No.122N01743-SAR Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurlch, Switzerland S Schweizerischer Kalibrierdienst C Service sulsse d'étalonnage Servizio svizzero di tarature S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. #### Methods Applied and Interpretation of Parameters - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty. - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement. - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement. - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage. - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage - Input Offset Measurement. Output voltage and statistical results over a large number of zero voltage measurements. - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance. - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement. - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated. - Power consumption: Typical value for information. Supply currents in various operating modes. | Certificate No: DAE4-1527 Jun22 | Page 2 of 5 | | |---------------------------------|-------------|--| DC Voltage Measurement A/D - Converter Resolution nominal High Range: 1LSB = 6.1μV, full range = -100...+300 mV Low Range: 1LSB = 61nV, full range = -1......+3mV DASY measurement parameters: Auto Zero Time: 3 sec: Measuring time: 3 sec | Calibration Factors | × | Y | Z | |---------------------|-----------------------|-----------------------|-----------------------| | High Range | 403.865 ± 0.02% (k=2) | 403.595 ± 0.02% (k=2) | 403,805 ± 0.02% (k=2) | | Low Range | 3.95898 ± 1.50% (k=2) | 3.98939 ± 1.50% (k=2) | 3.96763 ± 1.50% (k=2) | #### Connector Angle | Connector Angle to be used in DASY system | 61.0 ° ± 1 ° | |---|--------------| |---|--------------| Certificate No: DAE4-1527_Jun22 #### Appendix (Additional assessments outside the scope of SC\$0108) #### 1. DC Voltage Linearity | High Range | Reading (µV) | Difference (μV) | Error (%) | |-------------------|--------------|-----------------|-----------| | Channel X + Input | 200037.59 | 1.98 | 0.00 | | Channel X + Input | 20007.61 | 1.34 | 0.01 | | Channel X - Input | -20004.09 | 1.79 | -0.01 | | Channel Y + Input | 200037.45 | 1.53 | 0.00 | | Channel Y + Input | 20002.68 | -3.42 | -0.02 | | Channel Y - Input | -20007.17 | -1.14 | 0.01 | | Channel Z + Input | 200037.73 | 2.17 | 0.00 | | Channel Z + Input | 20005.72 | -0.34 | -0.00 | | Channel Z - Input | -20006.63 | -0.49 | 0.00 | | | Reading (µV) | Difference (μV) | Error (%) | |-------------------|--------------|-----------------|-----------| | Channel X + Input | 2001.36 | -0,15 | -0,01 | | Channel X + Input | 201.70 | 0.16 | 0.08 | | Channel X - Input | -198.10 | 0.49 | -0.24 | | Channel Y + Input | 2001.44 | 0.07 | 0.00 | | Channel Y + Input | 201.07 | -0.21 | -0.11 | | Channel Y - Input | -199.66 | -0.98 | 0.50 | | Channel Z + Input | 2001.52 | 0.21 | 0.01 | | Channel Z + Input | 200.81 | -0.41 | -0,20 | | Channel Z - Input | -199.00 | -0.15 | 0.07 | #### 2. Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Common mode
Input Voltage (mV) | High Range
Average Reading (μV) | Low Range
Average Reading (μV) | |-----------|-----------------------------------|------------------------------------|-----------------------------------| | Channel X | 200 | -3.95 | -5.31 | | | - 200 | 5.96 | 4.97 | | Channel Y | 200 | -16.18 | -16.25 | | | - 200 | 14,41 | 14.34 | | Channel Z | 200 | 3.01 | 2.86 | | | - 200 | -3.93 | -4.13 | | | | | | #### 3. Channel separation DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Input Voltage (mV) | Channel X (μV) | Channel Y (µV) | Channel Z (μV) | |-----------|--------------------|----------------|----------------|----------------| | Channel X | 200 | (2) | -0.68 | -2.76 | | Channel Y | 200 | 5.43 | - | -0.31 | | Channel Z | 200 | 10.73 | 3.29 | 2 | Certificate No: DAE4-1527_Jun22 4. AD-Converter Values with inputs shorted DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | High Range (LSB) | Low Range (LSB) | |-----------|------------------|-----------------| | Channel X | 16059 | 17078 | | Channel Y | 15965 | 16219 | | Channel Z | 15888 | 13556 | 5. Input Offset Measurement DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10 $M\Omega$ | | Average (μV) | min. Offset (μV) | max. Offset (μV) | Std. Deviation
(µV) | |-----------|--------------|------------------|------------------|------------------------| | Channel X | 1.40 | 0.30 | 2.25 | 0.35 | | Channel Y | -0.62 | -1.30 | 0.47 | 0.33 | | Channel Z | -0.18 | -0.90 | 0.60 | 0.31 | 6. Input Offset Current Nominal Input circuitry offset current on all channels: <25fA 7. Input Resistance (Typical values for information) | | Zeroing (kOhm) | Measuring (MOhm) | |-----------|----------------|------------------| | Channel X | 200 | 200 | | Channel Y | 200 | 200 | | Channel Z | 200 | 200 | 8. Low Battery Alarm Voltage (Typical values for information) | Typical values | Alarm Level (VDC) | | |----------------|-------------------|--| | Supply (+ Vcc) | +7.9 | | | Supply (- Vcc) | -7.6 | | 9. Power Consumption (Typical values for information) | Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) | |----------------|-------------------|---------------|-------------------| | Supply (+ Vcc) | +0.01 | +6 | +14 | | Supply (- Vcc) | -0.01 | -8 | -9 | Certificate No: DAE4-1527_Jun22 国际互认 CALIBRATION CNAS L0570 #### **ANNEX H: Probe Calibration Certificate** EX3DV4-SN: 7683 (2021-12-29) Client SAICT Certificate No: Z21-60444 #### **CALIBRATION CERTIFICATE** Object EX3DV4 - SN: 7683 Calibration Procedure(s) FF-Z11-004-02 Calibration Procedures for Dosimetric E-field Probes Calibration date: December 29, 2021 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22 ± 3) $^{\circ}$ C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) S | cheduled Calibratio | |------------------------|----------------|---|---------------------| | Power Meter NRP2 | 101919 | 15-Jun-21(CTTL, No.J21X04466) | Jun-22 | | Power sensor NRP-Z91 | 101547 | 15-Jun-21(CTTL, No.J21X04466) | Jun-22 | | Power sensor NRP-Z91 | 101548 | 15-Jun-21(CTTL, No.J21X04466) | Jun-22 | | Reference 10dBAttenuat | or 18N50W-10dB | 10-Feb-20(CTTL, No.J20X00525) | Feb-22 | | Reference 20dBAttenuat | or 18N50W-20dB | 10-Feb-20(CTTL, No.J20X00526) | Feb-22 | | Reference Probe EX3DV | 4 SN 3617 | 27-Jan-21(SPEAG, No.EX3-3617_Jan21) | Jan-22 | | DAE4 | SN 1555 | 20-Aug-21(SPEAG, No.DAE4-1555_Aug21 | /2) Aug-22 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) Sc | heduled Calibration | | SignalGenerator MG370 | OA 6201052605 | 16-Jun-21(CTTL, No.J21X04467) | Jun-22 | | Network Analyzer E5071 | C MY46110673 | 21-Jan-21(CTTL, No.J20X00515) | Jan-22 | | | Name | Function | Signature | | Calibrated by: | | | 1 | Calibrated by: Yu Zongying SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: December 31, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory Certificate No: Z21-60444 Page 1 of 9 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.on Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters Polarization Φ rotation around probe axis Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i θ =0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications
Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Methods Applied and Interpretation of Parameters: - NORMx, y, z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not effect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics. - Ax, y, z; Bx, y, z; Cx, y, z; VRx, y, z: A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No:Z21-60444 Page 2 of 9 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:7683 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |---|----------|----------|----------|-----------| | Norm(µV/(V/m) ²) ^A | 0.63 | 0.65 | 0.64 | ±10.0% | | DCP(mV) ⁸ | 107.2 | 107.6 | 107.5 | | #### **Modulation Calibration Parameters** | UID | Communication
System Name | | A
dB | B
dBõV | С | D
dB | VR
mV | Unc ^E (<i>k</i> =2) | |------|------------------------------|---|---------|-----------|-----|---------|----------|---------------------------------| | 0 CW | CW | X | 0.0 | 0.0 | 1.0 | 0.00 | 203.5 | ±2.1% | | | | Y | 0.0 | 0.0 | 1.0 | | 205.8 | C-900-2-900-200 | | | | Z | 0.0 | 0.0 | 1.0 | | 203.8 | | The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No:Z21-60444 Page 3 of 9 A The uncertainties of Norm X, Y, Z do not affect the E2-field uncertainty inside TSL (see Page 4). ⁸ Numerical linearization parameter: uncertainty not required. E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl \(\bar{a}\) chinattl.com \text{Http://www.chinattl.cn} #### DASY/EASY - Parameters of Probe: EX3DV4 - SN:7683 #### Calibration Parameter Determined in Head Tissue Simulating Media | f [MHz] ^C | Relative
Permittivity F | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|----------------------------|-------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 41.9 | 0.89 | 10.34 | 10.34 | 10.34 | 0.20 | 1.19 | ±12.1% | | 1640 | 40.3 | 1.29 | 8.72 | 8.72 | 8.72 | 0.24 | 0.94 | ±12.1% | | 1900 | 40.0 | 1.40 | 8.33 | 8.33 | 8.33 | 0.29 | 0.95 | ±12.1% | | 2100 | 39.8 | 1.49 | 8.23 | 8.23 | 8.23 | 0.20 | 1.12 | ±12.1% | | 2300 | 39.5 | 1.67 | 8.07 | 8.07 | 8.07 | 0.62 | 0.69 | ±12.1% | | 2450 | 39.2 | 1.80 | 7.85 | 7.85 | 7.85 | 0.63 | 0.69 | ±12.1% | | 2600 | 39.0 | 1.96 | 7.55 | 7.55 | 7.55 | 0.49 | 0.83 | ±12.1% | | 3300 | 38.2 | 2.71 | 7.30 | 7.30 | 7.30 | 0.42 | 0.96 | ±13.3% | | 3500 | 37.9 | 2.91 | 7.01 | 7.01 | 7.01 | 0.42 | 1.00 | ±13.3% | | 3700 | 37.7 | 3.12 | 6.73 | 6.73 | 6.73 | 0.39 | 1.06 | ±13.3% | | 3900 | 37.5 | 3.32 | 6.61 | 6.61 | 6.61 | 0.40 | 1.25 | ±13.3% | | 4100 | 37.2 | 3.53 | 6.80 | 6.80 | 6.80 | 0.40 | 1.15 | ±13.3% | | 4400 | 36.9 | 3.84 | 6.61 | 6.61 | 6.61 | 0.35 | 1.35 | ±13.3% | | 4600 | 36.7 | 4.04 | 6.51 | 6.51 | 6.51 | 0.45 | 1.20 | ±13.3% | | 4800 | 36.4 | 4.25 | 6.46 | 6.46 | 6.46 | 0.45 | 1.20 | ±13.3% | | 4950 | 36.3 | 4.40 | 6.25 | 6.25 | 6.25 | 0.40 | 1.35 | ±13.3% | | 5250 | 35.9 | 4.71 | 5.56 | 5.56 | 5.56 | 0.45 | 1.40 | ±13.3% | | 5600 | 35.5 | 5.07 | 5.17 | 5.17 | 5.17 | 0.45 | 1.35 | ±13.3% | | 5750 | 35.4 | 5.22 | 5.21 | 5.21 | 5.21 | 0.55 | 1.20 | ±13.3% | $^{^{\}circ}$ Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz. Certificate No:Z21-60444 Page 4 of 9 F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to $\pm 10\%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to $\pm 5\%$. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ⁶ Alpha/Depth are determined during calibration, SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. # Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ±7.4% (k=2) Certificate No:Z21-60444 Page 5 of 9 ## Receiving Pattern (Φ), θ=0° ## f=600 MHz, TEM ## f=1800 MHz, R22 * 600MHz Uncertainty of Axial Isotropy Assessment: $\pm 1.2\%$ (k=2) -50 Roll[°] + 1800MHz Certificate No:Z21-60444 -0.5 -1.0 -150 * 100MHz -100 Page 6 of 9 100 + 2500MHz ## Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz) Uncertainty of Linearity Assessment: ±0.9% (k=2) compensated Certificate No:Z21-60444 Page 7 of 9 not compensated #### **Conversion Factor Assessment** ## f=750 MHz,WGLS R9(H_convF) f=1900 MHz,WGLS R22(H_convF) ## Deviation from Isotropy in Liquid Uncertainty of Spherical Isotropy Assessment: ±3.2% (k=2) Certificate No:Z21-60444 Page 8 of 9 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:7683 #### Other Probe Parameters | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | 155.7 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disable | | Probe Overall Length | 337mm | | Probe Body Diameter | 10mm | | Tip Length | 9mm | | Tip Diameter | 2.5mm | | Probe Tip to Sensor X Calibration Point | 1mm | | Probe Tip to Sensor Y Calibration Point | 1mm | | Probe Tip to Sensor Z Calibration Point | 1mm | | Recommended Measurement Distance from Surface | 1.4mm | EX3DV4-SN: 7683 (2021-09-22) Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates | PALIDIVITION | CERTIFICATE | | Manifest to The Land | | | | |--
--|--|--|--|--|--| | Object | EX3DV4 - SN:768 | 33 | 100 Earl 12 Tel 12 | | | | | Calibration procedure(s) | QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure for dosimetric E-field probes | | | | | | | Calibration date: | September 22, 20 | 21 | | | | | | The measurements and the unc | certainties with confidence pro
ucted in the closed laboratory | nai standards, which realize the physical units bability are given on the following pages and facility: environment temperature (22 \pm 3) C ϵ | are part of the certificate. | | | | | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | | | | | Power meter NRP | SN: 104778 | 09-Apr-21 (No. 217-03291/03292) | Apr-22 | | | | | Power sensor NRP-Z91 | SN: 103244 | 09-Apr-21 (No. 217-03291) | Apr-22 | | | | | CAMEL SELECT MULTINES | The Allert Control of the | The state of s | | | | | | | SN: 103245 | 09-Apr-21 (No. 217-03292) | Apr-22 | | | | | Power sensor NRP-Z91 | SN: 103245
SN: CG2552 (20x) | 09-Apr-21 (No. 217-03292)
09-Apr-21 (No. 217-03343) | Apr-22
Apr-22 | | | | | Power sensor NRP-Z91
Reference 20 dB Attenuator | The state of s | | Apr-22
Apr-22
Dec-21 | | | | | Power sensor NRP-Z91
Reference 20 dB Attenuator
DAE4 | SN: CG2552 (20x) | 09-Apr-21 (No. 217-03343) | Apr-22 | | | | | Power sensor NRP-Z91
Reference 20 dB Attenuator
DAE4
Reference Probe ES3DV2 | SN: CC2552 (20x)
SN: 660 | 09-Apr-21 (No. 217-03343)
23-Dec-20 (No. DAE4-660_Dec20)
30-Dec-20 (No. ES3-3013_Dec20) | Apr-22
Dec-21
Dec-21 | | | | | Power sensor NRP-Z91 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards | SN: CC2552 (20x)
SN: 660
SN: 3013 | 09-Apr-21 (No. 217-03343)
23-Dec-20 (No. DAE4-660_Dec20)
30-Dec-20 (No. ES3-3013_Dec20)
Check Date (in house) | Apr-22
Dec-21
Dec-21
Scheduled Check | | | | | Power sensor NRP-Z91 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards Power meter E4419B | SN: CC2552 (20x)
SN: 660
SN: 3013 | 09-Apr-21 (No. 217-03343) 23-Dec-20 (No. DAE4-660_Dec20) 30-Dec-20 (No. ES3-3013_Dec20) Check Date (in house) 06-Apr-16 (in house check Jun-20) | Apr-22 Dec-21 Dec-21 Scheduled Check In house check: Jun-22 | | | | | Power sensor NRP-Z91 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards Power meter E4419B Power sensor E4412A | SN: CC2552 (20x) SN: 660 SN: 3013 ID SN: GB41293874 | 09-Apr-21 (No. 217-03343)
23-Dec-20 (No. DAE4-660_Dec20)
30-Dec-20 (No. ES3-3013_Dec20)
Check Date (in house) | Apr-22
Dec-21
Dec-21
Scheduled Check | | | | | Power sensor NRP-Z91 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A | SN: CC2552 (20x) SN: 660 SN: 3013 ID SN: GB41293874 SN: MY41498087 | 09-Apr-21 (No. 217-03343) 23-Dec-20 (No. DAE4-660 Dec20) 30-Dec-20 (No. ES3-3013 Dec20) Check Date (in house) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) | Apr-22 Dec-21 Dec-21 Scheduled Check In house check: Jun-22 In house check: Jun-22 | | | | | Power sensor NRP-291 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C | SN: CC2552 (20x) SN: 660 SN: 3013 ID SN: GB41293874 SN: MY41498087 SN: 000110210 | 09-Apr-21 (No. 217-03343) 23-Dec-20 (No. DAE4-660, Dec20) 30-Dec-20 (No. ES3-3013, Dec20) Check Date (in house) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) | Apr-22 Dec-21 Dec-21 Scheduled Check In house check: Jun-22 In house check: Jun-22 In house check: Jun-22 | | | | | Power sensor NRP-291 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards Power meter E4419B Power sensor E4412A RF generator HP 8648C Network Analyzer E8358A | SN: CC2552 (20x) SN: 660 SN: 3013 ID SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700 | 09-Apr-21 (No. 217-03343) 23-Dec-20 (No. DAE4-660_Dec20) 30-Dec-20 (No. ES3-3013_Dec20) Check Date (in house) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 04-Aug-99 (in house check Jun-20) | Apr-22 Dec-21 Dec-21 Scheduled Check In house check: Jun-22 In house check: Jun-22 In house check: Jun-22 In house check: Jun-22 | | | | | Power sensor NRP-Z91 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C | SN: CC2552 (20x) SN: 660 SN: 3013 ID SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700 SN: US41080477 | 09-Apr-21 (No. 217-03343) 23-Dec-20 (No. DAE4-660_Dec20) 30-Dec-20 (No. ES3-3013_Dec20) Check Date (in house) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 04-Aug-99 (in house check Jun-20) 31-Mar-14 (in house check Oct-20) | Apr-22 Dec-21 Dec-21 Scheduled Check In house check: Jun-22 In house check: Cct-21 | | | | | Power sensor NRP-Z91 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards Power meter E4419B Power sensor E4412A RF generator HP 8648C Network Analyzer E8358A | SN: CC2552 (20x) SN: 660 SN: 3013 ID SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700 SN: US41080477 Name | 09-Apr-21 (No. 217-03343) 23-Dec-20 (No. DAE4-660 Dec20) 30-Dec-20 (No. ES3-3013 Dec20) Check Date (in house) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 04-Aug-99 (in house check Jun-20) 31-Mar-14 (in house check Oct-20) Function | Apr-22 Dec-21 Dec-21 Scheduled Check In house check: Jun-22 In house
check: Cct-21 | | | | Certificate No: EX3-7683_Sep21 Page 1 of 9 #### No.122N01743-SAR Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S C S Schweizerischer Kalibrierdienst Service sulsse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) Accreditation No.: SCS 0108 The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters Polarization ϕ ϕ rotation around probe axis Polarization 3 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system #### Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices -Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x.y.z = NORMx,y.z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax.y.z; Bx.y.z; Cx.y.z; Dx.y.z; VRx,y.z; A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy); in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: EX3-7683 Sep21 Page 2 of 9 EX3DV4 - \$N:7683 September 22, 2021 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:7683 **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--|----------|----------|----------|-----------| | Norm (μV/(V/m) ²) ^A | 0.63 | 0.62 | 0.62 | ± 10.1 % | | DCP (mV) ⁸ | 105.8 | 106.1 | 104.9 | 2 10.1 /0 | Calibration Results for Modulation Response | UID | Communication System Name | | A
dB | B
dB√μV | С | D
dB | VR
mV | Max
dev. | Unc ^E
(k=2) | |-----|---------------------------|---|---------|------------|----------|---------|----------|-------------|---------------------------| | 0 | CW | X | 0.0 | 0.0 | 1.0 0.00 | 0.00 | 136.5 | ±2.7 % | ± 4.7 % | | | | Y | 0.0 | 0.0 | 1.0 | | 148.5 | 1 | | | | | Z | 0.0 | 0.0 | 1.0 | | 140.5 | | 1000 | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ^h The uncertainties of Norm X.Y.Z do not affect the E²-field uncertainty inside TSL (see Page 5). ^a Numerical linearization parameter: uncertainty not required. ^c Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value. EX3DV4-- SN:7683 September 22, 2021 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:7683 #### Other Probe Parameters | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | 156.3 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 1.4 mm | Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job. Certificate No: EX3-7683_Sep21 Page 4 of 9 EX3DV4~ SN:7683 September 22, 2021 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:7683 #### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity | Gonductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|--------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 900 | 41.5 | 0.97 | 9.96 | 9.96 | 9.96 | 0.36 | 1.00 | ± 12.0 % | | 1810 | 40.0 | 1.40 | 8.58 | 8.58 | 8.58 | 0.36 | 0.80 | ± 12.0 % | Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz. At frequencies below 3 GHz, the validity of tissue parameters (a and a) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (a and a) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. Appla/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. Certificate No: EX3-7683_Sep21 Page 5 of 9 EX3DV4-SN:7683 September 22, 2021 # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) Certificate No: EX3-7683_Sep21 Page 6 of 9 EX3DV4-- SN:7683 September 22, 2021 ## Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) Certificate No: EX3-7683_Sep21 Page 7 of 9 EX3DV4-- SN:7683 September 22, 2021 ### Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) Certificate No: EX3-7683_Sep21 Page 8 of 9 EX3DV4- SN:7683 September 22, 2021 #### **Conversion Factor Assessment** ### Deviation from Isotropy in Liquid Error (\$\phi\$, \$\theta\$), f = 900 MHz Certificate No: EX3-7683_Sep21 Page 9 of 9 ## **ANNEX I: Dipole Calibration Certificate** #### 750MHz Dipole Client CTTL(South Branch) Certificate No: Z19-60291 # CALIBRATION CERTIFICATE Object D750V3 - SN: 1163 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: September 3, 2019 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 \pm 3) $^{\circ}$ C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|--|-----------------------| | Power Meter NRP2 | 106276 | 11-Apr-19 (CTTL, No.J19X02605) | Apr-20 | | Power sensor NRP6A | 101369 | 11-Apr-19 (CTTL, No.J19X02605) | Apr-20 | | Reference Probe EX3DV4 | SN 3617 | 31-Jan-19(SPEAG,No.EX3-3617_Jan19) | Jan-20 | | DAE4 | SN 1555 | 22-Aug-19(CTTL-SPEAG,No.Z19-60295) | Aug-20 | | Secondary Standards | ID# | Cal
Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 23-Jan-19 (CTTL, No.J19X00336) | Jan-20 | | NetworkAnalyzer E5071C | MY46110673 | 24-Jan-19 (CTTL, No.J19X00547) | Jan-20 | | | Name | Function | Signature | |----------------|-------------|--------------------|-------------------------| | Calibrated by: | Zhao Jing | SAR Test Engineer | | | Reviewed by: | Lin Hao | SAR Test Engineer | - th | | Approved by: | Qi Dianyuan | SAR Project Leader | 200 | | | | | Innied Contombon 6 8848 | Issued: September 6, 2019 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl @ chinattl.com http://www.chinattl.cn Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn #### **Measurement Conditions** | ASY system configuration, as far as | not given on page 1. | | |-------------------------------------|--------------------------|-------------| | DASY Version | DASY52 | V52.10.2 | | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 750 MHz ± 1 MHz | | | | | | ## Head TSL parameters The following parameters a ng parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.9 | 0.89 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 41.6 ± 6 % | 0.90 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.16 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 8.53 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 1.44 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 5.70 W/kg ± 18.7 % (k=2) | #### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.5 | 0.96 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 55.9 ± 6 % | 0.94 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | **** | | SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.16 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 8.78 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 1.45 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 5.87 W/kg ±18.7 % (k=2) | #### Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 50.5Ω- 4.53jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 26.9dB | | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 48.5Ω- 3.38jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 28.5dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 0.900 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | | |-----------------|-------|--| |-----------------|-------|--| Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn ## DASY5 Validation Report for Head TSL Date: 09.03.2019 Test Laboratory: CTTL, Beijing, China #### DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1163 Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 750 MHz; σ = 0.904 S/m; ϵ_r = 41.62; ρ = 1000 kg/m3 Phantom section: Right Section DASY5 Configuration: - Probe: EX3DV4 SN3617; ConvF(10.03, 10.03, 10.03) @ 750 MHz; Calibrated: 1/31/2019 - · Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1555; Calibrated: 8/22/2019 - Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470) Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.16 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.11 W/kg SAR(1 g) = 2.16 W/kg; SAR(10 g) = 1.44 W/kg Maximum value of SAR (measured) = 2.81 W/kg 0 dB = 2.81 W/kg = 4.49 dBW/kg Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com http://www.chinattl.cn #### Impedance Measurement Plot for Head TSL Certificate No: Z19-60291 Page 6 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl \(\bar{a} \) chinattl.com http://www.chinattl.cn #### DASY5 Validation Report for Body TSL Date: 09.03.2019 Test Laboratory: CTTL, Beijing, China DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1163 Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium parameters used: f=750 MHz; $\sigma=0.942$ S/m; $\epsilon_r=55.87$; $\rho=1000$ kg/m³ Phantom section: Center Section DASY5 Configuration: - Probe: EX3DV4 SN3617; ConvF(9.85, 9.85, 9.85) @ 750 MHz; Calibrated: 1/31/2019 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1555; Calibrated: 8/22/2019 - Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470) Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 52.88 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 3.20 W/kg SAR(1 g) = 2.16 W/kg; SAR(10 g) = 1.45 W/kgMaximum value of SAR (measured) = 2.85 W/kg $0 \ dB = 2.85 \ W/kg = 4.55 \ dBW/kg$ Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn #### Impedance Measurement Plot
for Body TSL Certificate No: Z19-60291 Page 8 of 8 #### 835MHz Dipole Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, Chi Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl achinattl.com http://www.chinattl.cn Client SAICT Certificate No: Z21-60355 #### **CALIBRATION CERTIFICATE** Object D835V2 - SN: 4d057 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: October 18, 2021 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Calibrated by Certificate No.) | Scheduled Calibration | |-------------------------|------------|---|-----------------------| | Power Meter NRP2 | 106277 | 24-Sep-21 (CTTL, No.J21X08326) | Sep-22 | | Power sensor NRP8S | 104291 | 24-Sep-21 (CTTL, No.J21X08326) | Sep-22 | | Reference Probe EX3DV4 | SN 7517 | 03-Feb-21(CTTL-SPEAG,No.Z21-60001) | Feb-22 | | DAE4 | SN 1556 | 15-Jan-21(SPEAG,No.DAE4-1556_Jan21) | Jan-22 | | Secondary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 01-Feb-21 (CTTL, No.J21X00593) | Jan-22 | | NetworkAnalyzer E5071C | MY46110673 | 14-Jan-21 (CTTL, No.J21X00232) | Jan-22 | | | | | | | | Name | Function | Signature | |----------------|-------------|--------------------|--------------------------| | Calibrated by: | Zhao Jing | SAR Test Engineer | A Liza | | Reviewed by: | Lin Hao | SAR Test Engineer | 林光 | | Approved by: | Qi Dianyuan | SAR Project Leader | 25 | | | | | Issued: October 24, 2021 | This calibration certificate shall not be reproduced except in full without written approval of the laboratory. In Collaboration with S D E B G CALIBRATION LABORATORY Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: -86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - . SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. In Collaboration with S P P A A CALIBRATION LABORATORY Add: No.52 Hua YuanBei Road, Haidian District, Beijing, 100191, China Tel; =86-10-62304633-2079 Fax; +86-10-62304633-2504 http://www.chinattl.cn #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52,10.4 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 835 MHz ± 1 MHz | | #### Head TSL parameters The following parameters and calculations were applied: | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.9 ± 6 % | 0.89 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | Serie . | and | #### SAR result with Head TSL | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.39 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 9.64 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 1.56 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 6.29 W/kg ± 18.7 % (k=2) | Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Iel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl a chinattl.com http://www.chinattl.cn #### Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 49.8Ω- 4.19jΩ | |--------------------------------------|---------------| | Return Loss | - 27.5dB | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.301 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| |-----------------|-------| Certificate No: Z21-60355 Page 4 of 6 In Collaboration with e p CALIBRATION LABORATORY Add: No.52 FluaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn #### DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China Date: 10.18.2021 DUT: Dipole 835 MHz; Type: D835V2; Serial; D835V2 - SN: 4d057 Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.886$ S/m; $\varepsilon_r = 40.9$; $\rho = 1000$ kg/m³ Phantom section: Right Section DASY5 Configuration: - Probe: EX3DV4 SN7517; ConvF(9.81, 9.81, 9.81) @ 835 MHz; Calibrated: 2021-02-03 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1556; Calibrated: 2021-01-15 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value - 58.86 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 3.68 W/kg SAR(1 g) = 2.39 W/kg; SAR(10 g) = 1.56 W/kg Smallest distance from peaks to all points 3 dB below = 18 mm Ratio of SAR at M2 to SAR at M1 = 64.9% Maximum value of SAR (measured) = 3.23 W/kg 0 dB = 3.23 W/kg = 5.09 dBW/kg Certificate No: Z21-60355 Page 5 of 6 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl a chinattl.com http://www.chinattl.cn #### Impedance Measurement Plot for Head TSL #### 1750MHz Dipole (2018) Tel: +86-10-62304633-2079 E-mail: cttl a chinattl.com Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2509 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn CTTL(South Branch) Client Certificate No: Z19-60292 #### CALIBRATION CERTIFICATE Object D1750V2 - SN: 1152 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: August 30, 2019 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the
uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility; environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|--|-----------------------| | Power Meter NRP2 | 106276 | 11-Apr-19 (CTTL, No.J19X02605) | Apr-20 | | Power sensor NRP6A | 101369 | 11-Apr-19 (CTTL, No.J19X02605) | Apr-20 | | Reference Probe EX3DV4 | SN 3617 | 31-Jan-19(SPEAG,No.EX3-3617_Jan19) | Jan-20 | | DAE4 | SN 1555 | 22-Aug-19(CTTL-SPEAG,No.Z19-60295) | Aug-20 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 23-Jan-19 (CTTL, No.J19X00336) | Jan-20 | | NetworkAnalyzer E5071C | MY46110673 | 24-Jan-19 (CTTL, No.J19X00547) | Jan-20 | | | Name | Function | Signature | |----------------|-------------|--------------------|-----------| | Calibrated by: | Zhao Jing | SAR Test Engineer | 经机工 | | Reviewed by: | Lin Hao | SAR Test Engineer | 林路 | | Approved by: | Qi Dianyuan | SAR Project Leader | ara | Issued: September 2, 2019 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn http://www.chinattl.cn Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn Measurement Conditions A separation as far as not given on page 1 | DASY Version | DASY52 | V52.10.2 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1750 MHz ± 1 MHz | | #### Head TSL parameters | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.1 | 1.37 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.9 ± 6 % | 1.36 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | () | SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.05 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 36.4 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 4.80 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 19.3 W/kg ± 18.7 % (k=2) | Body TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.4 | 1.49 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 53.1 ± 6 % | 1.52 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | | **** | SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.45 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 37.3 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 5.05 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 20.0 W/kg ± 18.7 % (k=2) | Page 3 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel; +86-10-62304633-2079 Fax; +86-10-62304633-2504 http://www.chinattl.cn #### Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 49.1Ω- 0.84 jΩ | | |--------------------------------------|----------------|--| | Return Loss | - 38.1 dB | | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 45.2Ω- 1.37 jΩ | | |--------------------------------------|----------------|--| | Return Loss | - 25.5 dB | | #### General Antenna Parameters and Design | 1.084 ns | |----------| | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | At the second se | | |--|-------| | Manufactured by | SPEAG | | | |
Certificate No: Z19-60292 Page 4 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl @chinattl.com http://www.chinattl.cn #### DASY5 Validation Report for Head TSL Date: 08.30.2019 Test Laboratory: CTTL, Beijing, China DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1152 Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium parameters used: f=1750 MHz; $\sigma=1.358$ S/m; $\epsilon_r=39.91$; $\rho=1000$ kg/m3 Phantom section: Right Section DASY5 Configuration: - Probe: EX3DV4 SN3617; ConvF(8.38, 8.38, 8.38) @ 1750 MHz; Calibrated: 1/31/2019 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1555; Calibrated: 8/22/2019 - Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470) #### System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 97.38 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 16.8 W/kg SAR(1 g) = 9.05 W/kg; SAR(10 g) = 4.8 W/kg Maximum value of SAR (measured) = 13.9 W/kg 0 dB = 13.9 W/kg = 11.43 dBW/kg Certificate No: Z19-60292 Page 5 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com http://www.chinattl.cn #### Impedance Measurement Plot for Head TSL Certificate No: Z19-60292 Page 6 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn DASY5 Validation Report for Body TSL Date: 08.30.2019 Test Laboratory: CTTL, Beijing, China DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1152 Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium parameters used: f=1750 MHz; $\sigma=1.516$ S/m; $\epsilon_r=53.05$; $\rho=1000$ kg/m3 Phantom section: Center Section DASY5 Configuration: - Probe: EX3DV4 SN3617; ConvF(8.03, 8.03, 8.03) @ 1750 MHz; Calibrated: 1/31/2019 - · Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1555; Calibrated: 8/22/2019 - Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470) System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 87.16 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 17.0 W/kg SAR(1 g) = 9.45 W/kg; SAR(10 g) = 5.05 W/kg Maximum value of SAR (measured) = 14.4 W/kg 0 dB = 14.4 W/kg = 11.58 dBW/kg #### Impedance Measurement Plot for Body TSL