

Confidential REPORT

Prepared (also subject responsible if other)

RT/EUS/VR/X Mark Douglas

Approved

EUS/VR/X Mark Douglas

MGD

No. |

EUS/VR-00:1487/REP

Approved

Checked

Date

2000-07-14

A

File

U:FCC_TRNS\FCC_378 dana linda\R288\Exhibit11\Ditto Linda 2.doc

-

SAR Test Report: R288

Date of test: June 28, 2000 and July 6, 11 and 12, 2000

Laboratory: Electromagnetic Near Field and Radio Frequency Dosimetry Laboratory

Ericsson, Inc.

7001 Development Drive, P.O. Box 13969, Research Triangle Park, NC, 27709, USA

Test Responsible: Mark Douglas, Ph.D.

Senior Staff Engineer, Antenna Development Group

mark.douglas@ericsson.com

(919) 472-6334

Statement of Compliance

Ericsson, Inc. declares under its sole responsibility that the that the product

Ericsson R288

to which this declaration relates, is in conformity with the appropriate RF exposure standards, recommendations and guidelines. It also declares that the product was tested in accordance with the appropriate measurement standards, guidelines and recommended practices. Any deviations from these standards, guidelines and recommended practices are noted below:

(none)

© Ericsson, Inc. 2000

This test report shall not be reproduced except in full, without written approval of the laboratory.

The results and statements contained herein relate only to the items tested. The names of individuals involved may be mentioned only in connection with the statements or results from this report.

Ericsson encourages all feedback, both positive and negative, on this test report.

Confidential REPORT

EN

Table of Contents

3
3 3 3
3 3 4
4
4
5
6
7
14
20
22
25

Prepared (also subject responsible if other) RT/EUS/VR/X Mark Douglas	919-472-6334	No. EUS/VR-00:14	87/REP	
EUS/VR/X Mark Douglas	Checked MGD	Date 2000-07-14		File U:\FCC_TRNS\FCC_378 dana linda\R288\Exhibit11\Ditto Linda 2.doc

1. Introduction

In this test report, compliance of the Ericsson R288 portable telephone with RF safety guidelines is demonstrated (applicable RF safety guidelines are given in [1]). The device was tested in accordance with the latest available test guidelines [1]. Detailed procedures of the test are described in the *Ericsson SAR Measurement Specification* [2].

2. Device Under Test

2.1 Antenna description

Type	Fixed stub	
Location	Left side	
Dimensions	length	30 mm
Dimensions	width at base	10 mm
Configuration	Helix	

2.2 Device description

Device model	R288		
Serial number	UA2019ZMD4		
Mode	800 AMPS	800 TDMA	1900 TDMA
Multiple Access Scheme	FDMA	TDMA	TDMA
Maximum Output Power Setting ¹	26.0 dBm	26.0 dBm	26.0 dBm
Factory Tolerance in Power Setting	± 0.25	± 0.25	± 0.25
Maximum Peak Output Power ²	26.25 dBm	26.25 dBm	26.25 dBm
Duty Cycle	1	1/3	1/3
Transmitting Frequency Range	824 – 849 MHz	824 – 849 MHz	1850 – 1910 MHz
Prototype or Production Unit	Prototype		

3. Test equipment

3.1 Dosimetric system

SAR measurements were made using the DASY3 professional system (software version 3.1c), manufactured by Schmid & Partner Engineering AG and installed Febuary, 1998. The total SAR assessment uncertainty (K=1) of the system is $\pm 16\%$ and includes a +15% offset (overestimation). The extended uncertainty (K=2) is $\pm 32\%$ with a +15% offset. This results in a total uncertainty range of -1% to +31% for K=1, or -17% to +47% for K=2. The equipment list is given below.

<u>Description</u>	Serial Number	Due Date
DASY3 DAE V1	345	4/01
E-field probe ETDV5	1324	2/01
Dipole Validation Kit, D900V2	049	12/00
Dipole Validation Kit, D1800V2	217	12/01

¹ This is the conducted power measured at the antenna port when the device is set to its highest power setting. It is measured at the middle of the transmit frequency band. Note that the output power may be different at other frequencies.

² This equals the maximum output power setting plus the factory tolerance.

Prepared (also subject responsible if other) RT/EUS/VR/X Mark Douglas	919-472-6334	No. EUS/VR-00:14	87/REP	I
EUS/VR/X Mark Douglas	Checked MGD	Date 2000-07-14	Rev A	File U:\FCC_TRNS\FCC_378 dana linda\R288\Exhibit11\Ditto Linda 2.doc

3.2 Additional equipment

<u>Description</u>	Serial Number	Due Date
Signal Generator HP8648C	3537A01598	9/00
Dielectric probe kit HP 85070B	US33020256	8/00
Network analyzer HP 8752C	3410A03105	7/00
Power meter HP 437B	3125U13729	2/01
Power sensor HP 8482H	3318A07097	2/01
Anritsu MT8801B	MB12477	2/01

4. Electrical parameters of the tissue simulating liquid

Prior to conducting SAR measurements, the relative permittivity, ε_r , and the conductivity, σ , of the tissue simulating liquids were measured with the dielectric probe kit. These values are shown in the table below. The mass density, ρ , entered into the DASY3 program is also given. Recommended limits for maximum permittivity, minimum conductivity and maximum mass density are also shown [3]. It is seen that the measured parameters result in an overestimation of SAR compared to the recommended values.

f	Tissue	Limits / Measured	Die	lectric Paraı	meters
(MHz)	type		ϵ_r	σ (S/m)	ρ (g/cm ³)
	Head	Measured, 6/28/00	40.8	0.90	1.00
835		Recommended Limits [3]	46.1	0.74	1.03
	Muscle	Measured, 7/11/00	56.5	0.99	1.04
		Recommended Limits [3]	56.1	0.95	1.04
	Head	Measured, 7/6/00	41.7	1.71	1.00
1800		Recommended Limits[3]	43.5	1.15	1.03
	Muscle	Measured, 7/12/00	41.1	1.69	1.04
		Recommended Limits [3]	54.4	1.39	1.04

5. System accuracy verification

A system accuracy verification of the DASY3 was performed using the dipole validation kits listed in Section 3.1. The system verification test was conducted on the same day as the measurement of the DUT. The obtained results are displayed in the table below. It is seen that the system is operating within its specification, as the results are within ±5% of the reference values. At 1800 MHz, reference values are provided by the manufacturer [4]. At 900 MHz, reference values are based on an analysis performed at the laboratory using the dielectric parameters specified below (dielectric parameters have changed from those given in the manufacturer's reference). The distributions of SAR compare well with those of the reference measurements (see Appendix 1).

f	Tissue	Measured /	SAR (W/kg),	Die	lectric Para	meters	Temp.
(MHz)	type	Reference	1 gram	ϵ_r	σ (S/m)	ρ (g/cm ³)	(°C)
900	Head	Measured, 6/28/00	10.6	40.0	0.96	1.00	23
		Reference	10.2	40.0	0.95	1.00	23
900	Muscle	Measured, 7/11/00	10.6	55.9	1.05	1.04	23
		Reference	10.7	56.0	1.05	1.04	23
	Head /	Measured, 7/6/00	39.4	41.7	1.71	1.00	23
1800	Muscle	Measured, 7/12/00	41.1	41.1	1.69	1.00	24
		Reference [4]	40.0	40.0	1.72	1.00	?

Prepared (also subject responsible if other) RT/EUS/VR/X Mark Douglas	919-472-6334	No. EUS/VR-00:1487/REP		
EUS/VR/X Mark Douglas	Checked MGD	Date 2000-07-14	Rev A	File U:\FCC_TRNS\FCC_378 dana linda\R288\Exhibit11\Ditto Linda 2.doc

6. Test results

The measured 1-gram averaged SAR values of the device are provided in Tables 1 and 2. Also shown are the measured conducted output powers and the temperature of the test facility during the test. The depth of the tissue simulating liquid was 15 cm. A base station simulator was used to control the device during the SAR measurements. The phone was supplied with a fully-charged battery for the tests.

SAR measured against the head is presented in Table 1. The device was tested on the right-hand phantom (corresponding to the right side of the head) and the left-hand phantom. For 800 AMPS and 1900 TDMA modes, the device was tested at the lowest, middle and highest frequencies of the transmit band. For 800 TDMA mode, the maximum power is significantly lower than that of AMPS mode, therefore SAR values are also lower. For interest, the SAR results for 800 TDMA mode are presented for the cases that give the highest SAR in AMPS mode.

mode	Chamber	f	Output	SAR, 1g (W/kg)			
	Temp.	(MHz)	Power	left	-hand	righ	t-hand
	(°C)		(dBm)	measured	calculated to	measured	calculated to
					max. power		max. power
800		824	26.00	1.09	1.13	1.29	1.33
AMPS	23.1	837	26.11	1.12	1.16	1.29	1.33
		849	25.70	1.03	1.06	1.18	1.22
800	23.1	824	26.05			0.452	0.512
TDMA		837	25.71			0.443	0.502
1900		1850	26.15	0.642	0.654	0.913	0.930
TDMA	23.1	1880	26.17	0.659	0.671	0.888	0.905
		1910	26.27	0.643	0.655	0.937	0.954

Table 1: SAR measurement results for the Ericsson R288 telephone at highest possible output power.

Measured against the head.

For body-worn measurements, the device was tested against a flat phantom representing the user's body, using designated carry cases. In Table 2, SAR values are provided for the two carry cases that bring the phone closest to the body (product # KRY 104 1293 R1 and KRY 104 1004 R1B). SAR was first measured using both carry cases at the lowest frequency of each band (800 AMPS and 1900 TDMA only; 800 TDMA is not necessary due to the significantly lower output power). Next, SAR values were compared to see which carry case gave the highest SAR for each band. For this carry case, SAR was then measured at the middle and highest frequencies.

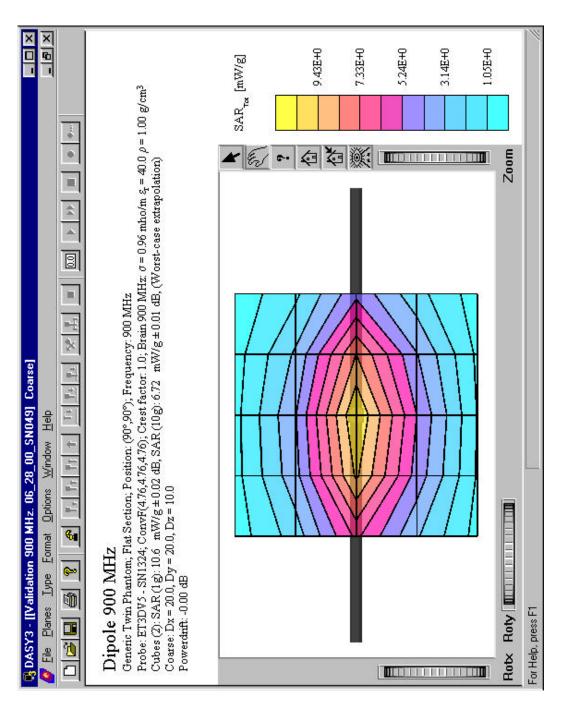
mode	Chamber	f	Output	SAR, 1g (W/kg)			
	Temp.	(MHz)	Power	KRY 10	4 1293 R1	KRY 10-	4 1004 R1B
	(°C)		(dBm)	measured	calculated to	measured	calculated to
					max. power		max. power
800		824	26.00	0.836	0.863	1.13	1.17
AMPS	22.7	837	26.11			0.995	1.03
		849	25.70			1.09	1.13
1900		1850	26.15	0.707	0.720	0.596	0.607
TDMA	24.1	1880	26.17	0.713	0.726		
		1910	26.27	0.614	0.625		

Confidential REPORT

		KLFOKI		6 (26)
Prepared (also subject responsible if other)		No.		
RT/EUS/VR/X Mark Douglas	919-472-6334	EUS/VR-00:14	187/REP	
Approved	Checked	Date	Rev	File
EUS/VR/X Mark Douglas	MGD	2000-07-14	Α	U:\FCC_TRNS\FCC_378 dana linda\R288\Exhibit11\Ditto Linda 2.doc

Table 2: SAR measurement results for the Ericsson R288 telephone at highest possible output power.

Measured against the body.


References

- [1] C. Törnevik, "Ericsson SAR measurement specification, part 1: Introduction and Purpose," Internal Document ERA/T/U-98:446, February, 1999.
- [2] C. Törnevik, M. Siegbahn, T. Persson, M. Douglas, and R. Plicanic, "Ericsson SAR measurement specification", Internal Document ERA/T/U-98:442, February 1999.
- [3] Federal Communications Commission, "Tissue Dielectric Properties," http://www.fcc.gov/fcc-bin/dielec.sh.
- [4] Schmid and Partner Engineering AG, "DASY Dipole Validation Kit," Type: D1800V2, S/N: 217, February, 2000.

Confidential	
REPORT	

ERICSSON #	REPORT 7 (26)			
Prepared (also subject responsible if other) RT/EUS/VR/X Mark Douglas	919-472-6334	No. EUS/VR-00:14	 187/REP	
Approved	Checked	Date	Rev	File
EUS/VR/X Mark Douglas	MGD	2000-07-14	Α	U:\FCC_TRNS\FCC_378 dana inda\R288\Exhibit11\Ditto Linda 2.doc

Appendix 1: SAR distribution comparison for system accuracy verification

900 MHz SAR distribution of validation dipole antenna from system accuracy verification test. Measured with head simulating tissue on 6/28/00.

8 (26)

				0 (20)
Prepared (also subject responsible if other)		No.		
RT/EUS/VR/X Mark Douglas	919-472-6334	EUS/VR-00:14	87/REP	
Approved	Checked	Date	Rev	File
EUS/VR/X Mark Douglas	MGD	2000-07-14		U:\FCC_TRNS\FCC_378 dana linda\R288\Exhibit11\Ditto Linda 2.doc

ERICSSON **S**

7.68E+0 5.49E+10 3.29E+0 1.10E+0 9.87E+0 [mW//g] Probe: ET3DV5 - SN1324; ConvF(4.62,4.62,4.62); Crest factor: 1.0; Muscle 900 MHz: $\sigma = 1.05$ mho/m $s_1 = 55.9$ p = 1.04 g/cm³ SAR 白色颜 Cubes (2): SAR (1g): 10.6 mW/g \pm 0.07 dB, SAR (10g): 6.82 mW/g \pm 0.06 dB, (Worst-case extrapolation) Coarse: Dx = 20.0, Dy = 20.0, Dz = 10.0 Powerdrift: -0.03 dB 8 Generic Twin Phantom; Flat Section; Position: (90°,90°); Frequency: 900 MHz Coarse] DASY3 - [[Validation 900 MHz. 07_11_00_SN049] Format Options Window Rotx Roty **6** Dipole 900 MHz دی Lype 0 Planes For Help, press F1 Ø

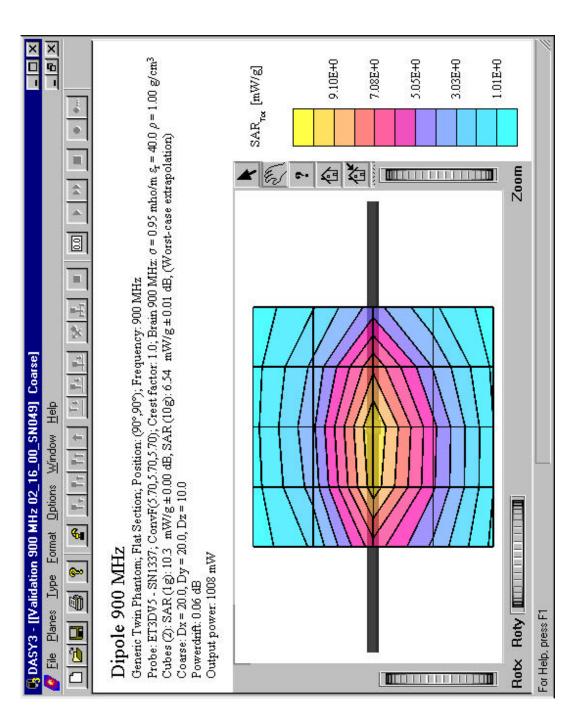
900 MHz SAR distribution of validation dipole antenna from system accuracy verification test. Measured with muscle simulating tissue on 7/11/00.

RT/EUS/VR/X Mark Douglas	919-472-6334	EUS/VR-00:1487	7/REP	
Approved EUS/VR/X Mark Douglas	MGD	2000-07-14		File U:\FCC_TRNS\FCC_378 dana linda\R288\Exhibit11\Ditto Linda 2.doc

3.93E+0 3.54E+1 2.75E+1 1.97E+1 1.18E+1 [mW//g] Probe: ET3DV5 - SN1324; ConvF(4.15,4.15); Crest factor: 1.0; Brain 1800 MHz: $\sigma = 1.71$ mho/m $s_1 = 41.7$ $\rho = 1.00$ g/cm³ SAR 白色颜 Cubes (2): SAR (1g): 39.4 mW/g ± 0.07 dB, SAR (10g): 19.8 mW/g ± 0.10 dB, (Worst-case extrapolation) Coarse: Dx = 20.0, Dy = 20.0, Dz = 10.0 8 Generic Twin Phantom; Flat Section; Position: (90°,90°); Frequency: 1800 MHz DASY3 - [[Validation 1800 MHz 07_06_00_SN217] Coarse] Options Window Help Rotx Roty Lype Format **6** Dipole 1800 MHz دی Powerdrift: 0.00 dB 0 Planes For Help, press F1 Ø

1800 MHz SAR distribution of validation dipole antenna from system accuracy verification test. Measured with head/muscle simulating tissue on 7/6/00.

Prepared (also subject responsible if other) RT/EUS/VR/X Mark Douglas	919-472-6334	No. EUS/VR-00:14	 87/REP	
Approved EUS/VR/X Mark Douglas	Checked MGD	Date 2000-07-14	Rev A	File U:FCC_TRNS\FCC_378 dana linda\R288\Exhibit11\Ditto Linda 2.doc
EN				

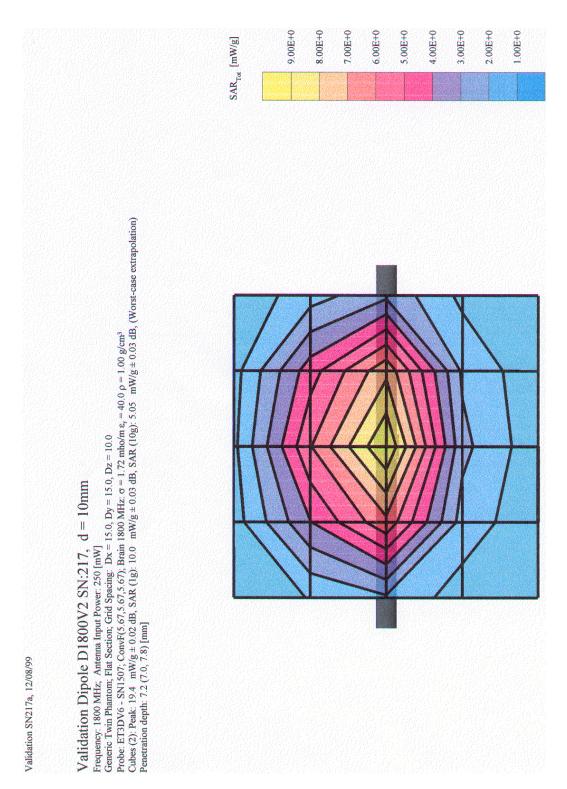

3.68E+1 2.86E+1 2.04E+1 1.23E+1 4.09E+0 [mW//g] Probe: ET3DV5 - SN1324; ConvF(4.15,4.15,4.15); Crest factor: 1.0; Muscle 1800 MHz. $\sigma = 1.69$ mho/m g = 41.1 $\rho = 1.00$ g/cm³ SAR 白色颜 Cubes (2): SAR (1g): 41.1 mW/g \pm 0.04 dB, SAR (10g): 20.6 mW/g \pm 0.01 dB, (Worst-case extrapolation) Coarse: Dx = 20.0, Dy = 20.0, Dz = 10.0 Generic Twin Phantom; Flat Section; Position: (90°,90°); Frequency: 1800 MHz DASY3 - [[Validation 1800 MHz 07_12_00_SN217] Coarse] Options Window Help Rotx Roty Lype Format **6** Dipole 1800 MHz دی Powerdrift: 0.01 dB 0 Planes For Help, press F1 Ø

1800 MHz SAR distribution of validation dipole antenna from system accuracy verification test. Measured with head/muscle simulating tissue on 7/12/00.

Prepared (also subject responsible if other) RT/EUS/VR/X Mark Douglas	919-472-6334	No. EUS/VR-00:14	87/REP	
Approved EUS/VR/X Mark Douglas	Checked MGD	Date 2000-07-14		File U:\FCC_TRNS\FCC_378 dana linda\R288\Exhibit1\Ditto Linda 2.doc

FN

900 MHz SAR distribution of validation dipole antenna from reference measurement. For head tissue.


Approved Checked Date Rev File U\:\FCC_TRNS\\FCC_378 \ dana linda\\R288\\Exhibit11\\Ditto Linda 2.doc	Prepared (also subject responsible if other) RT/EUS/VR/X Mark Douglas	919-472-6334	No. EUS/VR-00:14	 87/REP	
	1	1		Rev A	U:\FCC_TRNS\FCC_378 dana

7.50E+0 1.07E+0 3.21E+0 5.36E+0 [mW//g] Probe: ET3DV5 - SN1324; ConvF(4.62,4.62,4.62); Crest factor: 1.0; Muscle 900 MHz: $\sigma = 1.05$ mho/m $s_1 = 56.0$ $\rho = 1.04$ g/cm³ SAR 白色颜 Cubes (2): SAR (1g): 10.7 mW/g ± 0.00 dB, SAR (10g): 6.93 mW/g ± 0.00 dB, (Worst-case extrapolation) Coarse: Dx = 20.0, Dy = 20.0, Dz = 10.0 00 Generic Twin Phantom; Flat Section; Position: (90°,90°); Frequency: 900 MHz DASY3 - [[Validation 900 MHz. 07_10_00_SN049_01] Coarse] Lype Format Options Window Help Rotx Roty Dipole 900 MHz دی Powerdrift: 0.04 dB 0 Planes For Help, press F1 Ø

900 MHz SAR distribution of validation dipole antenna from reference measurement. For muscle tissue.

Prepared (also subject responsible if other) RT/EUS/VR/X Mark Douglas	919-472-6334	No. EUS/VR-00:14	87/REP	
EUS/VR/X Mark Douglas	Checked MGD	Date 2000-07-14	Rev A	File U:\FCC_TRNS\FCC_378 dana linda\R288\Exhibit11\Ditto Linda 2.doc

1800 MHz SAR distribution of validation dipole antenna from reference measurement.

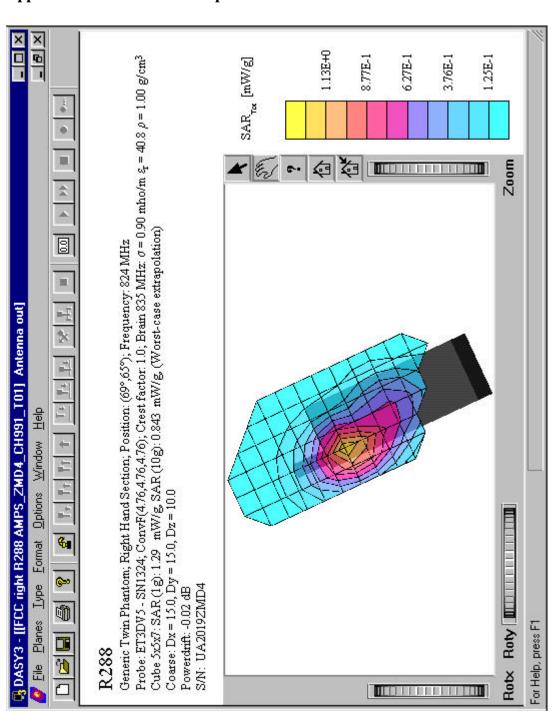
Confidential	
REPORT	

2000-07-14

14 (26)

U:\FCC_TRNS\FCC_378 dana

nda\R288\Exhibit11\Ditto Linda 2.doc

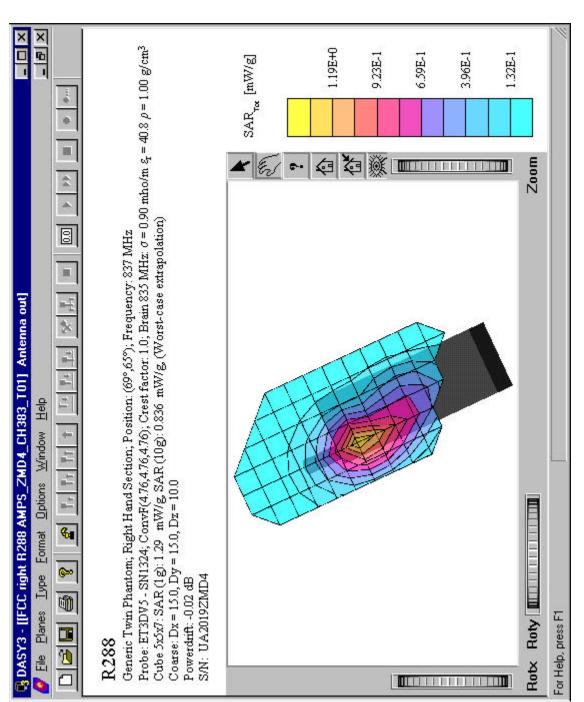

ERICSSON #		REPORT	
Prepared (also subject responsible if other)		No.	
RT/EUS/VR/X Mark Douglas	919-472-6334	EUS/VR-00:1487/REP	

MGD

Checked

Appendix 2: SAR distribution plots

EUS/VR/X Mark Douglas

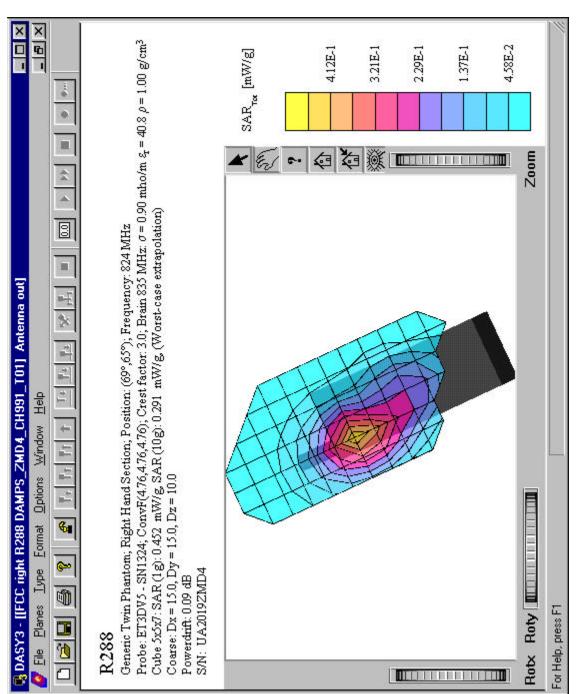


Distribution of maximum SAR in 800 AMPS mode (at 824 MHz). Measured against the head.

15 (26)

Prepared (also subject responsible if other) RT/EUS/VR/X Mark Douglas	919-472-6334	No. EUS/VR-00:14	87/REP	
Approved EUS/VR/X Mark Douglas	Checked MGD	Date 2000-07-14	Rev A	File U:\FCC_TRNS\FCC_378 dana linda\R288\Exhibit11\Ditto Linda 2.doc

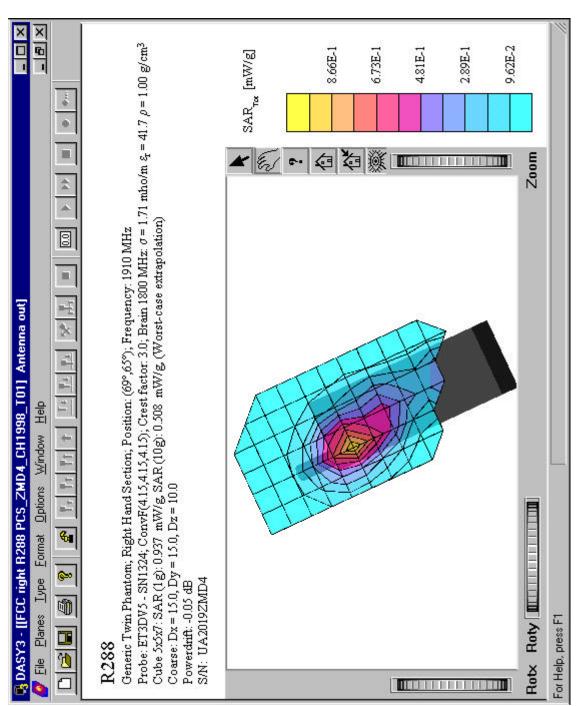
ΕN



Distribution of maximum SAR in 800 AMPS mode (at 837 MHz). Measured against the head.

Prepared (also subject responsible if other) RT/EUS/VR/X Mark Douglas	919-472-6334	No. EUS/VR-00:14	87/REP	
EUS/VR/X Mark Douglas	Checked MGD	Date 2000-07-14	Rev A	File U:\FCC_TRNS\FCC_378 dana linda\R288\Exhibit11\Ditto Linda 2.doc

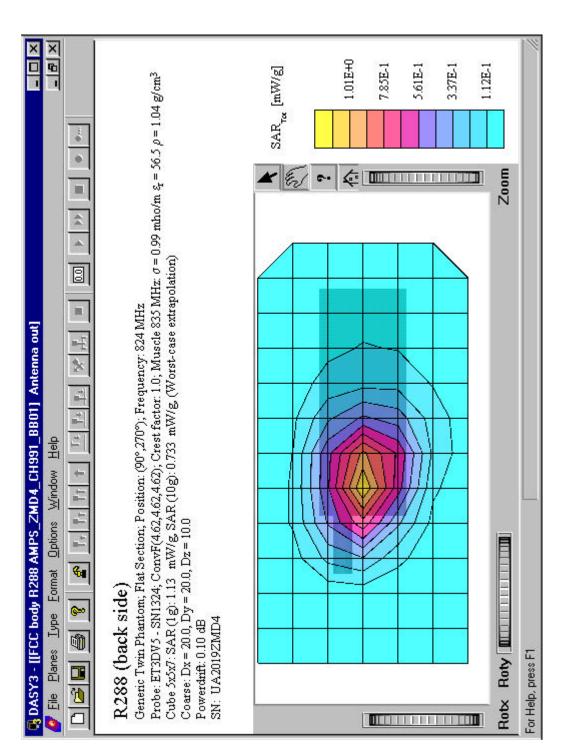
ΕN



Distribution of maximum SAR in 800 TDMA mode. Measured against the head.

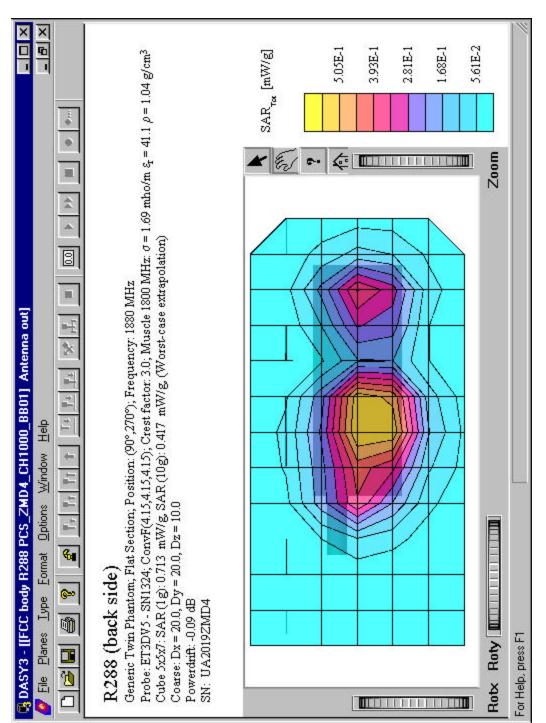
Prepared (also subject responsible if other)		No.		
RT/EUS/VR/X Mark Douglas	919-472-6334	EUS/VR-00:1487/REP		
Approved	Checked	Date	Rev	File
EUS/VR/X Mark Douglas	MGD	2000-07-14	Α	U:\FCC_TRNS\FCC_378 dana inda\R288\Exhibit11\Ditto Linda 2.doc

ΕN



Distribution of maximum SAR in 1900 TDMA mode. Measured against the head.

Prepared (also subject responsible if other) RT/EUS/VR/X Mark Douglas	919-472-6334	No. EUS/VR-00:14	87/REP	
EUS/VR/X Mark Douglas	Checked MGD	Date 2000-07-14		File U:\FCC_TRNS\FCC_378 dana linda\R288\Exhibit1\\Ditto Linda 2.doc


FN

Distribution of maximum SAR in 800 AMPS mode. Measured against the body.

Prepared (also subject responsible if other) RT/EUS/VR/X Mark Douglas	919-472-6334	No. EUS/VR-00:14	87/REP	
EUS/VR/X Mark Douglas	Checked MGD	Date 2000-07-14		File U:\FCC_TRNS\FCC_378 dana linda\R288\Exhibit11\Ditto Linda 2.doc

Distribution of maximum SAR in 1900 TDMA mode. Measured against the body.

Confidential	
REPORT	

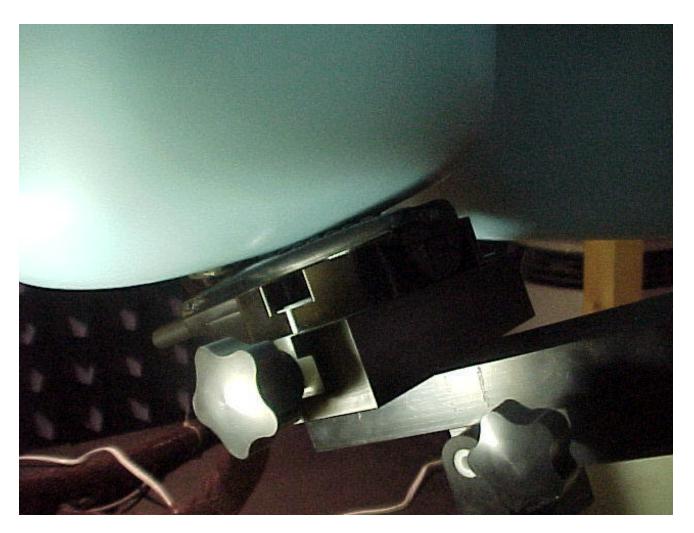
ERICSSON 💋	REPORT	
repared (also subject responsible if other)	No.	

ERICSSON >		REPORT		20 (26)	
Prepared (also subject responsible if other) RT/EUS/VR/X Mark Douglas	919-472-6334	No. EUS/VR-00:1487/REP			
Approved EUS/VR/X Mark Douglas	Checked MGD	Date Rev File U:\FCC_TRNS\FCC_378 dana Inda\R288\Exhibit11\Ditto Linda 2.doc			
EN					

Appendix 3: Photographs of the device under test

Front view of device.

Confidential REPORT



Side view of device.

Confidential	
REPORT	

ERICSSON >		REPORT		22 (26)
Prepared (also subject responsible if other) RT/EUS/VR/X Mark Douglas	919-472-6334	No. EUS/VR-00:1487/REP		
Approved EUS/VR/X Mark Douglas	Checked MGD	2000-07-14	Rev A	File U:\FCC_TRNS\FCC_378 dana Iinda\R288\Exhibit11\Ditto Linda 2.doc

Appendix 4: Position of device on Generic Twin Phantom

Device position against the head.

ERICSSON S Confidence REPOR

919-472-6334

EUS/VR-00:1487/REP

23 (26)

Approved | Checked | Date | Rev | File | U:\FCC_TRNS\FCC_378 dana | linda\R288\Exhibit11\Ditto Linda 2.doc

느

Prepared (also subject responsible if other)

RT/EUS/VR/X Mark Douglas

Device position against the body with accessory KRY 104 1293 R1.

REPORT 24 (26)

Prepared (also subject responsible if other) RT/EUS/VR/X Mark Douglas	919-472-6334	EUS/VR-00:1487/REP		
Approved	Checked	Date	Rev	File
EUS/VR/X Mark Douglas	MGD	2000-07-14	Α	U:\FCC_TRNS\FCC_378 dana linda\R288\Exhibit11\Ditto Linda 2.doc

Device position against the body with accessory KRY 104 1004 R1B.

Confidential	
REPORT	

ERICSSON >		REPORT		25 (26)
Prepared (also subject responsible if other) RT/EUS/VR/X Mark Douglas	919-472-6334	No. EUS/VR-00:1487/I	REP	
Approved EUS/VR/X Mark Douglas	Checked MGD	Date 2000-07-14		File U:\FCC_TRNS\FCC_378 dana linda\R288\Exhibit11\Ditto Linda 2.doc

Appendix 5: Probe calibration parameters for ET3DV5 SN:1324

26 (26)

Prepared (also subject responsible if other) RT/EUS/VR/X Mark Douglas	919-472-6334	No. EUS/VR-00:14	87/REP	I
EUS/VR/X Mark Douglas	Checked MGD	Date 2000-07-14		File U:\FCC_TRNS\FCC_378 dana linda\R288\Exhibit11\Ditto Linda 2.doc

EN

DASY3 - Parameters of Probe: ET3DV5 SN:1324

Sensitiv	vity in Free S	pace		Diode	Compression	1
	NormX	1.51	μV/(V/m) ²		DCP X	104 mV
	NormY		$\mu V/(V/m)^2$		DCP Y	104 mV
	NormZ		$\mu V/(V/m)^2$		DCP Z	104 mV
Sensitivity in Tissue Simulating Liquid						
Brain	450 MHz	<u>.</u>	$\varepsilon_{\rm r}$ = 48 ± 5%	σ	= 0.50 ± 10% mhd	o/m
	ConvF X	5.07	extrapolated		Boundary effect	:
	ConvF Y	5.07	extrapolated		Alpha	0.07
	ConvF Z	5.07	extrapolated		Depth	4.22
Brain	900 MHz	<u>.</u>	$\varepsilon_{\rm r}$ = 42.5 ± 5%	σ	= 0.86 ± 10% mhd	o/m
	ConvF X	4.76	± 7% (k=2)		Boundary effect	
	ConvF Y	4.76	± 7% (k=2)		Alpha	0.27
	ConvF Z	4.76	± 7% (k=2)		Depth	3.47
Brain	1500 MHz	•	$\varepsilon_{\rm r}$ = 41 ± 5%	σ	= 1.32 ± 10% mhd	o/m
	ConvF X	4.35	interpolated		Boundary effect	· •
	ConvF Y	4.35	interpolated		Alpha	0.54
	ConvF Z	4.35	interpolated		Depth	2.48
Brain	1800 MHz	!	$\varepsilon_{\rm r}$ = 41 ± 5%	σ	= 1.69 ± 10% mhd	o/m
	ConvF X	4.15	± 7% (k=2)		Boundary effect	:
	ConvF Y	4.15	± 7% (k=2)		Alpha	0.68
	ConvF Z	4.15	± 7% (k=2)		Depth	1.98
Sensor Offset						
	Probe Tip to Se	nsor Ce	enter	2.7	mm	

Probe Tip to Sensor Center	2.7	mm
Optical Surface Detection	2.0 ± 0.2	mm