

Choose Scandinavian trust

RADIO TEST REPORT – REP016466

Type of assessment:

Final product testing

Applicant:

Leonardo Spa

Piazza Monte Grappa, 4

00195 Roma RM – Italy

Product:

Radio Base Station for fixed installation

Model:

ECOS-E DTA7000 V3LPW121

P/N 774-1147/02

FCC ID: 2ATWB-DTA7KV3L1202

Specifications:

- FCC 47 CFR Part 90, Subpart I
- FCC 47 CFR Part 22, Subpart C
- FCC 47 CFR Part 22, Subpart E

Date of issue: September 15, 2023

P. Barbieri

Tested by

D. Guarnone

Reviewed by

Signature 200

Signature

This test report shall not be partially reproduced without the prior written consent of Nemko S.p.A. The phase of sampling of equipment under testis carried out by the customer. Results indicated in this report refer exclusively to the tested samples and apply to the sample as received. This Test Report, when bearing the Nemko name and logo is only valid when issued by a Nemko laboratory or by a laboratory having agreement with Nemko.

Lab locations

Company name	Nemko Spa	Nemko Spa						
Facilities	Via del Carroccio,	Via del Carroccio, 4						
	20853 Biassono (N	20853 Biassono (MB)						
	Italy	Italy						
	+39 039 220 12 01	+39 039 220 12 01						
Test site registration	Organization	Recognition numbers						
	FCC	CC 682159						
Website	www.nemko.com							

Limits of responsibility

Note that the results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

This test report has been completed in accordance with the requirements of ISO/IEC 17025. All results contained in this report are within Nemko Spa ISO/IEC 17025 accreditation.

Copyright notification

Nemko Spa authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko Spa accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

Table of Contents

Table of (Contents	3
Section 1	Report summary	4
1.1	Test specifications	4
1.2	Test methods	4
1.3	Exclusions	4
1.4	Statement of compliance	4
1.5	Test report revision history	4
Section 2	Engineering considerations	5
2.1	Modifications incorporated in the EUT for compliance	5
2.2	Technical judgment	5
2.3	Deviations from laboratory tests procedures	5
Section 3	Test conditions	6
3.1	Atmospheric conditions	6
3.2	Power supply range	6
Section 4	Measurement uncertainty	7
4.1	Uncertainty of measurement	7
Section 5	Information provided by the applicant	8
5.1	Disclaimer	8
5.2	Applicant/Manufacture	8
5.3	EUT information	8
5.4	Technical information	9
5.5	EUT setup details	9
Section 6	Summary of test results	. 14
6.1	Testing location	. 14
6.2	Testing period	. 14
6.3	Sample information	. 14
6.4	FCC Part 2 and 90 Subpart I test requirements results	. 14
Section 7	Testing data	. 15
7.1	Number of frequencies	. 15
7.2	Modulation characteristic	. 16
7.3	Transmitter Output Power	. 21
7.4	Bandwidth limitations	. 39
7.5	Spectrum mask and spurious emissions	. 56
7.6	Transient frequency behavior	164
7.7	Transmitter frequency stability	169
Section 8	Photos	171
8.1	Photos of the test set-up	171
8.2	Photos of the EUT	173

Section 1 Report summary

1.1 Test specifications

FCC 47 CFR Part 90, Subpart I	Private land mobile radio services. General technical standards
FCC 47 CFR Part 22, Subpart C	Public Mobile Services. Operational and Technical Requirements
FCC 47 CFR Part 22, Subpart E	Public Mobile Services. Paging and Radiotelephone Service

1.2 Test methods

ANSI C63.26-2015	American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services
FCC 47 CFR Part 2, Subpart J	Equipment authorization procedures

1.3 Exclusions

None

1.4 Statement of compliance

In the configuration tested, the EUT was found compliant.

Testing was performed against all relevant requirements of the test standard except as noted in section 1.3 above. Results obtained indicate that the product under test complies In full with the requirements tested. The test results relate only to the items tested.

See "Summary of test results" for full details.

1.5 Test report revision history

Table 1.5-1: Test report revision history

Revision #	Date of issue	Details of changes made to test report
REP016466	September 15, 2023	Original report issued

Section 2 Engineering considerations

2.1 Modifications incorporated in the EUT for compliance

There were no modifications performed to the EUT during this assessment.

2.2 Technical judgment

None

2.3 Deviations from laboratory tests procedures

No deviations were made from laboratory procedures.

Section 3 Test conditions

3.1 Atmospheric conditions

In the laboratory, the following ambient conditions are respected for each test reported below:

Ambient temperature:	18 ÷ 33 °C (1)
Relative Humidity:	25 ÷ 70 % ⁽²⁾
Atmospheric pressure:	860 ÷ 1060 hPa

The following instruments are used to monitor the environmental conditions:

Equipment	Manufacturer	Model	Serial N°
Thermo-hygrometer data loggers	Testo	175-H2	20012380/305
Thermo-hygrometer data loggers	Testo	175-H2	38203337/703
Barometer	Castle	GPB 3300	072015

3.2 Power supply range

The normal test voltage for equipment to be connected to the mains shall be the nominal mains voltage. For the purpose of the present document, the nominal voltage shall be the declared voltage, or any of the declared voltages ±5 %, for which the equipment was designed.

Section 4 Measurement uncertainty

4.1 Uncertainty of measurement

lemko

The measurement uncertainty was calculated for each test and quantity listed in this test report, according to CISPR 16-4-2 and other specific test standard and is documented in Nemko Spa working manual WML1002. The assessment of conformity for each test performed on the equipment is performed not taking into account the measurement uncertainty. The two following possible verdicts are stated in the report:

P (Pass) - The measured values of the equipment respect the specification limit at the points tested. The specific risk of false accept is up to 50% when the measured result is close to the limit.

F (Fail) - One or more measured values of the equipment do not respect the specification limit at the points tested. The specific risk of false reject is up to 50% when the measured result is close to the limit.

Hereafter Nemko's measurement uncertainties are reported:

EUT	Туре	Test	Range	Measurement Uncertainty	Notes
		Frequency error	0.001 MHz ÷ 40 GHz	0.08 ppm	(1)
			0.009 MHz ÷ 30 MHz	1.1 dB	(1)
		Carrier power	30 MHz ÷ 18 GHz	1.5 dB	(1)
		RF Output Power	18 MHz ÷ 40 GHz	3.0 dB	(1)
			40 MHz ÷ 140 GHz	5.0 dB	(1)
		Adjacent channel power	1 MHz ÷ 18 GHz	1.4 dB	(1)
			0.009 MHz ÷ 18 GHz	3.0 dB	(1)
		Conducted spurious emissions	18 GHz ÷ 40 GHz	4.2 dB	(1)
			40 GHz ÷ 220 GHz	6.0 dB	(1)
		Intermodulation attenuation	1 MHz ÷ 18 GHz	2.2 dB	(1)
		Attack time – frequency behaviour	1 MHz ÷ 18 GHz	2.0 ms	(1)
		Attack time – power behaviour	1 MHz ÷ 18 GHz	2.5 ms	(1)
	Conducted	Release time – frequency behaviour	1 MHz ÷ 18 GHz	2.0 ms	(1)
		Release time – power behaviour	1 MHz ÷ 18 GHz	2.5 ms	(1)
Transmittor		Transient behaviour of the transmitter-Transient frequency behaviour	1 MHz ÷ 18 GHz	0.2 kHz	(1)
Transmitter		Transient behaviour of the transmitter – Power level slope	1 MHz ÷ 18 GHz	9%	(1)
		Frequency deviation - Maximum permissible frequency deviation	0.001 MHz ÷ 18 GHz	1.3%	(1)
		Frequency deviation - Response of the transmitter to modulation frequencies above 3 kHz	0.001 MHz ÷ 18 GHz	0.5 dB	(1)
		Dwell time	-	3%	(1)
		Hopping Frequency Separation	0.01 MHz ÷ 18 GHz	1%	(1)
		Occupied Channel Bandwidth	0.01 MHz ÷ 18 GHz	2%	(1)
		Modulation Bandwidth	0.01 MHz ÷ 18 GHz	2%	(1)
			0.009 MHz ÷ 26.5 GHz	6.0 dB	(1)
		Radiated spurious emissions	26.5 GHz ÷ 66 GHz	8.0 dB	(1)
	Padiated		66 GHz ÷ 220 GHz	10 dB	(1)
	naulateu		10 kHz ÷ 26.5 GHz	6.0 dB	(1)
		Effective radiated power transmitter	26.5 GHz ÷ 66 GHz	8.0 dB	(1)
			66 GHz ÷ 220 GHz	10 dB	(1)

NOTES:

(1) The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k = 2, which for a normal distribution corresponds to a coverage probability of approximately 95 %

Section 5 Information provided by the applicant

5.1 Disclaimer

Nèmko

This section contains information provided by the applicant and has been utilized to support the test plan. Inaccurate information provided by the applicant can affect the validity of the results contained within this test report. Nemko accepts no responsibility for the information contained within this section and the impact it may have on the test plan and resulting measurements.

5.2 Applicant/Manufacture

Applicant name	Leonardo Spa
Applicant address	Piazza Monte Grappa, 4 – 00195 Roma (RM) – Italy
Manufacture name	Leonardo Spa
Manufacture address	Piazza Monte Grappa, 4 – 00195 Roma (RM) – Italy

5.3 EUT information

Product name	Radio Base Station for fixed installation
Model	ECOS-E DTA7000 V3LPW121
Model variant(s)	General Code: ECOS-E DTA7000 aayPz12o
	aa = 2 digits (Frequency Band)
	V3 = 136 - 174 MHz
	00 = no radio part
	y = 1 digit (RF Power level Configuration)
	L = 50 Watt
	N = no transmitter
	z = 1 digit (RF Configuration (Antenna Commutation and RX Diversity))
	W =configuration with 2 receivers
	0 = configuration without receiver
	o = 1 digit (Options)
	0 = no option board
	1 = with DMR option board
Serial number	145307
Part number	774-1147/02
Power supply requirements	13.2 V DC
Product description and theory of operation	The EUT is a radio base station for fixed installation
Software version	1.14.3.0

5.4 Technical information

Nemko

System type	Mobile system											
	Base/Fixed point-to-poir	Base/Fixed point-to-point system										
Frequency band	138 MHz – 174 MHz											
Frequency Min (MHz)	138 MHz											
Frequency Max (MHz)	174 MHz											
RF power Max (W), Conducted	50 W (47 dBm)											
Field strength, dBµV/m @ 3 m	N/A											
Measured BW (kHz), 99% OBW	10.3 kHz											
Emission designators	Analog	FM 11K0F3E / 16K0F3E (12.5 / 25 kHz)										
	DMR 4FSK Voice	7K60FXE (12.5 kHz)										
	DMR 4FSK Data	7K60FXD (12.5 kHz)										
	CST link 4FSK	6K05FXD / 6K05FXE (12.5 kHz)										
	P25 C4FM Voice	8K10F1E (12.5 kHz)										
	P25 C4FM Data	8K10F1D (12.5 kHz)										
Transmitter spurious, dBm @ 3 m	-45.68 dBm (@ 1.89 GHz)											
Antenna information	Antenna not provided											

5.5 EUT setup details

5.5.1 Radio exercise details

The following software has been used to set the EUT.

	🌾 DTA7000 -	10.14.12.128	×	+														-	0	×
\leftarrow	CÂ	Non sicuro	10	0.14.12.128/cps							A	Q	☆	C)	£_≡	Ē	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			b
		*	LEC	ONARDO		🗁 Open	🛱 Save	↓ Read	↑ Write	Ф ОВМ	Help	p E	Manual	🕐 Logo	ut					
		-																		
			A	General Settings				Radio S	ettings											
			0	Network Settings			Ch	iannel Plan	Flexible	9				~						
			S	SoIP Simulcast Settings		π	X Base Frequ	ency [MHz]	162,000	000										
			S	CST Simulcast Settings		R	X Base Frequ	ency [MHz]	173,975	000										
			C	Synchronization Settings			Channel Sp	acing [kHz]	12.5 kH	Iz				~						
			۱	DMR Trunking Settings		PI	hysical Chanr	nel Number	1											
	Conventional Settings						TX Frequ	ency [MHz]	150,100000											
			4	Radio Settings			RX Frequ	ency [MHz]	170,000	000										
			n 	Voice Gateway Settings			P	ower Level	High					~						
			÷	IP Gateway Settings		Bra	anching Atten	uation [dB]	0,0											
				Embedded Proxy Server	High	Power Level	Antenna [dBi	m] / [Watts]	47,0			50,1								
				Common Settings	High Po	wer Level DT	A Output [dBi	m] / [Watts]	47,0			50,1								
					Low	Power Level	Antenna [dBi	m] / [Watts]	30,0			1								
					Low Po	wer Level DT	A Output [dBi	m] / [Watts]	30,0			1								
		c	Copyrig	ht ©2022 - All rights reserved - Licenses																
			-									-								

☆ DTA7000 - 10.14.12.128 × +			- 0 ×
C 🙃 🔺 Non sicuro 10.14.12.128/c	:ps		t 🕀 😪 🤮 ··· 🔔
% LEONARDO	🗁 Open 📙 Save 븆 Read	🕈 Write 🌣 O&M 🕄 Help	Manual 😃 Logout
General Settings	General	Settings	
Network Settings	RBS Name	My ECOS-E	
SolP Simulcast Settings	RBS Model	136-174 MHz - Low Power	~
SCST Simulcast Settings	RBS Mode	FM Conventional	~
Synchronization Settings	Network Model	DMR Trunking DMR Conventional P25 Conventional	
MR Trunking Settings	Network Identity	FM Conventional DMR-FM Conventional	
Conventional Settings	Site Identity	EPS Only CST Link	
Fadio Settings	RBS Radio ID	1	
O Voice Gateway Settings	RBS Type	Master	~
IP Gateway Settings	Local Repeater in fallback mode	Disabled	~
P Cerca	· 🤹 💽 🗖		へ 管 応 dッ) 11:14 「

	FA7000 - 10.14.12.128 × +		- 0
G	6 A Non sicuro 10.14.12.128/1	nanagement	
絵 LE	EONARDO	🗁 Open 🔶 Read	🕈 Write 🌣 CPS 😯 Help 🗐 Manual 😃 Logout
	Status & Measures	RX TE	ST
0	HW Settings & Info	Receiver Test	Disabled ~
\$	O&M Settings		
<u>L</u>	Licences Management	TX TE	ST
#	Inputs & Ouptuts	Transmitter Test	Disabled ~
F	Tuner		Disabled Standard PRBS 23 bit
67	Troubleshooting Tools	IP Network	Standard Symbol Rate Pattern (+3, +3, -3, -3) K Standard Low Deviation Pattern (+1, +1, -1, -1) DMR 0.152 REF. Toot Pattern
Ŧ	SW & Codeplug	IP Network Test	DMR 0.153 BER Test Pattern + 1% DMR Tone Test Pattern (1031 Hz)
dı	Diagnostic		FM Modulation AF from 4W Port 1 FM Modulation 1 Khz Tone @ Nominal Deviation
A	Coverage Test		APCO Standard Tone Test Pattern (1011 Hz) APCO Standard Tone Test Pattern (1011 Hz) +5%
5)	Firewall		APCO Standard Modulation Fidelity Pattern
0.0	-arca 1		<u>രം</u> പ്രം 11:13

5.5.2 EUT sub assemblies

In the following picture the architecture of the EUT is shown.

5.5.3 EUT interface ports

Port	Name	Type ¹	Cable Max. >3m	Cable Shielded	Description
0	Enclosure	N/E	-	_	_
1	13.2 V dc input	DC	\boxtimes		Two wires cable
2	LAN	ТР	\boxtimes	\boxtimes	Standard cable with RJ45 connector
3	RF RX1 antenna	ANT	\boxtimes	\boxtimes	Coaxial cable with sma connector
4	RF RX2 antenna	ANT	\boxtimes	\boxtimes	Coaxial cable with sma connector
5	Main GPS antenna	ANT	\boxtimes	\boxtimes	Coaxial cable with sma connector
6	Spare GPS antenna	ANT	\boxtimes	\boxtimes	Coaxial cable with sma connector
7	Mini USB	I/O	_	_	Normally not used
8	USB type A	I/O	_	_	Normally not used
9	RF TX antenna	ANT	\boxtimes	\boxtimes	Coaxial cable with N connector
10	15 pole HD	I/O	\boxtimes		Multi wires cable
11	4W+E&M	ТР	\boxtimes		Multi wires cable
Notes: ¹ Port ty	pe:				
AC = AC	Power Port DC = DC	Power Port	N/E =	Non-Electrical	ANT = Antenna Port
I/O = Sig	nal/Control Input or Output Port		TP = Wired netv	vork or telecommur	nication Port

5.5.4 Support equipment

Product Type	Manufacturer	Model	Comments
Notebook	DELL	Latitude	I

5.5.5 Radiated testing block diagram (below 1 GHz)

5.5.6 Radiated testing block diagram (above 1 GHz)

Antenna port testing block diagram 5.5.7

Section 6 Summary of test results

6.1	Testing location			
Tastia	estion (c)	Nomka Sna		
Test IO	cation (s)	ментко зра		
6.2	Testing period			
Test st	art date	September 11, 2023	Test end date	September 15, 2023
6.3	Sample information	n		
Receip	t date	August 02, 2023	Nemko sample ID number(s)	PRJ00367500001

6.4 FCC Part 2, 22 and 90 test requirements results

Table 6.4-1: FCC requirements results

Part	Test description	Verdict
§2.1047	Modulation characteristics	Pass
Part	Test description	Verdict
§90.205(h)	Transmitter output power	Pass
§90.209(b)	Bandwidth limitations	Pass
§90.210	Spectrum mask and spurious emissions	Pass
§90.214	Transient frequency behavior	Pass
§90.213(a)	Transmitter frequency stability	Pass
Notes: -		

Part	Test description	Verdict
§22.565	Transmitter output power	Pass
§22.359	Emission limitations	Pass
§22.355	Frequency tolerance	Pass
Notes:		

Notes:

Section 7 Testing data

7.1 Number of frequencies

7.1.1 References, definitions and limits

ANSI C63.26, Clause 5.1.2:

Measurements of transmitters shall be performed and, if required, reported for each frequency band in which the EUT can be operated with the device transmitting at the number of frequencies in each band specified in table below.

			Table 7.1-1: Frequency	Range of Operation		
Freq	uency range over which th	e device			Location of measurem	ent frequency inside the
operates (in each band)		Number of test frequen	cies required	operating frequency range		
	1 MHz or less		1		Center (mido	lle of the band)
	1–10 MHz		2		1 near high end	d, 1 near low end
	Greater than 10 MHz		3	:	1 near high end, 1 near	center and 1 near low end
Notes:	"near" means as close	as possible to or at	the centre / low end / high end	of the frequency range over	which the device operates	
7.1.2	Test summary					
Verdict		Pass				
Tested b	у	P. Barbieri		Test date	Septe	ember 11, 2023
7.1.3	Observations, setting	s and special no	otes			
None						
7.1.4	Test data					
			Table 7.1-2: Test cl	hannels selection		
Start o rar	of Frequency End on the End of Frequency End of the End	f Frequency 1ge, MHz	Frequency range bandwidth, MHz	Low channel, MHz	Mid channel, MHz	High channel, MHz
	138	174	36	138.1	156.0	173.9

Modulation characteristic 7.2

7.2.1 References, definitions and limits

FCC §2.1047:

- (a) Voice modulated communication equipment. A curve or equivalent data showing the frequency response of the audio modulating circuit over a range of 100 to 5000 Hz shall be submitted. For equipment required to have an audio low-pass filter, a curve showing the frequency response of the filter, or of all circuitry installed between the modulation limiter and the modulated stage shall be submitted.
- Equipment which employs modulation limiting. A curve or family of curves showing the percentage of modulation versus the modulation input (b) voltage shall be supplied. The information submitted shall be sufficient to show modulation limiting capability throughout the range of modulating frequencies and input modulating signal levels employed

Test summary 7.2.2

Verdict	Pass		
Tested by	P. Barbieri	Test date	September 14, 2023

7.2.3 Observations, settings and special notes

Per ANSI C63.26 Subclause 5.3.1: The audio frequency response is the degree of closeness to which the frequency deviation of the transmitter follows a prescribed characteristic. s:

Spectrum analy	yser setting
----------------	--------------

Receiver mode	RMS deviation
Audio frequency generator tone	100 Hz and 5000 Hz

Reference voltage measurement: Apply a 1000 Hz tone and adjust the audio frequency generator to produce 20% of the rated system deviation. Record the DMM reading as VREF.

Calculation of the audio frequency response at the present frequency: 20 × Log₁₀ (V_{FREQ} / V_{REF})

Per ANSI C63.26 Subclause 5.3.2: Modulation limiting is the ability of a transmitter circuit to limit the transmitter from producing deviations in excess of a rated system deviation.

Spectrum analyser settings:

Receiver mode	Peak positive and negative deviation
Audio frequency generator tone	300 Hz, 2500 Hz and 3000 Hz

Reference voltage measurement: Apply a 1000 Hz tone and adjust the audio frequency generator to produce 60% of the rated system deviation. This is the 0 dB reference level. Plot the data set as a percentage of deviation relative to the 0 dB reference point versus input voltage.

7.2.4 Test equipment list

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
Spectrum Analyzer	Rohde & Schwarz	FSW43	101767	2023-01	2024-01
Shielded room	Siemens	10m control room	1947	NCR	NCR
Radiocommunication Tester	R&S	CMT	883152/001	2021/01	2024-01
Audio Generator	Rohde & Schwarz	APN04	860 093/017	2021-12	2023-12

Note: NCR - no calibration required, VOU - verify on use

Section 7 Testing data

7.2.5 Test data

Modulation Limiting

Modulation Limiting

Audio frequency response

Audio frequency response

7.3 Transmitter Output Power

7.3.1 References, definitions and limits

FCC §90.205:

- (d) Power and antenna height limits within 150–174 MHz.
- (1) The maximum allowable station ERP is dependent upon the station's antenna HAAT and required service area and will be authorized in accordance with table 1. Applicants requesting an ERP in excess of that listed in table 1 must submit an engineering analysis based upon generally accepted engineering practices and standards that includes coverage contours to demonstrate that the requested station parameters will not produce coverage in excess of that which the applicant requires.
- (2) Applications for stations where special circumstances exist that make it necessary to deviate from the ERP and antenna heights in Table 1 will be submitted to the frequency coordinator accompanied by a technical analysis, based upon generally accepted engineering practices and standards, that demonstrates that the requested station parameters will not produce a signal strength in excess of 37 dBu at any point along the edge of the requested service area. The coordinator may then recommend any ERP appropriate to meet this condition.
- (3) An applicant for a station with a service area radius greater than 40 km (25 mi) must justify the requested service area radius, which will be authorized only in accordance with table 1, note 4. For base stations with service areas greater than 80 km, all operations 80 km or less from the base station will be on a primary basis and all operations outside of 80 km from the base station will be on a secondary basis and will be entitled to no protection from primary operations.

Service area radius (km):	3	8	13	16	24	32	40 ⁴	48 ⁴	64 ⁴	80 ⁴
Maximum ERP (w) ¹ :	1	28	178	² 500	² 500	² 500	² 500	² 500	² 500	² 500
Up to reference HAAT (m) ³ :	15	15	15	15	33	65	110	160	380	670

Table 7.3-1: Maximum ERP/Reference HAAT for a Specific Service Area Radius

Notes: ¹Maximum ERP indicated provides for a 37 dBu signal strength at the edge of the service area per FCC Report R–6602, Fig. 19 (See § 73.699, Fig. 10). ²Maximum ERP of 500 watts allowed. Signal strength at the service area contour may be less than 37 dBu.

³ When the actual antenna HAAT is greater than the reference HAAT, the allowable ERP will be reduced in accordance with the following equation: $ERP_{allow} = ERP_{max} \times (HAAT_{ref} / HAAT_{actual})^2$.

⁴ Applications for this service area radius may be granted upon specific request with justification and must include a technical demonstration that the signal strength at the edge of the service area does not exceed 37 dBu.

(s) The output power shall not exceed by more than 20 percent either the output power shown in the Radio Equipment List [available in accordance with § 90.203(a)(1)] for transmitters included in this list or when not so listed, the manufacturer's rated output power for the particular transmitter specifically listed on the authorization.

FCC §22.565:

The transmitting power of base, mobile and fixed transmitters operating on the channels listed in § 22.561 must not exceed the limits in this section.

(a) Maximum ERP. The effective radiated power (ERP) of base and fixed transmitters must not exceed the applicable limits in this paragraph under any circumstances.

Frequency range (MHz)	Maximum ERP (watts)
152 – 153	1400
157 – 159	150
454 – 455	3500
459 – 460	150

- (b) Basic power limit. Except as provided in paragraph (d) of this section, the ERP of base transmitters must not exceed 500 Watts.
- (c) Height-power limits. Except as provided in paragraph (d) of this section, the ERP of base transmitters must not exceed the amount that would result in an average distance to the service contour of 41.6 kilometers (26 miles) for VHF channels or 30.7 kilometers (19 miles) for UHF channels. The average distance to the service contour is calculated by taking the arithmetic mean of the distances determined using the procedures specified in § 22.567 for the eight cardinal radial directions, excluding cardinal radial directions for which 90% or more of the distance so calculated is over water.

References, definitions and limits, continued

- (d) Encompassed interfering contour areas. Base transmitters are exempt from the basic power and height-power limits of this section if the area within their interfering contours is totally encompassed by the interfering contours of operating co-channel based transmitters controlled by the same licensee. For the purpose of this paragraph, operating transmitters are authorized transmitters that are providing service to subscribers.
- (e) Adjacent channel protection. The ERP of base and fixed transmitters must not exceed 500 Watts if they transmit on channel 454.025 MHz and are located less than 7 kilometers (4.3 miles) from any Private Radio Services station receiving on adjacent channel 454.0000 MHz.
- (f) Mobile transmitters. The transmitter output power of mobile transmitters must not exceed 60 watts.

7.3.2 Test summary

Verdict	Pass		
Tested by	P. Barbieri	Test date	September 12, 2023

7.3.3 Observations, settings and special notes

Manufacturer's rated output power is 50 W or 47 dBm. 20% of the rated power = 47.78 dBm

Measurement of peak power was performed per ANSI C63.26 subclause 5.2.3.3. Spectrum analyser settings:

Resolution bandwidth	≥OBW
Video bandwidth	≥ 3 × RBW
Frequency span	≥ 2 × OBW
Detector mode	Peak
Trace mode	Max Hold
Sweep time	≥ 10 × (number of points in sweep) × (transmission symbol period)

7.3.4 Test equipment list

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
Spectrum Analyzer	Rohde & Schwarz	FSW43	101767	2023-01	2024-01
Shielded room	Siemens	10m control room	1947	NCR	NCR

Note: NCR - no calibration required, VOU - verify on use

7.3.5 Test data

Table 7.3-2: Transmitter power results

			Max	
Modulation	Frequency, MHz	Output power, dBm	Antenna gain, dBd	ERP limit, dBm
FM 12.5 kHz	138.1	47.1	4.7	51.8
FM 25.0 kHz	138.1	47.1	4.7	51.8
DMR 4FSK	138.1	47.1	4.7	51.8
CST 4FSK	138.1	47.2	4.6	51.8
P25 C4FM	138.1	47.2	4.6	51.8
FM 12.5 kHz	156.0	47.4	4.4	51.8
FM 25.0 kHz	156.0	47.4	4.4	51.8
DMR 4FSK	156.0	47.4	4.4	51.8
CST 4FSK	156.0	47.4	4.4	51.8
P25 C4FM	156.0	47.4	4.4	51.8
FM 12.5 kHz	173.9	47.2	4.6	51.8
FM 25.0 kHz	173.9	47.2	4.6	51.8
DMR 4FSK	173.9	47.2	4.6	51.8
CST 4FSK	173.9	47.3	4.5	51.8
P25 C4FM	173.9	47.2	4.6	51.8

Table 7.3-3: Rated vs measured power

		Rated output	Measured output		Difference limit,	
Modulation	Frequency, MHz	power, dBm	power, dBm	Difference, dB	dB	Margin, dB
FM 12.5 kHz	138.1	47.0	47.1	+0.1	+0.8	-0.7
FM 25.0 kHz	138.1	47.0	47.1	+0.1	+0.8	-0.7
DMR 4FSK	138.1	47.0	47.1	+0.1	+0.8	-0.7
P25 C4FM	138.1	47.0	47.2	+0.2	+0.8	-0.6
CST 4FSK	138.1	47.0	47.2	+0.2	+0.8	-0.6
FM 12.5 kHz	156.0	47.0	47.4	+0.4	+0.8	-0.4
FM 25.0 kHz	156.0	47.0	47.4	+0.4	+0.8	-0.4
DMR 4FSK	156.0	47.0	47.4	+0.4	+0.8	-0.4
P25 C4FM	156.0	47.0	47.4	+0.4	+0.8	-0.4
CST 4FSK	156.0	47.0	47.4	+0.4	+0.8	-0.4
FM 12.5 kHz	173.9	47.0	47.2	+0.2	+0.8	-0.6
FM 25.0 kHz	173.9	47.0	47.2	+0.2	+0.8	-0.6
DMR 4FSK	173.9	47.0	47.2	+0.2	+0.8	-0.6
P25 C4FM	173.9	47.0	47.3	+0.3	+0.8	-0.5
CST 4FSK	173.9	47.0	47.2	+0.2	+0.8	-0.6

Output power with modulation DMR 4FSK at 138.1 MHz

Output power with modulation DMR 4FSK at 156.0 MHz

Output power with modulation DMR 4FSK at 173.9 MHz

Output power with modulation FM 12.5 kHz at 138.1 MHz

Output power with modulation FM 12.5 kHz at 156.0 MHz

Output power with modulation FM 12.5 kHz at 173.9 MHz

Output power with modulation FM 25 kHz at 138.1 MHz

Output power with modulation FM 25 kHz at 156.0 MHz

Output power with modulation FM 25 kHz at 173.9 MHz

Output power with modulation P25 C4FM at 138.1 MHz

Output power with modulation P25 C4FM at 156.0 MHz

Output power with modulation P25 C4FM at 173.9 MHz

Output power with modulation CST 4FSK at 138.1 MHz

Output power with modulation CST 4FSK at 156.0 MHz

Output power with modulation CST 4FSK at 173.9 MHz

7.4 Bandwidth limitations

7.4.1 References, definitions and limits

FCC §90.209:

- (b) The maximum authorized single channel bandwidth of emission corresponding to the type of emission specified in §90.207 is as follows:
- (5) Unless specified elsewhere, channel spacings and bandwidths that will be authorized in the following frequency bands are given in the following table.

Table 7.4-1:	Standard	Channel :	Spacina	/Bandwidth
10010 7.1 1.	Standard	channer.	spacing/	Danathatin

	Frequency band, MHz	Channel spacing, kHz	Authorized bandwidth ¹ , kHz
	138 – 174	7.5	20 / 11.25 / 6
Note:	¹ Operations using equipment designed to operate designed to operate with a 12.5 kHz channel band 6.25 kHz channel bandwidth will be authorized a 6 January 1, 2013	e with a 25 kHz channel bandwidth will be auth width will be authorized a 11.25 kHz bandwidt i kHz bandwidth. All stations must operate on o	orized a 20 kHz bandwidth. Operations using equipment h. Operations using equipment designed to operate with a channels with a bandwidth of 12.5 kHz or less beginning

(6)(i) Beginning January 1, 2011, no new applications for the 421–512 MHz bands will be acceptable for filing if the applicant utilizes channels with an authorized bandwidth exceeding 11.25 kHz, unless specified elsewhere or the operations meet the efficiency standards of §90.203(j)(3).

7.4.2 Test summary

Verdict	Pass		
Tested by	P. Barbieri	Test date	September 13, 2023

7.4.3 Observations, settings and special notes

The test was performed as per ANSI C63.26, subclause 5.4.4.

Spectrum analyser settings:	
Resolution bandwidth	1–5% of OBW
Video bandwidth	≥3 × RBW
Frequency span	1.5 × OBW
Detector mode	Peak
Trace mode	Max Hold

7.4.4 Test equipment list

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
Spectrum Analyzer	Rohde & Schwarz	FSW43	101767	2023-01	2024-01
Shielded room	Siemens	10m control room	1947	NCR	NCR

Note: NCR - no calibration required, VOU - verify on use

7.4.5 Test data

	Tab	le 7.4-2: 99% occupied bandwidth results	;	
Modulation	Frequency, MHz	99% occupied bandwidth, kHz	Limit, kHz	Margin, kHz
FM 12.5 kHz	138.1	5.38	11.25	-5.87
FM 25.0 kHz	138.1	10.27	20.00	-9.73
DMR 4FSK	138.1	8.01	11.25	-3.24
P25 C4FM	138.1	8.61	11.25	-2.64
CST 4FSK	138.1	6.21	11.25	-5.04
Modulation	Frequency, MHz	99% occupied bandwidth, kHz	Limit, kHz	Margin, kHz
FM 12.5 kHz	156.0	5.38	11.25	-5.87
FM 25.0 kHz	156.0	10.27	20.00	-9.73
DMR 4FSK	156.0	7.77	11.25	-3.48
P25 C4FM	156.0	8.20	11.25	-3.05
CST 4FSK	156.0	6.25	11.25	-5.00
Modulation	Frequency, MHz	99% occupied bandwidth, kHz	Limit, kHz	Margin, kHz
FM 12.5 kHz	173.9	5.39	11.25	-5.86
FM 25.0 kHz	173.9	10.25	20.00	-9.75
DMR 4FSK	173.9	7.96	11.25	-3.29
P25 C4FM	173.9	8.21	11.25	-3.04
CST 4FSK	173.9	6.05	11.25	-5.2

Ref Level 70.0	00 dBm Offs	et 60.60 d	B 🖷 RBW 300 H	z				S	GL
Att	20 dB SW1	14 ms (~23 ms	s) 🗢 VBW – 1 kH:	z Mode Auto F	FT			C	ount 100/100
1 Occupied Ba	ndwidth								o1Pk Max
								M1[1]	43.41 dBm
60 dBm								138.	101 274 0 MHz
oo abiii									
50 dBm									
So ubili				~~~~~	M1				
40 dBm					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
			T1	کہ		T2			
30 dBm			×	_~		₹.			
60 db									
20 dBm			\sim						
10 40									
10 dBm			~						
0.40			\sim						
							4		
-10 dBm									
-20 dBm		~					m		
-30 dBm							<u> </u>		
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\sim\sim\sim$							how how	$\sim\sim\sim\sim$
-40 dBm									
CF 138.1 MHz		1	1001 pts	6	3	.75 kHz/	1	<u>ا</u>	Span 37.5 kHz
2 Marker Table	P								
Type Ref	Trc	X-Value		Y-Value		Function		Function Re	sult
M1	1	138.101 274	MHz 4	3.41 dBm	Occ Bw			8.014 200	33 kHz
Τ1	1	138.0959562	2 MHz	29.29 dBm	Occ Bw Ce	ntroid		138.09996	3 327 MHz
T2	1	138.1039704	4 MHz	27.42 dBm	Occ Bw Fre	eq Offset		-36.672	943 83 Hz

99% occupied bandwidth with modulation DMR 4FSK at 138.1  $\rm MHz$ 

![](_page_41_Picture_0.jpeg)

![](_page_41_Figure_3.jpeg)

99% occupied bandwidth with modulation DMR 4FSK at 156.0 MHz

![](_page_42_Picture_0.jpeg)

Ref Level 70.00 d	iBm Offset	60.60 dB 🖷 RB	<b>W</b> 300 Hz					S	GL
<b>Att</b> 20	DdB SWT	41.7 ms 🖷 VBV	N/ 1 kHz Moo	<b>le</b> Sweep				C	ount 100/100
1 Occupied Bandv	width								o1Pk Max
								M1[1]	44.44 dBm
60 dBm								173	.899 588 0 MHz
50 dBm				M1					
40 dBm				mint	m.				
40 0611			T1	5	- The	T2			
30 dBm			لخم		h	E_			
20 dBm						5			
10 dBm									
0 dBm		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				/	L		
-10 dBm							In		
-20 dBm									
		$\sim$							
-30 dBm	$\sim$						v	mon	mm
-40 dBm									
CF 173.9 MHz			1001 pts	6	3.	.75 kHz/			Span 37.5 kHz
2 Marker Table									
Type Ref	Trc	X-Value		Y-Value		Function		Function Re	esult
M1	1 17	73.899 588	MHz 4	4.44 dBm	Occ Bw			7.963814	765 kHz
T1	1	173.8959901	MHz	26.86 dBm	Occ Bw Cer	ntroid		173.89997	2008 MHz
T2	1	173.9039539	MHz	27.19 dBm	Occ Bw Fre	iq Offset		-27.9922	287 874 Hz

99% occupied bandwidth with modulation DMR 4FSK at 173.9 MHz

![](_page_43_Picture_0.jpeg)

![](_page_43_Figure_3.jpeg)

99% occupied bandwidth with modulation FM 12.5 kHz at 138.1 MHz

![](_page_44_Picture_0.jpeg)

![](_page_44_Figure_3.jpeg)

99% occupied bandwidth with modulation FM 12.5 kHz at 156.0 MHz

![](_page_45_Picture_0.jpeg)

![](_page_45_Figure_3.jpeg)

99% occupied bandwidth with modulation FM 12.5 kHz at 173.9 MHz

![](_page_46_Picture_0.jpeg)

![](_page_46_Figure_3.jpeg)

99% occupied bandwidth with modulation FM 25.0 kHz at 138.1 MHz

![](_page_47_Picture_0.jpeg)

![](_page_47_Figure_3.jpeg)

99% occupied bandwidth with modulation FM 25.0 kHz at 156.0 MHz

![](_page_48_Picture_0.jpeg)

![](_page_48_Figure_3.jpeg)

99% occupied bandwidth with modulation FM 25.0 kHz at 173.9 MHz

![](_page_49_Picture_0.jpeg)

![](_page_49_Figure_3.jpeg)

99% occupied bandwidth with modulation P25 C4FM at 138.1 MHz

![](_page_50_Picture_0.jpeg)

Ref Level 70.00 dBm Offs	set 60.60 dB = RBW 30	00 Hz			SGL
Att 20 dB SW	T 14 ms (~23 ms) 🖷 VBW	1 kHz Mode Auto FF	-T		Count 100/100
l Occupied Bandwidth					o 1Pk Max
					M1[1] 43.07 dBm
60 dBm					155.998 839 0 MHz
50 dBm					
10 dbm		M1	~~		
to upin		T1 ~	Τ2		
0 dBm		7	48h		
20 dBm			- in		
0 dBm			<u> </u>		
dBm			<u>ر</u>	<u></u>	
10 dBm				5	
20 dBm					
20 0811					
30 dBm	~				hann
40 dBm					
F 156.0 MHz	100	l pts	3.75 kHz/		Span 37.5 kHz
Marker Table					
Type Ref Trc	X-Value	Y-Value	Function		Function Result
M1 1	155.998 839 MHz	43.07 dBm	Occ Bw		8.203 843 607 kHz
T1 1	155.995858 MHz	27.72 dBm	Occ Bw Centroid		155.999959963 MHz
T2 1	156.0040619 MHz	29.04 dBm	Occ Bw Freq Offset		-40.037 401 497 Hz

99% occupied bandwidth with modulation P25 C4FM at 156.0 MHz

![](_page_51_Picture_0.jpeg)

Ref Level 70.00 dBm Off	set 60.60 dB 🗢 RBW 300 Hz				SGL
Att 20 dB SW	/T 41.7 ms 🗢 VBW 1 kHz	Mode Sweep			Count 100/100
Occupied Bandwidth					O 1Pk Max
					M1[1] 44.35 dBm
50 dBm					173.900 412 0 MHz
50 dBm			M 1		
10 dBm			1 million		
		T1 ~~~~			
0 dBm		7	- The second sec		
0 dBm					
D dBm					
dBm				$\mathbf{h}$	
abiii	$\sim$			5	
10 dBm				m	
20 dBm					
30 dBm	ſ				A
m	~				mon
40 dBm					
F 173.9 MHz	100	01 pts	3.75 kHz/		Span 37.5 kHz
Marker Table					
Type Ref Trc	X-Value	Y-Value	Function		Function Result
M1 1	173.900 412 MHz	44.35 dBm	Occ Bw		8.208070746 kHz
T1 1	173.8957605 MHz	29.45 dBm	Occ Bw Centroid		173.89986454 MHz
T2 1	173.9039686 MHz	28.38 dBm	Occ Bw Freq Offset		-135.460013419 Hz

99% occupied bandwidth with modulation P25 C4FM at 173.9 MHz

![](_page_52_Picture_0.jpeg)

Ref Level 70.00 dBm	Offset 60.60 c	B = RBW 300 H	Z				S	GL
Att 20 dB	SWT 14 ms (~23 m	s) 🗢 VBW 🛛 1 kH	z Mode Auto F	FT			С	ount 100/100
1 Occupied Bandwidt	h					1		o1Pk Max
							M1[1]	44.92 dBm
60 dBm							138.	0996630 MHz
50 dBm			M1					
40 d8m				my -				
40 UBM			T1~~	Τ2				
30 dBm			Ž	R				
20 dBm		~~~~	-		han			
10 dBm					<u> </u>			
0 dBm					Ľ,			
10 dbm	$\wedge$	$\sim$			~	~		
-10 uBm-								
-20 dBm								
-30 dBm	,^_/					<u> </u>		
man	$\sim$						Nacona	mmm
-40 dBm								~ ~
CF 138.1 MHz	I	1001 pts	6	3	.75 kHz/	1		span 37.5 kHz
2 Marker Table								
Type Ref Tro	X-Value		Y-Value		Function		Function Re	esult
M1 1	138.099 663	MHz 4	4.92 dBm	Occ Bw			6.214 150 5	21 kHz
T1 1	138.096870	7 MHz	27.49 dBm	Occ Bw Cer	ntroid		138.09997	7775 MHz
12 1	138,103 084	3 MHZ	28.82 dBm	Occ Bw Fre	q Offset		-22,2498	56174 Hz

99% occupied bandwidth with modulation CST 4FSK at 138.1  $\rm MHz$ 

![](_page_53_Picture_0.jpeg)

Ref Level 70.0	00 dBm Offse	t 60.60 dE	6 <b>= RBW</b> 300 H	Z				:	SGL
Att	20 dB SWT	14 ms (~23 ms)	) 🗢 VBW 1 kH	z Mode Auto F	FT				Count 100/100
1 Occupied Bar	ndwidth	-						1	●1Pk Max
								M1[1]	44.83 dBm
60. dBm								156	5.000 150 0 MHz
co abiii									
50 dBm									
So ubiii					711 V				
40 dBm				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
40 UBM				T1 ~	V T2				
30 dBm					- T				
				1					
20 dBm			~~~		`	m			
						N N			
10 dBm						- V-			
0 dBm									
							h		
-10 dBm		~					5		
-20 dBm									
		m and a start of the start of t							
-30 dBm									
$\sim\sim\sim\sim\sim\sim\sim\sim\sim\sim\sim\sim\sim\sim\sim\sim\sim\sim\sim\sim\sim\sim\sim\sim\sim\sim\sim\sim\sim\sim\sim\sim\sim\sim\sim\sim$	$\sim\sim\sim\sim\sim$	1						Vmm	$- \sim \sim$
-40 dBm									+
CF 156.0 MHz		1	1001 pt	5	3.	.75 kHz/	1		Span 37.5 kHz
2 Marker Table	2			-					
Type Ref	Trc	X-Value		V-Value		Function		Eunction R	esult
M1	1	156.000 15 1	MHz 4	4.83 dBm	Occ Bw	1 dired off		6.245 494	313 kHz
T1	ī	155.9967965	MHz	28.00 dBm	Occ Bw Cer	ntroid		155.9999	1922 MHz
T2	1	156.003042	MHz	29.63 dBm	Occ Bw Fre	q Offset		-80.7795	521 614 Hz

99% occupied bandwidth with modulation CST 4FSK at 156.0 MHz

![](_page_54_Picture_0.jpeg)

RefLevel 70.00 dBm	Offset 60.60 dB ● RBW 300 H	z			SGL
Att 20 dB	SWT 41.7 ms - VBW 1 kH	z Mode Sweep			Count 100/100
L Occupied Bandwidth					o 1Pk Max
					M1[1] 45.54 dBm
60 dBm					173.900 187 0 MHz
oo abiii					
50 dBm			M1		
		~	×.		
40 dBm		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
		T1	T2		
30 dBm-					
20 dBm			L		
.0 dBm		, 			
) dBm					
10 dBm	^~~~			7	
				$\sim$	
20 dBm					
an dan					
					<u> </u>
	~~*				mar m
40 ubiii					
F 173.9 MHz	1	001 pts	3.75 kHz/		Span 37.5 kHz
Marker Table					
Type Ref Trc	X-Value	Y-Value	Function		Function Result
M1 1	173.900 187 MHz	45.54 dBm	Occ Bw		6.048 261 146 kHz
T1 1	173.896 904 2 MHz	29.16 dBm	Occ Bw Centroid		173.899928291 MHz
T2 1	173.9029524 MHz	29.72 dBm	Occ Bw Freq Offset		-71.708907366 Hz

99% occupied bandwidth with modulation CST 4FSK at 173.9  $\rm MHz$ 

#### 7.5 Spectrum mask and spurious emissions

#### 7.5.1 References, definitions and limits

#### FCC §90.210:

(b)

(1)

(2)

(3) (c)

(1)

(2)

(3)

(d)

(1) (2)

(3)

(4)

Nèmko

Except as indicated elsewhere in this part, transmitters used in the radio services governed by this part must comply with the emission masks outlined in this section. Unless otherwise stated, per paragraphs (d)(4), (e)(4), and (o) of this section, measurements of emission power can be expressed in either peak or average values provided that emission powers are expressed with the same parameters used to specify the unmodulated transmitter carrier power. For transmitters that do not produce a full power unmodulated carrier, reference to the unmodulated transmitter carrier power refers to the total power contained in the channel bandwidth. Unless indicated elsewhere in this part, the table in this section specifies the emission masks for equipment operating under this part.

	Table 7.5-1: Applicable Emission Masks	
Frequency band, MHz	Mask for equipment with audio low pass filter	Mask for equipment with audio low pass filter
150–174 ^{,2}	B, D, or E	C, D, or E
Notes: ¹ Equipment designed to operate with a to operate with a 12.5 kHz channel ban channel bandwidth must meet the requ ² Equipment designed to operate on 25 while equipment designed to operate o operate on 25 kilohertz bandwidth cha	25 kHz channel bandwidth must meet the requirements of dwidth must meet the requirements of Emission Mask D, uirements of Emission Mask E. kilohertz bandwidth channels must meet the requiremen in 12.5 kilohertz bandwidth channels must meet the requi nnels may alternatively meet the Adjacent Channel Power	of Emission Mask B or C, as applicable. Equipment designed and equipment designed to operate with a 6.25 kHz ts of either Emission Mask B or G, whichever is applicable, irements of Emission Mask D. Equipment designed to r limits of §90.221.
Emission Mask B. For transmitters that are e	quipped with an audio low-pass filter, the power o	f any emission must be attenuated below the
unmodulated carrier power (P) as follows:		
On any frequency removed from the assigned	d frequency by more than 50 percent, but not mor	e than 100 percent of the authorized bandwidth: At
least 25 dB. On any frequency removed from the assigned least 35 dB.	d frequency by more than 100 percent, but not mo	ore than 250 percent of the authorized bandwidth: At
On any frequency removed from the assigned Emission Mask C. For transmitters that are n unmodulated carrier output power (P) as foll	d frequency by more than 250 percent of the authors of the authors of equipped with an audio low-pass filter, the pow ows:	orized bandwidth: At least 43 + 10 log (P) dB. er of any emission must be attenuated below the
On any frequency removed from the center of than 10 kHz: At least 83 log ( $f_d$ /5) dB;	of the authorized bandwidth by a displacement free	quency (fd in kHz) of more than 5 kHz, but not more
On any frequency removed from the center of than 250 percent of the authorized bandwidt	of the authorized bandwidth by a displacement free h: At least 29 log ( $f_d^2/11$ ) dB or 50 dB, whichever is	quency (fd in kHz) of more than 10 kHz, but not more s the lesser attenuation;
On any frequency removed from the center of (P) dB.	of the authorized bandwidth by more than 250 per	cent of the authorized bandwidth: At least 43 + 10 log
Emission Mask D-12.5 kHz channel bandwid	th equipment. For transmitters designed to opera	te with a 12.5 kHz channel bandwidth, any emission
must be attenuated below the power (P) of t	he highest emission contained within the authorize	ed bandwidth as follows:
On any frequency from the center of the aut	norized bandwidth $f_0$ to 5.625 kHz removed from $f_0$	b: Zero dB.
On any frequency removed from the center of more than 12.5 kHz: At least 7.27(fd-2.88 kHz	of the authorized bandwidth by a displacement free b) dB.	quency (f $_{ m d}$ in kHz) of more than 5.625 kHz but no
On any frequency removed from the center of 10 log (P) dB or 70 dB, whichever is the lesse	of the authorized bandwidth by a displacement free r attenuation.	quency (f_d in kHz) of more than 12.5 kHz: At least 50 +
The reference level for showing compliance w or three times the channel bandwidth) to cap emission mask up to and including 50 kHz rer measuring instrument in a peak hold mode. A video filtering is used, its bandwidth must no	with the emission mask shall be established using a oture the true peak emission of the equipment und moved from the edge of the authorized bandwidth A sufficient number of sweeps must be measured t t be less than the instrument resolution bandwidth	resolution bandwidth sufficiently wide (usually two ler test. In order to show compliance with the , adjust the resolution bandwidth to 100 Hz with the o insure that the emission profile is developed. If n. For emissions beyond 50 kHz from the edge of the

authorized bandwidth, see paragraph (o) of this section. If it can be shown that use of the above instrumentation settings do not accurately represent the true interference potential of the equipment under test, an alternate procedure may be used provided prior Commission approval is obtained.

References, definitions and limits, continued

#### FCC §90.210:

- (e) Emission Mask E—6.25 kHz or less channel bandwidth equipment. For transmitters designed to operate with a 6.25 kHz or less bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:
- (1) On any frequency from the center of the authorized bandwidth  $f_0$  to 3.0 kHz removed from  $f_0$ : Zero dB.
- (2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency ( $f_d$  in kHz) of more than 3.0 kHz but no more than 4.6 kHz: At least 30 + 16.67( $f_d$ -3 kHz) or 55 + 10 log (P) or 65 dB, whichever is the lesser attenuation.
- (3) On any frequency removed from the center of the authorized bandwidth by more than 4.6 kHz: At least 55 + 10 log (P) or 65 dB, whichever is the lesser attenuation.
- (4) The reference level for showing compliance with the emission mask shall be established using a resolution bandwidth sufficiently wide (usually two or three times the channel bandwidth) to capture the true peak emission of the equipment under test. In order to show compliance with the emission mask up to and including 50 kHz removed from the edge of the authorized bandwidth, adjust the resolution bandwidth to 100 Hz with the measuring instrument in a peak hold mode. A sufficient number of sweeps must be measured to insure that the emission profile is developed. If video filtering is used, its bandwidth must not be less than the instrument resolution bandwidth. For emissions beyond 50 kHz from the edge of the authorized bandwidth, see paragraph (o) of this section. If it can be shown that use of the above instrumentation settings do not accurately represent the true interference potential of the equipment under test, an alternate procedure may be used provided prior Commission approval is obtained.

#### FCC §22.359:

The rules in this section govern the spectral characteristics of emissions in the Public Mobile Services, except for the Air-Ground Radiotelephone Service (see § 22.861, instead) and the Cellular Radiotelephone Service (see § 22.917, instead).

- (a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log (P) dB.
- (b) Measurement procedure. Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 30 kHz or more. In the 60 kHz bands immediately outside and adjacent to the authorized frequency range or channel, a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (i.e., 30 kHz or 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.
- (c) Alternative out of band emission limit. Licensees in the Public Mobile Services may establish an alternative out of band emission limit to be used at specified frequencies (band edges) in specified geographical areas, in lieu of that set forth in this section, pursuant to a private contractual arrangement of all affected licensees and applicants. In this event, each party to such contract shall maintain a copy of the contract in their station files and disclose it to prospective assignees or transferees and, upon request, to the FCC.
- (d) Interference caused by out of band emissions. If any emission from a transmitter operating in any of the Public Mobile Services results in interference to users of another radio service, the FCC may require a greater attenuation of that emission than specified in this section.

#### 7.5.2 Test summary

Verdict	Pass		
Tested by	P. Barbieri	Test date	September 13 to 15, 2023

![](_page_57_Picture_0.jpeg)

### 7.5.3 Observations, settings and special notes

Spectrum analyser settings for spectrum mask:					
Resolution bandwidth:	100 Hz / 300 Hz				
Video bandwidth:	> RBW				
Detector mode:	Peak				
Trace mode:	Max Hold				

Spectrum analyser settings for spurious emissions:				
Resolution bandwidth:	100k Hz (below 1 GHz); 1 MHz (above 1 GHz)			
Video bandwidth:	> RBW			
Detector mode:	Peak			
Trace mode:	Max Hold			

#### 7.5.4 Test equipment list

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
EMI Receiver	Rohde & Schwarz	ESU8	100202	2022-09	2023-09
Spectrum Analyzer	Rohde & Schwarz	FSW43	101767	2023-01	2024-01
Trilog Broadband Antenna	Schwarzbeck	VULB 9162	9162-025	2021-07	2024-07
Antenna 1 - 18 GHz	Schwarzbeck Mess-Elektronik	STLP9148	STLP 9148-152	2021-09	2024-09
Broadband Amplifier	Schwarzbeck Mess-Elektronik	BBV9718C	00121	2023-03	2024-03
Controller	Maturo	FCU3.0	10041	NCR	NCR
Tilt antenna mast	Maturo	TAM4.0-E	10042	NCR	NCR
Turntable	Maturo	TT4.0-5T	2.527	NCR	NCR
Semi-anechoic chamber	Nemko	10m semi-anechoic chamber	530	2021-09	2023-09
Shielded room	Siemens	10m control room	1947	NCR	NCR

Note: NCR - no calibration required, VOU - verify on use

![](_page_58_Picture_0.jpeg)

#### 7.5.5 Test data

![](_page_58_Figure_3.jpeg)

Emission mask B with modulation FM 25.0 kHz at 138.1 MHz

![](_page_59_Picture_0.jpeg)

![](_page_59_Figure_3.jpeg)

Emission mask B with modulation FM 25.0 kHz at 156.0 MHz

![](_page_60_Picture_0.jpeg)

![](_page_60_Figure_3.jpeg)

Emission mask B with modulation FM 25.0 kHz at 173.9 MHz

![](_page_61_Picture_0.jpeg)

![](_page_61_Figure_3.jpeg)

Emission mask D with modulation DMR 4FSK at 138.1 MHz

![](_page_62_Picture_0.jpeg)

![](_page_62_Figure_3.jpeg)

Emission mask D with modulation DMR 4FSK at 156.0 MHz

![](_page_63_Picture_0.jpeg)

![](_page_63_Figure_3.jpeg)

Emission mask D with modulation DMR 4FSK at 173.9 MHz

![](_page_64_Picture_0.jpeg)

![](_page_64_Figure_3.jpeg)

Emission mask D with modulation FM 12.5 kHz at 138.1 MHz

![](_page_65_Picture_0.jpeg)

![](_page_65_Figure_3.jpeg)

Emission mask D with modulation FM 12.5 kHz at 156.0 MHz

![](_page_66_Picture_0.jpeg)

![](_page_66_Figure_3.jpeg)

Emission mask D with modulation FM 12.5 kHz at 173.9 MHz