EMC TEST REPORT **Applicant** MeiG Smart Technology Co., Ltd FCC ID 2APJ4-SLM750VSA Product SLM750VSA **Brand** MEIGLink Model SLM750VSA **Report No.** R2202A0142-E1 Issue Date March 1, 2022 TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in FCC Code CFR47 Part15B (2020)/ ANSI C63.4 (2014). The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report. Performed by: Wei Liu/ Manager Wei Liu Approved by: Guangchang Fan/ Director Guangchang Fan # TA Technology (Shanghai) Co., Ltd. No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China TEL: +86-021-50791141/2/3 FAX: +86-021-50791141/2/3-8000 ## **Table of Contents** | 1 | Tes | t Laboratory | 4 | |---|------|---|----| | | 1.1 | Notes of the Test Report | 4 | | | 1.2 | Test facility | 4 | | | 1.3 | Testing Location | 4 | | 2 | Ger | neral Description of Equipment under Test | 5 | | | 2.1 | Client Information | 5 | | | 2.2 | General information | 5 | | | 2.3 | Applied Standards | 6 | | | 2.4 | Test Mode | | | 3 | Tes | t Case Results | 8 | | | 3.1 | Radiated Emission | | | | 3.2 | Conducted Emission | 3 | | 4 | Mai | n Test Instrument | 7 | | Α | NNEX | A: The EUT Appearance1 | 8 | | Α | NNEX | B: Test Setup Photos | 9 | | Α | NNFX | C: Product Change Description 2 | 'n | ## **Summary of measurement results** | Number Test Case | | Clause in FCC Rules | Conclusion | | | | | |--|--------------------|---------------------------------|------------|--|--|--|--| | 1 | Radiated Emission | FCC Part15.109, ANSI C63.4-2014 | PASS | | | | | | 2 | Conducted Emission | FCC Part15.107, ANSI C63.4-2014 | PASS | | | | | | Test Date: September 4,2019~September 5,2019 | | | | | | | | SLM750VSA (Report No.: R2202A0142-E1) is a variant model of SLM750 (Report No.: R1908A0527-E1V1). Changed FCC ID and Product Applicant address and Manufacturer address. Test values partial duplicated from Original for variant. There is no test for variant in this report. The difference between model SLM750VSA and model SLM750 is show in the below table: | | Model | SLM750VSA | SLM750 | | |----------|------------------|---|-----------------------|--| | | iviodei | (Variant) | (Original) | | | Hardware | РСВ | Addsomebands, the related matching circuit wiring has changed | / | | | Software | Software Version | SLM750-V_4.0.13_EQ101 | SLM750-V_2.0.2D_EQ100 | | | RF | RF circuit | Add LTE Band7/40 | / | | Notes: The SLM750VSA support LTE Band 2/4/5/7/40; WCDMA B2/5; GSM 850/1900; The SLM750 support LTE Band 2/4/5/12/13/17/25/26/B41;WCDMA B2/4/5;GSM 850/1900; CDMA BC0; CDMA BC1; The detailed product change description please refers to the Difference Declaration Letter. 1 Test Laboratory ### 1.1 Notes of the Test Report This report shall not be reproduced in full or partial, without the written approval of **TA technology** (shanghai) co., Ltd. The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein .Measurement Uncertainties were not taken into account and are published for informational purposes only. This report is written to support regulatory compliance of the applicable standards stated above. ### 1.2 Test facility #### FCC (Designation number: CN1179, Test Firm Registration Number: 446626) TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform measurements. #### A2LA (Certificate Number: 3857.01) TA Technology (Shanghai) Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform measurement. ## 1.3 Testing Location Company: TA Technology (Shanghai) Co., Ltd. Address: No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China City: Shanghai Post code: 201201 Country: P. R. China Contact: Xu Kai Telephone: +86-021-50791141/2/3 Fax: +86-021-50791141/2/3-8000 Website: http://www.ta-shanghai.com E-mail: xukai@ta-shanghai.com # 2 General Description of Equipment under Test ## 2.1 Client Information | Applicant | MeiG Smart Technology Co., Ltd | | | |----------------------|---|--|--| | Applicant address | Floor 2, Office Building No.5, Lingxia Road, Fenghuang Community, | | | | Applicant address | Fuyong Street, Bao 'an District, Shenzhen | | | | Manufacturer | MeiG Smart Technology Co., Ltd | | | | Manufacturer address | Floor 2, Office Building No.5, Lingxia Road, Fenghuang Community, | | | | Manufacturer address | Fuyong Street, Bao 'an District, Shenzhen | | | #### 2.2 General information | EUT Description | | | | | | | | |---|--------------------|-------------|-------------|--|--|--|--| | Device Type: | Module Device | | | | | | | | Model: | SLM750VSA | | | | | | | | IMEI: | 863879041726491 | | | | | | | | HW Version: | SLM750-V_MB_V1.00 | | | | | | | | SW Version: | SLM750-V_4.0.13_EQ | 101 | | | | | | | Antenna Type: | PCB Antenna | | | | | | | | | Band | Tx (MHz) | Rx (MHz) | | | | | | | GSM 850 | 824 ~ 849 | 869 ~ 894 | | | | | | | GSM 1900 | 1850 ~ 1910 | 1930 ~ 1990 | | | | | | | WCDMA Band II | 1850 ~ 1910 | 1930 ~ 1990 | | | | | | | WCDMA Band V | 824 ~ 849 | 869 ~ 894 | | | | | | Frequency: | LTE Band 2 | 1850 ~ 1910 | 1930 ~ 1990 | | | | | | | LTE Band 4 | 1710 ~ 1755 | 2110 ~ 2155 | | | | | | | LTE Band 5 | 824 ~ 849 | 869 ~ 894 | | | | | | | LTE Band 7 | 2500~2570 | 2500~2570 | | | | | | | LTE Band 40 | 2300 ~ 2400 | 2300 ~ 2400 | | | | | | | GSM: GMSK | | | | | | | | Modulation: | WCDMA RMC: QPSK | | | | | | | | wodulation. | HSDPA: QPSK | | | | | | | | | LTE: QPSK / 16QAM | | | | | | | | Note: The information of the EUT is declared by the manufacturer. | | | | | | | | TA Technology (Shanghai) Co., Ltd. TA-MB-06-001E Page 5 of 20 ## 2.3 Applied Standards According to the specifications of the manufacturer, it must comply with the requirements of the following standards: Test standards FCC Code CFR47 Part15B (2020) ANSI C63.4 (2014) 2.4 Test Mode | Test Mode | | |-----------|-----------------------------------| | Mode 1 | External Power Supply + EUT +Idle | 3 Test Case Results #### 3.1 Radiated Emission #### **Ambient condition** | Temperature | Relative humidity | Pressure | |-------------|-------------------|----------| | 24°C~26°C | 45%~50% | 102.5kPa | #### **Methods of Measurement** The EUT is placed on a non-metallic table 0.8m above the horizontal metal reference ground plane. The distance between EUT and receive antenna should be 3 meters. During the test, the EUT was operating in its typical mode. The test method is according to ANSI C63.4-2014. Sweep the whole frequency band through the range from 30MHz to the 5th harmonic of the carrier. During the test, the height of receive antenna shall be moved from 1 to 4 meters, and the antenna shall be performed under horizontal and vertical polarization. The turn table shall be rotated from 0 to 360 degrees for detecting the maximum of radiated signal level. The data of cable loss and antenna factor has been calibrated in full testing frequency range before the testing. During the test, the EUT is worked at maximum output power. Set the spectrum analyzer in the following: Below 1GHz: RBW=100 kHz / VBW=300 kHz / Sweep=AUTO Above 1GHz: (a) PEAK: RBW=1MHz / VBW=3MHz/ Sweep=AUTO (b) AVERAGE: RBW=1MHz / VBW=3MHz / Sweep=AUTO The radiated emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis). The worst emission was found in lie-down position (X axis) and the worst case was recorded. During the test, EUT is connected to a laptop via a USB cable in the case of power supply. ## **Test Setup** #### **Below 1GHz** #### **Above 1GHz** Note: Area side:2.4mX3.6m Antenna Tower meets ANSI C63.4 requirements for measurements above 1 GHz by keeping the antenna aimed at the EUT during the antenna's ascent/ descent along the antenna mast. Limits | Frequency
(MHz) | Field Strength
(dBµV/m) | Detector | |--|----------------------------|------------| | 30 -88 | 40.0 | Quasi-peak | | 88-216 | 43.5 | Quasi-peak | | 216 – 960 | 46.0 | Quasi-peak | | 960-1000 | 54.0 | Quasi-peak | | 1000-5 th harmonic of the highest | 54 | Average | | frequency or 40GHz which is lower | 74 | Peak | ## **Measurement Uncertainty** The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96. | Frequency | Uncertainty | |----------------|-------------| | 30MHz~200MHz | 4.02 dB | | 200MHz~1000MHz | 3.28 dB | | 1GHz~18GHz | 3.70 dB | #### **Test Results** Sweep the whole frequency band through the range from 30MHz to the 5th harmonic of the carrier, the Emissions in the frequency band 18GHz- 26.5GHz is more than 20dB below the limit are not reported. The following graphs display the maximum values of horizontal and vertical by software. For above 1GHz, Blue trace uses the peak detection, Green trace uses the average detection. Radiated Emission from 30MHz to 1GHz | Frequency
(MHz) | Quasi-Peak
(dBuV/m) | Height (cm) | Polarization | Azimuth (deg) | Correct
Factor (dB) | Margin
(dB) | Limit
(dBuV/m) | |--------------------|------------------------|-------------|--------------|---------------|------------------------|----------------|-------------------| | 65.441488 | 20.0 | 196.0 | Н | 206.0 | -11.6 | 20.0 | 40.0 | | 89.912756 | 32.6 | 125.0 | V | 268.0 | -10.4 | 10.9 | 43.5 | | 100.193240 | 19.8 | 207.0 | V | 2.0 | -10.2 | 23.7 | 43.5 | | 184.167531 | 20.6 | 194.0 | Н | 47.0 | -13.0 | 22.9 | 43.5 | | 199.891572 | 20.6 | 175.0 | Н | 259.0 | -12.5 | 22.9 | 43.5 | | 308.097000 | 16.5 | 195.0 | V | 7.0 | -8.4 | 29.5 | 46.0 | Remark: 1. Correction Factor = Antenna factor+ Insertion loss(cable loss+amplifier gain) 2. Margin = Limit - Quasi-Peak Radiated Emission from 1GHz to 18GHz | Frequency
(MHz) | Peak
(dBuV/m) | Height
(cm) | Polarization | Azimuth (deg) | Correct
Factor (dB) | Margin
(dB) | Limit
(dBuV/m) | |--------------------|------------------|----------------|--------------|---------------|------------------------|----------------|-------------------| | 1061.625000 | 35.5 | 100.0 | V | 321.0 | -18.4 | 38.5 | 74.0 | | 1335.750000 | 34.1 | 100.0 | V | 163.0 | -16.9 | 39.9 | 74.0 | | 1833.000000 | 33.7 | 100.0 | Н | 295.0 | -14.0 | 40.3 | 74.0 | | 2398.250000 | 40.6 | 200.0 | V | 353.0 | -11.6 | 33.4 | 74.0 | | 2989.000000 | 43.7 | 100.0 | V | 227.0 | -8.6 | 30.3 | 74.0 | | 4164.125000 | 40.2 | 200.0 | Н | 348.0 | -5.3 | 33.8 | 74.0 | | Frequency
(MHz) | Average (dBuV/m) | Height (cm) | Polarization | Azimuth (deg) | Correct
Factor (dB) | Margin
(dB) | Limit
(dBuV/m) | |--------------------|------------------|-------------|--------------|---------------|------------------------|----------------|-------------------| | 1095.625000 | 22.3 | 200.0 | V | 222.0 | -18.2 | 31.7 | 54.0 | | 1335.750000 | 24.5 | 100.0 | V | 163.0 | -16.9 | 29.5 | 54.0 | | 1599.250000 | 26.5 | 100.0 | V | 302.0 | -15.4 | 27.5 | 54.0 | | 2383.375000 | 29.7 | 100.0 | V | 201.0 | -11.7 | 24.3 | 54.0 | | 3101.625000 | 27.1 | 100.0 | V | 59.0 | -8.2 | 26.9 | 54.0 | | 4215.125000 | 29.4 | 200.0 | Н | 317.0 | -5.2 | 24.6 | 54.0 | ### 3.2 Conducted Emission #### **Ambient condition** | Temperature | Relative humidity | Pressure | | | |-------------|-------------------|----------|--|--| | 24°C ~26°C | 50%~55% | 102.5kPa | | | #### **Methods of Measurement** The EUT is placed on a non-metallic table of 80cm height above the horizontal metal reference ground plane. During the test, the EUT was operating in its typical mode. The test method is according to ANSI C63.4-2014. Connect the AC power line of the EUT to the L.I.S.N. Use EMI receiver to detect the average and Quasi-peak value. RBW is set to 9 kHz, VBW is set to 30kHz. The measurement result should include both L line and N line. During the test, EUT is connected to a laptop via a USB cable in the case of power supply. #### **Test Setup** Note: Power Supply is AC Power source and it is used to change the voltage 120V/60Hz. #### Limits | Frequency | Conducted Limits(dBμV) | | | | | | |--|------------------------|-----------------------|--|--|--|--| | (MHz) | Quasi-peak | Average | | | | | | 0.15 - 0.5 | 66 to 56 * | 56 to 46 [*] | | | | | | 0.5 - 5 | 56 | 46 | | | | | | 5 - 30 | 60 | 50 | | | | | | * Decreases with the logarithm of the frequency. | | | | | | | ## **Measurement Uncertainty** The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96. U= 2.57 dB. #### **Test Results** Following plots, Blue trace uses the peak detection; Green trace uses the average detection. | Frequency
(MHz) | QuasiPeak
(dBµV) | Average
(dBµV) | Limit
(dBµV) | Margin
(dB) | Meas.
Time
(ms) | Bandwidth
(kHz) | Line | Filter | Corr.
(dB) | |--------------------|---------------------|-------------------|-----------------|----------------|-----------------------|--------------------|------|--------|---------------| | 0.16 | 44.58 | | 65.40 | 20.82 | 1000.0 | 9.000 | L1 | ON | 19.13 | | 0.34 | | 21.82 | 49.17 | 27.35 | 1000.0 | 9.000 | L1 | ON | 19.18 | | 0.37 | 33.23 | | 58.54 | 25.31 | 1000.0 | 9.000 | L1 | ON | 19.20 | | 0.70 | | 25.89 | 46.00 | 20.11 | 1000.0 | 9.000 | L1 | ON | 19.27 | | 0.99 | 17.37 | | 56.00 | 38.63 | 1000.0 | 9.000 | L1 | ON | 19.24 | | 1.16 | | 16.28 | 46.00 | 29.72 | 1000.0 | 9.000 | L1 | ON | 19.23 | | 2.39 | | 13.93 | 46.00 | 32.07 | 1000.0 | 9.000 | L1 | ON | 19.03 | | 2.84 | 16.43 | | 56.00 | 39.57 | 1000.0 | 9.000 | L1 | ON | 19.04 | | 7.60 | 20.77 | | 60.00 | 39.23 | 1000.0 | 9.000 | L1 | ON | 19.21 | | 8.70 | | 16.86 | 50.00 | 33.14 | 1000.0 | 9.000 | L1 | ON | 19.26 | | 28.51 | | 14.98 | 50.00 | 35.02 | 1000.0 | 9.000 | L1 | ON | 19.83 | | 28.51 | 15.79 | | 60.00 | 44.21 | 1000.0 | 9.000 | L1 | ON | 19.83 | Remark: Correct factor=cable loss + LISN factor L line Conducted Emission from 150 KHz to 30 MHz MC Test Report Report No.: R2202A0142-E1 | Frequency
(MHz) | QuasiPeak
(dBµV) | Average
(dBµV) | Limit
(dBµV) | Margin
(dB) | Meas.
Time
(ms) | Bandwidth
(kHz) | Line | Filter | Corr.
(dB) | |--------------------|---------------------|-------------------|-----------------|----------------|-----------------------|--------------------|------|--------|---------------| | 0.16 | 48.85 | | 65.40 | 16.55 | 1000.0 | 9.000 | N | ON | 19.15 | | 0.18 | | 28.62 | 54.31 | 25.69 | 1000.0 | 9.000 | N | ON | 19.17 | | 0.36 | 34.46 | | 58.64 | 24.18 | 1000.0 | 9.000 | N | ON | 19.19 | | 0.70 | | 24.93 | 46.00 | 21.07 | 1000.0 | 9.000 | N | ON | 19.28 | | 0.90 | 20.43 | | 56.00 | 35.57 | 1000.0 | 9.000 | N | ON | 19.24 | | 0.93 | | 16.62 | 46.00 | 29.38 | 1000.0 | 9.000 | N | ON | 19.24 | | 2.39 | | 14.59 | 46.00 | 31.41 | 1000.0 | 9.000 | N | ON | 19.03 | | 3.49 | 16.94 | | 56.00 | 39.06 | 1000.0 | 9.000 | N | ON | 19.05 | | 8.24 | 19.20 | | 60.00 | 40.80 | 1000.0 | 9.000 | N | ON | 19.22 | | 8.72 | | 16.26 | 50.00 | 33.74 | 1000.0 | 9.000 | N | ON | 19.28 | | 28.49 | | 14.96 | 50.00 | 35.04 | 1000.0 | 9.000 | N | ON | 19.69 | | 28.49 | 15.79 | | 60.00 | 44.21 | 1000.0 | 9.000 | N | ON | 19.69 | Remark: Correct factor=cable loss + LISN factor N line Conducted Emission from 150 KHz to 30 MHz Report No.: R2202A0142-E1 ## 4 Main Test Instrument | Name | Manufacturer | Туре | Serial
Number | Calibration
Date | Expiration
Time | | |----------------------------|--------------|-----------|------------------|---------------------|--------------------|--| | Spectrum Analyzer | R&S | FSV40 | 15195-01-00 | 2019-05-19 | 2020-05-18 | | | EMI Test Receiver | R&S | ESCI | 100948 | 2019-05-19 | 2020-05-18 | | | Trilog Antenna | SCHWARZBECK | VULB 9163 | 9163-201 | 2017-11-18 | 2019-11-17 | | | Horn Antenna | R&S | HF907 | 100126 | 2018-07-07 | 2020-07-06 | | | Standard Gain Horn | ETS-Lindgren | 3160-09 | 00102643 | 2018-06-20 | 2020-06-19 | | | EMI Test Receiver | R&S | ESR | 101667 | 2019-05-19 | 2020-05-18 | | | LISN | R&S | ENV216 | 101171 | 2016-12-16 | 2019-12-15 | | | Bore Sight Antenna
mast | ETS | 2171B | 00058752 | / | / | | | Test software | EMC32 | R&S | 9.26.0 | / | / | | # **ANNEX A: The EUT Appearance** The EUT Appearance are submitted separately. ## **ANNEX B: Test Setup Photos** The Test Setup Photos are submitted separately. # **ANNEX C: Product Change Description** The Product Change Description are submitted separately. *****END OF REPORT *****