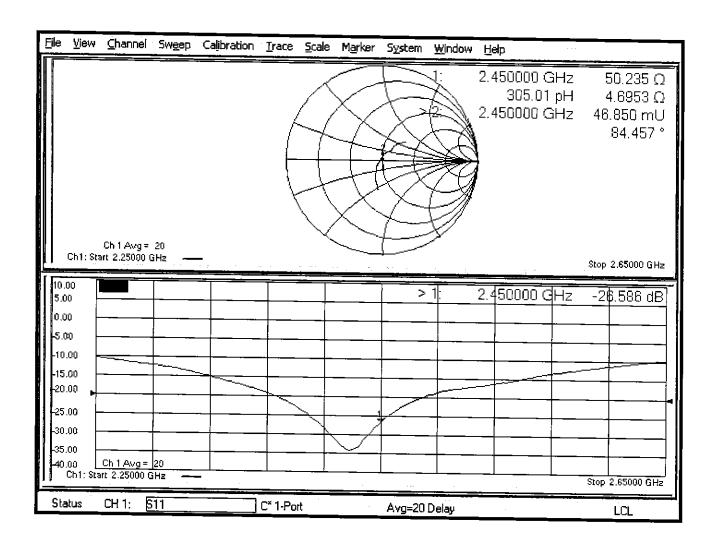
• DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 107.0 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 25.3 W/kg


SAR(1 g) = 13 W/kg; SAR(10 g) = 6.11 W/kg

Maximum value of SAR (measured) = 20.7 W/kg

0 dB = 20.7 W/kg = 13.16 dBW/kg

Impedance Measurement Plot for Body TSL

DASY5 Validation Report for SAM Head

Date: 16.08.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:981

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.85$ S/m; $\epsilon_r = 40.2$; $\rho = 1000$ kg/m³

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.88, 7.88, 7.88) @ 2450 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: SAM Head
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

SAM Head Top/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 116.2 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 26.4 W/kg

SAR(1 g) = 13.6 W/kg; SAR(10 g) = 6.33 W/kg

Maximum value of SAR (measured) = 22.0 W/kg

SAM Head Mouth/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 116.9 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 26.3 W/kg

SAR(1 g) = 13.6 W/kg; SAR(10 g) = 6.35 W/kg

Maximum value of SAR (measured) = 21.7 W/kg

SAM Head Neck/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

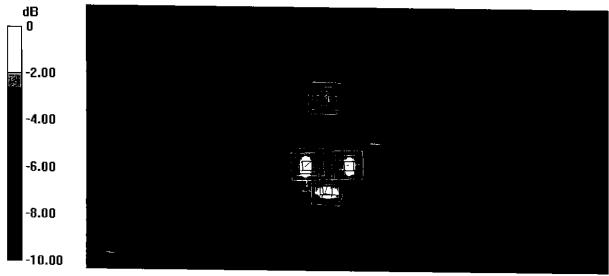
Reference Value = 112.0 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 24.1 W/kg

SAR(1 g) = 12.9 W/kg; SAR(10 g) = 6.11 W/kg

Maximum value of SAR (measured) = 20.5 W/kg

SAM Head Ear/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 91.03 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 15.8 W/kg

SAR(1 g) = 8.74 W/kg; SAR(10 g) = 4.4 W/kg

Maximum value of SAR (measured) = 13.5 W/kg

Certificate No: D2450V2-981_Aug18

0 dB = 22.0 W/kg = 13.42 dBW/kg

PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

Certification of Calibration

Object D2450V2 – SN: 981

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Calibration date: 08/09/2019

Description: SAR Validation Dipole at 2450 MHz.

Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8753ES	S-Parameter Network Analyzer	10/2/2018	Annual	10/2/2019	US39170118
Agilent	N5182A	MXG Vector Signal Generator	6/27/2019	Annual	6/27/2020	US46240505
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	343972
Anritsu	ML2495A	Power Meter	10/21/2018	Annual	10/21/2019	941001
Anritsu	MA2411B	Pulse Power Sensor	10/30/2018	Annual	10/30/2019	1207470
Anritsu	MA2411B	Pulse Power Sensor	11/20/2018	Annual	11/20/2019	1339007
Control Company	4040	Temperature / Humidity Monitor	2/28/2018	Biennial	2/28/2020	150761911
Control Company	4352	Ultra Long Stem Thermometer	2/28/2018	Biennial	2/28/2020	170330160
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	7/2/2019	Annual	7/2/2020	MY53401181
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	NC-100	Torque Wrench	5/23/2018	Biennial	5/23/2020	N/A
SPEAG	EX3DV4	SAR Probe	2/19/2019	Annual	2/19/2020	7417
SPEAG	DAE4	Dasy Data Acquisition Electronics	2/13/2019	Annual	2/13/2020	665
SPEAG	EX3DV4	SAR Probe	7/15/2019	Annual	7/15/2020	7547
SPEAG	DAE4	Dasy Data Acquisition Electronics	7/11/2019	Annual	7/11/2020	1323
SPEAG	DAK-3.5	Dielectric Assessment Kit	9/11/2018	Annual	9/11/2019	1091

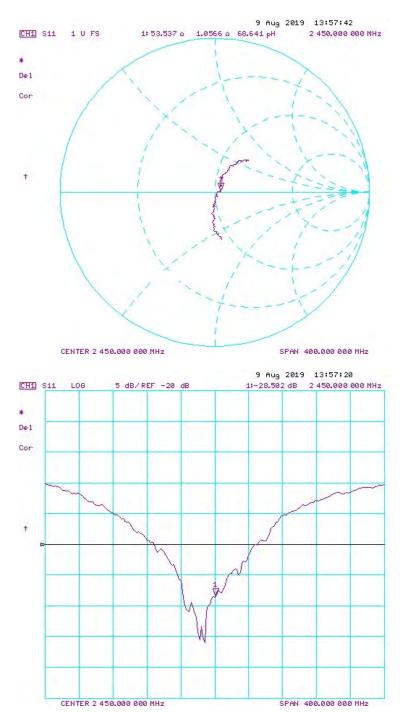
Measurement Uncertainty = $\pm 23\%$ (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Test Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	304

Object:	Date Issued:	Page 1 of 4
D2450V2 – SN: 981	08/09/2019	Page 1 of 4

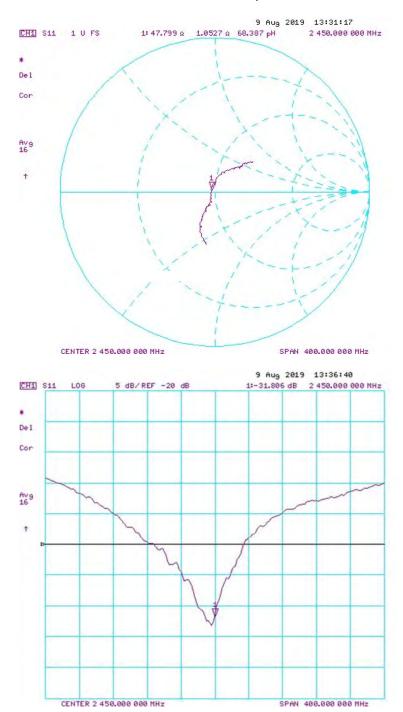
DIPOLE CALIBRATION EXTENSION

Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:


- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 20.0 dBm	Measured Head SAR (1g) W/kg @ 20.0 dBm	(0/)	Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	(40-) M(4 ©	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
8/16/2018	8/9/2019	1.162	5.23	5.53	5.74%	2.44	2.56	4.92%	55	53.5	1.5	2.3	1.1	1.2	-25.6	-28.5	-11.30%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 20.0 dBm	Measured Body SAR (1g) W/kg @ 20.0 dBm	(0/)	Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	(40-) M(4 @	Deviation 10g (%)		Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
8/16/2018	8/9/2019	1.162	5.09	4.98	-2.16%	2.42	2.28	-5.79%	50.2	47.8	2.4	4.7	1.1	3.6	-26.6	-31.8	-19.60%	PASS


Object:	Date Issued:	Page 2 of 4	
D2450V2 – SN: 981	08/09/2019	Fage 2 01 4	

Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Page 3 of 4
D2450V2 - SN: 981	08/09/2019	rage 3 01 4

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Dogo 4 of 4	
D2450V2 – SN: 981	08/09/2019	Page 4 of 4	

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service suïsse d'étalonnage

C Service suisse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client

PC lest

Certificate No. D2600V2-1004 April 8

CALIBRATION CERTIFICATE Object D2600V2+SN-H00A Calibration procedure(s) QA-GAILE05.V10 Calibration procedure for dipole validation kills above 700 MHz
Calibration procedure(s) QA-GAIL-05-V-10 Calibration procedure(s)
Calibration procedure(s) QA-GAIL-05-V-10 Calibration procedure(s)
Calification throughput for divide State State
Calification throughput for divide State State
Calibration procedure to display a track to the second
05-01-2018 Extende
25-y1-70 k
Extende
Calibration date: Apple 11-2018 Extends 04-20-2019
0 -2019
04-40-1
This controlled continued to the trace which rection the abunity of the control with the co
The measurements and the unconfidence with confidence probability are given on the following bears and any or any of the confidence are any of the c
$\sim 100 100 \sim 100 $
All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.
Calibration Equipment used (M&TE critical for calibration)
Primary Standards D# Cal Date (Certificate No.)
Power meter NRP SN: 10/279 Of Continue Total Contin
Power sensor NRP-791 SNI 109844
Power sensor NRP-701 SN 10004E
Reference 20 dB Attenuator SNt 5050 (2014)
Type-N mismatch combination SN: 5047 3 / 05007
Reference Probe EX3DV4 SN: 7349 30-Dec-17 (No. EX3-7349_Dec17) Dec-18
DAE4 SN: 601 26-Oct-17 (No. DAE4-601_Oct17) Oct-18
Secondary Standards ID # Check Date (In house) Scheduled Check
Power meter EPM-442A SN: GB37480704 07-Oct-15 (in house check Oct-16) In house check Oct-18
Power sensor HP 8481A SN: US37292783 07-Oct-15 (in house check Oct-16) In house check: Oct-18
Power sensor HP 8481A SN: MY41092317 07-Oct-15 (in house check Oct-16) In house check: Oct-18
RF generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Oct-16) In house check: Oct-18
Network Analyzer HP 8753E SN: US37390585 1.8-Oct-01 (in house check Oct-17) In house check: Oct-18
Name Function CV
Signature
Calibrated by: Michael Weber: Laboratory Technician
Approved by: Katta Fokovic Technical Manager
- ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・
Approved by: Katla Eckovice Target Technical Manager
The fall of the fa
Issued: April 12, 2018 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A

sensitivity in TSL / NORM x,y,z

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2600V2-1004_Apr18

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	·
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2600 MHz ± 1 MHz	

Head TSL parametersThe following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.0	1.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.8 ± 6 %	2.03 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	14.3 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	55.9 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.35 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	25.1 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity		
Nominal Body TSL parameters	22.0 °C	52.5	2.16 mho/m		
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.1 ± 6 %	2.19 mho/m ± 6 %		
Body TSL temperature change during test	< 0.5 °C				

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.8 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	54.8 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.20 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.7 W/kg ± 16.5 % (k=2)

Certificate No: D2600V2-1004_Apr18 Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	47.7 Ω - 5.7 jΩ
Return Loss	- 24.1 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.0 Ω - 3.8 jΩ
Return Loss	- 24.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.149 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	December 23, 2006

DASY5 Validation Report for Head TSL

Date: 11.04.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1004

Communication System: UID 0 - CW; Frequency: 2600 MHz

Medium parameters used: f = 2600 MHz; $\sigma = 2.03 \text{ S/m}$; $\varepsilon_r = 37.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(7.7, 7.7, 7.7); Calibrated: 30.12.2017;

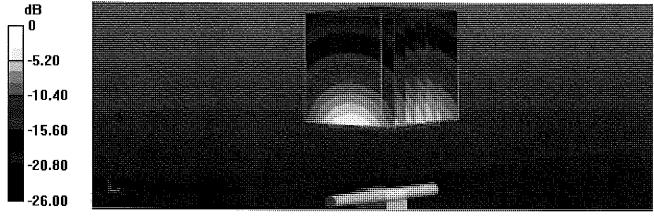
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 26.10.2017

Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

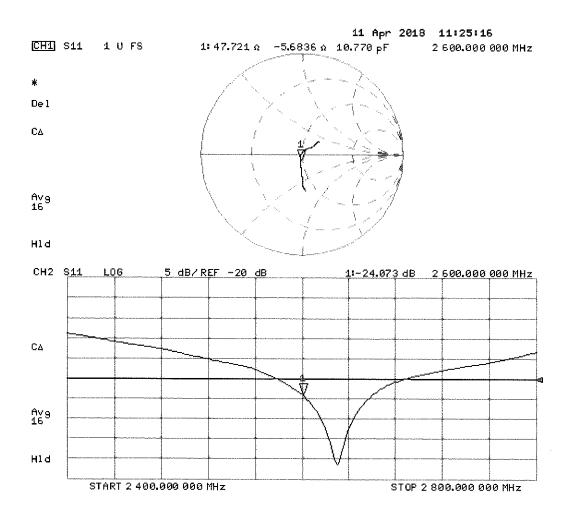
DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 118.5 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 28.6 W/kg


SAR(1 g) = 14.3 W/kg; SAR(10 g) = 6.35 W/kg

Maximum value of SAR (measured) = 23.9 W/kg

0 dB = 23.9 W/kg = 13.78 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 11.04.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1004

Communication System: UID 0 - CW; Frequency: 2600 MHz

Medium parameters used: f = 2600 MHz; $\sigma = 2.19 \text{ S/m}$; $\varepsilon_r = 52.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(7.81, 7.81, 7.81); Calibrated: 30.12.2017;

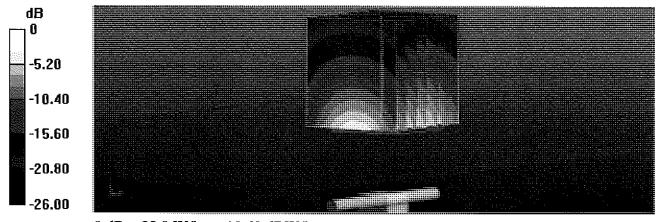
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 26.10.2017

Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002

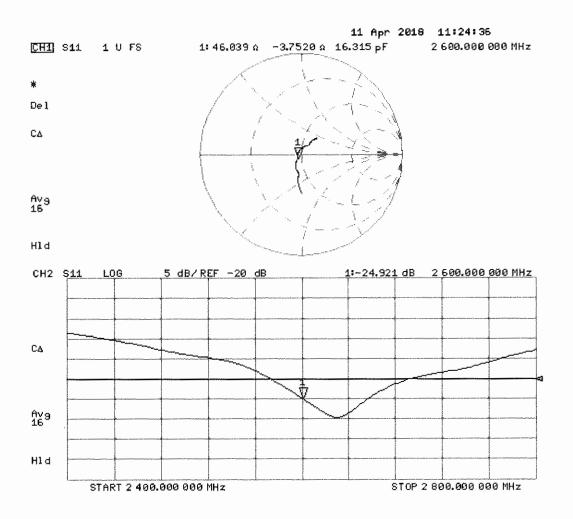
• DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 108.5 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 28.3 W/kg


SAR(1 g) = 13.8 W/kg; SAR(10 g) = 6.2 W/kg

Maximum value of SAR (measured) = 22.9 W/kg

0 dB = 22.9 W/kg = 13.60 dBW/kg

Impedance Measurement Plot for Body TSL

PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

Certification of Calibration

Object D2600V2 – SN: 1004

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extension Calibration date: 4/11/2019

Description: SAR Validation Dipole at 2600 MHz.

Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8753ES	S-Parameter Network Analyzer	3/11/2019	Annual	3/11/2020	US39170122
Agilent	N5182A	MXG Vector Signal Generator	4/18/2018	Annual	4/18/2019	MY47420800
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Anritsu	MA2411B	Pulse Power Sensor	11/20/2018	Annual	11/20/2019	1027293
Anritsu	MA2411B	Pulse Power Sensor	10/30/2018	Annual	10/30/2019	1126066
Anritsu	ML2495A	Power Meter	10/21/2018	Annual	10/21/2019	941001
Control Company	4040	Therm./ Clock/ Humidity Monitor	10/9/2018	Biennial	10/9/2020	181647811
Control Company	4352	Ultra Long Stem Thermometer	5/2/2017	Biennial	5/2/2019	170330156
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/4/2018	Annual	6/4/2019	MY53401181
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
Seekonk	NC-100	Torque Wrench	7/11/2018	Annual	7/11/2019	N/A
SPEAG	EX3DV4	SAR Probe	6/25/2018	Annual	6/25/2019	7409
SPEAG	DAE4	Dasy Data Acquisition Electronics	6/18/2018	Annual	6/18/2019	1334
SPEAG	DAE4	Dasy Data Acquisition Electronics	2/13/2019	Annual	2/13/2020	665
SPEAG	EX3DV4	SAR Probe	2/19/2019	Annual	2/19/2020	7417
SPEAG	DAK-3.5	Dielectric Assessment Kit	9/11/2018	Annual	9/11/2019	1091

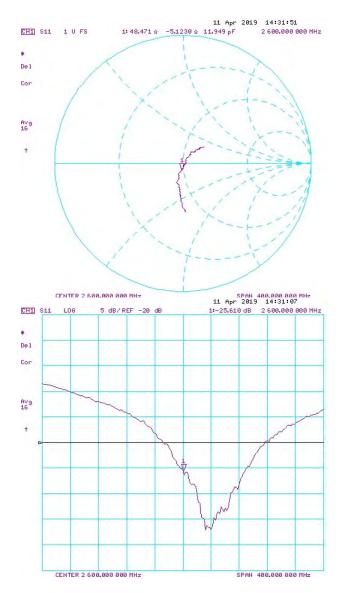
Measurement Uncertainty = $\pm 23\%$ (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Test Engineer	BROPTE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	304

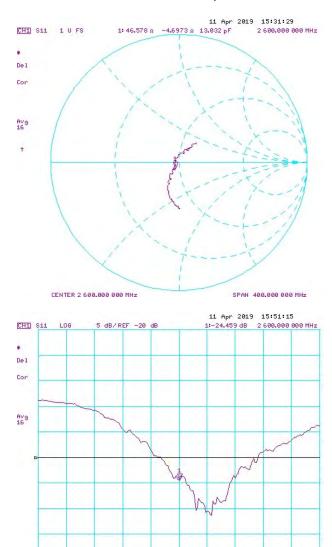
Object:	Date Issued:	Page 1 of 4
D2600V2 – SN: 1004	04/11/2019	Page 1 of 4

DIPOLE CALIBRATION EXTENSION

Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:


- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:


Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 20.0 dBm	Measured Head SAR (1g) W/kg @ 20.0 dBm	(0/)	Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	(40-) M(4 (C)	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
4/11/2018	4/11/2019	1.149	5.59	5.51	-1.43%	2.51	2.47	-1.59%	47.7	48.5	0.8	-5.7	-5.1	0.6	-24.1	-25.6	-6.30%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)		Measured Body SAR (1g) W/kg @ 20.0 dBm	Deviation 1g (%)	Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	Measured Body SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
4/11/2018	4/11/2019	1.149	5.48	5.65	3.10%	2.47	2.48	0.40%	46	46.6	0.6	-3.8	-4.7	0.9	-24.9	-24.5	1.80%	PASS

Object:	Date Issued:	Page 2 of 4	
D2600V2 – SN: 1004	04/11/2019	Fage 2 01 4	

Impedance & Return-Loss Measurement Plot for Head TSL

Impedance & Return-Loss Measurement Plot for Body TSL

CENTER 2 600.000 000 MHz

SPAN 400.000 000 MHz

PCTEST

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

Certification of Calibration

Object D2600V2 – SN: 1004

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extension Calibration date: 4/11/2020

Description: SAR Validation Dipole at 2600 MHz.

Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Control Company	4040	Therm./Clock/Humidity Monitor	6/29/2019	Biennial	6/29/2021	192291470
Control Company	4352	Ultra Long Stem Thermometer	8/2/2018	Biennial	8/2/2020	181334684
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	7/2/2019	Annual	7/2/2020	MY53401181
Rohde & Schwarz	ZNLE6	Vector Network Analyzer	10/11/2019	Annual	10/11/2020	101307
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
SPEAG	DAKS-3.5	Portable DAK	9/10/2019	Annual	9/10/2020	1045
Anritsu	MA2411B	Pulse Power Sensor	8/14/2019	Annual	8/14/2020	1315051
Anritsu	MA2411B	Pulse Power Sensor	8/8/2019	Annual	8/8/2020	1339008
Anritsu	ML2495A	Power Meter	12/17/2019	Annual	12/17/2020	941001
Agilent	N5182A	MXG Vector Signal Generator	8/19/2019	Annual	8/19/2020	MY47420837
Seekonk	NC-100	Torque Wrench (8" lb)	5/23/2018	Biennial	5/23/2020	22217
MiniCircuits	ZHDC-16-63-S+	Bidirectional Coupler	CBT	N/A	CBT	N/A
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
SPEAG	EX3DV4	SAR Probe	1/21/2020	Annual	1/21/2021	3589
SPEAG	EX3DV4	SAR Probe	9/19/2019	Annual	9/19/2020	7552
SPEAG	DAE4	Dasy Data Acquisition Electronics	9/12/2019	Annual	9/12/2020	1449
SPEAG	DAE4	Dasy Data Acquisition Electronics	1/13/2020	Annual	1/13/2021	1558

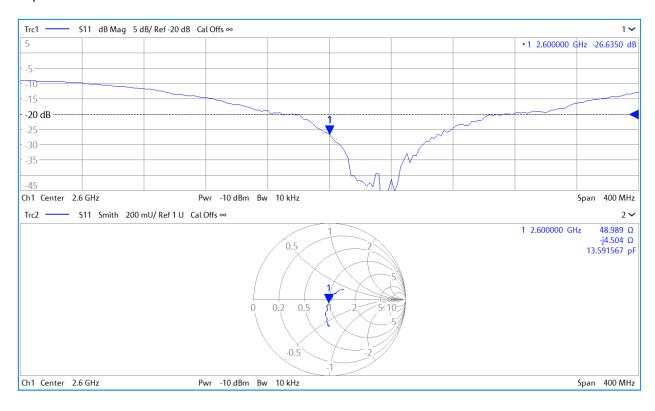
Measurement Uncertainty = ±23% (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Test Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	304

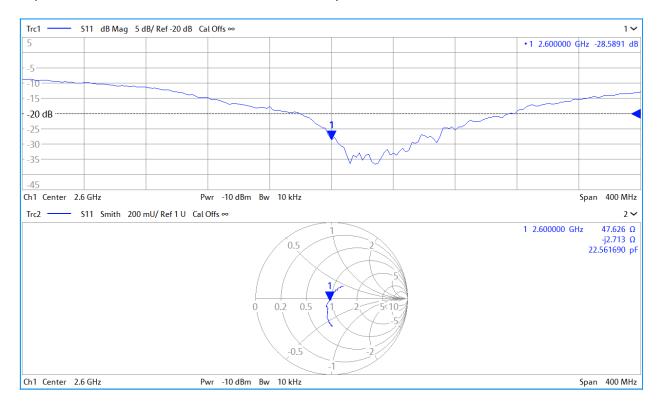
Object:	Date Issued:	Page 1 of 4
D2600V2 – SN: 1004	04/11/2020	Page 1 of 4

DIPOLE CALIBRATION EXTENSION

Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:


- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 3-year calibration period from the calibration date:


Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 20.0 dBm	Measured Head SAR (1g) W/kg @ 20.0 dBm	(0/)	Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	(40-) M(4 (C)	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
4/11/2018	4/11/2020	1.419	5.59	5.78	3.40%	2.51	2.59	3.19%	47.7	49.0	1.3	-5.7	-4.5	1.2	-24.1	-26.6	-10.50%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)		Measured Body SAR (1g) W/kg @ 20.0 dBm	Deviation 1g (%)	Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	Measured Body SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
4/11/2018	4/11/2020	1.149	5.48	5.16	-5.84%	2.47	2.36	-4.45%	46	47.6	1.6	-3.8	-2.7	1.1	-24.9	-28.6	-14.80%	PASS

Object:	Date Issued:	Page 2 of 4
D2600V2 – SN: 1004	04/11/2020	Fage 2 01 4

Impedance & Return-Loss Measurement Plot for Head TSL

Impedance & Return-Loss Measurement Plot for Body TSL

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Certificate No: D5GHzV2-1237_Aug18

CALIBRATION CERTIFICATE

Object

D5GHzV2 - SN:1237

Calibration procedure(s)

QA CAL-22.v3

Calibration procedure for dipole validation kits between 3-6 GHz

Calibration date:

August 10, 2018

GHZ BN 09-06-9018

BN 08/09/2019

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02572)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Reference Probe EX3DV4	SN: 3503	30-Dec-17 (No. EX3-3503_Dec17)	Dec-18
DAE4	SN: 601	26-Oct-17 (No. DAE4-601_Oct17)	Oct-18
•	1		
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (In house check Oct-16)	in house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-17)	in house check: Oct-18
	Name	Function	Signature
Calibrated by:	Manu Seitz	Laboratory Technician	A. M
			graye
Approved by:	Katja Pokovic	Technical Manager	All Comments
		• •	

Issued: August 17, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.1
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5250 MHz ± 1 MHz 5600 MHz ± 1 MHz 5750 MHz ± 1 MHz	

Head TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.6 ± 6 %	4.61 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.15 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	81.3 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.36 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.5 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.1 ± 6 %	4.98 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.60 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	85.7 W / kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.46 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.5 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5750 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.9 ± 6 %	5.14 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5750 MHz

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.09 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.6 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.32 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.1 W/kg ± 19.5 % (k=2)

Page 4 of 13

Body TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.36 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.9 ± 6 %	5.49 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.62 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	75.6 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.14 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.2 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.3 ± 6 %	5.96 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.91 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	78.5 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.22 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	22.0 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1237_Aug18 Page 5 of 13

Body TSL parameters at 5750 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.3	5.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.0 ± 6 %	6.16 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.65 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	75.9 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.14 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.2 W/kg ± 19.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	47.5 Ω - 3.5 jΩ
Return Loss	- 27.0 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	50.1 Ω + 4.7 jΩ
Return Loss	- 26.7 dB

Antenna Parameters with Head TSL at 5750 MHz

Impedance, transformed to feed point	52.7 Ω + 0.8 jΩ
Return Loss	- 31.2 dB

Antenna Parameters with Body TSL at 5250 MHz

Impedance, transformed to feed point	46.5 Ω - 1.3 jΩ	
Return Loss	- 28.2 dB	

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	53.1 Ω + 6.2 j Ω	
Return Loss	- 23.5 dB	

Antenna Parameters with Body TSL at 5750 MHz

Impedance, transformed to feed point	53.6 Ω + 2.1 jΩ
Return Loss	- 27.9 dB

General Antenna Parameters and Design

	
Electrical Delay (one direction)	1,195 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	May 04, 2015	

Certificate No: D5GHzV2-1237_Aug18

DASY5 Validation Report for Head TSL

Date: 10.08.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1237

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz

Medium parameters used: f = 5250 MHz; $\sigma = 4.61$ S/m; $\epsilon_r = 35.6$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 4.98$ S/m; $\epsilon_r = 35.1$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5750 MHz; $\sigma = 5.14$ S/m; $\epsilon_r = 34.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.51, 5.51, 5.51) @ 5250 MHz, ConvF(5.05, 5.05, 5.05) @ 5600 MHz, ConvF(4.98, 4.98, 4.98) @ 5750 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601 (5GHz); Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan.

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 75.17 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 27.8 W/kg

SAR(1 g) = 8.15 W/kg; SAR(10 g) = 2.36 W/kg

Maximum value of SAR (measured) = 18.4 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 75.53 V/m; Power Drift = -0.05 dB

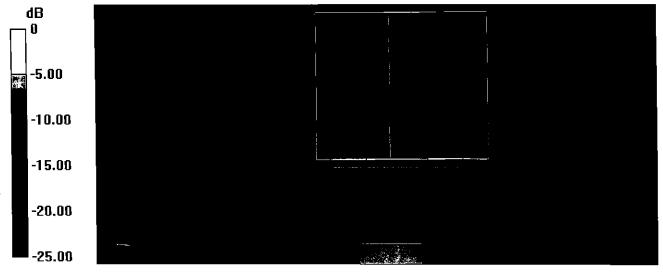
Peak SAR (extrapolated) = 32.4 W/kg

SAR(1 g) = 8.6 W/kg; SAR(10 g) = 2.46 W/kg

Maximum value of SAR (measured) = 20.2 W/kg

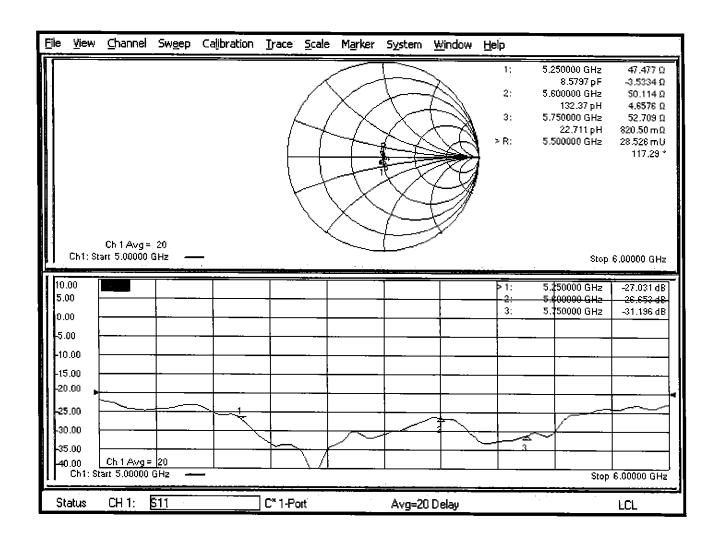
Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm


Reference Value = 73.04 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 31.1 W/kg

SAR(1 g) = 8.09 W/kg; SAR(10 g) = 2.32 W/kg


Maximum value of SAR (measured) = 19.9 W/kg

Certificate No: D5GHzV2-1237_Aug18 P

0 dB = 19.9 W/kg = 12.99 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 10.08.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1237

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz

Medium parameters used: f=5250 MHz; $\sigma=5.49$ S/m; $\epsilon_r=46.9$; $\rho=1000$ kg/m 3 , Medium parameters used: f=5600 MHz; $\sigma=5.96$ S/m; $\epsilon_r=46.3$; $\rho=1000$ kg/m 3 , Medium parameters used: f=5750 MHz; $\sigma=6.16$ S/m; $\epsilon_r=46$; $\rho=1000$ kg/m 3

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.26, 5.26, 5.26) @ 5250 MHz, ConvF(4.65, 4.65, 4.65) @ 5600 MHz, ConvF(4.57, 4.57, 4.57) @ 5750 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601 (5GHz); Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 68.22 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 28.5 W/kg

SAR(1 g) = 7.62 W/kg; SAR(10 g) = 2.14 W/kg

Maximum value of SAR (measured) = 17.3 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 67.51 V/m; Power Drift = -0.07 dB

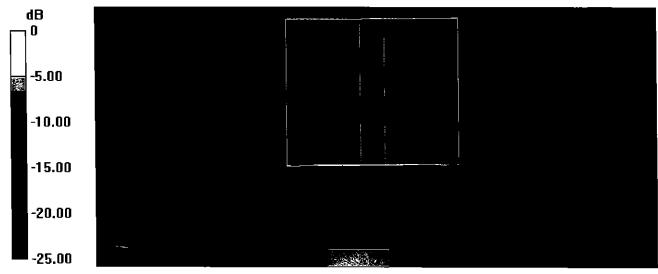
Peak SAR (extrapolated) = 32.1 W/kg

SAR(1 g) = 7.91 W/kg; SAR(10 g) = 2.22 W/kg

Maximum value of SAR (measured) = 18.5 W/kg

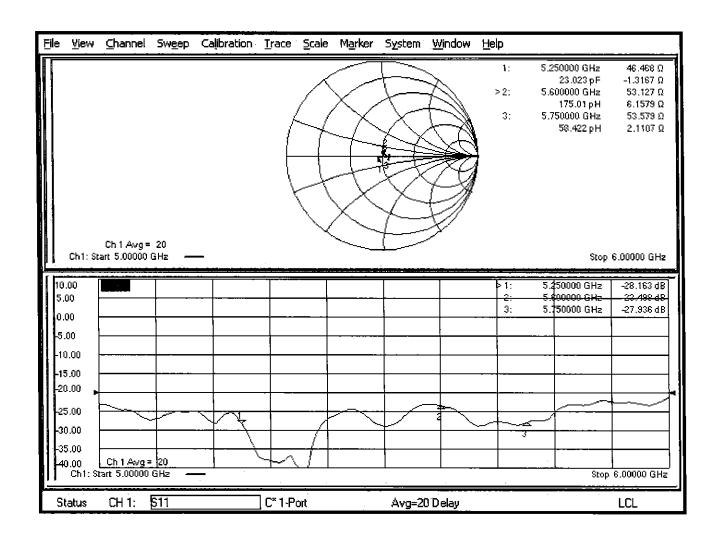
Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm


Reference Value = 65.91 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 31.7 W/kg

SAR(1 g) = 7.65 W/kg; SAR(10 g) = 2.14 W/kg


Maximum value of SAR (measured) = 18.0 W/kg

Certificate No: D5GHzV2-1237_Aug18 Page 11 of 13

0 dB = 18.0 W/kg = 12.55 dBW/kg

Impedance Measurement Plot for Body TSL

PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

Certification of Calibration

Object D5GHzV2 – SN: 1237

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extended Calibration date: 08/09/2019

Description: SAR Validation Dipole at 5GHz

Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8753ES	S-Parameter Network Analyzer	10/2/2018	Annual	10/2/2019	US39170118
Agilent	N5182A	MXG Vector Signal Generator	6/27/2019	Annual	6/27/2020	US46240505
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	343972
Anritsu	ML2495A	Power Meter	10/21/2018	Annual	10/21/2019	941001
Anritsu	MA2411B	Pulse Power Sensor	10/30/2018	Annual	10/30/2019	1207470
Anritsu	MA2411B	Pulse Power Sensor	11/20/2018	Annual	11/20/2019	1339007
Control Company	4040	Temperature / Humidity Monitor	2/28/2018	Biennial	2/28/2020	150761911
Control Company	4352	Ultra Long Stem Thermometer	2/28/2018	Biennial	2/28/2020	170330160
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	7/2/2019	Annual	7/2/2020	MY53401181
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	NC-100	Torque Wrench	5/23/2018	Biennial	5/23/2020	N/A
SPEAG	EX3DV4	SAR Probe	2/19/2019	Annual	2/19/2020	7417
SPEAG	DAE4	Dasy Data Acquisition Electronics	2/13/2019	Annual	2/13/2020	665
SPEAG	EX3DV4	SAR Probe	7/15/2019	Annual	7/15/2020	7547
SPEAG	DAE4	Dasy Data Acquisition Electronics	7/11/2019	Annual	7/11/2020	1323
SPEAG	DAK-3.5	Dielectric Assessment Kit	9/11/2018	Annual	9/11/2019	1091

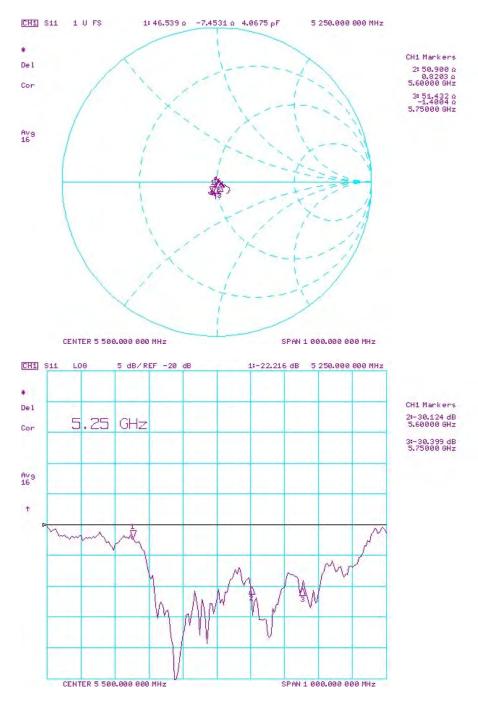
Measurement Uncertainty = ±23% (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Test Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	304

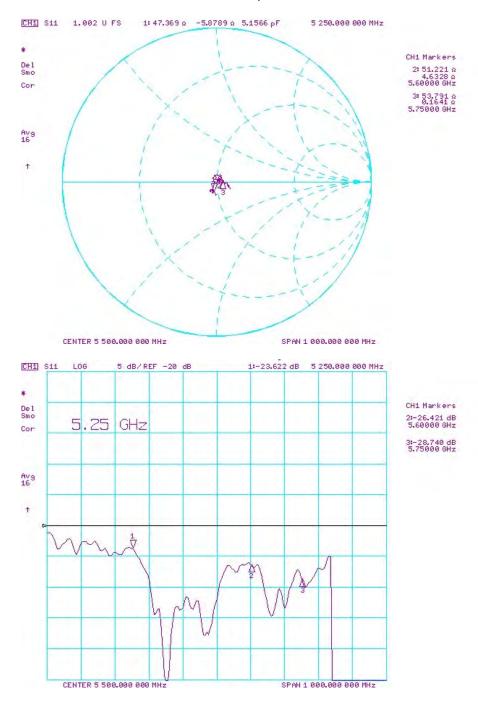
Object:	Date Issued:	Dogo 1 of 4	
D5GHzV2 – SN: 1237	08/09/2019	Page 1 of 4	

DIPOLE CALIBRATION EXTENSION

Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:


- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:


Frequ (M	uency IHz)	Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 17.0 dBm	Measured Head SAR (1g) W/kg @ 17.0 dBm	(96)	Certificate SAR Target Head (10g) W/kg @ 17.0 dBm	(10a) M//ka @	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
52	250	8/10/2018	8/9/2019	1.195	4.065	3.81	-6.27%	1.18	1.09	-7.23%	47.5	46.5	1	-3.5	-7.5	4	-27	-22.2	17.70%	PASS
56	000	8/10/2018	8/9/2019	1.195	4.285	4.06	-5.25%	1.23	1.15	-6.12%	50.1	50.9	0.8	4.7	0.8	3.9	-26.7	-30.1	-12.80%	PASS
57	50	8/10/2018	8/9/2019	1.195	4.03	3.8	-5.71%	1.16	1.07	-7.36%	52.7	51.4	1.3	0.8	-1.4	2.2	-31.2	-30.4	2.60%	PASS
Frequ (M	uency IHz)	Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 17.0 dBm	Measured Body SAR (1g) W/kg @ 17.0 dBm	(96)	Certificate SAR Target Body (10g) W/kg @ 17.0 dBm	(10a) M/ka @	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
52	250	8/10/2018	8/9/2019	1.195	3.78	3.52	-6.88%	1.06	0.981	-7.45%	46.5	47.4	0.9	-1.3	-5.9	4.6	-28.2	-23.6	16.20%	PASS
56	600	8/10/2018	8/9/2019	1.195	3.925	3.81	-2.93%	1.1	1.05	-4.55%	53.1	51.2	1.9	6.2	4.6	1.6	-23.5	-26.4	-12.40%	PASS
57	50	8/10/2018	8/9/2019	1.195	3.795	3.58	-5.67%	1.06	1	-5.66%	53.6	53.8	0.2	2.1	0.2	1.9	-27.9	-28.7	-3.00%	PASS

Object:	Date Issued:	Dogo 2 of 4		
D5GHzV2 – SN: 1237	08/09/2019	Page 2 of 4		

Impedance & Return-Loss Measurement Plot for Head TSL

Impedance & Return-Loss Measurement Plot for Body TSL

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client

PC Test

Certificate No: EX3-3589_Jan20/2

CALIBRATION CERTIFICATE (Replacement of No: EX3-3589_Jan20)

Object

EX3DV4 - SN:3589

Calibration procedure(s)

QA CAL-01 v9, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure for dosimetric E-field probes

BNV N413012020

Calibration date:

January 21, 2020

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	03-Apr-19 (No. 217-02892/02893)	Apr-20
Power sensor NRP-Z91	SN: 103244	03-Apr-19 (No. 217-02892)	Apr-20
Power sensor NRP-Z91	SN: 103245	03-Apr-19 (No. 217-02893)	Apr-20
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-19 (No. 217-02894)	Apr-20
DAE4	SN: 660	27-Dec-19 (No. DAE4-660_Dec19)	Dec-20
Reference Probe ES3DV2	SN: 3013	31-Dec-18 (No. ES3-3013_Dec19)	Dec-20
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-18)	In house check: Jun-20
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-19)	In house check: Oct-20

Calibrated by:

Leif Klysner

Laboratory Technician

Approved by:

Katja Pokovic

Technical Manager

Issued: March 31, 2020

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z tissue simulating liquid sensitivity in free space

ConvF DCP sensitivity in TSL / NORMx,y,z diode compression point

CF A, B, C, D crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

Polarization φ

φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Connector Angle

Certificate No: EX3-3589_Jan20/2

information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3589

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	0.44	0.40	0.39	± 10.1 %
DCP (mV) ^B	101.5	97.7	97.9	

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dBõV	C	D B	VR mV	Max dev.	Max Unc ^E (k=2)
0	CW	Х	0.00	0.00	1.00	0.00	138.1	± 3.5 %	± 4.7 %
		Υ	0.00	0.00	1.00		148.9		
		Z	0.00	0.00	1.00		137.1		
10352-	Pulse Waveform (200Hz, 10%)	Х	20.00	93.40	23.88	10.00	60.0	± 1.9 %	± 9.6 %
AAA		Υ	20.00	90.04	21.55		60.0		
		Z	20.00	93.40	23.50		60.0		
10353-	Pulse Waveform (200Hz, 20%)	Х	20.00	93.53	22.66	6.99	80.0	± 1.0 %	± 9.6 %
AAA		Υ	20.00	90.11	20.16		80.0		
		Z	20.00	93.36	22.20		80.0		
10354-	Pulse Waveform (200Hz, 40%)	Х	20.00	95.38	22.01	3.98	95.0	± 1.0 %	± 9.6 %
AAA		Y	20.00	88.87	17.82		95.0		
		Z	20.00	94.79	21.35		95.0		
10355-	Pulse Waveform (200Hz, 60%)	X	20.00	102.43	23.98	2.22	120.0	± 1.1 %	± 9.6 %
AAA		Υ	20.00	86.64	15.26		120.0]	
		Z	20.00	97.99	21.51		120.0		
10387-	QPSK Waveform, 1 MHz	Х	0.93	64.33	11.56	0.00	150.0	± 3.3 %	± 9.6 %
AAA		Υ	0.54	60.00	7.11		150.0]	
		Z	0.68	61.48	9.17		150.0		
10388-	QPSK Waveform, 10 MHz	X	2.38	69.01	16.27	0.00	150.0	± 1.3 %	± 9.6 %
AAA		Υ	2.02	66.96	14.92		150.0]	
		Z	2.15	67.54	15.53		150.0		
10396-	64-QAM Waveform, 100 kHz	Х	3.79	73.46	20.06	3.01	150.0	± 0.6 %	± 9.6 %
AAA		Υ	3.12	69.91	18.24		150.0		
		Z	4.11	75.05	20.59		150.0	<u> </u>	
10399-	64-QAM Waveform, 40 MHz	X	3.59	67.56	16.03	0.00	150.0	± 2.5 %	± 9.6 %
AAA		Υ	3.37	66.67	15.43		150.0		
		Z	3.46	66.93	15.67		150.0		
10414-	WLAN CCDF, 64-QAM, 40MHz	Χ	4.95	65.82	15.63	0.00	150.0	± 4.6 %	± 9.6 %
AAA		Υ	4.77	65.46	15.41		150.0]	
		Z	4.80	65.52	15.45		150.0		

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

B Numerical linearization parameter: uncertainty not required.

E Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3589

Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 ms.V ⁻²	T2 ms.V ⁻¹	T3 ms	T4 V ⁻²	T5 V ⁻¹	Т6
X	52.5	386.65	34.73	26.61	1.15	5.10	1.30	0.45	1.01
Υ	44.4	339.10	36.93	20.74	1.47	5.06	0.00	0.71	1.01
Z	44.1	325.90	34.85	22.88	1.09	5.07	1.71	0.36	1.01

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-32.6
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3589

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	8.70	8.70	8.70	0.38	1.00	± 12.0 %
835	41.5	0.90	8.58	8.58	8.58	0.47	0.80	± 12.0 %
1750	40.1	1.37	7.55	7.55	7.55	0.52	0.87	± 12.0 %
1900	40.0	1.40	7.25	7.25	7.25	0.43	0.87	± 12.0 %
2300	39.5	1.67	7.11	7.11	7.11	0.45	0.86	± 12.0 %
2450	39.2	1.80	6.85	6.85	6.85	0.47	0.85	± 12.0 %
2600	39.0	1.96	6.60	6.60	6.60	0.41	0.86	± 12.0 %

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

⁶ MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

the ConvF uncertainty for indicated target tissue parameters.

Gauge the ConvF uncertainty for indicated target tissue parameters.

Gauge the Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

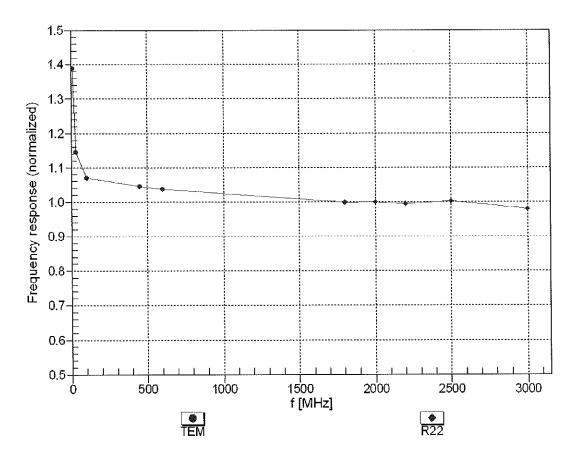
DASY/EASY - Parameters of Probe: EX3DV4 - SN:3589

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	8.49	8.49	8.49	0.49	0.81	± 12.0 %
835	55.2	0.97	8.27	8.27	8.27	0.29	1.03	± 12.0 %
1750	53.4	1.49	6.93	6.93	6.93	0.41	0.87	± 12.0 %
1900	53.3	1.52	6.72	6.72	6.72	0.35	0.87	± 12.0 %
2300	52.9	1.81	6.62	6.62	6.62	0.34	0.86	± 12.0 %
2450	52.7	1.95	6.60	6.60	6.60	0.40	0.86	± 12.0 %
2600	52.5	2.16	6.35	6.35	6.35	0.37	0.90	± 12.0 %

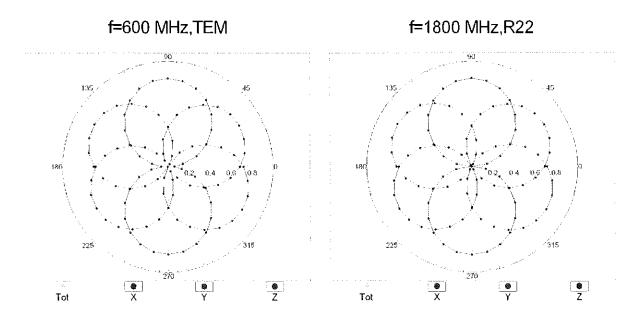
^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

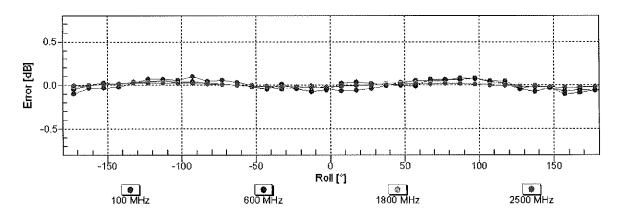
⁶ MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.


F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

the ConvF uncertainty for indicated target tissue parameters.

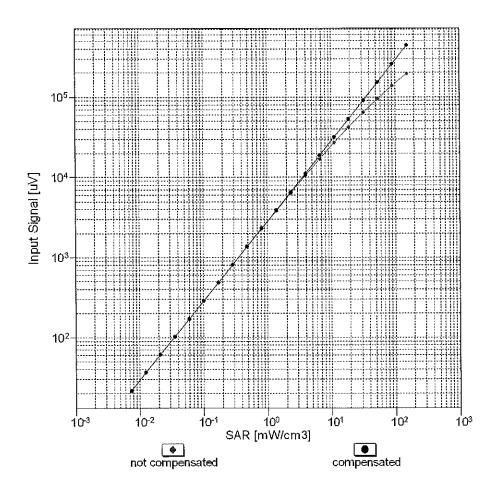
Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

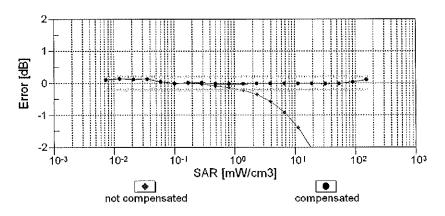

Frequency Response of E-Field


(TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

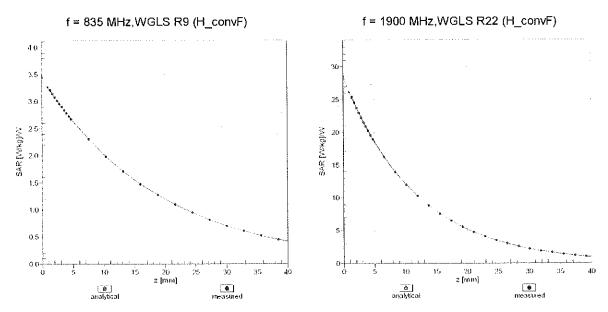
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

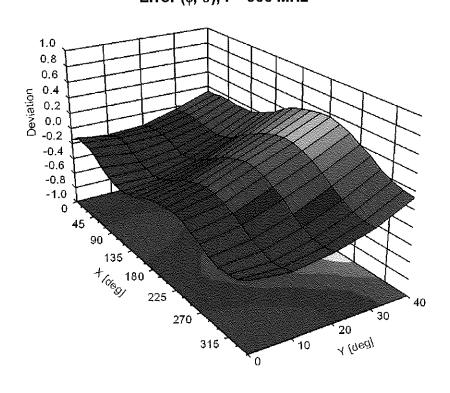




Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head})


(TEM cell , f_{eval}= 1900 MHz)



Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (ϕ , ϑ), f = 900 MHz

Appendix: Modulation Calibration Parameters

UID	Rev	Communication System Name	Group	PAR	Unc ^E
		CW	cw	(dB)	(k=2)
0	044		Test	10.00	± 4.7 % ± 9.6 %
10010 10011	CAA	SAR Validation (Square, 100ms, 10ms) UMTS-FDD (WCDMA)	WCDMA	2.91	± 9.6 %
10011	CAB	IEEE 802,11b WiFi 2.4 GHz (DSSS, 1 Mbps)	WLAN	1.87	± 9.6 %
10012	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps)	WLAN	9.46	± 9.6 %
10021	DAC	GSM-FDD (TDMA, GMSK)	GSM	9.39	±9.6 %
10023	DAC	GPRS-FDD (TDMA, GMSK, TN 0)	GSM	9.57	± 9.6 %
10024	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	GSM	6.56	±9.6 %
10025	DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	GSM	12.62	±9.6%
10026	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1)	GSM	9.55	± 9.6 %
10027	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	GSM	4.80	± 9.6 %
10028	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	GSM	3.55	± 9.6 %
10029	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	GSM	7.78	± 9.6 %
10030	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH1)	Bluetooth	5.30	± 9.6 %
10031	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH3)	Bluetooth	1.87	±9.6%
10032	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	Bluetooth	1.16	±9.6%
10033	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)	Bluetooth	7.74	± 9.6 %
10034	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)	Bluetooth	4.53	±9.6%
10035	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)	Bluetooth	3.83	± 9.6 %
10036	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	Bluetooth	8.01	±9.6%
10037	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	Bluetooth	4.77	± 9.6 %
10038	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	Bluetooth	4.10	± 9.6 %
10039	CAB	CDMA2000 (1xRTT, RC1)	CDMA2000	4.57	± 9.6 %
10042	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Halfrate)	AMPS	7.78	± 9.6 %
10044	CAA	IS-91/EIA/TIA-553 FDD (FDMA, FM)	AMPS	0.00	±9.6%
10048	CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	DECT	13.80	±9.6%
10049	CAA	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	DECT	10.79	± 9.6 %
10056	CAA	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	TD-SCDMA	11.01	± 9.6 %
10058	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	GSM	6.52	±9.6%
10059	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)	WLAN	2.12	±9.6%
10060	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)	WLAN WLAN	2.83 3.60	±9.6 % ±9.6 %
10061 10062	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps) IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	WLAN	8.68	±9.6 %
10062	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)	WLAN	8.63	± 9.6 %
10064	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	WLAN	9.09	± 9.6 %
10065	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	WLAN	9.00	± 9.6 %
10066	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 10 Mbps)	WLAN	9.38	± 9.6 %
10067	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)	WLAN	10.12	± 9.6 %
10068	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)	WLAN	10.24	± 9.6 %
10069	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps)	WLAN	10.56	± 9.6 %
10071	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)	WLAN	9.83	± 9.6 %
10072	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	WLAN	9.62	±9.6 %
10073	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps)	WLAN	9.94	± 9.6 %
10074	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps)	WLAN	10.30	±9.6 %
10075	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps)	WLAN	10.77	± 9.6 %
10076	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)	WLAN	10.94	±9.6%
10077	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	WLAN	11.00	± 9.6 %
10081	CAB	CDMA2000 (1xRTT, RC3)	CDMA2000	3.97	± 9.6 %
10082	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Fullrate)	AMPS	4.77	±9.6 %
10090	DAC	GPRS-FDD (TDMA, GMSK, TN 0-4)	GSM	6.56	±9.6 %
10097	CAB	UMTS-FDD (HSDPA)	WCDMA	3.98	± 9.6 %
10098	CAB	UMTS-FDD (HSUPA, Subtest 2)	WCDMA	3.98	± 9.6 %
10099	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-4)	GSM	9.55	± 9.6 %
10100	CAE	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	LTE-FDD	5.67	± 9.6 %
10101	CAE	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-FDD	6.42	± 9.6 %
10102	CAE	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	LTE-FDD	6.60	± 9.6 %
10103	CAG	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	LTE-TDD	9.29	± 9.6 %
10104	CAG	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-TDD	9.97	±9.6 %
10105	CAG	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	LTE-TDD	10.01	± 9.6 %
10108	CAG	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	LTE-FDD	5.80	± 9.6 %

			1.72.500	1 2 (2)	
10109	CAG	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	LTE-FDD	6.43	± 9.6 %
10110	CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	LTE-FDD	5.75	± 9.6 %
10111	CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	LTE-FDD	6.44	± 9.6 %
10112	CAG	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	LTE-FDD	6.59	± 9.6 %
10113	CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	LTE-FDD	6.62	± 9.6 %
10114	CAC	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	WLAN	8.10	± 9.6 %
10115	CAC	IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)	WLAN	8.46	± 9.6 %
10116	CAC	IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM)	WLAN	8.15	± 9.6 %
10117	CAC	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	WLAN	8.07	± 9.6 %
10118	CAC	IEEE 802.11n (HT Mixed, 81 Mbps, 16-QAM)	WLAN	8.59	± 9.6 %
10119	CAC	IEEE 802.11n (HT Mixed, 135 Mbps, 64-QAM)	WLAN	8.13	± 9.6 %
10140	CAE	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-FDD	6.49	± 9.6 %
10141	CAE	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	LTE-FDD	6.53	± 9.6 %
10142	CAE	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	LTE-FDD	5.73	± 9.6 %
10143	CAE	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	LTE-FDD	6.35	± 9.6 %
10144	CAE	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	LTE-FDD	6.65	± 9.6 %
10145	CAF	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	LTE-FDD	5.76	± 9.6 %
10146	CAF	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.41	±9.6 %
10147	CAF	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.72	± 9.6 %
10149	CAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-FDD	6.42	± 9.6 %
10150	CAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-FDD	6.60	± 9.6 %
10151	CAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE-TDD	9.28	± 9.6 %
10152	CAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-TDD	9.92	±9.6 %
10153	CAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-TDD	10.05	± 9.6 %
10154	CAG	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-FDD	5.75	±9.6%
10155	CAG	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LTE-FDD	6.43	± 9.6 %
10156	CAG	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LTE-FDD	5.79	± 9.6 %
10157	CAG	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-FDD	6.49	± 9.6 %
10158	CAG	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	LTE-FDD	6.62	± 9.6 %
10159	CAG	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	LTE-FDD	6.56	± 9.6 %
10160	CAE	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	LTE-FDD	5.82	± 9.6 %
10161	CAE	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-FDD	6.43	± 9.6 %
10162	CAE	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	LTE-FDD	6.58	± 9.6 %
10166	CAF	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	LTE-FDD	5.46	± 9.6 %
10167	CAF	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.21	±9.6 %
10168	CAF	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.79	±9.6%
10169	CAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-FDD	5.73	± 9.6 %
10170	CAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6 %
10171	AAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-FDD	6.49	±9.6 %
10172	CAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-TOD	9.21	± 9.6 %
10173	CAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	LTE-TDD	9.48	± 9.6 %
10174	CAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-TDD	10.25	± 9.6 %
10175	CAG	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	LTE-FDD	5.72	± 9.6 %
10176	CAG	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6 %
10177	CAI	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	LTE-FDD	5.73	± 9.6 %
10178	CAG	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6 %
10179	CAG	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 %
10180	CAG	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	LTE-FDD	6,50	±9.6 %
10181	CAE	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	LTE-FDD	5.72	± 9.6 %
10182	CAE	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	LTE-FDD	6.52	±9.6%
10183	AAD	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	LTE-FDD	6.50	±9.6 %
10184	CAE	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	LTE-FDD	5.73	±9.6%
10185	CAE	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	LTE-FDD	6.51	± 9.6 %
10186	AAE	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	LTE-FDD	6.50	±9.6%
10187	CAF	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	LTE-FDD	5.73	±9.6%
10188	CAF	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.52	±9.6%
10189	AAF	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 %
10193	CAC	IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK)	WLAN	8.09	±9.6%
10194	CAC	IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM)	WLAN	8.12	± 9.6 %
10195	CAC	IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM)	WLAN	8.21	± 9.6 %
10196	CAC	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	WLAN	8.10	± 9.6 %
10197	CAC	IEEE 802.11n (HT Mixed, 39 Mbps, 16-QAM)	WLAN	8.13	± 9.6 %
	CAC	IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM)	WLAN	8.27	± 9.6 %
10198 10219	CAC	IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)	WLAN	8.03	± 9.6 %

EX3DV4-SN:3589

40000	CAC	IEEE 802.11n (HT Mixed, 43.3 Mbps, 16-QAM)	WLAN	8.13	± 9.6 %
10220	CAC		WLAN	8.27	± 9.6 %
10221	CAC	IEEE 802.11n (HT Mixed, 72.2 Mbps, 64-QAM) IEEE 802.11n (HT Mixed, 15 Mbps, BPSK)	WLAN	8.06	± 9.6 %
10222	CAC		WLAN		
10223	CAC	IEEE 802.11n (HT Mixed, 90 Mbps, 16-QAM)	WLAN	8.48 8.08	± 9.6 % ± 9.6 %
10224	CAC	IEEE 802.11n (HT Mixed, 150 Mbps, 64-QAM)	WCDMA	5.97	
10225	CAB	UMTS-FDD (HSPA+)	LTE-TDD		± 9.6 % ± 9.6 %
10226	CAB	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)		9.49	
10227	CAB	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	LTE-TDD	10.26	± 9.6 %
10228	CAB	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	LTE-TDD	9.22	± 9.6 %
10229	CAD	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	LTE-TDD	9.48	± 9.6 %
10230	CAD	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	LTE-TDD	10.25	± 9.6 %
10231	CAD	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	LTE-TDD	9.19	± 9.6 %
10232	CAG	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	LTE-TDD	9,48	± 9.6 %
10233	CAG	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	LTE-TDD	10.25	± 9.6 %
10234	CAG	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	LTE-TDD	9.21	± 9.6 %
10235	CAG	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-TDD	9.48	± 9.6 %
10236	CAG	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	LTE-TDD	10.25	± 9.6 %
10237	CAG	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	LTE-TDD	9.21	±9.6%
10238	CAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	LTE-TDD	9.48	± 9.6 %
10239	CAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	LTE-TDD	10.25	±9.6 %
10240	CAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	LTE-TDD	9.21	± 9.6 %
10241	CAB	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.82	± 9.6 %
10242	CAB	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-TDD	9.86	±9.6%
10243	CAB	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	LTE-TDD	9.46	± 9.6 %
10244	CAD	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	LTE-TDD	10.06	±9.6 %
10245	CAD	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	LTE-TDD	10.06	± 9.6 %
10246	CAD	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	LTE-TDD	9.30	± 9.6 %
10247	CAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-TDD	9,91	±9.6%
10248	CAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	LTE-TDD	10.09	±9.6%
10249	CAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LTE-TDD	9.29	± 9.6 %
10250	CAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LTE-TDD	9.81	± 9.6 %
10251	CAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	LTE-TDD	10.17	±9.6%
10252	CAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-TDD	9.24	± 9.6 %
10253	CAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-TDD	9.90	±9.6%
10254	CAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	LTE-TDD	10.14	± 9.6 %
10255	CAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	LTE-TDD	9.20	± 9.6 %
10256	CAB	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.96	± 9.6 %
10257	CAB	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-TDD	10.08	± 9.6 %
10258	CAB	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	LTE-TDD	9.34	± 9.6 %
10259	CAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	LTE-TDD	9.98	± 9.6 %
10260	CAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	LTE-TDD	9.97	±9.6 %
10261	CAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	LTE-TDD	9.24	± 9.6 %
10262	CAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	LTE-TDD	9.83	± 9.6 %
10263	CAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	LTE-TDD	10.16	± 9.6 %
10264	CAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	LTE-TDD	9.23	± 9.6 %
10265	CAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	LTE-TDD	9.92	± 9.6 %
10266	CAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	LTE-TDD	10.07	± 9.6 %
10267	CAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	LTE-TDD	9.30	±9.6%
10268	CAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-TDD	10.06	±9.6%
10269	CAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	LTE-TDD	10.13	±9.6 %
10270	CAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	LTE-TDD	9.58	± 9.6 %
10274	CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)	WCDMA	4.87	±9.6 %
10275	CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	WCDMA	3.96	± 9.6 %
10277	CAA	PHS (QPSK)	PHS	11.81	± 9,6 %
10278	CAA	PHS (QPSK, BW 884MHz, Rolloff 0.5)	PHS	11.81	± 9.6 %
10279	CAA	PHS (QPSK, BW 884MHz, Rolloff 0.38)	PHS	12.18	± 9.6 %
10290	AAB	CDMA2000, RC1, SO55, Full Rate	CDMA2000	3.91	± 9.6 %
10291	AAB	CDMA2000, RC3, SO55, Full Rate	CDMA2000	3.46	± 9.6 %
10292	AAB	CDMA2000, RC3, SO32, Full Rate	CDMA2000	3.39	±9.6%
10293	AAB	CDMA2000, RC3, SO3, Full Rate	CDMA2000	3.50	± 9.6 %
10295	AAB	CDMA2000, RC1, SO3, 1/8th Rate 25 fr.	CDMA2000	12.49	±9.6 %
10297	AAD	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE-FDD	5.81	± 9.6 %
10298	AAD	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	LTE-FDD	5.72	± 9.6 %
10299	AAD	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	LTE-FDD	6.39	± 9.6 %
	1			,	

T 40000		LTE EDD (OO EDMA FOO) DD OANIE OA OANI	LTE EDD	0.00	1000
10300	AAD	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	LTE-FDD WIMAX	6.60 12.03	± 9.6 % ± 9.6 %
10301	AAA	IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC)	WIMAX	12.03	
10302	AAA	IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC, 3CTRL)	WIMAX	12.57	± 9.6 % ± 9.6 %
10303		IEEE 802.16e WIMAX (31:15, 5ms, 10MHz, 64QAM, PUSC) IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, 64QAM, PUSC)	WiMAX	11.86	± 9.6 %
	AAA		WIMAX	15.24	***************************************
10305	AAA	IEEE 802.16e WIMAX (31:15, 10ms, 10MHz, 64QAM, PUSC)	WIMAX	· •	±9.6%
10306	AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 64QAM, PUSC)		14.67	± 9.6 %
10307	AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, QPSK, PUSC)	WiMAX	14.49	± 9.6 %
10308	AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, PUSC)	WIMAX	14.46	± 9.6 %
10309	AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 16QAM,AMC 2x3)	WIMAX	14.58	± 9.6 %
10310	AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3	WIMAX	14.57	± 9.6 %
10311	AAD	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	LTE-FDD	6.06	± 9.6 %
10313	AAA	iDEN 1:3	IDEN	10.51	± 9.6 %
10314	AAA	iDEN 1:6	IDEN	13.48	± 9.6 %
10315	AAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc dc)	WLAN	1.71	± 9.6 %
10316	AAB	IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 96pc dc)	WLAN	8,36	±9.6%
10317	AAC	IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc dc)	WLAN	8.36	±9.6%
10352	AAA	Pulse Waveform (200Hz, 10%)	Generic	10.00	± 9.6 %
10353	AAA	Pulse Waveform (200Hz, 20%)	Generic	6.99	± 9.6 %
10354	AAA	Pulse Waveform (200Hz, 40%)	Generic	3.98	± 9.6 %
10355	AAA	Pulse Waveform (200Hz, 60%)	Generic	2.22	±9.6 %
10356	AAA	Pulse Waveform (200Hz, 80%)	Generic	0.97	± 9.6 %
10387	AAA	QPSK Waveform, 1 MHz	Generic	5.10	±9.6%
10388	AAA	QPSK Waveform, 10 MHz	Generic	5.22	±96%
10396	AAA	64-QAM Waveform, 100 kHz	Generic	6.27	± 9.6 %
10399	AAA	64-QAM Waveform, 40 MHz	Generic	6.27	±9.6%
10400	AAD	IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc dc)	WLAN	8.37	±9.6%
10401	AAD	IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc dc)	WLAN	8.60	±9.6%
10402	AAD	IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc dc)	WLAN	8.53	± 9.6 %
10403	AAB	CDMA2000 (1xEV-DO, Rev. 0)	CDMA2000	3.76	±9.6%
10404	AAB	CDMA2000 (1xEV-DO, Rev. A)	CDMA2000	3.77	±9.6%
10406	AAB	CDMA2000, RC3, SO32, SCH0, Full Rate	CDMA2000	5.22	± 9.6 %
10410	AAG	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Sub=2,3,4,7,8,9)	LTE-TDD	7.82	±9.6%
10414	AAA	WLAN CCDF, 64-QAM, 40MHz	Generic	8.54	± 9.6 %
10415	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc dc)	WLAN	1.54	± 9.6 %
10416	AAA	IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 99pc dc)	WLAN	8.23	± 9.6 %
10417	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc dc)	WLAN	8.23	±9.6 %
10418	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Long)	WLAN	8.14	± 9.6 %
10419	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Short)	WLAN	8.19	± 9.6 %
10422	AAB	IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK)	WLAN	8.32	±9.6 %
10423	AAB	IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM)	WLAN	8.47	± 9.6 %
10424	AAB	IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM)	WLAN	8.40	± 9.6 %
10425	AAB	IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK)	WLAN	8.41	± 9.6 %
10426	AAB	IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM)	WLAN	8.45	± 9.6 %
10427	AAB	IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM)	WLAN	8.41	± 9.6 %
10430	AAD	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1)	LTE-FDD	8.28	±9.6 %
10431	AAD	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1)	LTE-FDD	8.38	± 9.6 %
10432	AAC	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1)	LTE-FDD	8.34	±9.6%
10433	AAC	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1)	LTE-FDD	8.34	± 9.6 %
10434	AAA	W-CDMA (BS Test Model 1, 64 DPCH)	WCDMA	8.60	± 9.6 %
10435	AAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Sub)	LTE-TDD	7.82	± 9.6 %
10447	AAD	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	LTE-FDD	7.56	± 9.6 %
10448	AAD	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%)	LTE-FDD	7.53	± 9.6 %
10449	AAC	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Cliping 44%)	LTE-FDD	7.51	± 9.6 %
10450	AAC	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	LTE-FDD	7.48	± 9.6 %
10451	AAA	W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%)	WCDMA	7.59	± 9.6 %
10453	AAD	Validation (Square, 10ms, 1ms)	Test	10.00	± 9.6 %
10456	AAB	IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc dc)	WLAN	8.63	± 9.6 %
10457	AAA	UMTS-FDD (DC-HSDPA)	WCDMA	6.62	± 9.6 %
10458	AAA	CDMA2000 (1xEV-DO, Rev. B, 2 carriers)	CDMA2000	6.55	± 9.6 %
10459	AAA	CDMA2000 (1xEV-DO, Rev. B, 3 carriers)	CDMA2000	8.25	± 9.6 %
10460	AAA	UMTS-FDD (WCDMA, AMR)	WCDMA	2.39	± 9.6 %
10461	AAB	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL Sub)	LTE-TDD	7.82	± 9.6 %
10462	AAB	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Sub)	LTE-TDD	8.30	± 9.6 %
	1 . 5 .5	1 === (== :=::, :::::::::::::::::::::::::	<u> </u>		7.7 /0

					·
10463	AAB	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Sub)	LTE-TDD	8.56	±9.6%
10464	AAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Sub)	LTE-TDD	7.82	± 9.6 %
10465	AAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM, UL Sub)	LTE-TDD	8.32	± 9.6 %
10466	AAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM, UL Sub)	LTE-TDD	8.57	± 9.6 %
10467	AAF	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Sub)	LTE-TDD	7.82	±9.6%
10468	AAF	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM, UL Sub)	LTE-TDD	8.32	±9.6%
10469	AAF	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM, UL Sub)	LTE-TDD	8.56	± 9.6 %
10470	AAF	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Sub)	LTE-TDD	7.82	± 9.6 %
10471	AAF	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM, UL Sub)	LTE-TDD	8.32	±9.6%
10472	AAF	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM, UL Sub)	LTE-TDD	8.57	± 9.6 %
10473	AAE	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL Sub)	LTE-TDD	7.82	±9.6%
10474	AAE	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM, UL Sub)	LTE-TDD	8.32	± 9.6 %
10475	AAE	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM, UL Sub)	LTE-TDD	8.57	±9.6 %
10477	AAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM, UL Sub)	LTE-TDD	8.32	± 9.6 %
10478	AAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM, UL Sub)	LTE-TDD	8.57	±9.6%
10479	AAB	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Sub)	LTE-TDD	7.74	± 9.6 %
10480	AAB	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Sub)	LTE-TDD	8.18	± 9.6 %
10481	AAB	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL Sub)	LTE-TDD	8.45	± 9.6 %
10482	AAC	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Sub)	LTE-TDD	7.71	± 9.6 %
10483	AAC	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, Sub)	LTE-TDD	8.39	± 9.6 %
10484	AAC	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL Sub)	LTE-TDD	8.47	± 9.6 %
10485	AAF	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Sub)	LTE-TDD	7.59	± 9.6 %
10486	AAF	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Sub)	LTE-TDD	8.38	± 9.6 %
10487	AAF	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL Sub)	LTE-TDD	8.60	± 9.6 %
10488	AAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Sub)	LTE-TDD	7.70	± 9.6 %
10489	AAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Sub)	LTE-TDD	8.31	± 9.6 %
10490	AAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Sub)	LTE-TDD	8.54	± 9.6 %
10491	AAE	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Sub)	LTE-TDD	7.74	± 9.6 %
10492	AAE	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Sub)	LTE-TDD	8.41	±9.6 %
10493	AAE	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL Sub)	LTE-TDD	8.55	± 9.6 %
10494	AAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Sub)	LTE-TDD	7.74	
10495	AAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Sub)	LTE-TDD	8.37	± 9.6 % ± 9.6 %
10496	AAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Sub)	LTE-TDD	8.54	
10497	AAB	·			± 9.6 %
10497	AAB	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK, UL Sub)	LTE-TDD	7.67	± 9.6 %
10498	AAB	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL Sub)	LTE-TDD	8.40	± 9.6 %
10500	AAC		LTE-TDD	8.68	± 9.6 %
		LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Sub)	LTE-TDD	7.67	± 9.6 %
10501	AAC	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Sub)	LTE-TDD	8.44	± 9.6 %
	AAC	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Sub)	LTE-TDD	8.52	± 9.6 %
10503	AAF	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Sub)	LTE-TDD	7.72	± 9.6 %
10504	AAF	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Sub)	LTE-TOD	8.31	± 9.6 %
10505	AAF	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Sub)	LTE-TDD	8.54	± 9.6 %
10506	AAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Sub)	LTE-TDD	7.74	± 9.6 %
10507	AAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL Sub)	LTE-TDD	8.36	±9.6 %
10508	AAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Sub)	LTE-TDD	8.55	± 9.6 %
10509	AAE	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Sub)	LTE-TDD	7.99	±9.6%
10510	AAE	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Sub)	LTE-TDD	8.49	± 9.6 %
10511	AAE	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL Sub)	LTE-TDD	8.51	± 9.6 %
10512	AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Sub)	LTE-TDD	7.74	± 9.6 %
10513	AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Sub)	LTE-TDD	8.42	± 9.6 %
10514	AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Sub)	LTE-TDD	8.45	± 9.6 %
10515	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc dc)	WLAN	1.58	± 9.6 %
10516	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc dc)	WLAN	1.57	±9.6%
10517	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 99pc dc)	WLAN	1.58	±9.6%
10518	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc dc)	WLAN	8.23	±9.6%
10519	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc dc)	WLAN	8.39	± 9.6 %
10520	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc dc)	WLAN	8.12	± 9.6 %
10521	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc dc)	WLAN	7.97	± 9.6 %
10522	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc dc)	WLAN	8.45	± 9.6 %
	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc dc)	WLAN	8.08	±9.6%
10523		LEEF OOD 44. W. MORE F. OUT. CORDAL PARK. OO. 1.)	WLAN	8.27	±9.6%
	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc dc)	WLAIN	U.Z.1	20.070
10523 10524 10525	AAB AAB	IEEE 802.11a/n WiFi 5 GHz (OFDM, 54 Mbps, 99pc dc)	WLAN	8.36	± 9.6 %
10523 10524				······································	

	·				
10528	AAB	IEEE 802.11ac WiFi (20MHz, MCS3, 99pc dc)	WLAN	8.36	± 9.6 %
10529	AAB	IEEE 802.11ac WiFi (20MHz, MCS4, 99pc dc)	WLAN	8.36	± 9.6 %
10531	AAB	IEEE 802.11ac WiFi (20MHz, MCS6, 99pc dc)	WLAN	8.43	± 9.6 %
10532	AAB	IEEE 802.11ac WiFi (20MHz, MCS7, 99pc dc)	WLAN	8.29	±9.6%
10533	AAB	IEEE 802.11ac WiFi (20MHz, MCS8, 99pc dc)	WLAN	8.38	± 9.6 %
10534	AAB	IEEE 802.11ac WiFi (40MHz, MCS0, 99pc dc)	WLAN	8,45	± 9.6 %
10535	AAB	IEEE 802.11ac WiFi (40MHz, MCS1, 99pc dc)	WLAN	8.45	± 9.6 %
10536	AAB	IEEE 802.11ac WiFi (40MHz, MCS2, 99pc dc)	WLAN	8.32	± 9.6 %
10537	AAB	IEEE 802.11ac WiFi (40MHz, MCS3, 99pc dc)	WLAN	8.44	± 9.6 %
10538	AAB	IEEE 802.11ac WiFi (40MHz, MCS4, 99pc dc)	WLAN	8.54	±9.6 %
10540	AAB	IEEE 802.11ac WiFi (40MHz, MCS6, 99pc dc)	WLAN	8.39	±9.6 %
10541	AAB	IEEE 802.11ac WiFi (40MHz, MCS7, 99pc dc)	WLAN	8.46	± 9.6 %
10542	AAB	IEEE 802.11ac WiFi (40MHz, MCS8, 99pc dc)	WLAN	8.65	± 9.6 %
10543	AAB	IEEE 802.11ac WiFi (40MHz, MCS9, 99pc dc)	WLAN	8.65	± 9.6 %
10544	}		WLAN		
	AAB	IEEE 802.11ac WiFi (80MHz, MCS0, 99pc dc)		8.47	± 9.6 %
10545	AAB	IEEE 802.11ac WiFi (80MHz, MCS1, 99pc dc)	WLAN	8.55	± 9.6 %
10546	AAB	IEEE 802.11ac WiFi (80MHz, MCS2, 99pc dc)	WLAN	8.35	± 9.6 %
10547	AAB	IEEE 802.11ac WiFi (80MHz, MCS3, 99pc dc)	WLAN	8.49	± 9.6 %
10548	AAB	IEEE 802.11ac WiFi (80MHz, MCS4, 99pc dc)	WLAN	8.37	± 9.6 %
10550	AAB	IEEE 802.11ac WiFi (80MHz, MCS6, 99pc dc)	WLAN	8.38	± 9.6 %
10551	AAB	IEEE 802.11ac WiFi (80MHz, MCS7, 99pc dc)	WLAN	8.50	± 9.6 %
10552	AAB	IEEÉ 802.11ac WiFi (80MHz, MCS8, 99pc dc)	WLAN	8.42	±9.6 %
10553	AAB	IEEE 802.11ac WiFi (80MHz, MCS9, 99pc dc)	WLAN	8.45	±9.6 %
10554	AAC	IEEE 802.11ac WiFi (160MHz, MCS0, 99pc dc)	WLAN	8.48	± 9.6 %
10555	AAC	IEEE 802.11ac WiFi (160MHz, MCS1, 99pc dc)	WLAN	8.47	± 9.6 %
10556	AAC	IEEE 802.11ac WiFi (160MHz, MCS2, 99pc dc)	WLAN	8.50	±9.6%
10557	AAC	IEEE 802.11ac WiFi (160MHz, MCS3, 99pc dc)	WLAN	8.52	± 9.6 %
10558	AAC	IEEE 802.11ac WiFi (160MHz, MCS4, 99pc dc)	WLAN	8.61	± 9.6 %
10560	AAC	IEEE 802.11ac WiFi (160MHz, MCS6, 99pc dc)	WLAN	8.73	±9.6 %
10561	AAC	IEEE 802.11ac WiFi (160MHz, MCS7, 99pc dc)	WLAN	8.56	± 9.6 %
10562	AAC	IEEE 802.11ac WiFi (160MHz, MCS8, 99pc dc)	WLAN	8.69	±9.6%
10563	AAC	IEEE 802.11ac WiFi (160MHz, MCS9, 99pc dc)	WLAN	8.77	±9.6%
10564	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 99pc dc)	WLAN	8.25	±9.6 %
10565	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc dc)	WLAN	8.45	±9.6%
10566	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 99pc dc)	WLAN	8.13	± 9.6 %
10567	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 99pc dc)	WLAN	8.00	± 9.6 %
10568	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc dc)	WLAN	8.37	±9.6 %
10569	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc dc)	WLAN	8.10	± 9.6 %
10570	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 99pc dc)	WLAN	8.30	±9.6 %
10571	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc dc)	WLAN	1.99	± 9.6 %
10572	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc dc)	WLAN	1.99	±9.6 %
10573	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc dc)	WLAN	1.98	± 9.6 %
10574	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc dc)	WLAN	1.98	± 9.6 %
10575	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc dc)	WLAN	8.59	±9.6 %
10576	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 90pc dc)	WLAN	8.60	± 9.6 %
10577	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc dc)	WLAN	8.70	± 9.6 %
10578	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc dc)	WLAN	8.49	± 9.6 %
10579	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc dc)	WLAN	8.36	±9.6 %
10580	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc dc)	WLAN	8.76	± 9.6 %
10581	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc dc)	WLAN	8.35	±9.6 %
10582	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 44 Mbps, 90pc dc)	WLAN	8.67	± 9.6 %
10583	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc dc)	WLAN	8.59	± 9.6 %
10584	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc dc)	WLAN	8.60	± 9.6 %
10585	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc dc)	WLAN	8.70	± 9.6 %
10586	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc dc)	WLAN	8.49	± 9.6 %
10587	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 16 Mbps, 90pc dc)	WLAN		
10587	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc dc)	WLAN	8.36	± 9.6 %
10589	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc dc)	WLAN	8.76 8.35	±9.6%
1		IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc dc)			±9.6%
10590	AAB		WLAN	8.67	±9.6%
10591 10592	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS0, 90pc dc)	WLAN WLAN	8.63	± 9.6 %
	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS1, 90pc dc)		8.79	±9.6 %
10593	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS2, 90pc dc)	WLAN WLAN	8.64	±9.6%
10594 10595	AAB AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS3, 90pc dc)	WLAN	8.74	± 9.6 %
10090	WAD	IEEE 802.11n (HT Mixed, 20MHz, MCS4, 90pc dc)	IAAFVIA	8.74	± 9.6 %

	·				
10596	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS5, 90pc dc)	WLAN	8.71	± 9.6 %
10597	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS6, 90pc dc)	WLAN	8.72	± 9.6 %
10598	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS7, 90pc dc)	WLAN	8.50	± 9.6 %
10599	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS0, 90pc dc)	WLAN	8.79	± 9.6 %
10600	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS1, 90pc dc)	WLAN	8.88	±9.6 %
10601	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS2, 90pc dc)	WLAN	8.82	± 9.6 %
10602	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS3, 90pc dc)	WLAN	8.94	±9.6%
10603	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS4, 90pc dc)	WLAN	9.03	±9.6%
10604	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS5, 90pc dc)	WLAN	8.76	± 9.6 %
10605	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS6, 90pc dc)	WLAN	8.97	± 9.6 %
10606	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS7, 90pc dc)	WLAN	8.82	± 9.6 %
10607	AAB	IEEE 802.11ac WiFi (20MHz, MCS0, 90pc dc)	WLAN	8.64	± 9.6 %
10608	AAB	IEEE 802.11ac WiFi (20MHz, MCS1, 90pc dc)	WLAN	8.77	± 9.6 %
10609	AAB	IEEE 802.11ac WiFi (20MHz, MCS2, 90pc dc)	WLAN	8.57	± 9.6 %
10610	AAB	IEEE 802.11ac WiFi (20MHz, MCS3, 90pc dc)	WLAN	8.78	± 9.6 %
10611	AAB	IEEE 802.11ac WiFi (20MHz, MCS4, 90pc dc)	WLAN	8.70	± 9.6 %
10612	AAB	IEEE 802.11ac WiFi (20MHz, MCS4, 90pc dc)	WLAN	8.77	
10612	+		WLAN		±9.6%
,	AAB	IEEE 802.11ac WiFi (20MHz, MCS6, 90pc dc)		8.94	± 9.6 %
10614	AAB	IEEE 802.11ac WiFi (20MHz, MCS7, 90pc dc)	WLAN	8.59	±9.6%
10615	AAB	IEEE 802.11ac WiFi (20MHz, MCS8, 90pc dc)	WLAN	8.82	± 9.6 %
10616	AAB	IEEE 802.11ac WiFi (40MHz, MCS0, 90pc dc)	WLAN	8.82	± 9.6 %
10617	AAB	IEEE 802.11ac WiFi (40MHz, MCS1, 90pc dc)	WLAN	8.81	± 9.6 %
10618	AAB	IEEE 802.11ac WiFi (40MHz, MCS2, 90pc dc)	WLAN	8.58	± 9.6 %
10619	AAB	IEEE 802.11ac WiFi (40MHz, MCS3, 90pc dc)	WLAN	8.86	±9.6%
10620	AAB	IEEE 802.11ac WiFi (40MHz, MCS4, 90pc dc)	WLAN	8.87	± 9.6 %
10621	AAB	IEEE 802.11ac WiFi (40MHz, MCS5, 90pc dc)	WLAN	8.77	± 9.6 %
10622	AAB	IEEE 802.11ac WiFi (40MHz, MCS6, 90pc dc)	WLAN	8.68	± 9.6 %
10623	AAB	IEEE 802.11ac WiFi (40MHz, MCS7, 90pc dc)	WLAN	8.82	± 9.6 %
10624	AAB	IEEE 802.11ac WiFi (40MHz, MCS8, 90pc dc)	WLAN	8.96	± 9.6 %
10625	AAB	IEEE 802.11ac WiFi (40MHz, MCS9, 90pc dc)	WLAN	8.96	± 9.6 %
10626	AAB	IEEE 802.11ac WiFi (80MHz, MCS0, 90pc dc)	WLAN	8.83	±9.6 %
10627	AAB	IEEE 802.11ac WiFi (80MHz, MCS1, 90pc dc)	WLAN	8.88	±9.6 %
10628	AAB	IEEE 802.11ac WiFi (80MHz, MCS2, 90pc dc)	WLAN	8.71	± 9,6 %
10629	AAB	IEEE 802.11ac WiFi (80MHz, MCS3, 90pc dc)	WLAN	8.85	±9.6%
10630	AAB	IEEE 802.11ac WiFi (80MHz, MCS4, 90pc dc)	WLAN	8.72	±9.6%
10631	AAB	IEEE 802.11ac WiFi (80MHz, MCS5, 90pc dc)	WLAN	8.81	± 9.6 %
10632	AAB	IEEE 802.11ac WiFi (80MHz, MCS6, 90pc dc)	WLAN	8.74	± 9.6 %
10633	AAB	IEEE 802.11ac WiFi (80MHz, MCS7, 90pc dc)	WLAN	8,83	±9.6%
10634	AAB	IEEE 802.11ac WiFi (80MHz, MCS8, 90pc dc)	WLAN	8.80	± 9.6 %
10635	AAB	IEEE 802,11ac WiFi (80MHz, MCS9, 90pc dc)	WLAN	8.81	± 9.6 %
10636	AAC	IEEE 802.11ac WiFi (160MHz, MCS0, 90pc dc)	WLAN	8.83	± 9.6 %
10637	AAC	IEEE 802.11ac WiFi (160MHz, MCS1, 90pc dc)	WLAN	8.79	± 9.6 %
10638	AAC	IEEE 802.11ac WiFi (160MHz, MCS2, 90pc dc)	WLAN		± 9.6 %
10639	AAC	IEEE 802.11ac WiFi (160MHz, MC32, 90pc dc)	WLAN	8.86	
10640	AAC	IEEE 802.11ac WiFi (160MHz, MCS3, 90pc dc)	WLAN	8.85	±9.6%
10640	AAC		WLAN	8.98	±9.6%
	<u> </u>	IEEE 802.11ac WiFi (160MHz, MCS5, 90pc dc)		9.06	± 9.6 %
10642	AAC	IEEE 802.11ac WiFi (160MHz, MCS6, 90pc dc)	WLAN	9.06	± 9.6 %
10643	AAC	IEEE 802.11ac WiFi (160MHz, MCS7, 90pc dc)	WLAN	8.89	±9.6 %
10644	AAC	IEEE 802.11ac WiFi (160MHz, MCS8, 90pc dc)	WLAN	9.05	±9.6 %
10645	AAC	IEEE 802.11ac WiFi (160MHz, MCS9, 90pc dc)	WLAN	9.11	± 9.6 %
10646	AAG	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Sub=2,7)	LTE-TDD	11.96	± 9.6 %
10647	AAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Sub=2,7)	LTE-TDD	11.96	± 9.6 %
10648	AAA	CDMA2000 (1x Advanced)	CDMA2000	3.45	±9.6%
10652	AAE	LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	6.91	± 9.6 %
10653	AAE	LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	7.42	± 9.6 %
10654	AAD	LTE-TDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	6.96	± 9.6 %
10655	AAE	LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	7.21	± 9.6 %
10658	AAA	Pulse Waveform (200Hz, 10%)	Test	10.00	± 9.6 %
10659	AAA	Pulse Waveform (200Hz, 20%)	Test	6.99	± 9.6 %
10660	AAA	Pulse Waveform (200Hz, 40%)	Test	3.98	± 9.6 %
10661	AAA	Pulse Waveform (200Hz, 60%)	Test	2,22	± 9.6 %
10662	AAA	Pulse Waveform (200Hz, 80%)	Test	0.97	± 9.6 %
10670	AAA	Bluetooth Low Energy	Bluetooth	2.19	± 9.6 %
10671	AAA	IEEE 802.11ax (20MHz, MCS0, 90pc dc)	WLAN	9.09	± 9.6 %
	1,001	1 x = 1 / _ x = 1	1 11	1 0.00	1 - 0.0 /0

10672 AAA IEEE 802.11ax (20MHz, MCS1, 90pc dc) WLAN 10673 AAA IEEE 802.11ax (20MHz, MCS2, 90pc dc) WLAN 10674 AAA IEEE 802.11ax (20MHz, MCS3, 90pc dc) WLAN 10675 AAA IEEE 802.11ax (20MHz, MCS4, 90pc dc) WLAN 10676 AAA IEEE 802.11ax (20MHz, MCS5, 90pc dc) WLAN 10677 AAA IEEE 802.11ax (20MHz, MCS6, 90pc dc) WLAN 10678 AAA IEEE 802.11ax (20MHz, MCS7, 90pc dc) WLAN 10679 AAA IEEE 802.11ax (20MHz, MCS8, 90pc dc) WLAN 10680 AAA IEEE 802.11ax (20MHz, MCS9, 90pc dc) WLAN 10681 AAA IEEE 802.11ax (20MHz, MCS10, 90pc dc) WLAN	8.57 8.78 8.74 8.90 8.77 8.73 8.78 8.89 8.80 8.62 8.83 8.42	±9.6 % ±9.6 % ±9.6 % ±9.6 % ±9.6 % ±9.6 % ±9.6 % ±9.6 % ±9.6 %
10674 AAA IEEE 802.11ax (20MHz, MCS3, 90pc dc) WLAN 10675 AAA IEEE 802.11ax (20MHz, MCS4, 90pc dc) WLAN 10676 AAA IEEE 802.11ax (20MHz, MCS5, 90pc dc) WLAN 10677 AAA IEEE 802.11ax (20MHz, MCS6, 90pc dc) WLAN 10678 AAA IEEE 802.11ax (20MHz, MCS7, 90pc dc) WLAN 10679 AAA IEEE 802.11ax (20MHz, MCS8, 90pc dc) WLAN 10680 AAA IEEE 802.11ax (20MHz, MCS9, 90pc dc) WLAN	8.74 8.90 8.77 8.73 8.78 8.89 8.80 8.62 8.83	±9.6 % ±9.6 % ±9.6 % ±9.6 % ±9.6 % ±9.6 % ±9.6 %
10675 AAA IEEE 802.11ax (20MHz, MCS4, 90pc dc) WLAN 10676 AAA IEEE 802.11ax (20MHz, MCS5, 90pc dc) WLAN 10677 AAA IEEE 802.11ax (20MHz, MCS6, 90pc dc) WLAN 10678 AAA IEEE 802.11ax (20MHz, MCS7, 90pc dc) WLAN 10679 AAA IEEE 802.11ax (20MHz, MCS8, 90pc dc) WLAN 10680 AAA IEEE 802.11ax (20MHz, MCS9, 90pc dc) WLAN	8.90 8.77 8.73 8.78 8.89 8.80 8.62 8.83	± 9.6 % ± 9.6 % ± 9.6 % ± 9.6 % ± 9.6 %
10676 AAA IEEE 802.11ax (20MHz, MCS5, 90pc dc) WLAN 10677 AAA IEEE 802.11ax (20MHz, MCS6, 90pc dc) WLAN 10678 AAA IEEE 802.11ax (20MHz, MCS7, 90pc dc) WLAN 10679 AAA IEEE 802.11ax (20MHz, MCS8, 90pc dc) WLAN 10680 AAA IEEE 802.11ax (20MHz, MCS9, 90pc dc) WLAN	8.77 8.73 8.78 8.89 8.80 8.62 8.83	± 9.6 % ± 9.6 % ± 9.6 % ± 9.6 %
10677 AAA IEEE 802.11ax (20MHz, MCS6, 90pc dc) WLAN 10678 AAA IEEE 802.11ax (20MHz, MCS7, 90pc dc) WLAN 10679 AAA IEEE 802.11ax (20MHz, MCS8, 90pc dc) WLAN 10680 AAA IEEE 802.11ax (20MHz, MCS9, 90pc dc) WLAN	8.73 8.78 8.89 8.80 8.62 8.83	± 9.6 % ± 9.6 % ± 9.6 % ± 9.6 %
10678 AAA IEEE 802.11ax (20MHz, MCS7, 90pc dc) WLAN 10679 AAA IEEE 802.11ax (20MHz, MCS8, 90pc dc) WLAN 10680 AAA IEEE 802.11ax (20MHz, MCS9, 90pc dc) WLAN	8.78 8.89 8.80 8.62 8.83	± 9.6 % ± 9.6 % ± 9.6 %
10679 AAA IEEE 802.11ax (20MHz, MCS8, 90pc dc) WLAN 10680 AAA IEEE 802.11ax (20MHz, MCS9, 90pc dc) WLAN	8.89 8.80 8.62 8.83	± 9.6 % ± 9.6 %
10680 AAA IEEE 802.11ax (20MHz, MCS9, 90pc dc) WLAN	8.80 8.62 8.83	± 9.6 %
10000 7001 1222 00211101 (1001012) 1177 1177	8.62 8.83	
1 10681 AAA IEEE 802.11ax (20MHz. MCS10. 90pc dc) WLAN WLAN	8.83	1 #9n% '
10001 1201 1201 1201 1201 1201 1201 120		
10682 AAA IEEE 802.11ax (20MHz, MCS11, 90pc dc) WLAN	8.42	± 9.6 %
10683 AAA IEEE 802.11ax (20MHz, MCS0, 99pc dc) WLAN		± 9.6 %
10684 AAA IEEE 802.11ax (20MHz, MCS1, 99pc dc) WLAN	8.26	± 9.6 %
10685 AAA IEEE 802.11ax (20MHz, MCS2, 99pc dc) WLAN	8.33	± 9.6 %
10686 AAA IEEE 802.11ax (20MHz, MCS3, 99pc dc) WLAN	8.28	± 9.6 %
10687 AAA IEEE 802.11ax (20MHz, MCS4, 99pc dc) WLAN	8.45	± 9.6 %
10688 AAA IEEE 802.11ax (20MHz, MCS5, 99pc dc) WLAN	8.29	± 9.6 %
10689 AAA IEEE 802.11ax (20MHz, MCS6, 99pc dc) WLAN	8.55	± 9.6 %
10690 AAA IEEE 802.11ax (20MHz, MCS7, 99pc dc) WLAN	8.29	± 9.6 %
10691 AAA IEEE 802.11ax (20MHz, MCS8, 99pc dc) WLAN	8.25	± 9.6 %
10692 AAA IEEE 802.11ax (20MHz, MCS9, 99pc dc) WLAN	8.29	± 9.6 %
10693 AAA IEEE 802.11ax (20MHz, MCS10, 99pc dc) WLAN	8.25	± 9.6 %
10694 AAA IEEE 802.11ax (20MHz, MCS11, 99pc dc) WLAN	8.57	± 9.6 %
10695 AAA IEEE 802.11ax (40MHz, MCS0, 90pc dc) WLAN	8.78	± 9.6 %
10696 AAA IEEE 802.11ax (40MHz, MCS1, 90pc dc) WLAN	8.91	± 9.6 %
10697 AAA IEEE 802.11ax (40MHz, MCS2, 90pc dc) WLAN	8.61	± 9.6 %
10698 AAA IEEE 802.11ax (40MHz, MCS3, 90pc dc) WLAN	8.89	± 9.6 %
10699 AAA IEEE 802.11ax (40MHz, MCS4, 90pc dc) WLAN	8.82	± 9.6 %
10700 AAA IEEE 802.11ax (40MHz, MCS5, 90pc dc) WLAN	8.73	± 9.6 %
10701 AAA IEEE 802.11ax (40MHz, MCS6, 90pc dc) WLAN	8.86	± 9.6 %
10702 AAA IEEE 802.11ax (40MHz, MCS7, 90pc dc) WLAN	8.70	± 9.6 %
10703 AAA IEEE 802.11ax (40MHz, MCS8, 90pc dc) WLAN	8.82	± 9.6 %
10704 AAA IEEE 802.11ax (40MHz, MCS9, 90pc dc) WLAN	8.56	± 9.6 %
10705 AAA IEEE 802.11ax (40MHz, MCS10, 90pc dc) WLAN	8.69	± 9.6 %
10706 AAA IEEE 802.11ax (40MHz, MCS11, 90pc dc) WLAN	8.66	± 9.6 %
10707 AAA IEEE 802.11ax (40MHz, MCS0, 99pc dc) WLAN	8.32	± 9.6 %
10708 AAA IEEE 802.11ax (40MHz, MCS1, 99pc dc) WLAN	8.55	± 9.6 %
10709 AAA IEEE 802.11ax (40MHz, MCS2, 99pc dc) WLAN	8.33	± 9.6 %
10710 AAA IEEE 802.11ax (40MHz, MCS3, 99pc dc) WLAN	8.29	± 9.6 %
10711 AAA IEEE 802.11ax (40MHz, MCS4, 99pc dc) WLAN	8.39	± 9.6 %
10712 AAA IEEE 802.11ax (40MHz, MCS5, 99pc dc) WLAN	8.67	± 9.6 %
10713 AAA IEEE 802.11ax (40MHz, MCS6, 99pc dc) WLAN	8.33	± 9.6 %
10714 AAA IEEE 802.11ax (40MHz, MCS7, 99pc dc) WLAN	8.26	± 9.6 %
10715 AAA IEEE 802.11ax (40MHz, MCS8, 99pc dc) WLAN	8.45	±9.6%
10716 AAA IEEE 802.11ax (40MHz, MCS9, 99pc dc) WLAN	8.30	± 9.6 %
10717 AAA IEEE 802.11ax (40MHz, MCS10, 99pc dc) WLAN	8.48	± 9.6 %
10718 AAA IEEE 802.11ax (40MHz, MCS11, 99pc dc) WLAN	8.24	±9.6 %
10719 AAA IEEE 802.11ax (80MHz, MCS0, 90pc dc) WLAN	8.81	±9.6%
10720 AAA IEEE 802.11ax (80MHz, MCS1, 90pc dc) WLAN	8.87	± 9.6 %
10721 AAA IEEE 802.11ax (80MHz, MCS2, 90pc dc) WLAN	8.76	± 9.6 %
10722 AAA IEEE 802.11ax (80MHz, MCS3, 90pc dc) WLAN	8.55	± 9.6 %
10723 AAA IEEE 802.11ax (80MHz, MCS4, 90pc dc) WLAN	8.70	±9.6 %
10724 AAA IEEE 802.11ax (80MHz, MCS5, 90pc dc) WLAN	8.90	± 9.6 %
10725 AAA IEEE 802.11ax (80MHz, MCS6, 90pc dc) WLAN	8.74	± 9.6 %
10726 AAA IEEE 802.11ax (80MHz, MCS7, 90pc dc) WLAN	8.72	± 9.6 %
10727 AAA IEEE 802.11ax (80MHz, MCS8, 90pc dc) WLAN	8.66	± 9.6 %
10728 AAA IEEE 802.11ax (80MHz, MCS9, 90pc dc) WLAN	8.65	± 9.6 %
10729 AAA IEEE 802.11ax (80MHz, MCS10, 90pc dc) WLAN	8.64	± 9.6 %
10730 AAA IEEE 802.11ax (80MHz, MCS11, 90pc dc) WLAN	8.67	± 9.6 %
10731 AAA IEEE 802.11ax (80MHz, MCS0, 99pc dc) WLAN	8.42	±9.6%
10732 AAA IEEE 802.11ax (80MHz, MCS1, 99pc dc) WLAN	8.46	± 9.6 %
10733 AAA IEEE 802.11ax (80MHz, MCS2, 99pc dc) WLAN	8.40	± 9.6 %
10734 AAA IEEE 802.11ax (80MHz, MCS3, 99pc dc) WLAN	8.25	± 9.6 %
10735 AAA IEEE 802.11ax (80MHz, MCS4, 99pc dc) WLAN	8.33	± 9.6 %

10736 AAA	F	·				
10738 AAA IEEE B02_11sx (80MHz, MCSF, 89pc dc)	10736	1	IEEE 802.11ax (80MHz, MCS5, 99pc dc)	WLAN		± 9.6 %
10739						
1974 AAA	1	1				
10741 AAA EEE 802.11ax (80MHz, MCS11, 99pc dc)						
10742						
10744						
10744 AAA						
10746						
10746		ļ.—				
10748						
10748						
10749			· · · · · · · · · · · · · · · · · · ·			
10750		-				
10751			· · · · · · · · · · · · · · · · · · ·			}
10752						
10753			, , , , , , , , , , , , , , , , , , , ,			
10754 AAA		<u>. </u>		<u> </u>		
10755	<u> </u>	4				
10756						
10757						
10758		 		·		
10759						
10760						
10761		-	, , , , , , , , , , , , , , , , , , , ,			
10762				<u> </u>		
10763	L	·•····			 	
10764	<u> </u>				-	
10765 AAA IEEE 802.11ax (160MHz, MCS10, 99pc dc)						
10766 AAA IEEE 802.11ax (160MHz, MCS11, 99pc dc)			, , , , , , , , , , , , , , , , , , , ,			
10767 AAC 5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 7.99 ± 9.6 % 10768 AAC 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.01 ± 9.6 % 10769 AAC 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.01 ± 9.6 % 10770 AAC 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.02 ± 9.6 % 10771 AAC 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.02 ± 9.6 % 10772 AAC 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.02 ± 9.6 % 10773 AAC 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.02 ± 9.6 % 10773 AAC 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.03 ± 9.6 % 10774 AAC 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.02 ± 9.6 % 10774 AAC 5G NR (CP-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.02 ± 9.6 % 10775 AAB 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.02 ± 9.6 % 10776 AAC 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.30 ± 9.6 % 10776 AAC 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.30 ± 9.6 % 10776 AAC 5G NR (CP-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.30 ± 9.6 % 10778 AAC 5G NR (CP-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.30 ± 9.6 % 10780 AAC 5G NR (CP-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.32 ± 9.6 % 10780 AAC 5G NR (CP-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.33 ± 9.6 % 10780 AAC 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.33 ± 9.6 % 10780 AAC 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.33 ± 9.6 % 10780 AAC 5G NR (CP-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.33 ± 9.6 % 10780 AAC 5G NR (CP-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.33 ± 9.6 % 10780 AAC 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz) 5G NR						-
10768				<u> </u>		
10769				}		
10770				4.,.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		-
10771						
10772 AAC 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.23 ± 9.6 % 10773 AAC 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.03 ± 9.6 % 10774 AAC 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.02 ± 9.6 % 10775 AAB 5G NR (CP-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.31 ± 9.6 % 10776 AAC 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.30 ± 9.6 % 10777 AAB 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.30 ± 9.6 % 10778 AAC 5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.30 ± 9.6 % 10779 AAB 5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.34 ± 9.6 % 10779 AAB 5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.34 ± 9.6 % 10780 AAC 5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.38 ± 9.6 %		-				
10773	L	1				
10774 AAC 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.02 ± 9.6 % 10775 AAB 5G NR (CP-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.31 ± 9.6 % 10776 AAC 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.30 ± 9.6 % 10777 AAB 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.30 ± 9.6 % 10778 AAC 5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.34 ± 9.6 % 10779 AAB 5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.42 ± 9.6 % 10780 AAC 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.42 ± 9.6 % 10781 AAC 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.38 ± 9.6 % 10782 AAC 5G NR (CP-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.38 ± 9.6 % 10783 AAC 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.31 ± 9.6 % <t< td=""><td></td><td></td><td><u></u></td><td><u> </u></td><td></td><td></td></t<>			<u></u>	<u> </u>		
10775 AAB 5G NR (CP-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.31 ± 9.6 % 10776 AAC 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.30 ± 9.6 % 10777 AAB 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.30 ± 9.6 % 10778 AAC 5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.34 ± 9.6 % 10778 AAC 5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.34 ± 9.6 % 10780 AAC 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.38 ± 9.6 % 10781 AAC 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.38 ± 9.6 % 10782 AAC 5G NR (CP-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.38 ± 9.6 % 10783 AAC 5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.31 ± 9.6 % 10784 AAC 5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.29 ± 9.6 % <						
10776 AAC 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.30 ±9.6 % 10777 AAB 5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.30 ±9.6 % 10778 AAC 5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.34 ±9.6 % 10779 AAB 5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.34 ±9.6 % 10780 AAC 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.38 ±9.6 % 10781 AAC 5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.38 ±9.6 % 10782 AAC 5G NR (CP-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.38 ±9.6 % 10783 AAC 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.31 ±9.6 % 10784 AAC 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.31 ±9.6 % 10785 AAC 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.29 ±9.6 % 10786 AAC 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.29 ±9.6 % 10787 AAC 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.35 ±9.6 % 10788 AAC 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.35 ±9.6 % 10789 AAC 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.39 ±9.6 % 10790 AAC 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.39 ±9.6 % 10791 AAC 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.39 ±9.6 % 10792 AAC 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 7.92 ±9.6 % 10793 AAC 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 7.92 ±9.6 % 10794 AAC 5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.92 ±9.6 % 10795 AAC 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.82 ±9.6 % 10796 AAC 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.82 ±9.6 % 10797 AAC 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.82 ±9.6 % 10798 AAC 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.82 ±9.6 % 10796 AAC 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.82 ±9.6 % 10797 AAC 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.82 ±9.6 %						
10777 AAB 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.30 ± 9.6 % 10778 AAC 5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.34 ± 9.6 % 10779 AAB 5G NR (CP-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.42 ± 9.6 % 10780 AAC 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.38 ± 9.6 % 10781 AAC 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.38 ± 9.6 % 10782 AAC 5G NR (CP-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.43 ± 9.6 % 10783 AAC 5G NR (CP-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.43 ± 9.6 % 10784 AAC 5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.29 ± 9.6 % 10785 AAC 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.29 ± 9.6 % 10786 AAC 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.35 ± 9.6 %				<u> </u>		
10778 AAC 5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.34 ± 9.6 % 10779 AAB 5G NR (CP-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.42 ± 9.6 % 10780 AAC 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.38 ± 9.6 % 10781 AAC 5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.38 ± 9.6 % 10782 AAC 5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.43 ± 9.6 % 10782 AAC 5G NR (CP-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.43 ± 9.6 % 10782 AAC 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.43 ± 9.6 % 10784 AAC 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.29 ± 9.6 % 10785 AAC 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.40 ± 9.6 % 10786 AAC 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.35 ± 9.6 %					, 	
10779 AAB 5G NR (CP-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.42 ± 9.6 % 10780 AAC 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.38 ± 9.6 % 10781 AAC 5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.38 ± 9.6 % 10782 AAC 5G NR (CP-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.43 ± 9.6 % 10782 AAC 5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.43 ± 9.6 % 10784 AAC 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.31 ± 9.6 % 10785 AAC 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.40 ± 9.6 % 10786 AAC 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.35 ± 9.6 % 10787 AAC 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.35 ± 9.6 % 10788 AAC 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.37 ± 9.6 %						
10780 AAC 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.38 ± 9.6 % 10781 AAC 5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.38 ± 9.6 % 10782 AAC 5G NR (CP-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.43 ± 9.6 % 10783 AAC 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.31 ± 9.6 % 10784 AAC 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.29 ± 9.6 % 10785 AAC 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.40 ± 9.6 % 10786 AAC 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.40 ± 9.6 % 10787 AAC 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.35 ± 9.6 % 10788 AAC 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.39 ± 9.6 % 10789 AAC 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.37 ± 9.6 % <td>}</td> <td></td> <td></td> <td></td> <td></td> <td></td>	}					
10781 AAC 5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.38 ± 9.6 % 10782 AAC 5G NR (CP-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.43 ± 9.6 % 10783 AAC 5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.31 ± 9.6 % 10784 AAC 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.29 ± 9.6 % 10785 AAC 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.40 ± 9.6 % 10786 AAC 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.35 ± 9.6 % 10787 AAC 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.34 ± 9.6 % 10788 AAC 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.39 ± 9.6 % 10789 AAC 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.37 ± 9.6 % 10791 AAC 5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.83 ± 9.6 %			· · · · · · · · · · · · · · · · · · ·		}	
10782 AAC 5G NR (CP-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.43 ± 9.6 % 10783 AAC 5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.31 ± 9.6 % 10784 AAC 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.29 ± 9.6 % 10785 AAC 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.40 ± 9.6 % 10786 AAC 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.35 ± 9.6 % 10787 AAC 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.44 ± 9.6 % 10788 AAC 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.39 ± 9.6 % 10789 AAC 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.37 ± 9.6 % 10791 AAC 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.39 ± 9.6 % 10792 AAC 5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.83 ± 9.6 % 10793 AAC 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz)						
10783 AAC 5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.31 ± 9.6 % 10784 AAC 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.29 ± 9.6 % 10785 AAC 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.40 ± 9.6 % 10786 AAC 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.35 ± 9.6 % 10787 AAC 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.44 ± 9.6 % 10788 AAC 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.39 ± 9.6 % 10789 AAC 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.37 ± 9.6 % 10790 AAC 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.37 ± 9.6 % 10791 AAC 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.83 ± 9.6 % 10792 AAC 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.92 ± 9.6 %			<u> </u>			1
10784 AAC 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.29 ± 9.6 % 10785 AAC 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.40 ± 9.6 % 10786 AAC 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.35 ± 9.6 % 10787 AAC 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.44 ± 9.6 % 10788 AAC 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.39 ± 9.6 % 10789 AAC 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.37 ± 9.6 % 10790 AAC 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.39 ± 9.6 % 10791 AAC 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.83 ± 9.6 % 10792 AAC 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.83 ± 9.6 % 10793 AAC 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.92 ± 9.6 % 10794 AAC 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz)						
10785 AAC 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.40 ± 9.6 % 10786 AAC 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.35 ± 9.6 % 10787 AAC 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.44 ± 9.6 % 10788 AAC 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.39 ± 9.6 % 10789 AAC 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.37 ± 9.6 % 10790 AAC 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.39 ± 9.6 % 10791 AAC 5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.83 ± 9.6 % 10792 AAC 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.92 ± 9.6 % 10793 AAC 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.82 ± 9.6 % 10795 AAC 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.84 ± 9.6 % <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td></tr<>						
10786 AAC 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.35 ± 9.6 % 10787 AAC 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.44 ± 9.6 % 10788 AAC 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.39 ± 9.6 % 10789 AAC 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.37 ± 9.6 % 10790 AAC 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.39 ± 9.6 % 10791 AAC 5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.83 ± 9.6 % 10792 AAC 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.92 ± 9.6 % 10793 AAC 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.95 ± 9.6 % 10794 AAC 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.82 ± 9.6 % 10795 AAC 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.84 ± 9.6 %				5G NR FR1 TDD		
10787 AAC 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.44 ± 9.6 % 10788 AAC 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.39 ± 9.6 % 10789 AAC 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.37 ± 9.6 % 10790 AAC 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.39 ± 9.6 % 10791 AAC 5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.83 ± 9.6 % 10792 AAC 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.92 ± 9.6 % 10793 AAC 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.95 ± 9.6 % 10794 AAC 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.82 ± 9.6 % 10795 AAC 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.84 ± 9.6 % 10796 AAC 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.82 ± 9.6 %	10786			5G NR FR1 TDD		
10788 AAC 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.39 ± 9.6 % 10789 AAC 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.37 ± 9.6 % 10790 AAC 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.39 ± 9.6 % 10791 AAC 5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.83 ± 9.6 % 10792 AAC 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.92 ± 9.6 % 10793 AAC 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.95 ± 9.6 % 10794 AAC 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.82 ± 9.6 % 10795 AAC 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.84 ± 9.6 % 10796 AAC 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.82 ± 9.6 % 10797 AAC 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.89 ± 9.6 %	10787	AAC		5G NR FR1 TDD	8.44	
10789 AAC 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.37 ± 9.6 % 10790 AAC 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.39 ± 9.6 % 10791 AAC 5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.83 ± 9.6 % 10792 AAC 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.92 ± 9.6 % 10793 AAC 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.95 ± 9.6 % 10794 AAC 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.82 ± 9.6 % 10795 AAC 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.84 ± 9.6 % 10796 AAC 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.82 ± 9.6 % 10797 AAC 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.89 ± 9.6 % 10798 AAC 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.89 ± 9.6 %	10788	AAC		5G NR FR1 TDD		
10790 AAC 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.39 ± 9.6 % 10791 AAC 5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.83 ± 9.6 % 10792 AAC 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.92 ± 9.6 % 10793 AAC 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.95 ± 9.6 % 10794 AAC 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.82 ± 9.6 % 10795 AAC 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.84 ± 9.6 % 10796 AAC 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.82 ± 9.6 % 10797 AAC 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.89 ± 9.6 % 10798 AAC 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.89 ± 9.6 %	10789	AAC	5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 TDD		± 9.6 %
10791 AAC 5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.83 ± 9.6 % 10792 AAC 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.92 ± 9.6 % 10793 AAC 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.95 ± 9.6 % 10794 AAC 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.82 ± 9.6 % 10795 AAC 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.84 ± 9.6 % 10796 AAC 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.82 ± 9.6 % 10797 AAC 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.01 ± 9.6 % 10798 AAC 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.89 ± 9.6 %	10790	AAC		5G NR FR1 TDD		
10792 AAC 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.92 ± 9.6 % 10793 AAC 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.95 ± 9.6 % 10794 AAC 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.82 ± 9.6 % 10795 AAC 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.84 ± 9.6 % 10796 AAC 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.82 ± 9.6 % 10797 AAC 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.01 ± 9.6 % 10798 AAC 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.89 ± 9.6 %	10791	AAC	5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD		± 9.6 %
10794 AAC 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.82 ± 9.6 % 10795 AAC 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.84 ± 9.6 % 10796 AAC 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.82 ± 9.6 % 10797 AAC 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.01 ± 9.6 % 10798 AAC 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.89 ± 9.6 %		AAC	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.92	± 9.6 %
10795 AAC 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.84 ± 9.6 % 10796 AAC 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.82 ± 9.6 % 10797 AAC 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.01 ± 9.6 % 10798 AAC 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.89 ± 9.6 %	10793	AAC	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.95	± 9.6 %
10795 AAC 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.84 ± 9.6 % 10796 AAC 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.82 ± 9.6 % 10797 AAC 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.01 ± 9.6 % 10798 AAC 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.89 ± 9.6 %			5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.82	·
10797 AAC 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.01 ± 9.6 % 10798 AAC 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.89 ± 9.6 %				5G NR FR1 TDD	7.84	± 9.6 %
10798 AAC 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.89 ± 9.6 %					7.82	± 9.6 %
					8.01	± 9.6 %
10799 AAC 5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.93 ± 9.6 %	·					
	10799	AAC	5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.93	± 9.6 %

1989 1982 AAC 56 NR (CP-OPDM, 1 RB, 190 MHz, OPSK, 30 MHz) 56 NR FRI TDD 7.87 ± 9.6 % 1980 AAC 56 NR (CP-OPDM, 1 RB, 190 MHz, OPSK, 30 MHz) 56 NR FRI TDD 8.34 ± 9.6 % 1980 AAC 56 NR (CP-OPDM, 50% RB, 10 MHz, OPSK, 30 MHz) 56 NR FRI TDD 8.34 ± 9.6 % 1980 AAC 56 NR (CP-OPDM, 50% RB, 15 MHz, OPSK, 30 MHz) 56 NR FRI TDD 8.34 ± 9.6 % 1980 AAC 56 NR (CP-OPDM, 50% RB, 30 MHz, OPSK, 30 MHz) 56 NR FRI TDD 8.34 ± 9.6 % 1980 AAC 56 NR (CP-OPDM, 50% RB, 30 MHz, OPSK, 30 MHz) 56 NR FRI TDD 8.34 ± 9.6 % 1981				T		
19695 AAC SI ON IN (CP-OFDM, 198 RB, 10) MHz, OPSK, 30 MHz) SI ON FRI TIDD 3.4 ± 9.8 % 19696 AAC SI ON IN (CP-OFDM, 598 RB, 15 MHz, OPSK, 30 MHz) SI ON FRI TIDD 8.34 ± 9.8 % 19696 AAC SI ON IN (CP-OFDM, 598 RB, 30 MHz, OPSK, 30 MHz) SI ON FRI TIDD 8.34 ± 9.8 % 19696 AAC SI ON IN (CP-OFDM, 598 RB, 30 MHz, OPSK, 30 MHz) SI ON FRI TIDD 8.34 ± 9.8 % 19692 AAC SI ON IN (CP-OFDM, 598 RB, 30 MHz, OPSK, 30 MHz) SI ON FRI TIDD 8.34 ± 9.8 % 19692 AAC SI ON IN (CP-OFDM, 598 RB, 60 MHz, OPSK, 30 MHz) SI ON FRI TIDD 8.34 ± 9.8 % 19692 AAC SI ON IN (CP-OFDM, 1998 RB, 10 MHz, OPSK, 30 MHz) SI ON FRI TIDD 8.35 ± 9.8 % 19692 AAC SI ON IN (CP-OFDM, 1998 RB, 16 MHz, OPSK, 30 MHz) SI ON FRI TIDD 8.35 ± 9.8 % 19692 AAC SI ON IN (CP-OFDM, 1998 RB, 16 MHz, OPSK, 30 MHz) SI ON FRI TIDD 8.35 ± 9.6 % 19692 AAC SI ON IN (CP-OFDM, 1998 RB, 20 MHz, OPSK, 30 MHz) SI ON FRI TIDD 8.33 ± 9.6 % 19692 AAC SI ON IN (CP-OFDM, 1998 RB, 20 MHz, OPSK, 30 MHz) SI ON FRI TIDD 8.33 ± 9.6 % 19692 AAC SI ON IN (CP-OFDM, 1998 RB, 20 MHz, OPSK, 30 MHz) SI ON FRI TIDD 8.31 ± 9.6 % 19692 AAC SI ON IN (CP-OFDM, 1998 RB, 20 MHz, OPSK, 30 MHz) SI ON FRI TIDD 8.34 ± 9.6 % 19692 AAC SI ON IN (CP-OFDM, 1999 RB, 30 MHz, OPSK, 30 MHz) SI ON FRI TIDD 8.34 ± 9.6 % 19692 AAC SI ON IN (CP-OFDM, 1999 RB, 50 MHz, OPSK, 30 MHz) SI ON FRI TIDD 8.36 ± 9.9 % 19692 AAC SI ON IN (CP-OFDM, 1999 RB, 50 MHz, OPSK, 30 MHz) SI ON FRI TIDD 8.36 ± 9.9 % 19692 AAC SI ON IN (CP-OFDM, 1999 RB, 50 MHz, OPSK, 30 MHz) SI ON FRI TIDD 8.36 ± 9.9 % 19692 AAC SI ON IN (CP-OFDM, 1999 RB, 50 MHz, OPSK, 60 MHz) SI ON FRI TIDD 8.36 ± 9.9 % 19692 AAC SI ON IN (CP-OFDM, 1998 RB, 50 MHz, OPSK, 60 MHz) SI ON FRI TIDD 8.43 ± 9.8 % 19692 AAC SI ON IN (CP-OFDM, 1998 RB, 50 MHz, OPSK, 60 MHz) SI ON FRI TIDD 8.43 ± 9.8 % 19692 AAC SI ON IN (CP-OFDM, 1988 RB, 50 MHz, OPSK, 60 MHz) SI ON FRI TIDD 8.34 ±	10801	AAC	5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.89	±9.6%
1985 AAC SG NN (CP-OFDM, 590% RB, 15 MHz, CPSK, 30 MHz) SG NN FFRT TDD 8.34 ± 9.6 %	10802	AAC	5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.87	± 9.6 %
19890 AAC GO NN (CP-OFDM, 59% RB, 15 MHz, QPSK, 30 MHz) GO NR FRI TIDD 8.34 ± 9.9 %	10803	AAC	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.93	± 9.6 %
19899 AAC SG NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 MHz) SG NR FRI TIDD 8,34 19,9 % 19810 AAC SG NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 MHz) SG NR FRI TIDD 8,34 19,9 % 19810 AAC SG NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 MHz) SG NR FRI TIDD 8,34 19,9 % 19811 AAC SG NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 MHz) SG NR FRI TIDD 8,35 19,9 % 19811 AAC SG NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 MHz) SG NR FRI TIDD 8,35 19,9 % 19811 AAC SG NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 30 MHz) SG NR FRI TIDD 8,35 19,9 % 19819 AAC SG NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 30 MHz) SG NR FRI TIDD 8,35 19,9 % 19822 AAC SG NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 MHz) SG NR FRI TIDD 8,33 19,9 % 19822 AAC SG NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 MHz) SG NR FRI TIDD 8,34 19,9 % 19822 AAC SG NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 MHz) SG NR FRI TIDD 8,41 19,9 % 19822 AAC SG NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 MHz) SG NR FRI TIDD 8,41 19,9 % 19822 AAC SG NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 MHz) SG NR FRI TIDD 8,41 19,9 % 19822 AAC SG NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 MHz) SG NR FRI TIDD 8,46 19,9 % 19824 AAC SG NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 MHz) SG NR FRI TIDD 8,36 19,9 % 19,	10805	AAC	5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz)			
1898 AAC 55 NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 Hz) 55 NR FRI TIDD 8.34 ± 9.6 % 1981 AAC 55 NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 Hz) 56 NR FRI TIDD 8.35 ± 9.6 % 1981 AAC 55 NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 Hz) 56 NR FRI TIDD 8.35 ± 9.6 % 1981 AAC 55 NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 Hz) 56 NR FRI TIDD 8.36 ± 9.6 % 1983 4 1	}					
10810 AAC SD NR (CP-OFDM, 50% RS, 40 MHz, QPSK, 30 kHz) SG NR FRI TIDD 8,34 ±9,6 % 10817 AAC SD NR (CP-OFDM, 100% RS, 50 MHz, QPSK, 30 kHz) SG NR FRI TIDD 8,35 ±9,6 % 10819 AAC SG NR CP-OFDM, 100% RS, 10 MHz, QPSK, 30 kHz) SG NR FRI TIDD 6,35 ±9,6 % 10819 AAC SG NR (CP-OFDM, 100% RS, 10 MHz, QPSK, 30 kHz) SG NR FRI TIDD 6,35 ±9,6 % 10819 AAC SG NR (CP-OFDM, 100% RS, 10 MHz, QPSK, 30 kHz) SG NR FRI TIDD 6,33 ±9,6 % 10829 AAC SG NR (CP-OFDM, 100% RS, 20 MHz, QPSK, 30 kHz) SG NR FRI TIDD 8,33 ±9,6 % 10821 AAC SG NR (CP-OFDM, 100% RS, 20 MHz, QPSK, 30 kHz) SG NR FRI TIDD 8,41 ±9,6 % 10822 AAC SG NR (CP-OFDM, 100% RS, 20 MHz, QPSK, 30 kHz) SG NR FRI TIDD 8,41 ±9,9 % 10822 AAC SG NR (CP-OFDM, 100% RS, 30 MHz, QPSK, 30 kHz) SG NR FRI TIDD 8,41 ±9,9 % 10822 AAC SG NR (CP-OFDM, 100% RS, 30 MHz, QPSK, 30 kHz) SG NR FRI TIDD 8,46 ±9,9 % 10824 AAC SG NR (CP-OFDM, 100% RS, 50 MHz, QPSK, 30 kHz) SG NR FRI TIDD 8,46 ±9,9 % 10824 AAC SG NR (CP-OFDM, 100% RS, 50 MHz, QPSK, 30 kHz) SG NR FRI TIDD 8,46 ±9,6 % 10825 AAC SG NR (CP-OFDM, 100% RS, 50 MHz, QPSK, 30 kHz) SG NR FRI TIDD 8,41 ±9,6 % 10822 AAC SG NR (CP-OFDM, 100% RS, 50 MHz, QPSK, 30 kHz) SG NR FRI TIDD 8,41 ±9,6 % 10822 AAC SG NR (CP-OFDM, 100% RS, 50 MHz, QPSK, 30 kHz) SG NR FRI TIDD 8,41 ±9,6 % 10829 AAC SG NR (CP-OFDM, 100% RS, 50 MHz, QPSK, 50 kHz) SG NR FRI TIDD 8,43 ±9,6 % 10829 AAC SG NR (CP-OFDM, 100% RS, 50 MHz, QPSK, 60 kHz) SG NR FRI TIDD 7,63 ±9,6 % 10829 AAC SG NR (CP-OFDM, 160% RS, 50 MHz, QPSK, 60 kHz) SG NR FRI TIDD 7,6 % ±9,6 % 10829 AAC SG NR (CP-OFDM, 180% RS, 50 MHz, QPSK, 60 kHz) SG NR FRI TIDD 7,6 % ±9,6 % 10829 AAC SG NR (CP-OFDM, 180% SMHz, QPSK, 60 kHz) SG NR FRI TIDD 7,6 % ±9,6 % 10823 AAC SG NR (CP-OFDM, 180% SMHz, QPSK, 60 kHz) SG NR FRI TIDD 7,7 % ±9,6 % 10823 AAC SG NR (CP-OFDM, 180% SMHz, QPSK,						
10812 AAC SS NR (CP-CPDM, 100% RB, 50 MHz, QPSK, 30 Hz) SS NR FRY TDD 8.35 ± 9.6 % 10818 AAC SS NR (CP-CPDM, 100% RB, 10 MHz, QPSK, 30 Hz) SS NR FRY TDD 8.34 ± 9.6 % 10819 AAC SS NR (CP-CPDM, 100% RB, 10 MHz, QPSK, 30 Hz) SS NR FRY TDD 8.34 ± 9.6 % 10820 AAC SS NR (CP-CPDM, 100% RB, 15 MHz, QPSK, 30 Hz) SS NR FRY TDD 8.34 ± 9.6 % 10820 AAC SS NR (CP-CPDM, 100% RB, 20 MHz, QPSK, 30 Hz) SS NR FRY TDD 8.30 ± 9.6 % 10821 AAC SS NR (CP-CPDM, 100% RB, 22 MHz, QPSK, 30 Hz) SS NR FRY TDD 8.30 ± 9.6 % 10822 AAC SS NR (CP-CPDM, 100% RB, 25 MHz, QPSK, 30 Hz) SS NR FRY TDD 8.41 ± 9.6 % 10822 AAC SS NR (CP-CPDM, 100% RB, 20 MHz, QPSK, 30 Hz) SS NR FRY TDD 8.41 ± 9.6 % 10822 AAC SS NR (CP-CPDM, 100% RB, 20 MHz, QPSK, 30 Hz) SS NR FRY TDD 8.41 ± 9.6 % 10822 AAC SS NR (CP-CPDM, 100% RB, 50 MHz, QPSK, 30 Hz) SS NR FRY TDD 8.41 ± 9.6 % 10822 AAC SS NR (CP-CPDM, 100% RB, 50 MHz, QPSK, 30 Hz) SS NR FRY TDD 8.41 ± 9.6 % 10822 AAC SS NR (CP-CPDM, 100% RB, 50 MHz, QPSK, 30 Hz) SS NR FRY TDD 8.41 ± 9.6 % 10822 AAC SS NR (CP-CPDM, 100% RB, 50 MHz, QPSK, 30 Hz) SS NR FRY TDD 8.41 ± 9.6 % 10822 AAC SS NR (CP-CPDM, 100% RB, 50 MHz, QPSK, 30 Hz) SS NR FRY TDD 8.41 ± 9.6 % 10822 AAC SS NR (CP-CPDM, 100% RB, 50 MHz, QPSK, 30 Hz) SS NR FRY TDD 8.41 ± 9.6 % 10822 AAC SS NR (CP-CPDM, 100% RB, 50 MHz, QPSK, 50 Hz) SS NR FRY TDD 8.41 ± 9.6 % 10822 AAC SS NR (CP-CPDM, 100% RB, 50 MHz, QPSK, 50 Hz) SS NR FRY TDD 7.63 ± 9.6 % 10822 AAC SS NR (CP-CPDM, 100% RB, 50 MHz, QPSK, 50 Hz) SS NR FRY TDD 7.63 ± 9.6 % 10822 AAC SS NR (CP-CPDM, 100% RB, 50 MHz, QPSK, 50 Hz) SS NR FRY TDD 7.63 ± 9.6 % 10822 AAC SS NR (CP-CPDM, 100% RB, 50 MHz, QPSK, 50 Hz) SS NR FRY TDD 7.63 ± 9.6 % 10823 AAC SS NR (CP-CPDM, 100% RB, 50 MHz, QPSK, 50 Hz) SS NR FRY TDD 7.63 ± 9.6 % 10823 AAC SS NR (CP-CPDM, 100% RB, 50 MHz, QP						
10817 AAC 50 NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 30 Hz)			, , , , , , , , , , , , , , , , , , , ,	}		
10819 AAC 56 NR (CP-OFDM, 100% RB, 10 MHz, OPSK, 30 kHz) 56 NR FR1 TDD 8,34 ± 9.6 % 10820 AAC 56 NR (CP-OFDM, 100% RB, 22 MHz, OPSK, 30 kHz) 56 NR FR1 TDD 8,30 ± 9.6 % 10821 AAC 56 NR (CP-OFDM, 100% RB, 22 MHz, OPSK, 30 kHz) 56 NR FR1 TDD 8,30 ± 9.6 % 10822 AAC 56 NR (CP-OFDM, 100% RB, 23 MHz, OPSK, 30 kHz) 56 NR FR1 TDD 8,41 ± 9.6 % 10822 AAC 56 NR (CP-OFDM, 100% RB, 23 MHz, OPSK, 30 kHz) 56 NR FR1 TDD 8,41 ± 9.6 % 10822 AAC 56 NR (CP-OFDM, 100% RB, 24 MHz, OPSK, 30 kHz) 56 NR FR1 TDD 8,41 ± 9.6 % 10823 AAC 56 NR (CP-OFDM, 100% RB, 50 MHz, OPSK, 30 kHz) 56 NR FR1 TDD 8,39 ± 9.6 % 10825 AAC 56 NR (CP-OFDM, 100% RB, 50 MHz, OPSK, 30 kHz) 56 NR FR1 TDD 8,39 ± 9.6 % 10825 AAC 56 NR (CP-OFDM, 100% RB, 50 MHz, OPSK, 30 kHz) 56 NR FR1 TDD 8,42 ± 9.6 % 10825 AAC 56 NR (CP-OFDM, 100% RB, 50 MHz, OPSK, 30 kHz) 56 NR FR1 TDD 8,42 ± 9.6 % 10825 AAC 56 NR (CP-OFDM, 100% RB, 50 MHz, OPSK, 30 kHz) 56 NR FR1 TDD 8,42 ± 9.6 % 10822 AAC 56 NR (CP-OFDM, 100% RB, 100 MHz, OPSK, 30 kHz) 56 NR FR1 TDD 8,42 ± 9.6 % 10822 AAC 56 NR (CP-OFDM, 100% RB, 100 MHz, OPSK, 50 NHz) 56 NR FR1 TDD 8,42 ± 9.6 % 10822 AAC 56 NR (CP-OFDM, 100% RB, 100 MHz, OPSK, 60 NHz) 56 NR FR1 TDD 7,63 ± 9.6 % 10822 AAC 56 NR (CP-OFDM, 100% RB, 100 MHz, OPSK, 60 NHz) 56 NR FR1 TDD 7,63 ± 9.6 % 10822 AAC 56 NR (CP-OFDM, 1 RB, 10 MHz, OPSK, 60 NHz) 56 NR FR1 TDD 7,74 ± 9.6 % 10822 AAC 56 NR (CP-OFDM, 1 RB, 20 MHz, OPSK, 60 NHz) 56 NR FR1 TDD 7,74 ± 9.6 % 10822 AAC 56 NR (CP-OFDM, 1 RB, 20 MHz, OPSK, 60 NHz) 56 NR FR1 TDD 7,74 ± 9.6 % 10823 AAC 56 NR (CP-OFDM, 1 RB, 30 MHz, OPSK, 60 NHz) 56 NR FR1 TDD 7,74 ± 9.6 % 10823 AAC 56 NR (CP-OFDM, 1 RB, 30 MHz, OPSK, 60 NHz) 56 NR FR1 TDD 7,76 ± 9.6 % 10823 AAC 56 NR (CP-OFDM, 1 RB, 30 MHz, OPSK, 60 NHz) 56 NR FR1 TDD 7,76 ± 9.6 % 10823 AAC 56 NR (CP-OFDM, 1 RB, 50 MHz	10812	AAC		5G NR FR1 TDD	8.35	± 9.6 %
10820	10817	AAC	5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.35	±9.6%
10820	10818	AAC	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	±9.6 %
19820	10819	AAC	5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD		
10821 AAC 5G NR (CP-OPDM, 100% RB, 25 MHz, QPSK, 30 KHz) 5G NR FRI TDD 8.41 2.6 % 10822 AAC 5G NR (CP-OPDM, 100% RB, 30 MHz, QPSK, 30 KHz) 5G NR FRI TDD 8.36 2.9 6 % 10824 AAC 5G NR (CP-OPDM, 100% RB, 50 MHz, QPSK, 30 KHz) 5G NR FRI TDD 8.36 2.9 6 % 10824 AAC 5G NR (CP-OPDM, 100% RB, 50 MHz, QPSK, 30 KHz) 5G NR FRI TDD 8.39 2.9 6 % 10825 AAC 5G NR (CP-OPDM, 100% RB, 50 MHz, QPSK, 30 KHz) 5G NR FRI TDD 8.41 2.9 6 % 10825 AAC 5G NR (CP-OPDM, 100% RB, 50 MHz, QPSK, 30 KHz) 5G NR FRI TDD 8.41 2.9 6 % 10825 AAC 5G NR (CP-OPDM, 100% RB, 50 MHz, QPSK, 30 KHz) 5G NR FRI TDD 8.42 2.9 6 % 10829 AAC 5G NR (CP-OPDM, 100% RB, 90 MHz, QPSK, 30 KHz) 5G NR FRI TDD 8.42 2.9 6 % 10829 AAC 5G NR (CP-OPDM, 100% RB, 90 MHz, QPSK, 30 KHz) 5G NR FRI TDD 8.44 2.9 6 % 10829 AAC 5G NR (CP-OPDM, 100% RB, 90 MHz, QPSK, 30 KHz) 5G NR FRI TDD 8.40 2.9 6 % 10830 AAC 5G NR (CP-OPDM, 100% RB, 100 MHz, QPSK, 60 KHz) 5G NR FRI TDD 7.73 2.9 6 % 10832 AAC 5G NR (CP-OPDM, 108 Mz, DMHz, QPSK, 60 KHz) 5G NR FRI TDD 7.73 2.9 6 % 10832 AAC 5G NR (CP-OPDM, 108 Mz, DMHz, QPSK, 60 KHz) 5G NR FRI TDD 7.73 2.9 6 % 10833 AAC 5G NR (CP-OPDM, 108 Mz, DMHz, QPSK, 60 KHz) 5G NR FRI TDD 7.70 2.9 6 % 10835 AAC 5G NR (CP-OPDM, 108 Mz, DMHz, QPSK, 60 KHz) 5G NR FRI TDD 7.70 2.9 6 % 10835 AAC 5G NR (CP-OPDM, 108 Mz, DMHz, QPSK, 60 KHz) 5G NR FRI TDD 7.70 2.9 6 % 10836 AAC 5G NR (CP-OPDM, 108 Mz, DMHz, QPSK, 60 KHz) 5G NR FRI TDD 7.70 2.9 6 % 10836 AAC 5G NR (CP-OPDM, 108 Mz, DMHz, QPSK, 60 KHz) 5G NR FRI TDD 7.70 2.9 6 % 10836 AAC 5G NR (CP-OPDM, 108 Mz, DMHz, QPSK, 60 KHz) 5G NR FRI TDD 7.70 2.9 6 % 10836 AAC 5G NR (CP-OPDM, 108 Mz, DMHz, QPSK, 60 KHz) 5G NR FRI TDD 7.70 2.9 6 % 10836 AAC 5G NR (CP-OPDM, 108 Mz, DMHz, QPSK, 60 KHz) 5G NR FRI TDD 7.70 2.9 6 % 10836 AAC 5G NR (CP-OPDM, 100% RB, 100 MHz, QPSK, 60 KH					}	
10822						
19823 AAC 56 NR (CP-OFDM, 100% RB, 50 MHz, CPSK, 30 kHz) 56 NR FR1 TDD 8.39 2,9.6 % 19825 AAC 56 NR (CP-OFDM, 100% RB, 50 MHz, CPSK, 30 kHz) 56 NR FR1 TDD 8.39 2,9.6 % 19825 AAC 56 NR (CP-OFDM, 100% RB, 50 MHz, CPSK, 30 kHz) 56 NR FR1 TDD 8.41 2,9.6 % 19827 AAC 56 NR (CP-OFDM, 100% RB, 60 MHz, CPSK, 30 kHz) 56 NR FR1 TDD 8.41 2,9.6 % 19828 AAC 56 NR (CP-OFDM, 100% RB, 60 MHz, CPSK, 30 kHz) 56 NR FR1 TDD 8.43 2,9.6 % 19828 AAC 56 NR (CP-OFDM, 100% RB, 60 MHz, CPSK, 30 kHz) 56 NR FR1 TDD 8.43 2,9.6 % 19829 AAC 56 NR (CP-OFDM, 100% RB, 60 MHz, CPSK, 30 kHz) 56 NR FR1 TDD 8.43 2,9.6 % 19831 AAC 56 NR (CP-OFDM, 1 RB, 10 MHz, CPSK, 60 kHz) 56 NR FR1 TDD 7.63 2,9.6 % 19831 AAC 56 NR (CP-OFDM, 1 RB, 10 MHz, CPSK, 60 kHz) 56 NR FR1 TDD 7.73 2,9.6 % 19833 AAC 56 NR (CP-OFDM, 1 RB, 20 MHz, CPSK, 60 kHz) 56 NR FR1 TDD 7.74 2,9.6 % 19833 AAC 56 NR (CP-OFDM, 1 RB, 20 MHz, CPSK, 60 kHz) 56 NR FR1 TDD 7.74 2,9.6 % 19833 AAC 56 NR (CP-OFDM, 1 RB, 20 MHz, CPSK, 60 kHz) 56 NR FR1 TDD 7.75 2,9.6 % 19835 AAC 56 NR (CP-OFDM, 1 RB, 30 MHz, CPSK, 60 kHz) 56 NR FR1 TDD 7.75 2,9.6 % 19835 AAC 56 NR (CP-OFDM, 1 RB, 30 MHz, CPSK, 60 kHz) 56 NR FR1 TDD 7.75 2,9.6 % 19835 AAC 56 NR (CP-OFDM, 1 RB, 50 MHz, CPSK, 60 kHz) 56 NR FR1 TDD 7.76 2,9.6 % 19835 AAC 56 NR (CP-OFDM, 1 RB, 50 MHz, CPSK, 60 kHz) 56 NR FR1 TDD 7.76 2,9.6 % 19835 AAC 56 NR (CP-OFDM, 1 RB, 50 MHz, CPSK, 60 kHz) 56 NR FR1 TDD 7.76 2,9.6 % 19835 AAC 56 NR (CP-OFDM, 1 RB, 50 MHz, CPSK, 60 kHz) 56 NR FR1 TDD 7.76 2,9.6 % 19835 AAC 56 NR (CP-OFDM, 1 RB, 50 MHz, CPSK, 60 kHz) 56 NR FR1 TDD 7.76 2,9.6 % 19835 AAC 56 NR (CP-OFDM, 1 RB, 50 MHz, CPSK, 60 kHz) 56 NR FR1 TDD 7.76 2,9.6 % 19835 AAC 56 NR (CP-OFDM, 1 RB, 50 MHz, CPSK, 60 kHz) 56 NR FR1 TDD 7.77 2,9.6 % 19835 AAC 56 NR (CP-OFDM, 100% RB, 10 MHz, CPSK, 60 kHz) 56 NR F		ļ _				***************************************
10924	ţ)				
10825						
10927			,	5G NR FR1 TDD	8.39	
10828	10825	AAC	5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.41	± 9.6 %
10828	10827	AAC	5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.42	±9.6%
10829	10828	AAC	5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.43	
10830	10829	AAC		<u> </u>		
10831				-}		
10832				·	, 	
10833						
10834					f	
10835					•	
10836						
10837		AAC			7.70	± 9.6 %
10839	10836	AAC	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.66	±9.6%
10840	10837	AAC	5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.68	± 9.6 %
10840	10839	AAC	5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.70	±9.6%
10841	10840	AAC	1			
10843			<u> </u>			
10844	}			. 		-
10846			<u> </u>	<u></u>		}
10854		·		· 		
10855						
10856		 				
10857				5G NR FR1 TDD	8.36	± 9.6 %
10858	10856	AAC	5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.37	±9.6%
10858	10857	AAC	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.35	±9.6%
10859	10858	AAC	5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.36	
10860 AAC 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.41 ± 9.6 % 10861 AAC 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.40 ± 9.6 % 10863 AAC 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.41 ± 9.6 % 10864 AAC 5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.37 ± 9.6 % 10865 AAC 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.41 ± 9.6 % 10866 AAC 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ± 9.6 % 10868 AAC 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.89 ± 9.6 % 10870 AAD 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 5.75 ± 9.6 % 10871 AAD 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 5.75 ± 9.6 % 10872 AAD 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 6.52 <t< td=""><td>10859</td><td>AAC</td><td>5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 60 kHz)</td><td>5G NR FR1 TDD</td><td>8.34</td><td></td></t<>	10859	AAC	5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.34	
10861 AAC 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.40 ± 9.6 % 10863 AAC 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.41 ± 9.6 % 10864 AAC 5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.37 ± 9.6 % 10865 AAC 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.41 ± 9.6 % 10866 AAC 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 5.68 ± 9.6 % 10868 AAC 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.89 ± 9.6 % 10869 AAD 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 5.75 ± 9.6 % 10870 AAD 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 5.86 ± 9.6 % 10871 AAD 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 5.75 ± 9.6 % 10873 AAD 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 6.52 ± 9.6 % 10874 AAD 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 6.65 ± 9.6 % 10874 AAD 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 6.65 ± 9.6 % 10874 AAD 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 6.65 ± 9.6 % 10875 AAD 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 6.65 ± 9.6 % 10876 AAD 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 6.65 ± 9.6 % 10876 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 6.85 ± 9.6 % 10876 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 7.78 ± 9.6 % 10878 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 7.95 ± 9.6 % 10878 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 8.44 ± 9.6 % 10888 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 5.75 ± 9.6 % 10888 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 5.75 ± 9.6 % 1088						
10863 AAC 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.41 ± 9.6 % 10864 AAC 5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.37 ± 9.6 % 10865 AAC 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.41 ± 9.6 % 10866 AAC 5G NR (DFT-s-OFDM, 100 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ± 9.6 % 10868 AAC 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.89 ± 9.6 % 10869 AAD 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 5.75 ± 9.6 % 10870 AAD 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 5.75 ± 9.6 % 10871 AAD 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 5.75 ± 9.6 % 10872 AAD 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 6.52 ± 9.6 % 10873 AAD 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 6.61		 				
10864 AAC 5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.37 ± 9.6 % 10865 AAC 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.41 ± 9.6 % 10866 AAC 5G NR (DFT-s-OFDM, 100 MHz, 100 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ± 9.6 % 10868 AAC 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.89 ± 9.6 % 10870 AAD 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 5.75 ± 9.6 % 10870 AAD 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 5.75 ± 9.6 % 10871 AAD 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 5.75 ± 9.6 % 10872 AAD 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 6.52 ± 9.6 % 10873 AAD 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 6.65 ± 9.6 % 10874 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 7.7						
10865 AAC 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.41 ± 9.6 % 10866 AAC 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ± 9.6 % 10868 AAC 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.89 ± 9.6 % 10869 AAD 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 5.75 ± 9.6 % 10870 AAD 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 5.86 ± 9.6 % 10871 AAD 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 5.75 ± 9.6 % 10872 AAD 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 5.75 ± 9.6 % 10873 AAD 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 6.61 ± 9.6 % 10874 AAD 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 6.65 ± 9.6 % 10875 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, GPSK, 120 kHz) 5G NR FR2 TDD 7.78	}			· ······		!
10866 AAC 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ± 9.6 % 10868 AAC 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.89 ± 9.6 % 10869 AAD 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 5.75 ± 9.6 % 10870 AAD 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 5.86 ± 9.6 % 10871 AAD 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 5.75 ± 9.6 % 10872 AAD 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 6.52 ± 9.6 % 10873 AAD 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 6.61 ± 9.6 % 10874 AAD 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 6.65 ± 9.6 % 10875 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 7.78 ± 9.6 % 10876 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 8.39 <td></td> <td><u> </u></td> <td></td> <td></td> <td></td> <td>•</td>		<u> </u>				•
10868 AAC 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.89 ± 9.6 % 10869 AAD 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 5.75 ± 9.6 % 10870 AAD 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 5.86 ± 9.6 % 10871 AAD 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 5.75 ± 9.6 % 10872 AAD 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 6.52 ± 9.6 % 10873 AAD 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 6.61 ± 9.6 % 10874 AAD 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 6.65 ± 9.6 % 10875 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 7.78 ± 9.6 % 10876 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 8.39 ± 9.6 % 10877 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 8.41 <td></td> <td>1</td> <td></td> <td></td> <td>·</td> <td><u> </u></td>		1			·	<u> </u>
10869 AAD 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 5.75 ± 9.6 % 10870 AAD 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 5.86 ± 9.6 % 10871 AAD 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 5.75 ± 9.6 % 10872 AAD 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 6.52 ± 9.6 % 10873 AAD 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 6.61 ± 9.6 % 10874 AAD 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 6.65 ± 9.6 % 10875 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 7.78 ± 9.6 % 10876 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 7.78 ± 9.6 % 10877 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 7.95 ± 9.6 % 10879 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 8.41	}					± 9.6 %
10870 AAD 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 5.86 ± 9.6 % 10871 AAD 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 5.75 ± 9.6 % 10872 AAD 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 6.52 ± 9.6 % 10873 AAD 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 6.61 ± 9.6 % 10874 AAD 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 6.65 ± 9.6 % 10875 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 7.78 ± 9.6 % 10876 AAD 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 7.95 ± 9.6 % 10877 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 7.95 ± 9.6 % 10878 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 8.41 ± 9.6 % 10879 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 8.12 ± 9.6 % 10880 AAD 5G NR (DFT-s-OFDM, 1					·	± 9.6 %
10871 AAD 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 5.75 ± 9.6 % 10872 AAD 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 6.52 ± 9.6 % 10873 AAD 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 6.61 ± 9.6 % 10874 AAD 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 6.65 ± 9.6 % 10875 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 7.78 ± 9.6 % 10876 AAD 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 7.95 ± 9.6 % 10877 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 7.95 ± 9.6 % 10878 AAD 5G NR (CP-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 8.41 ± 9.6 % 10879 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 8.12 ± 9.6 % 10880 AAD 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 5.75 ± 9.6 % 10881 AAD 5G NR (DFT-s-OFDM	10869	AAD	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.75	±9.6 %
10871 AAD 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 5.75 ± 9.6 % 10872 AAD 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 6.52 ± 9.6 % 10873 AAD 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 6.61 ± 9.6 % 10874 AAD 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 6.65 ± 9.6 % 10875 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 7.78 ± 9.6 % 10876 AAD 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 7.78 ± 9.6 % 10877 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 7.95 ± 9.6 % 10878 AAD 5G NR (CP-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 8.41 ± 9.6 % 10879 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 8.12 ± 9.6 % 10880 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 8.38 ± 9.6 % 10881 AAD 5G NR (DFT-s-OFDM, 1 RB	10870	AAD	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.86	± 9.6 %
10872 AAD 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 6.52 ± 9.6 % 10873 AAD 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 6.61 ± 9.6 % 10874 AAD 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 6.65 ± 9.6 % 10875 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 7.78 ± 9.6 % 10876 AAD 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 8.39 ± 9.6 % 10877 AAD 5G NR (CP-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 7.95 ± 9.6 % 10878 AAD 5G NR (CP-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 8.41 ± 9.6 % 10879 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 8.12 ± 9.6 % 10880 AAD 5G NR (CP-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 8.38 ± 9.6 % 10881 AAD 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 5.75 ± 9.6 % 10883 AAD 5G NR (DFT-s-OFDM,	10871	AAD			-	
10873 AAD 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 6.61 ± 9.6 % 10874 AAD 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 6.65 ± 9.6 % 10875 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 7.78 ± 9.6 % 10876 AAD 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 8.39 ± 9.6 % 10877 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 7.95 ± 9.6 % 10878 AAD 5G NR (CP-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 8.41 ± 9.6 % 10879 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 8.12 ± 9.6 % 10880 AAD 5G NR (CP-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 8.38 ± 9.6 % 10881 AAD 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 5.75 ± 9.6 % 10882 AAD 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 5.96 <t< td=""><td></td><td></td><td></td><td>\</td><td>}</td><td></td></t<>				\	}	
10874 AAD 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 6.65 ± 9.6 % 10875 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 7.78 ± 9.6 % 10876 AAD 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 8.39 ± 9.6 % 10877 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 7.95 ± 9.6 % 10878 AAD 5G NR (CP-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 8.41 ± 9.6 % 10879 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 8.12 ± 9.6 % 10880 AAD 5G NR (CP-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 8.38 ± 9.6 % 10881 AAD 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 5.75 ± 9.6 % 10882 AAD 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 5.96 ± 9.6 % 10884 AAD 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 6.57 ± 9.6 %						-
10875 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 7.78 ± 9.6 % 10876 AAD 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 8.39 ± 9.6 % 10877 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 7.95 ± 9.6 % 10878 AAD 5G NR (CP-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 8.41 ± 9.6 % 10879 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 8.12 ± 9.6 % 10880 AAD 5G NR (CP-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 8.38 ± 9.6 % 10881 AAD 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 5.75 ± 9.6 % 10882 AAD 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 5.96 ± 9.6 % 10884 AAD 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 6.57 ± 9.6 %					1	
10876 AAD 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 8.39 ± 9.6 % 10877 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 7.95 ± 9.6 % 10878 AAD 5G NR (CP-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 8.41 ± 9.6 % 10879 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 8.12 ± 9.6 % 10880 AAD 5G NR (CP-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 8.38 ± 9.6 % 10881 AAD 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 5.75 ± 9.6 % 10882 AAD 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 5.96 ± 9.6 % 10883 AAD 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 6.57 ± 9.6 % 10884 AAD 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 6.53 ± 9.6 %						
10877 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 7.95 ± 9.6 % 10878 AAD 5G NR (CP-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 8.41 ± 9.6 % 10879 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 8.12 ± 9.6 % 10880 AAD 5G NR (CP-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 8.38 ± 9.6 % 10881 AAD 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 5.75 ± 9.6 % 10882 AAD 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 5.96 ± 9.6 % 10883 AAD 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 6.57 ± 9.6 % 10884 AAD 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 6.53 ± 9.6 %						
10878 AAD 5G NR (CP-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 8.41 ± 9.6 % 10879 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 8.12 ± 9.6 % 10880 AAD 5G NR (CP-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 8.38 ± 9.6 % 10881 AAD 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 5.75 ± 9.6 % 10882 AAD 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 5.96 ± 9.6 % 10883 AAD 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 6.57 ± 9.6 % 10884 AAD 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 6.53 ± 9.6 %						
10879 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 8.12 ± 9.6 % 10880 AAD 5G NR (CP-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 8.38 ± 9.6 % 10881 AAD 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 5.75 ± 9.6 % 10882 AAD 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 5.96 ± 9.6 % 10883 AAD 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 6.57 ± 9.6 % 10884 AAD 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 6.53 ± 9.6 %					1	·
10880 AAD 5G NR (CP-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 8.38 ± 9.6 % 10881 AAD 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 5.75 ± 9.6 % 10882 AAD 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 5.96 ± 9.6 % 10883 AAD 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 6.57 ± 9.6 % 10884 AAD 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 6.53 ± 9.6 %		,			8.41	± 9.6 %
10880 AAD 5G NR (CP-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 8.38 ± 9.6 % 10881 AAD 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 5.75 ± 9.6 % 10882 AAD 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 5.96 ± 9.6 % 10883 AAD 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 6.57 ± 9.6 % 10884 AAD 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 6.53 ± 9.6 %	10879	AAD		5G NR FR2 TDD	8.12	±9.6 %
10881 AAD 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 5.75 ± 9.6 % 10882 AAD 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 5.96 ± 9.6 % 10883 AAD 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 6.57 ± 9.6 % 10884 AAD 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 6.53 ± 9.6 %	10880	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD		± 9.6 %
10882 AAD 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 5.96 ± 9.6 % 10883 AAD 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 6.57 ± 9.6 % 10884 AAD 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 6.53 ± 9.6 %	10881	AAD				
10883 AAD 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 6.57 ± 9.6 % 10884 AAD 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 6.53 ± 9.6 %		+				
10884 AAD 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 6.53 ± 9.6 %						+
			<u> </u>	<u> </u>		
10000 700 100 NK FKZ 1DD 6.61 ± 9.6 %	<u> </u>		t · · · · · · · · · · · · · · · · · ·			
	10000	^^U	1 00 NT (DE1-3-OEDIN, 1 KD, 30 NEZ, 04QAM, 120 KHZ)	טט ואת רתב וטט	10.01	T 9.0 %

10886	AAD	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.65	± 9.6 %
10887	AAD	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	7.78	± 9.6 %
10888	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	8.35	± 9.6 %
10889	AAD	5G NR (CP-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	8.02	± 9.6 %
10890	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	8.40	± 9.6 %
10891	AAD	5G NR (CP-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.13	± 9.6 %
10892	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.41	± 9.6 %
10897	AAA	5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.66	± 9.6 %
10898	AAA	5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.67	± 9.6 %
10899	AAA	5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.67	± 9.6 %
10900	AAA	5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	± 9.6 %
10901	AAA	5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	± 9.6 %
10902	AAA	5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	± 9.6 %
10903	AAA	5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	± 9.6 %
10904	AAA	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	± 9.6 %
10905	AAA	5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6%
10906	AAA	5G NR (DFT-s-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	± 9.6 %
10907	AAA	5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.78	± 9.6 %
10908	AAA	5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.93	± 9.6 %
10909	AAA	5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.96	± 9.6 %
10910	AAA	5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.83	± 9.6 %
10911	AAA	5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.93	± 9.6 %
10912	AAA	5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6%
10913	AAA	5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	± 9.6 %
10914	AAA	5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.85	± 9.6 %
10915	AAA	5G NR (DFT-s-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.83	± 9.6 %
10916	AAA	5G NR (DFT-s-OFDM, 50% RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.87	± 9.6 %
10917	AAA	5G NR (DFT-s-OFDM, 50% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.94	± 9.6 %
10918	AAA	5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.86	± 9.6 %
10919	AAA	5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.86	± 9.6 %
10920	AAA	5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.87	± 9.6 %
10921	AAA	5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	± 9.6 %
10922	AAA	5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.82	± 9.6 %
10923	AAA	5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6%
10924	AAA	5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	± 9.6 %
10925	AAA	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.95	± 9.6 %
10926	AAA	5G NR (DFT-s-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	± 9.6 %
10927	AAA	5G NR (DFT-s-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.94	± 9.6 %
10928	AAA	5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.52	±9.6%
10929	AAA	5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.52	±9.6%
10930	AAA	5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.52	±9.6%
10931	AAA	5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	±9.6%
10932	AAA	5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	± 9.6 %
10933	AAA	5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	± 9.6 %
10934	AAA	5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	± 9.6 %
10935	AAA	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	± 9.6 %
10936	AAA	5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.90	± 9.6 %
10937	AAA	5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.77	± 9.6 %
10938	AAA	5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.90	± 9.6 %
10939	AAA	5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.82	± 9.6 %
10940	AAA	5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.89	± 9.6 %
10941	AAA	5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.83	± 9.6 %
10942	AAA	5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.85	± 9.6 %
10943	AAA	5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.95	± 9.6 %
10944	AAA	5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.81	± 9.6 %
10945	AAA	5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.85	± 9.6 %
10946	AAA	5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.83	±9.6 %
10947	AAA	5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.87	± 9.6 %
10948	AAA	5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.94	± 9.6 %
10949	AAA	5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.87	± 9.6 %
10950	AAA	5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.94	± 9.6 %
10951	AAA	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.92	± 9.6 %
10952	AAA	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.25	± 9.6 %
10953	AAA	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.15	± 9.6 %
,,,,,,,,,	1,001	1	1	_ WITO	/0

10954	AAA	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.23	±9.6 %
10955	AAA	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.42	± 9.6 %
10956	AAA	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.14	± 9.6 %
10957	AAA	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.31	±9.6 %
10958	AAA	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.61	± 9.6 %
10959	AAA	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.33	± 9.6 %
10960	AAA	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.32	±9.6 %
10961	AAA	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.36	±9.6 %
10962	AAA	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.40	± 9.6 %
10963	AAA	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.55	± 9.6 %
10964	AAA	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.29	± 9.6 %
10965	AAA	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.37	± 9.6 %
10966	AAA	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.55	± 9.6 %
10967	AAA	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.42	± 9.6 %
10968	AAA	5G NR DL (CP-OFDM, TM 3.1, 100 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.49	± 9.6 %

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Calibration Laboratory of Schmid & Partner

Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Certificate No: EX3-7406_Jun20

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:7406

Calibration procedure(s)

QA CAL-01.v9, QA CAL-14.v5, QA CAL-23.v5, QA CAL-25.v7

Calibration procedure for dosimetric E-field probes

BNV

Calibration date:

June 23, 2020

07-01-2020

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	01-Apr-20 (No. 217-03100/03101)	Apr-21
Power sensor NRP-Z91	SN: 103244	01-Apr-20 (No. 217-03100)	Apr-21
Power sensor NRP-Z91	SN: 103245	01-Apr-20 (No. 217-03101)	Apr-21
Reference 20 dB Attenuator	SN: CC2552 (20x)	31-Mar-20 (No. 217-03106)	Арг-21
DAE4	SN: 660	27-Dec-19 (No. DAE4-660_Dec19)	Dec-20
Reference Probe ES3DV2	SN: 3013	31-Dec-19 (No. ES3-3013_Dec19)	Dec-20
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-18)	In house check: Jun-20
Network Analyzer E8358A	SN; US41080477	31-Mar-14 (in house check Oct-19)	In house check: Oct-20

Name Function Signature

Callibrated by: Leif Klysner Laboratory Technician

Approved by: Katja Pokovic Technical Manager

Issued: June 23, 2020

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

Service suisse d'étaionnage
Servizio svizzero di taratura
Swiss Calibration Service

S

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space

ConvF sensitivity in TSL / NORMx,y,z

DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

Polarization φ σ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., $\vartheta = 0$ is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016

c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010

d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

Certificate No: EX3-7406_Jun20

 NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).

NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
in the stated uncertainty of ConvF.

DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.

 PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics

 Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.

• ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.

• Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.

 Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

• Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

June 23, 2020

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7406

Basic Calibration Parameters

Dasic Calibration Laran	Hetera			11 (10)
	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	0,48	0.43	0.46	± 10.1 %
DCP (mV) ^B	99.4	94.6	98.3	

UID	on Results for Modulation Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max dev.	Max Unc ^E (k=2)
0	CW	X	0.00	0.00	1.00	0.00	136.9	± 3.3 %	±4.7 %
U	011	Y	0.00	0.00	1.00		152.7		
		Z	0.00	0.00	1.00		152.3		
10352-	Pulse Waveform (200Hz, 10%)	X	20.00	92.47	21.47	10.00	60.0	± 3.6 %	± 9.6 %
AAA	, 4,00	Y	13.84	84.00	17.05		60.0		
		Z	20.00	90.56	20.16		60.0		
10353-	Pulse Waveform (200Hz, 20%)	Х	20.00	95.36	21.69	6.99	80.0	± 2.3 %	± 9.6 %
AAA	, 2.00	Y	20.00	90.00	17.99		80.0		
, , , ,	-	Z	20.00	93.46	20.30		80.0		
10354-	Pulse Waveform (200Hz, 40%)	X	20.00	101.64	23.29	3.98	95.0	± 1.1 %	± 9.6 %
AAA	1 4,55 (14,55)	Y	20.00	97.11	20.02		95.0		
, , , ,		Z	20.00	100.49	22.19		95.0		
10355-	Pulse Waveform (200Hz, 60%)	X	20.00	109.15	25.49	2.22	120.0	± 1.0 %	± 9.6 %
AAA	also ravojem (moorii)	Y	20.00	125.32	31.37]	120.0	<u> </u>	
7001		Z	20.00	104.47	22.82		120.0		
10387-	QPSK Waveform, 1 MHz	X	1.63	64.84	14.39	1.00	150.0	± 2.5 %	± 9.6 %
AAA	Gr Gr Tratolomi, Time	Y	2.54	78.32	19.84	1	150.0	_	
, , , ,		Z	1.71	65.77	14.81		150.0		
10388-	QPSK Waveform, 10 MHz	X	2.12	66.64	15.05	0.00	150.0	± 0.9 %	± 9.6 %
AAA	ar sit transition, to the	Y	2.26	70.88	17.66		150.0	_	
700		Z	2.25	67.61	15.50		150.0	<u> </u>	
10396-	64-QAM Waveform, 100 kHz	X	2.75	69.15	18.09	3.01	150.0	± 0.9 %	± 9.6 %
AAA		Y	1.99	66.73	17.59		150.0	_	
		Z	2.46	67.47	17.28		150.0		
10399-	64-QAM Waveform, 40 MHz	X	3.46	66.55	15.45	0.00	150.0	± 0.8 %	± 9.6 °
AAA		Y	3.47	68.06	16.58	_	150.0		
		Z	3.42	66.39	15.39		150.0		
10414-	WLAN CCDF, 64-QAM, 40MHz	X	4.87	65.40	15.36	0.00	150.0	± 1.8 %	± 9.6
AAA	1	Y	4.61	66.49	16.17		150.0		1
		Z	4.80	65.22	15.29		150.0		

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

B Numerical linearization parameter: uncertainty not required.

Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

EX3DV4-- SN:7406 June 23, 2020

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7406

Sensor Model Parameters

311001 1	C1 fF	C2 fF	α V ⁻¹	T1 ms.V ⁻²	T2 ms.V ⁻¹	T3 ms	T4 V ⁻²	T5 V ⁻¹	T6
X	47.2	349.81	35.02	10.29	0.21	5.04	1.47	0.17	1.01
$\frac{\gamma}{}$	22.3	166.33	35.67	7.09	0.00	5.02	0.40	0.08	1.00
'	46.2	344.43	35.35	7.82	0.14	5.03	0.43	0.27	1.00

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	94.3
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.

June 23, 2020

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7406

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	10.04	10.04	10.04	0.43	0.91	± 12.0 %
835	41.5	0.90	9.61	9.61	9.61	0.48	0.87	± 12.0 %
1750	40.1	1.37	8.32	8.32	8.32	0.33	0.86	± 12.0 %
1900	40.0	1.40	7.96	7.96	7.96	0.39	0.86	± 12.0 %
2300	39.5	1.67	7.76	7.76	7.76	0.31	0.95	± 12.0 %
2450	39.2	1.80	7.55	7.55	7.55	0.34	0.95	± 12.0 %
2600	39.0	1.96	7.39	7.39	7.39	0.41	0.90	± 12.0 %
5250	35.9	4.71	5.45	5.45	5.45	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.94	4.94	4.94	0.40	1.80	± 13.1 %
5750	35.4	5.22	5.15	5.15	5.15	0.40	1.80	± 13.1 %

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

⁶ MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

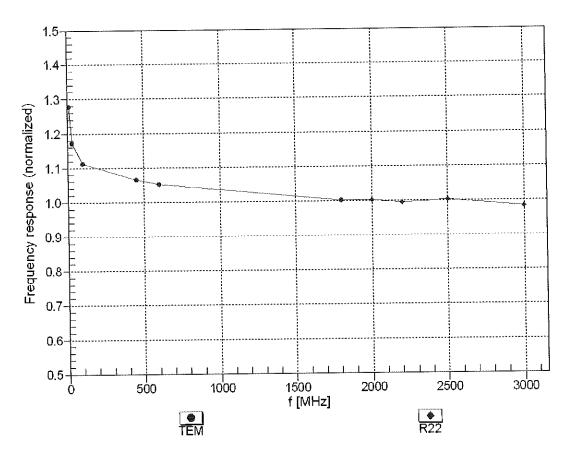
The ConvF uncertainty for indicated target tissue parameters.

Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

June 23, 2020

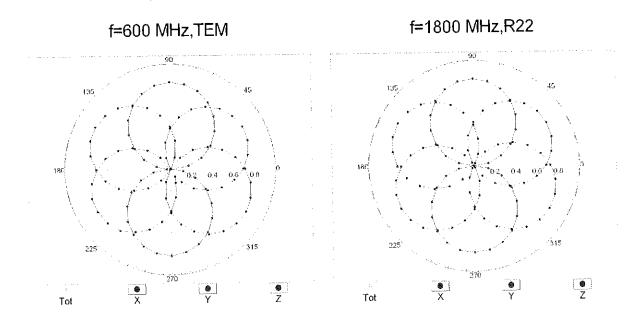
DASY/EASY - Parameters of Probe: EX3DV4 - SN:7406

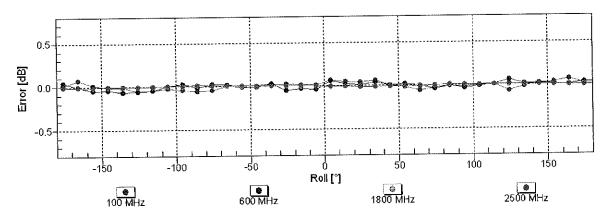
Calibration Parameter Determined in Body Tissue Simulating Media


f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	9.66	9.66	9.66	0.37	0.97	± 12.0 %
835	55.2	0.97	9.47	9.47	9.47	0.42	0.80	± 12.0 %
1750	53.4	1.49	7.96	7.96	7.96	0.36	0.86	± 12.0 %
1900	53.3	1.52	7.69	7.69	7.69	0.43	0.86	± 12.0 %
2300	52.9	1.81	7.59	7.59	7.59	0.41	0.95	± 12.0 %
2450	52.7	1.95	7.43	7.43	7.43	0.35	0.95	± 12.0 %
2600	52.5	2.16	7.40	7.40	7.40	0.38	0.95	± 12.0 %
5250	48.9	5.36	5.05	5.05	5.05	0.50	1.90	± 13.1 %
5600	48.5	5.77	4.37	4.37	4.37	0.50	1,90	± 13.1 %
5750	48.3	5.94	4.56	4.56	4.56	0.50	1.90	± 13.1 %

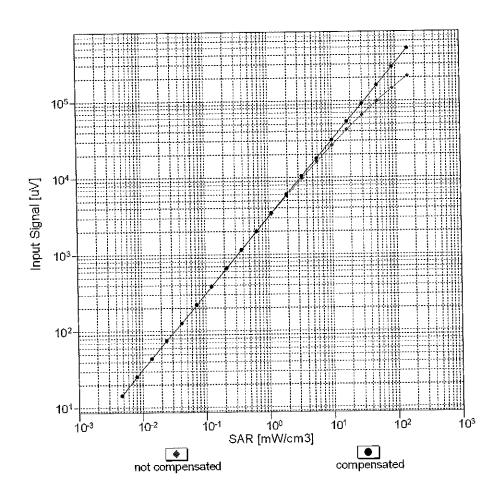
^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

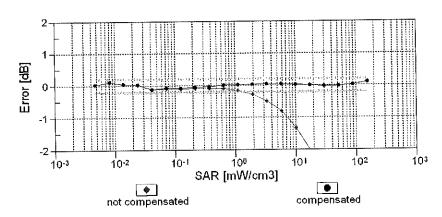
F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.


⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

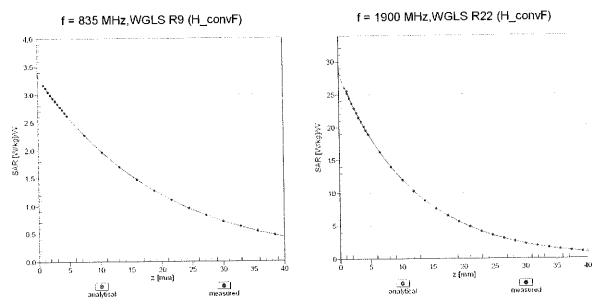

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

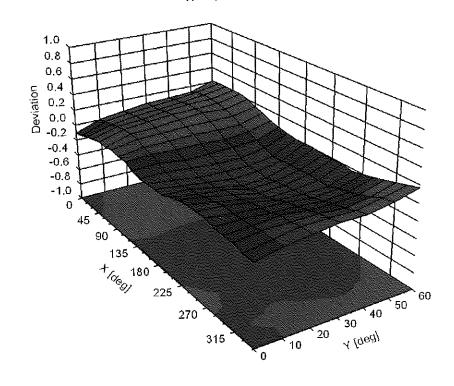
Uncertainty of Frequency Response of E-field: \pm 6.3% (k=2)


Receiving Pattern (ϕ), $\theta = 0^{\circ}$



Uncertainty of Axial Isotropy Assessment: $\pm 0.5\%$ (k=2)


Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)



Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (ϕ , ϑ), f = 900 MHz

June 23, 2020

Appendix: Modulation Calibration Parameters

UID	Rev	Communication System Name	Group	PAR (dB)	Unc [±] (k=2)
0		CW	CW	0.00	±4.7 %
10010	CAA	SAR Validation (Square, 100ms, 10ms)	Test	10.00	± 9.6 %
10011	CAB	UMTS-FDD (WCDMA)	WCDMA	2.91	± 9.6 %
10012	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	WLAN	1.87	± 9.6 %
10013	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps)	WLAN	9.46	± 9.6 %
10021	DAC	GSM-FDD (TDMA, GMSK)	GSM	9.39	± 9.6 %
10023	DAC	GPRS-FDD (TDMA, GMSK, TN 0)	GSM	9.57	± 9.6 %
10024	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	GSM	6.56	± 9.6 %
10025	DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	GSM	12.62	± 9.6 %
10026	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1)	GSM	9.55	± 9.6 %
10027	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	GSM	4.80	± 9.6 %
10028	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	GSM	3.55	± 9.6 %
10029	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	GSM	7.78	± 9.6 %
10030	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH1)	Bluetooth	5.30	± 9.6 %
10031	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH3)	Bluetooth	1.87	±9.6%
10031	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	Bluetooth	1.16	± 9.6 %
10032	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)	Bluetooth	7.74	± 9.6 %
10034	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)	Bluetooth	4.53	± 9.6 %
10034	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)	Bluetooth	3.83	± 9.6 %
10036	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	Bluetooth	8.01	±9.6%
10037	CAA		Bluetooth	4.77	± 9.6 %
10037	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	Bluetooth	4.10	±9.6 %
	CAB	CDMA2000 (1xRTT, RC1)	CDMA2000	4.57	± 9.6 %
10039		IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Halfrate)	AMPS	7.78	± 9.6 %
10042	CAB	IS-91/EIA/TIA-553 FDD (FDMA, FM)	AMPS	0.00	± 9.6 %
10044	CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	DECT	13.80	± 9.6 %
10048	CAA	DECT (TDD, TDMA/FDM, GFSK, Poulsiet, 24)	DECT	10.79	± 9.6 %
10049	CAA		TD-SCDMA	11.01	± 9.6 %
10056	CAA	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	GSM	6.52	± 9.6 %
10058	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	WLAN	2.12	± 9.6 %
10059	CAB	IEEE 802.11b WIFI 2.4 GHz (DSSS, 2 Mbps)	WLAN	2.83	± 9.6 %
10060	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)	WLAN	3.60	±9.6 %
10061	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)	WLAN	8.68	± 9.6 %
10062	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	WLAN	8.63	± 9.6 %
10063	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)	WLAN	9.09	± 9.6 %
10064	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	WLAN	9.00	± 9.6 %
10065	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps)	WLAN	9.38	± 9.6 %
10066	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps)	WLAN	10.12	± 9.6 %
10067	CAC	IEEE 802.11a/h WIFI 5 GHz (OFDM, 36 Mbps)	WLAN	10.12	± 9.6 %
10068	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)	WLAN	10.24	± 9.6 %
10069	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps)	WLAN	9.83	± 9.6 %
10071	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)			± 9.6 %
10072	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	WLAN WLAN	9.62	± 9.6 %
10073	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps)	WLAN	10.30	± 9.6 %
10074	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps)	WLAN	10.30	± 9.6 %
10075	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps)	WLAN	10.77	± 9.6 %
10076	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)	WLAN	11.00	± 9.6 %
10077	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	CDMA2000	3.97	± 9.6 9
10081	CAB	CDMA2000 (1xRTT, RC3)	AMPS	4.77	± 9.6 9
10082	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Fullrate)		6.56	± 9.6 9
10090	DAC	GPRS-FDD (TDMA, GMSK, TN 0-4)	GSM		± 9.6 9
10097	CAB	UMTS-FDD (HSDPA)	WCDMA	3.98	± 9.6
10098	CAB	UMTS-FDD (HSUPA, Subtest 2)	WCDMA	3.98	
10099	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-4)	GSM	9.55	± 9.6
10100	CAE	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	LTE-FDD	5.67	± 9.6 °
10101	CAE	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-FDD	6.42	± 9.6
10102	CAE	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	LTE-FDD	6.60	± 9.6 °
10103	CAG		LTE-TDD	9.29	± 9.6 °
10104	CAG		LTE-TDD	9.97	± 9.6 9
10105	CAG		LTE-TDD	10.01	± 9.6 °
10108	CAG	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	LTE-FDD	5.80	± 9.6 °

			I.TE PDD	0.40	1069/
10109	CAG	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	LTE-FDD	6.43	± 9.6 % ± 9.6 %
10110	CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	LTE-FDD	5.75	± 9.6 %
10111	CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	LTE-FDD	6.44	
10112	CAG	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	LTE-FDD	6.59	± 9.6 % ± 9.6 %
10113	CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	LTE-FDD	6.62	± 9.6 %
10114	CAC	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	WLAN	8.10	
10115	CAC	IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)	WLAN	8.46	± 9.6 %
10116	CAC	IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM)	WLAN	8.15	± 9.6 %
10117	CAC	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	WLAN	8.07	± 9.6 %
10118	CAC	IEEE 802.11n (HT Mixed, 81 Mbps, 16-QAM)	WLAN	8.59	± 9.6 %
10119	CAC	IEEE 802.11n (HT Mixed, 135 Mbps, 64-QAM)	WLAN	8.13	± 9.6 %
10140	CAE	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-FDD	6.49	± 9.6 %
10141	CAE	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	LTE-FDD	6.53	± 9.6 %
10142	CAE	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	LTE-FDD	5.73	± 9.6 %
10143	CAE	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	LTE-FDD	6.35	±9.6 %
10144	CAE	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	LTE-FDD	6.65	± 9.6 %
10145	CAF	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	LTE-FDD	5.76	± 9.6 %
10146	CAF	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.41	± 9.6 %
10147	CAF	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.72	± 9.6 %
10149	CAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-FDD	6.42	± 9.6 %
10150	CAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-FDD	6.60	± 9.6 %
10151	CAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE-TDD	9.28	± 9.6 %
10152	CAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-TDD	9.92	± 9.6 %
10153	CAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-TDD	10.05	±9.6%
10154	CAG	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-FDD	5.75	± 9.6 %
10155	CAG	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LTE-FDD	6.43	± 9.6 %
10156	CAG	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LTE-FDD	5.79	± 9.6 %
10157	CAG	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-FDD	6.49	± 9.6 %
10158	CAG	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	LTE-FDD	6.62	± 9.6 %
10159	CAG	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	LTE-FDD	6.56	±9.6 %
10160	CAE	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	LTE-FDD	5.82	± 9.6 %
10161	CAE	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-FDD	6.43	± 9.6 %
10162	CAE	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	LTE-FDD	6.58	± 9.6 %
10166	CAF	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	LTE-FDD	5.46	± 9.6 %
10167	CAF	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.21	± 9.6 %
10168	CAF	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.79	± 9.6 %
10169	CAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-FDD	5.73	± 9.6 %
10170	CAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6 %
10171	AAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-FDD	6.49	± 9.6 %
10172	CAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-TDD	9.21	± 9.6 %
10173	CAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	LTE-TDD	9.48	± 9.6 %
10174	CAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-TDD	10.25	± 9.6 %
10175	CAG		LTE-FDD	5.72	± 9.6 %
10176	CAG	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6 %
10177	CAI	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	LTE-FDD	5.73	± 9.6 %
10178	CAG	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6 %
10179	CAG	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 %
10180	CAG	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 %
10181	CAE	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	LTE-FDD	5.72	± 9.6 %
10182	CAE	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6 %
10183	AAD	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 %
10184	CAE	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	LTE-FDD	5.73	± 9.6 %
10185	CAE	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	LTE-FDD	6.51	± 9.6 %
10186	AAE	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 %
10187	CAF	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	LTE-FDD	5.73	± 9.6 %
10188	CAF	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6 %
10189	AAF	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 %
10193	CAC	IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK)	WLAN	8.09	± 9.6 %
10194	CAC	IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM)	WLAN	8.12	± 9.6 %
10195	CAC	IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM)	WLAN	8.21	± 9.6 %
	CAC	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	WLAN	8.10	± 9.6 %
		THE COURT (UT Mind ON Mine 10 OAM)	WLAN	8.13	± 9.6 %
10196	CAC	TIFFE 802.TIN (HT MIXEG. 39 MIDDS, TO-CAMI)	115-1111	1 00	
10197	CAC	IEEE 802.11n (HT Mixed, 39 Mbps, 16-QAM) IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM)	WLAN	8.27	± 9.6 %

			1AA AN	8.13	± 9.6 %
10220	CAC	IEEE 802.11n (HT Mixed, 43.3 Mbps, 16-QAM)	WLAN	8.27	± 9.6 %
10221	CAC	IEEE 802.11n (HT Mixed, 72.2 Mbps, 64-QAM)	WLAN	8.06	±9.6 %
10222	CAC	IEEE 802.11n (HT Mixed, 15 Mbps, BPSK)	WLAN	8.48	± 9.6 %
10223	CAC	IEEE 802.11n (HT Mixed, 90 Mbps, 16-QAM)	WLAN	8.08	± 9.6 %
10224	CAC	IEEE 802.11n (HT Mixed, 150 Mbps, 64-QAM)	WLAN	5.97	± 9.6 %
10225	CAB	UMTS-FDD (HSPA+)	WCDMA	9.49	±9.6 %
10226	CAB	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	LTE-TDD	10.26	± 9.6 %
10227	CAB	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	LTE-TOD		± 9.6 %
10228	CAB	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	LTE-TDD	9.22	
10229	CAD	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	LTE-TDD	9.48	± 9.6 %
10230	CAD	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	LTE-TDD	10.25	± 9.6 %
10231	CAD	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	LTE-TDD	9.19	± 9.6 %
10232	CAG	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	LTE-TDD	9.48	± 9.6 %
10233	CAG	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	LTE-TDD	10.25	± 9.6 %
10234	CAG	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	LTE-TDD	9.21	± 9.6 %
10235	CAG	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-TDD	9.48	± 9.6 %
10236	CAG	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	LTE-TDD	10.25	± 9.6 %
10237	CAG	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	LTE-TOD	9.21	± 9.6 %
10238	CAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	LTE-TDD	9.48	± 9.6 %
10239	CAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	LTE-TDD	10.25	± 9.6 %
10240	CAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	LTE-TDD	9.21	± 9.6 %
10241	CAB	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.82	±9.6%
10241	CAB	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-TDD	9.86	± 9.6 %
10242	CAB	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	LTE-TDD	9,46	±9.6%
10243	CAD	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	LTE-TDD	10.06	± 9.6 %
10244	CAD	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	LTE-TDD	10.06	±9.6%
10245	CAD	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	LTE-TDD	9.30	± 9.6 %
	CAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-TDD	9.91	± 9.6 %
10247	CAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	LTE-TDD	10.09	± 9.6 %
10248 10249	CAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LTE-TDD	9.29	± 9.6 %
		LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LTE-TDD	9.81	± 9.6 %
10250	CAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	LTE-TDD	10.17	± 9.6 %
10251	CAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-TDD	9.24	± 9.6 %
10252	CAG	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-TDD	9.90	±9.6 %
10253	CAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-TDD	10.14	± 9.6 %
10254	CAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 04-QAM)	LTE-TDD	9.20	± 9.6 %
10255	CAF	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.96	± 9.6 %
10256	CAB	LTE-TOD (SC-FDMA, 100% RB, 1.4 MHz, 10-QAM)	LTE-TDD	10.08	±9.6 %
10257	CAB	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-TDD	9.34	±9.6 %
10258	CAB	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	LTE-TDD	9.98	± 9.6 %
10259	CAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	LTE-TDD	9.97	± 9.6 %
10260	CAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	LTE-TDD	9.24	± 9.6 %
10261	CAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	LTE-TDD	9.83	± 9.6 %
10262	CAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)		10.16	± 9.6 %
10263	CAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	LTE-TDD		± 9.6 %
10264	CAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	LTE-TDD	9.23	± 9.6 %
10265	CAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	LTE-TDD	9.92	
10266	CAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	LTE-TDD	10.07	± 9.6 %
10267	CAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	LTE-TDD	9.30	± 9.6 %
10268	CAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-TDD	10.06	± 9.6 %
10269	CAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	LTE-TDD	10.13	± 9.6 %
10270	CAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	LTE-TDD	9.58	± 9.6 %
10274	CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)	WCDMA	4.87	± 9.6 %
10275	CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	WCDMA	3.96	± 9.6 %
10277	CAA	PHS (QPSK)	PHS	11.81	± 9.6 %
10278	CAA	PHS (QPSK, BW 884MHz, Rolloff 0.5)	PHS	11.81	±9.6 %
10279	CAA	PHS (QPSK, BW 884MHz, Rolloff 0.38)	PHS	12.18	± 9.6 %
10290	AAB	CDMA2000, RC1, SO55, Full Rate	CDMA2000	3.91	± 9.6 %
10291	AAB	CDMA2000, RC3, SO55, Full Rate	CDMA2000	3.46	± 9.6 %
10292	AAB	CDMA2000, RC3, SO32, Full Rate	CDMA2000	3.39	± 9.6 %
10293	AAB	CDMA2000, RC3, SO3, Full Rate	CDMA2000	3.50	± 9.6 %
10295	AAB	CDMA2000, RC1, SO3, 1/8th Rate 25 fr.	CDMA2000	12.49	± 9.6 %
10297	AAD	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE-FDD	5.81	± 9.6 %
	, , , , , , , , , , , , , , , , , , , ,		T.T. COD	E 70	1000/
10297	AAD	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	LTE-FDD	5.72	± 9.6 %

		TO THE STATE OF TH	LTE-FDD	6.60	± 9.6 %
10300	AAD	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	WiMAX	12.03	± 9.6 %
10301	AAA	IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC)	WIMAX	12.57	± 9.6 %
10302	AAA	IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC, 3CTRL)	WIMAX	12.52	± 9.6 %
10303	AAA	IEEE 802.16e WIMAX (31:15, 5ms, 10MHz, 64QAM, PUSC)	WIMAX	11.86	± 9.6 %
10304	AAA	IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, 64QAM, PUSC)	WIMAX	15.24	± 9.6 %
10305	AAA	IEEE 802.16e WIMAX (31:15, 10ms, 10MHz, 64QAM, PUSC)	\$	14.67	± 9.6 %
10306	AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 64QAM, PUSC)	WiMAX	<u> </u>	± 9.6 %
10307	AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, QPSK, PUSC)	WiMAX	14.49	
10308	AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 16QAM, PUSC)	WIMAX	14.46	± 9.6 %
10309	AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM,AMC 2x3)	WIMAX	14.58	± 9.6 %
10310	AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3	WIMAX	14.57	± 9.6 %
10311	AAD	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	LTE-FDD	6.06	± 9.6 %
10313	AAA	IDEN 1:3	IDEN	10.51	± 9.6 %
10314	AAA	IDEN 1:6	iDEN	13.48	± 9.6 %
10315	AAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc dc)	WLAN	1.71	± 9.6 %
10316	AAB	IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 96pc dc)	WLAN	8.36	± 9.6 %
10317	AAC	IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc dc)	WLAN	8.36	± 9.6 %
10317	AAA	Pulse Waveform (200Hz, 10%)	Generic	10.00	± 9.6 %
	AAA	Pulse Waveform (200Hz, 20%)	Generic	6.99	± 9.6 %
10353		Pulse Waveform (200Hz, 40%)	Generic	3.98	± 9.6 %
10354	AAA		Generic	2.22	± 9.6 %
10355	AAA	Pulse Waveform (200Hz, 60%)	Generic	0.97	± 9.6 %
10356	AAA	Pulse Waveform (200Hz, 80%)	Generic	5.10	± 9.6 %
10387	AAA	QPSK Waveform, 1 MHz	Generic	5.22	± 9.6 %
10388	AAA	QPSK Waveform, 10 MHz	Generic	6.27	± 9.6 %
10396	AAA	64-QAM Waveform, 100 kHz	Generic	6.27	± 9.6 %
10399	AAA	64-QAM Waveform, 40 MHz		8.37	± 9.6 %
10400	AAD	IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc dc)	WLAN		±9.6 %
10401	AAD	IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc dc)	WLAN	8.60	
10402	AAD	IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc dc)	WLAN	8.53	± 9.6 %
10403	AAB	CDMA2000 (1xEV-DO, Rev. 0)	CDMA2000	3.76	± 9.6 %
10404	AAB	CDMA2000 (1xEV-DO, Rev. A)	CDMA2000	3.77	±9.6 %
10406	AAB	CDMA2000, RC3, SO32, SCH0, Full Rate	CDMA2000	5.22	±9.6%
10410	AAG	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Sub=2,3,4,7,8,9)	LTE-TDD	7.82	±9.6%
10414	AAA	WLAN CCDF, 64-QAM, 40MHz	Generic	8.54	± 9.6 %
10415	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc dc)	WLAN	1.54	± 9.6 %
10416	AAA	IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 99pc dc)	WLAN	8.23	± 9.6 %
10417	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc dc)	WLAN	8.23	± 9.6 %
10418	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Long)	WLAN	8.14	± 9.6 %
10419	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Short)	WLAN	8.19	± 9.6 %
10419	AAB	IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK)	WLAN	8.32	± 9.6 %
		IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM)	WLAN	8.47	± 9.6 %
10423	AAB	IEEE 802.11n (HT Greenfield, 43.5 Mbps, 16 42 Mb)	WLAN	8.40	± 9.6 %
10424	AAB		WLAN	8.41	± 9.6 %
10425	AAB	IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK)	WLAN	8.45	±9.6 %
10426	AAB	IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM)	WLAN	8.41	± 9.6 %
10427	AAB	IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM)	LTE-FDD	8.28	± 9.6 %
10430	AAD	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1)	LTE-FDD	8.38	± 9.6 %
10431	AAD	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1)			± 9.6 %
10432	AAC	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1)	LTE-FDD	8.34	
10433	AAC	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1)	LTE-FDD	8.34	±9.6%
10434	AAA	W-CDMA (BS Test Model 1, 64 DPCH)	WCDMA	8.60	± 9.6 %
10435	AAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Sub)	LTE-TDD	7.82	± 9.6 %
10447	AAD	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	LTE-FDD	7.56	± 9.6 %
10448	AAD	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%)	LTE-FDD	7.53	± 9.6 %
10449	AAC	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Cliping 44%)	LTE-FDD	7.51	± 9.6 %
10450	AAC	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	LTE-FDD	7.48	± 9.6 %
10451	AAA	W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%)	WCDMA	7,59	± 9.6 %
	AAD	Validation (Square, 10ms, 1ms)	Test	10.00	± 9.6 %
10453	1 1 1 1 1	IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc dc)	WLAN	8.63	± 9.6 %
10453	AAR				± 9.6 %
10456	AAB		WCDMA	6.62	3.0.0 70
10456 10457	AAA	UMTS-FDD (DC-HSDPA)	CDMA2000		± 9.6 %
10456 10457 10458	AAA	UMTS-FDD (DC-HSDPA) CDMA2000 (1xEV-DO, Rev. B, 2 carriers)	CDMA2000	6.55	± 9.6 %
10456 10457 10458 10459	AAA AAA AAA	UMTS-FDD (DC-HSDPA) CDMA2000 (1xEV-DO, Rev. B, 2 carriers) CDMA2000 (1xEV-DO, Rev. B, 3 carriers)	CDMA2000 CDMA2000	6.55 8.25	± 9.6 % ± 9.6 %
10456 10457 10458	AAA	UMTS-FDD (DC-HSDPA) CDMA2000 (1xEV-DO, Rev. B, 2 carriers)	CDMA2000	6.55	

		24 CAM III C. I.)	LITE TOD	8.56	± 9.6 %
10463	AAB	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Sub)	LTE-TDD	7.82	± 9.6 %
10464	AAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Sub)	LTE-TDD	8.32	± 9.6 %
10465	AAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM, UL Sub)	LTE-TOD	8.57	± 9.6 %
10466	AAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM, UL Sub)	LTE-TDD	7.82	± 9.6 %
10467	AAF	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Sub)	LTE-TOD	8.32	± 9.6 %
10468	AAF	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM, UL Sub)	LTE-TOD	8.56	± 9.6 %
10469	AAF	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM, UL Sub)		7.82	± 9.6 %
10470	AAF	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Sub)	LTE-TDD	8.32	± 9.6 %
10471	AAF	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM, UL Sub)	LTE-TDD	8.57	± 9.6 %
10472	AAF	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM, UL Sub)	LTE-TOD		± 9.6 %
10473	AAE	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL Sub)		7.82 8.32	± 9.6 %
10474	AAE	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM, UL Sub)	LTE-TDD	8.57	± 9.6 %
10475	AAE	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM, UL Sub)	LTE-TOD	8.32	± 9.6 %
10477	AAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM, UL Sub)	LTE-TDD	8,57	± 9.6 %
10478	AAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM, UL Sub)	LTE-TDD	7.74	± 9.6 %
10479	AAB	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Sub)	LTE-TDD		± 9.6 %
10480	AAB	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Sub)	LTE-TDD	8.18	± 9.6 %
10481	AAB	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL Sub)	LTE-TDD	8.45	± 9.6 %
10482	AAC	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Sub)	LTE-TDD	7.71	
10483	AAC	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, Sub)	LTE-TDD	8.39	± 9.6 %
10484	AAC	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL Sub)	LTE-TDD	8.47	± 9.6 % ± 9.6 %
10485	AAF	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Sub)	LTE-TDD	7.59	
10486	AAF	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Sub)	LTE-TDD	8.38	±9.6%
10487	AAF	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL Sub)	LTE-TDD	8.60	± 9.6 %
10488	AAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Sub)	LTE-TDD	7.70	± 9.6 %
10489	AAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Sub)	LTE-TDD	8.31	± 9.6 %
10490	AAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Sub)	LTE-TDD	8.54	± 9.6 %
10491	AAE	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Sub)	LTE-TDD	7.74	± 9.6 %
10492	AAE	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Sub)	LTE-TDD	8.41	± 9.6 %
10493	AAE	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL Sub)	LTE-TDD	8.55	± 9.6 %
10494	AAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Sub)	LTE-TDD	7.74	± 9.6 %
10495	AAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Sub)	LTE-TDD	8.37	± 9.6 %
10496	AAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Sub)	LTE-TDD	8.54	± 9.6 %
10497	AAB	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK, UL Sub)	LTE-TDD	7.67	± 9.6 %
10498	AAB	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL Sub)	LTE-TDD	8.40	± 9.6 %
10499	AAB	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM, UL Sub)	LTE-TDD	8.68	± 9.6 %
10500	AAC	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Sub)	LTE-TDD	7.67	± 9.6 %
10501	AAC	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Sub)	LTE-TDD	8.44	± 9.6 %
10502	AAC	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Sub)	LTE-TDD	8.52	± 9.6 %
10503	AAF	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Sub)	LTE-TDD	7.72	± 9.6 %
10504	AAF	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Sub)	LTE-TDD	8.31	± 9.6 %
10505	AAF	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Sub)	LTE-TDD	8.54	± 9.6 %
10506	AAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Sub)	LTE-TDD	7.74	± 9.6 %
10507	AAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL Sub)	LTE-TDD	8.36	±9.6 %
10508	AAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Sub)	LTE-TOD	8.55	±9.6 %
10509	AAE	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Sub)	LTE-TDD	7.99	± 9.6 %
10510	AAE	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Sub)	LTE-TDD	8.49	± 9.6 %
10511	AAE	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL Sub)	LTE-TDD	8.51	± 9.6 %
10512	AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Sub)	LTE-TDD	7.74	± 9.6 %
10513	AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Sub)	LTE-TOD	8.42	±9.6 %
10514	AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Sub)	LTE-TDD	8.45	± 9.6 %
10515	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc dc)	WLAN	1.58	± 9.6 %
10516	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc dc)	WLAN	1.57	± 9.6 %
10517	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 99pc dc)	WLAN	1.58	± 9.6 %
10518	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc dc)	WLAN	8.23	± 9.6 %
10519	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc dc)	WLAN	8.39	± 9.6 %
10520	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc dc)	WLAN	8.12	± 9.6 %
10521	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc dc)	WLAN	7.97	± 9.6 %
		IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc dc)	WLAN	8.45	± 9.6 %
10522	AAB	IEEE 602. I Tarri WIFT 3 GITZ (OF DIVI, 30 Wibps, 33pc do)			1 . ~ ~ ~ ~ /
10523	AAB AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc dc)	WLAN	8.08	± 9.6 %
		IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc dc) IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc dc)	WLAN	8.27	± 9.6 %
10523 10524 10525	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc dc) IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc dc) IEEE 802.11ac WiFi (20MHz, MCS0, 99pc dc)	WLAN WLAN	8.27 8.36	± 9.6 % ± 9.6 %
10523 10524	AAB AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc dc) IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc dc)	WLAN	8.27	± 9.6 %

1 10520			IAM ANI	0.26	± 9.6 %
10528	AAB	IEEE 802.11ac WiFi (20MHz, MCS3, 99pc dc)	WLAN	8.36	
10529	AAB	IEEE 802.11ac WiFi (20MHz, MCS4, 99pc dc)	WLAN	8.36	± 9.6 %
10531	AAB	IEEE 802.11ac WiFi (20MHz, MCS6, 99pc dc)	WLAN	8.43	± 9.6 %
10532	AAB	IEEE 802.11ac WiFi (20MHz, MCS7, 99pc dc)	WLAN	8.29	± 9.6 %
10533	AAB	IEEE 802.11ac WiFi (20MHz, MCS8, 99pc dc)	WLAN	8.38	± 9.6 %
		IEEE 802.11ac WiFi (40MHz, MCS0, 99pc dc)	WLAN	8.45	± 9.6 %
10534	AAB		WLAN	8.45	± 9.6 %
10535	AAB	IEEE 802.11ac WiFi (40MHz, MCS1, 99pc dc)	WLAN	8.32	± 9.6 %
10536	AAB	IEEE 802.11ac WiFi (40MHz, MCS2, 99pc dc)			
10537	AAB	IEEE 802.11ac WiFi (40MHz, MCS3, 99pc dc)	WLAN	8.44	± 9.6 %
10538	AAB	IEEE 802.11ac WiFi (40MHz, MCS4, 99pc dc)	WLAN	8.54	± 9.6 %
10540	AAB	IEEE 802.11ac WiFi (40MHz, MCS6, 99pc dc)	WLAN	8.39	± 9.6 %
10541	AAB	IEEE 802.11ac WiFi (40MHz, MCS7, 99pc dc)	WLAN	8.46	± 9.6 %
10542	AAB	IEEE 802.11ac WiFi (40MHz, MCS8, 99pc dc)	WLAN	8.65	± 9.6 %
10542	AAB	IEEE 802.11ac WiFi (40MHz, MCS9, 99pc dc)	WLAN	8.65	± 9.6 %
		IEEE 802.11ac WiFi (80MHz, MCS0, 99pc dc)	WLAN	8.47	± 9.6 %
10544	AAB		WLAN	8.55	± 9.6 %
10545	AAB	IEEE 802.11ac WiFi (80MHz, MCS1, 99pc dc)		8.35	± 9.6 %
10546	AAB	IEEE 802.11ac WiFi (80MHz, MCS2, 99pc dc)	WLAN		
10547	AAB	IEEE 802.11ac WiFi (80MHz, MCS3, 99pc dc)	WLAN	8.49	± 9.6 %
10548	AAB	IEEE 802.11ac WiFi (80MHz, MCS4, 99pc dc)	WLAN	8.37	± 9.6 %
10550	AAB	IEEE 802.11ac WiFi (80MHz, MCS6, 99pc dc)	WLAN	8.38	± 9.6 %
10551	AAB	IEEE 802.11ac WiFi (80MHz, MCS7, 99pc dc)	WLAN	8.50	± 9.6 %
10552	AAB	1EEE 802.11ac WiFi (80MHz, MCS8, 99pc dc)	WLAN	8.42	±9.6%
		IEEE 802.11ac WiF (80MHz, MCS9, 99pc dc)	WLAN	8.45	± 9.6 %
10553	AAB		WLAN	8.48	± 9.6 %
10554	AAC	IEEE 802.11ac WiFi (160MHz, MCS0, 99pc dc)	WLAN	8.47	± 9.6 %
10555	AAC	IEEE 802.11ac WiFi (160MHz, MCS1, 99pc dc)			± 9.6 %
10556	AAC	IEEE 802.11ac WiFi (160MHz, MCS2, 99pc dc)	WLAN	8.50	
10557	AAC	IEEE 802.11ac WiFi (160MHz, MCS3, 99pc dc)	WLAN	8.52	± 9.6 %
10558	AAC	IEEE 802.11ac WiFi (160MHz, MCS4, 99pc dc)	WLAN	8.61	± 9.6 %
10560	AAC	IEEE 802.11ac WiFi (160MHz, MCS6, 99pc dc)	WLAN	8.73	± 9.6 %
10561	AAC	IEEE 802.11ac WiFi (160MHz, MCS7, 99pc dc)	WLAN	8.56	± 9.6 %
10562	AAC	IEEE 802.11ac WiFi (160MHz, MCS8, 99pc dc)	WLAN	8.69	± 9.6 %
		IEEE 802.11ac WiFi (160MHz, MCS9, 99pc dc)	WLAN	8.77	±9.6%
10563	AAC	IEEE 802.11g WiFi (160M12, MCGS, 35pc GC)	WLAN	8.25	± 9.6 %
10564	AAA		WLAN	8.45	±9.6 %
10565	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc dc)		8.13	± 9.6 %
10566	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 99pc dc)	WLAN		
10567	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 99pc dc)	WLAN	8.00	± 9.6 %
10568	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc dc)	WLAN	8.37	± 9.6 %
10569	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc dc)	WLAN	8.10	± 9.6 %
10570	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 99pc dc)	WLAN	8.30	± 9.6 %
10571	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc dc)	WLAN	1.99	±9.6 %
10571	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc dc)	WLAN	1.99	± 9.6 %
2		IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc dc)	WLAN	1.98	± 9.6 %
10573	AAA		WLAN	1,98	± 9.6 %
10574	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc dc)			
10575	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc dc)	WLAN	8.59	± 9.6 %
10576	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 90pc dc)	WLAN	8.60	± 9.6 %
10577	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc dc)	WLAN	8.70	± 9.6 %
10578	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc dc)	WLAN	8.49	± 9.6 %
10579	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc dc)	WLAN	8.36	± 9.6 %
10580	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc dc)	WLAN	8.76	± 9.6 %
10580	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc dc)	WLAN	8.35	± 9.6 %
		IEEE 802.11g WIF1 2.4 GHz (DSSS-OFDM, 46 Mbps, 50pc dc)	WLAN	8.67	± 9.6 %
10582	AAA	TEEE OOD 44-16 MISE S OLD (OFDM C MADE COSE do)	WLAN	8.59	± 9.6 %
10583	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc dc)			
10584	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc dc)	WLAN	8.60	± 9.6 %
10585	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc dc)	WLAN	8.70	± 9.6 %
10586	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc dc)	WLAN	8.49	± 9.6 %
10587	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc dc)	WLAN	8.36	± 9.6 %
10588	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc dc)	WLAN	8.76	± 9.6 %
		IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc dc)	WLAN	8.35	± 9.6 %
10589	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 46 Mbps, 50pc dc)	WLAN	8.67	± 9.6 %
10590	AAB		WLAN	8.63	± 9.6 %
10591	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS0, 90pc dc)			
	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS1, 90pc dc)	WLAN	8.79	± 9.6 %
10592			I MALLANI		- LUK V/-
10592 10593	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS2, 90pc dc)	WLAN	8.64	± 9.6 %
	AAB AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS2, 90pc dc) IEEE 802.11n (HT Mixed, 20MHz, MCS3, 90pc dc) IEEE 802.11n (HT Mixed, 20MHz, MCS4, 90pc dc)	WLAN WLAN	8.74 8.74	± 9.6 % ± 9.6 %

			LAM ANI	8.71	± 9.6 %
10596	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS5, 90pc dc)	WLAN WLAN	8.71	± 9.6 %
10597	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS6, 90pc dc)		8.50	± 9.6 %
10598	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS7, 90pc dc)	WLAN		
10599	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS0, 90pc dc)	WLAN	8.79	± 9.6 %
10600	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS1, 90pc dc)	WLAN	8.88	± 9.6 %
10601	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS2, 90pc dc)	WLAN	8.82	± 9.6 %
10602	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS3, 90pc dc)	WLAN	8.94	± 9.6 %
10603	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS4, 90pc dc)	WLAN	9.03	± 9.6 %
10604	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS5, 90pc dc)	WLAN	8.76	± 9.6 %
10605	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS6, 90pc dc)	WLAN	8.97	± 9.6 %
10606	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS7, 90pc dc)	WLAN	8.82	± 9.6 %
10607	AAB	IEEE 802.11ac WiFi (20MHz, MCS0, 90pc dc)	WLAN	8.64	± 9.6 %
10608	AAB	IEEE 802.11ac WiFi (20MHz, MCS1, 90pc dc)	WLAN	8.77	± 9.6 %
10609	AAB	IEEE 802.11ac WiFi (20MHz, MCS2, 90pc dc)	WLAN	8.57	± 9.6 %
10610	AAB	IEEE 802.11ac WiFi (20MHz, MCS3, 90pc dc)	WLAN	8.78	± 9.6 %
10611	AAB	IEEE 802.11ac WiFi (20MHz, MCS4, 90pc dc)	WLAN	8.70	± 9.6 %
10612	AAB	IEEE 802.11ac WiFi (20MHz, MCS5, 90pc dc)	WLAN	8.77	±9.6 %
10613	AAB	IEEE 802.11ac WiFi (20MHz, MCS6, 90pc dc)	WLAN	8.94	± 9.6 %
10614	AAB	IEEE 802.11ac WiFi (20MHz, MCS7, 90pc dc)	WLAN	8.59	± 9.6 %
10615	AAB	IEEE 802.11ac WiFi (20MHz, MCS8, 90pc dc)	WLAN	8.82	± 9.6 %
	AAB	IEEE 802.11ac WiFi (40MHz, MCS0, 90pc dc)	WLAN	8.82	± 9.6 %
10616	AAB	IEEE 802.11ac WiFi (40MHz, MCS1, 90pc dc)	WLAN	8.81	± 9.6 %
10617		IEEE 802.11ac WiFi (40MHz, MCS1, 30pc dc)	WLAN	8.58	± 9.6 %
10618	AAB	IEEE 802.11ac WiFi (40MHz, MCS3, 90pc dc)	WLAN	8.86	± 9.6 %
10619	AAB	IEEE 802.11ac WiFi (40MHz, MCS3, 90pc dc)	WLAN	8.87	± 9.6 %
10620	AAB	IEEE 802.11ac WiFi (40MHz, MCS4, 30pc dc)	WLAN	8.77	± 9.6 %
10621	AAB		WLAN	8.68	±9.6%
10622	AAB	IEEE 802.11ac WiFi (40MHz, MCS6, 90pc dc)	WLAN	8.82	± 9.6 %
10623	AAB	IEEE 802.11ac WiFi (40MHz, MCS7, 90pc dc)	WLAN	8.96	± 9.6 %
10624	AAB	IEEE 802.11ac WiFi (40MHz, MCS8, 90pc dc)	WLAN	8.96	± 9.6 %
10625	AAB	IEEE 802.11ac WiFi (40MHz, MCS9, 90pc dc)	WLAN	8.83	± 9.6 %
10626	AAB	IEEE 802.11ac WiFi (80MHz, MCS0, 90pc dc)			± 9.6 %
10627	AAB	IEEE 802.11ac WiFi (80MHz, MCS1, 90pc dc)	WLAN	8.88	
10628	AAB	IEEE 802.11ac WiFi (80MHz, MCS2, 90pc dc)	WLAN	8.71	± 9.6 %
10629	AAB	IEEE 802.11ac WiFi (80MHz, MCS3, 90pc dc)	WLAN	8.85	± 9.6 %
10630	AAB	IEEE 802.11ac WiFi (80MHz, MCS4, 90pc dc)	WLAN	8.72	± 9.6 %
10631	AAB	IEEE 802.11ac WiFi (80MHz, MCS5, 90pc dc)	WLAN	8.81	± 9.6 %
10632	AAB	IEEE 802.11ac WiFi (80MHz, MCS6, 90pc dc)	WLAN	8.74	± 9.6 %
10633	AAB	IEEE 802.11ac WiFi (80MHz, MCS7, 90pc dc)	WLAN	8.83	± 9.6 %
10634	AAB	IEEE 802.11ac WiFi (80MHz, MCS8, 90pc dc)	WLAN	8.80	±9.6%
10635	AAB	IEEE 802.11ac WiFi (80MHz, MCS9, 90pc dc)	WLAN	8.81	±9.6 %
10636	AAC	IEEE 802.11ac WiFi (160MHz, MCS0, 90pc dc)	WLAN	8.83	± 9.6 %
10637	AAC	IEEE 802.11ac WiFi (160MHz, MCS1, 90pc dc)	WLAN	8.79	± 9.6 %
10638	AAC	IEEE 802.11ac WiFi (160MHz, MCS2, 90pc dc)	WLAN	8.86	± 9.6 %
10639	AAC	IEEE 802.11ac WiFi (160MHz, MCS3, 90pc dc)	WLAN	8.85	± 9.6 %
10640	AAC	IEEE 802.11ac WiFi (160MHz, MCS4, 90pc dc)	WLAN	8.98	± 9.6 %
10641	AAC	IEEE 802.11ac WiFi (160MHz, MCS5, 90pc dc)	WLAN	9.06	± 9.6 %
10642	AAC	IEEE 802.11ac WiFi (160MHz, MCS6, 90pc dc)	WLAN	9.06	± 9.6 %
10643	AAC	IEEE 802.11ac WiFi (160MHz, MCS7, 90pc dc)	WLAN	8.89	± 9.6 %
10644	AAC	IEEE 802,11ac WiFi (160MHz, MCS8, 90pc dc)	WLAN	9.05	± 9.6 %
10645	AAC	IEEE 802.11ac WiFi (160MHz, MCS9, 90pc dc)	WLAN	9.11	± 9.6 %
10646	AAG	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Sub=2,7)	LTE-TDD	11.96	± 9.6 %
10647	AAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Sub=2,7)	LTE-TDD	11.96	± 9.6 %
10647	AAA	CDMA2000 (1x Advanced)	CDMA2000	3.45	± 9.6 %
10648	AAE	LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	6.91	± 9.6 %
		LTE-TDD (OFDMA, 3 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	7.42	± 9.6 %
10653	AAE	LTE-TDD (OFDMA, 16 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	6.96	± 9.6 %
10654	AAD	LTE-TDD (OFDMA, 13 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	7.21	± 9.6 %
10655	AAE		Test	10.00	± 9.6 %
10658	AAA	Pulse Waveform (200Hz, 10%)	Test	6.99	± 9.6 %
10659	AAA	Pulse Waveform (200Hz, 20%)	Test	3.98	± 9.6 %
10660	AAA	Pulse Waveform (200Hz, 40%)	Test	2.22	± 9.6 %
10661	AAA	Pulse Waveform (200Hz, 60%)	Test	0.97	± 9.6 %
10662	AAA	Pulse Waveform (200Hz, 80%)		2.19	± 9.6 %
	1 4 4 4	Bluetooth Low Energy	Bluetooth	1 2.19	1 2 0 70
10670 10671	AAA AAA	IEEE 802.11ax (20MHz, MCS0, 90pc dc)	WLAN	9.09	± 9.6 %

			L MALL A N.I.	0.57	± 9.6 %
10672	AAA	IEEE 802.11ax (20MHz, MCS1, 90pc dc)	WLAN	8.57	
10673	AAA	IEEE 802.11ax (20MHz, MCS2, 90pc dc)	WLAN	8.78	± 9.6 %
10674	AAA	IEEE 802.11ax (20MHz, MCS3, 90pc dc)	WLAN	8.74	± 9.6 %
10675	AAA	IEEE 802.11ax (20MHz, MCS4, 90pc dc)	WLAN	8.90	± 9.6 %
10676	AAA	IEEE 802.11ax (20MHz, MCS5, 90pc dc)	WLAN	8.77	± 9.6 %
10677	AAA	IEEE 802.11ax (20MHz, MCS6, 90pc dc)	WLAN	8.73	± 9.6 %
10678	AAA	IEEE 802,11ax (20MHz, MCS7, 90pc dc)	WLAN	8.78	± 9.6 %
10679	AAA	IEEE 802.11ax (20MHz, MCS8, 90pc dc)	WLAN	8.89	± 9.6 %
10680	AAA	IEEE 802.11ax (20MHz, MCS9, 90pc dc)	WLAN	8.80	± 9.6 %
10681	AAA	IEEE 802.11ax (20MHz, MCS10, 90pc dc)	WLAN	8.62	± 9.6 %
10682	AAA	IEEE 802.11ax (20MHz, MCS11, 90pc dc)	WLAN	8.83	± 9.6 %
10683	AAA	IEEE 802.11ax (20MHz, MCS0, 99pc dc)	WLAN	8.42	± 9.6 %
10684	AAA	IEEE 802.11ax (20MHz, MCS1, 99pc dc)	WLAN	8.26	± 9.6 %
10685	AAA	IEEE 802.11ax (20MHz, MCS2, 99pc dc)	WLAN	8.33	± 9.6 %
	AAA	IEEE 802.11ax (20MHz, MCS3, 99pc dc)	WLAN	8.28	± 9.6 %
10686		IEEE 802.11ax (20MHz, MCS4, 99pc dc)	WLAN	8,45	± 9.6 %
10687	AAA	IEEE 802.11ax (20MHz, MCS5, 99pc dc)	WLAN	8.29	± 9.6 %
10688	AAA	IEEE 802.11ax (20MHz, MCS6, 99pc dc)	WLAN	8.55	± 9.6 %
10689	AAA_	IEEE 802.11ax (20MHz, MCS0, 99pc dc)	WLAN	8.29	± 9.6 %
10690	AAA		WLAN	8.25	± 9.6 %
10691	AAA	IEEE 802.11ax (20MHz, MCS8, 99pc dc)	WLAN	8.29	± 9.6 %
10692	AAA	IEEE 802.11ax (20MHz, MCS9, 99pc dc)	WLAN	8.25	± 9.6 %
10693	AAA	IEEE 802.11ax (20MHz, MCS10, 99pc dc)	WLAN	8.57	± 9.6 %
10694	AAA	IEEE 802.11ax (20MHz, MCS11, 99pc dc)	WLAN	8.78	± 9.6 %
10695	AAA	IEEE 802.11ax (40MHz, MCS0, 90pc dc)	WLAN	8.91	± 9.6 %
10696	AAA	IEEE 802.11ax (40MHz, MCS1, 90pc dc)	WLAN	8.61	± 9.6 %
10697	AAA	IEEE 802.11ax (40MHz, MCS2, 90pc dc)	WLAN	8.89	± 9.6 %
10698	AAA	IEEE 802.11ax (40MHz, MCS3, 90pc dc)	WLAN	8.82	± 9.6 %
10699	AAA	IEEE 802.11ax (40MHz, MCS4, 90pc dc)	WLAN	8.73	± 9.6 %
10700	AAA	IEEE 802.11ax (40MHz, MCS5, 90pc dc)		8.86	± 9.6 %
10701	AAA	IEEE 802.11ax (40MHz, MCS6, 90pc dc)	WLAN		± 9.6 %
10702	AAA	IEEE 802.11ax (40MHz, MCS7, 90pc dc)	WLAN	8.70	
10703	AAA	IEEE 802.11ax (40MHz, MCS8, 90pc dc)	WLAN	8.82	± 9.6 %
10704	AAA	IEEE 802.11ax (40MHz, MCS9, 90pc dc)	WLAN	8.56	± 9.6 %
10705	AAA	IEEE 802.11ax (40MHz, MCS10, 90pc dc)	WLAN	8.69	± 9.6 %
10706	AAA	IEEE 802.11ax (40MHz, MCS11, 90pc dc)	WLAN	8.66	± 9.6 %
10707	AAA	IEEE 802.11ax (40MHz, MCS0, 99pc dc)	WLAN	8.32	± 9.6 %
10708	AAA	IEEE 802.11ax (40MHz, MCS1, 99pc dc)	WLAN	8.55	± 9.6 %
10709	AAA	IEEE 802.11ax (40MHz, MCS2, 99pc dc)	WLAN	8.33	± 9.6 %
10710	AAA	IEEE 802.11ax (40MHz, MCS3, 99pc dc)	WLAN	8.29	± 9.6 %
10711	AAA	IEEE 802.11ax (40MHz, MCS4, 99pc dc)	WLAN	8.39	± 9.6 %
10712	AAA	IEEE 802.11ax (40MHz, MCS5, 99pc dc)	WLAN	8.67	± 9.6 %
10713	AAA	IEEE 802.11ax (40MHz, MCS6, 99pc dc)	WLAN	8.33	± 9.6 %
10714	AAA	IEEE 802.11ax (40MHz, MCS7, 99pc dc)	WLAN	8.26	± 9.6 %
10715	AAA	IEEE 802.11ax (40MHz, MCS8, 99pc dc)	WLAN	8.45	± 9.6 %
10716	AAA	IEEE 802.11ax (40MHz, MCS9, 99pc dc)	WLAN	8.30	± 9.6 %
10717	AAA	IEEE 802.11ax (40MHz, MCS10, 99pc dc)	WLAN	8.48	± 9.6 %
10718	AAA	IEEE 802.11ax (40MHz, MCS11, 99pc dc)	WLAN	8.24	± 9.6 %
10719	AAA	IEEE 802.11ax (80MHz, MCS0, 90pc dc)	WLAN	8.81	± 9.6 %
10720	AAA	IEEE 802.11ax (80MHz, MCS1, 90pc dc)	WLAN	8.87	± 9.6 %
10721	AAA	IEEE 802.11ax (80MHz, MCS2, 90pc dc)	WLAN	8.76	± 9.6 %
10722	AAA	IEEE 802.11ax (80MHz, MCS3, 90pc dc)	WLAN	8.55	± 9.6 %
10723	AAA	IEEE 802.11ax (80MHz, MCS4, 90pc dc)	WLAN	8.70	±9.6 %
10724	AAA	IEEE 802.11ax (80MHz, MCS5, 90pc dc)	WLAN	8.90	± 9.6 %
10725	AAA	IEEE 802.11ax (80MHz, MCS6, 90pc dc)	WLAN	8.74	± 9.6 %
10726	AAA	IEEE 802.11ax (80MHz, MCS7, 90pc dc)	WLAN	8.72	± 9.6 %
10727	AAA	IEEE 802.11ax (80MHz, MCS8, 90pc dc)	WLAN	8.66	± 9.6 %
10728	AAA	IEEE 802.11ax (80MHz, MCS9, 90pc dc)	WLAN	8.65	± 9.6 %
10729	AAA	IEEE 802.11ax (80MHz, MCS10, 90pc dc)	WLAN	8.64	± 9.6 %
10730	AAA	IEEE 802.11ax (80MHz, MCS11, 90pc dc)	WLAN	8.67	± 9.6 %
10731	AAA	IEEE 802.11ax (80MHz, MCS0, 99pc dc)	WLAN	8.42	± 9.6 %
10731	AAA	IEEE 802.11ax (80MHz, MCS1, 99pc dc)	WLAN	8.46	± 9.6 %
10732	AAA	IEEE 802.11ax (80MHz, MCS2, 99pc dc)	WLAN	8.40	± 9.6 %
10733	AAA	IEEE 802.11ax (80MHz, MCS3, 99pc dc)	WLAN	8.25	± 9.6 %
10735	AAA	IEEE 802.11ax (80MHz, MCS4, 99pc dc)	WLAN	8.33	± 9.6 %
10735	I WAA	ובב טטב. ו ומג נטטועוו וב, ועוסטד, ססףט מטן			

			LIANANI	0.07	+06%
10736	AAA	IEEE 802.11ax (80MHz, MCS5, 99pc dc)	WLAN	8.27	± 9.6 %
10737	AAA	IEEE 802.11ax (80MHz, MCS6, 99pc dc)	WLAN	8.36	± 9.6 % ± 9.6 %
10738	AAA	IEEE 802.11ax (80MHz, MCS7, 99pc dc)	WLAN	8.42	
10739	AAA	IEEE 802.11ax (80MHz, MCS8, 99pc dc)	WLAN	8.29	± 9.6 %
10740	AAA	IEEE 802.11ax (80MHz, MCS9, 99pc dc)	WLAN	8.48	± 9.6 %
10741	AAA	IEEE 802,11ax (80MHz, MCS10, 99pc dc)	WLAN	8.40	± 9.6 %
10742	AAA	IEEE 802.11ax (80MHz, MCS11, 99pc dc)	WLAN	8.43	± 9.6 %
10743	AAA	IEEE 802.11ax (160MHz, MCS0, 90pc dc)	WLAN	8.94	± 9.6 %
10744	AAA	IEEE 802.11ax (160MHz, MCS1, 90pc dc)	WLAN	9.16	± 9.6 %
10745	AAA	IEEE 802.11ax (160MHz, MCS2, 90pc dc)	WLAN	8.93	± 9.6 %
10746	AAA	IEEE 802.11ax (160MHz, MCS3, 90pc dc)	WLAN	9.11	± 9.6 %
10747	AAA	IEEE 802.11ax (160MHz, MCS4, 90pc dc)	WLAN	9.04	± 9.6 %
10748	AAA	IEEE 802.11ax (160MHz, MCS5, 90pc dc)	WLAN	8.93	± 9.6 %
10749	AAA	IEEE 802.11ax (160MHz, MCS6, 90pc dc)	WLAN	8.90	± 9.6 %
10750	AAA	IEEE 802.11ax (160MHz, MCS7, 90pc dc)	WLAN	8.79	± 9.6 %
10751	AAA	IEEE 802.11ax (160MHz, MCS8, 90pc dc)	WLAN	8.82	± 9.6 %
10752	AAA	IEEE 802.11ax (160MHz, MCS9, 90pc dc)	WLAN	8.81	± 9.6 %
10753	AAA	IEEE 802.11ax (160MHz, MCS10, 90pc dc)	WLAN	9.00	± 9.6 %
10754	AAA	IEEE 802.11ax (160MHz, MCS11, 90pc dc)	WLAN	8.94	± 9.6 %
10755	AAA	IEEE 802.11ax (160MHz, MCS0, 99pc dc)	WLAN	8.64	± 9.6 %
10756	AAA	IEEE 802.11ax (160MHz, MCS1, 99pc dc)	WLAN	8.77	± 9.6 %
10757	AAA	IEEE 802.11ax (160MHz, MCS2, 99pc dc)	WLAN	8.77	± 9.6 %
10758	AAA	IEEE 802.11ax (160MHz, MCS3, 99pc dc)	WLAN	8.69	± 9.6 %
10759	AAA	IEEE 802.11ax (160MHz, MCS4, 99pc dc)	WLAN	8.58	±9.6 %
10760	AAA	IEEE 802.11ax (160MHz, MCS5, 99pc dc)	WLAN	8.49	± 9.6 %
10761	AAA	IEEE 802.11ax (160MHz, MCS6, 99pc dc)	WLAN	8.58	± 9.6 %
10762	AAA	IEEE 802.11ax (160MHz, MCS7, 99pc dc)	WLAN	8.49	±9.6%
10763	AAA	IEEE 802.11ax (160MHz, MCS8, 99pc dc)	WLAN	8.53	± 9.6 %
10764	AAA	IEEE 802.11ax (160MHz, MCS9, 99pc dc)	WLAN	8.54	± 9.6 %
10765	AAA	IEEE 802.11ax (160MHz, MCS10, 99pc dc)	WLAN	8.54	± 9.6 %
10766	AAA	IEEE 802.11ax (160MHz, MCS11, 99pc dc)	WLAN	8.51	± 9.6 %
10767	AAC	5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	7.99	± 9.6 %
10768	AAC	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8,01	± 9.6 %
10769	AAC	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.01	± 9.6 %
10770	AAC	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.02	± 9.6 %
10770	AAC	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.02	± 9.6 %
10771	AAC	5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.23	± 9.6 %
10773	AAC	5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.03	± 9.6 %
	AAC	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.02	±9.6%
10774	AAB	5G NR (CP-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.31	± 9.6 %
10775	AAC	5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.30	±9.6 %
10776		5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.30	±9.6 %
10777	AAB	5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.34	± 9.6 %
10778	AAC	5G NR (CP-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.42	± 9.6 %
10779	AAB	5G NR (CP-OFDM, 50% RB, 25 MHz, QPSK, 15 KHz)	5G NR FR1 TDD	8.38	± 9.6 %
10780	AAC	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 15 KHz)	5G NR FR1 TDD	8.38	± 9.6 %
10781	AAC	5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.43	± 9.6 %
10782	AAC	5G NR (CP-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.31	± 9.6 %
10783	AAC		5G NR FR1 TDD	8.29	± 9.6 %
10784	AAC	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.40	± 9.6 %
10785	AAC	50 NR (CP-OFDM, 100% RD, 10 MITZ, QFOR, 10 KTZ)	5G NR FR1 TDD	8.35	± 9.6 %
10786	AAC	5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.44	± 9.6 %
10787	AAC	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.39	± 9.6 %
10788	AAC	5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.37	± 9.6 %
10789	AAC	5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.39	± 9.6 %
10790	AAC	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	7.83	± 9.6 %
10791	AAC	5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.92	± 9.6 %
10792	AAC	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz)			± 9.6 %
10793	AAC	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.95	± 9.6 %
10794	AAC	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.82	
10795	AAC	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.84	± 9.6 %
10796	AAC	5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.82	± 9.6 %
40707	AAC	5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.01	± 9.6 %
10797					1 // // //
10797	AAC	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD 5G NR FR1 TDD	7.89	± 9.6 % ± 9.6 %

		1	LEC NO EDI TOO	7.00	± 9.6 %
10801	AAC	5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.89 7.87	± 9.6 %
10802	AAC	5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 kHz)	5G NR FR1 TDD		± 9.6 %
10803	AAC	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.93	
10805	AAC	5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	± 9.6 %
10806	AAC	5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.37	± 9.6 %
10809	AAC	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	± 9.6 % ± 9.6 %
10810	AAC	5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	
10812	AAC	5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.35	± 9.6 %
10817	AAC	5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.35	± 9.6 %
10818	AAC	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	± 9.6 %
10819	AAC	5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.33	± 9.6 %
10820	AAC	5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.30	± 9.6 %
10821	AAC	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.41	± 9.6 %
10822	AAC	5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.41	± 9.6 %
10823	AAC	5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.36	± 9.6 %
10824	AAC	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.39	± 9.6 %
10825	AAC	5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.41	± 9.6 %
10827	AAC	5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.42	± 9.6 %
10828	AAC	5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.43	± 9.6 %
10829	AAC	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.40	±9.6%
	AAC	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.63	±9.6%
10830	AAC	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.73	±9.6%
		5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.74	± 9.6 %
10832	AAC	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 KHz)	5G NR FR1 TDD	7.70	± 9.6 %
10833	AAC	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 60 KHz)	5G NR FR1 TDD	7.75	± 9.6 %
10834	AAC	5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 60 KHz)	5G NR FR1 TDD	7.70	± 9.6 %
10835	AAC	5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.66	± 9.6 %
10836	AAC	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.68	± 9.6 %
10837	AAC	5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.70	± 9.6 %
10839	AAC	5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.67	± 9.6 %
10840	AAC	5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.71	± 9.6 %
10841	AAC	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.49	± 9.6 %
10843	AAC	5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 60 kHz)			
10844	AAC	5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.34	± 9.6 %
10846	AAC	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8,41	± 9.6 %
10854	AAC	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.34	± 9.6 %
10855	AAC	5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.36	±9.6 %
10856	AAC	5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.37	± 9.6 %
10857	AAC	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.35	± 9.6 %
10858	AAC	5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.36	± 9.6 %
10859	AAC	5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.34	± 9.6 %
10860	AAC	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	± 9.6 %
10861	AAC	5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.40	± 9.6 %
10863	AAC	5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	± 9.6 %
10864	AAC	5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.37	± 9.6 %
10865	AAC	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	± 9.6 %
10866	AAC	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6%
10868	AAC	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.89	± 9.6 %
10869	AAD	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.75	± 9.6 %
10869	AAD	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.86	± 9.6 %
	AAD	5G NR (DFT-s-OFDM, 100 /6 NHz, 16QAM, 120 kHz)	5G NR FR2 TDD	5.75	± 9.6 %
10871		5G NR (DFT-s-OFDM, 1705, 100 MHz, 100 MHz, 120 MHz)	5G NR FR2 TDD	6.52	± 9.6 %
10872	AAD	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 10QAM, 120 kHz)	5G NR FR2 TDD	6.61	±9.6 %
10873	AAD	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 64QAM, 120 KHz) 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 64QAM, 120 KHz)	5G NR FR2 TDD	6.65	± 9.6 %
10874	AAD		5G NR FR2 TDD	7,78	± 9.6 %
10875	AAD	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	8.39	± 9.6 %
10876	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	7.95	± 9.6 %
10877	AAD	5G NR (CP-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	8.41	± 9.6 %
10878	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz)			± 9.6 %
10879	AAD	5G NR (CP-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.12	± 9.6 %
10880	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.38	
	AAD	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD 5G NR FR2 TDD	5.75	± 9.6 %
10881			M - NR FR2 [11]	5.96	± 9.6 %
10882	AAD	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz)			
10882 10883		5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	6.57	± 9.6 %
10882	AAD	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 120 KHz) 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz) 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz)			