

FCC Test Report

Report No.: AGC02728190302FE03

FCC ID : AUSCR3037A

APPLICATION PURPOSE: Original Equipment

PRODUCT DESIGNATION: Multifunctional FM Radio Speaker

BRAND NAME : CROSLEY

MODEL NAME : CR3037A, CS-2026

CLIENT: Modern Marketing Concepts, Inc.

DATE OF ISSUE : Mar. 26, 2019

STANDARD(S) : FCC Part 15 Subpart C Section 15.247

REPORT VERSION : V1.0

Attestation of Global Compliance (Shenzhen) Co., Ltd

CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc-celt.com.

Attestation of Global Compliance

Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 E-mail: agc@agc-cert.com @ 400 089 2118 Add: 2/F. , Building 2, No.1-4,Chaxi Sanwei Technical Industrial Park,Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

Page 2 of 69

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	1	Mar. 26, 2019	Valid	Initial release

The results spouroid this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Attestation of Global Compliance

TABLE OF CONTENTS

1. VERIFICATION OF CONFORMITY	5
2. GENERAL INFORMATION	6
2.1. PRODUCT DESCRIPTION	6
2.2. TABLE OF CARRIER FREQUENCYS	
2.3. RECEIVER INPUT BANDWIDTH	7
2.4. EXAMPLE OF A HOPPING SEQUENCY IN DATA MODE	
2.5. EQUALLY AVERAGE USE OF FREQUENCIES AND BEHAVIOUR	7
2.6. TEST METHOD	
2.7. EQUIPMENT MODIFICATIONS	
3. MEASUREMENT UNCERTAINTY	
4. DESCRIPTION OF TEST MODES	9
5.1. CONFIGURATION OF EUT SYSTEM	
5.1. CONFIGURATION OF EUT SYSTEM	10
5.2. EQUIPMENT USED IN EUT SYSTEM	10
5.3. SUMMARY OF TEST RESULTS	
6. TEST FACILITY	12
7. TEST EQUIPMENT LIST	13
8. PEAK OUTPUT POWER	14
8.1. MEASUREMENT PROCEDURE	14
8.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	14
8.3. LIMITS AND MEASUREMENT RESULT	15
9. BANDWIDTH	21
9.1. MEASUREMENT PROCEDURE	21
9.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	21
9.3. LIMITS AND MEASUREMENT RESULTS	
10. CONDUCTED SPURIOUS EMISSION	28
10.1. MEASUREMENT PROCEDURE	28
10.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	
10.3. LIMITS AND MEASUREMENT RESULT	28
11.1. TEST LIMIT	32
11.1. TEST LIMIT	32
11.2 MEASUREMENT PROCEDURE	32

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc-gent.com.

11.3. TEST SETUP	34
11.4. TEST RESULT	
12. BAND EDGE EMISSION	
12.1. MEASUREMENT PROCEDURE	41
12.2. TEST	41
12.3. TEST RESULT	
13. NUMBER OF HOPPING FREQUENCY	46
13.1. MEASUREMENT PROCEDURE	46
13.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)	
13.3. LIMITS AND MEASUREMENT RESULT	46
14. TIME OF OCCUPANCY (DWELL TIME)	47
14.1. MEASUREMENT PROCEDURE	47
14.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)	47
14.3. LIMITS AND MEASUREMENT RESULT	
15. FREQUENCY SEPARATION	50
15.1. MEASUREMENT PROCEDURE	50
15.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)	50
15.3. LIMITS AND MEASUREMENT RESULT	51
16. LINE CONDUCTED EMISSION TEST	
16.1. LIMITS OF LINE CONDUCTED EMISSION TEST	52
16.2. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST	52
16.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST	53
16.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST	
14.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST	
APPENDIX A: PHOTOGRAPHS OF TEST SETUP	56
APPENDIX B: PHOTOGRAPHS OF EUT	58

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 100°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at the confirm

Page 5 of 69

1. VERIFICATION OF CONFORMITY

Applicant	Modern Marketing Concepts, Inc.	
Address	1220 E Oak St , Louisville, Kentucky, United States, 40204	
Manufacturer	SHENZHEN GXTSONIC TECHNOLOGY CO., LTD	
Address	1F,Building 3,Tianxin Shuichan Industrial Park,Gushu Village,Xixiang Town,Bao`an District,Shenzhen,CHINA	
Factory	SHENZHEN GXTSONIC TECHNOLOGY CO., LTD	
Address	1F,Building 3,Tianxin Shuichan Industrial Park,Gushu Village,Xixiang Town,Bao`an District,Shenzhen,CHINA	
Product Designation	Multifunctional FM Radio Speaker	
Brand Name	CROSLEY	
Test Model	CR3037A	
Series Model	CS-2026	
Difference description	escription Same PCBA, Different appearance.	
Date of test Mar. 18, 2019 to Mar. 26, 2019		
Deviation	None	
Condition of Test Sample Normal		
Report Template AGCRT-US-BR/RF (2013-03-01)		

We hereby certify that:

The above equipment was tested by Attestation of Global Compliance (Shenzhen) Co., Ltd. The test data, the energy emitted by the sample tested as described in this report is in compliance with the requirements of FCC Rules Part 15.247. The test results of this report relate only to the tested sample identified in this report.

Tested By	donjon strang	
GO MAN	Donjon Huang(Huang dongyang)	Mar. 26, 2019
Reviewed By	Bore sie	
® Milestulion of Colonia Con	Bart Xie(Xie Xiaobin)	Mar. 26, 2019
Approved By	Lowesto ce	
The state of the s	Forrest Lei(Lei Yonggang) Authorized Officer	Mar. 26, 2019

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 40°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.go.tt.com.

Attestation of Global Compliance

Page 6 of 69

2. GENERAL INFORMATION

2.1. PRODUCT DESCRIPTION

The EUT is "Multifunctional FM Radio Speaker" designed as a "Communication Device". It is designed by way of utilizing the FHSS technology to achieve the system operation.

A major technical description of EUT is described as following

7 major teerinical description	Tor Eor is described as following
Operation Frequency	2.402 GHz to 2.480GHz
RF Output Power	-8.413dBm(Max)
Bluetooth Version	V2.1+EDR
Modulation	☐ Basic Rate(GFSK)☐ EDR (PI/4-DQPSK)☐ BLE(GFSK)
Number of channels	79 for BR/EDR
Hardware Version	1.0
Software Version	1.0
Antenna Designation	PCB Antenna
Antenna Gain	0dBi
Power Supply	AC 120V/60Hz
Note: The EUT doesn't supp	oort BLE.

2.2. TABLE OF CARRIER FREQUENCYS

ZIZI I/(BZZ GI G/(I/(IZIX)		
Frequency Band	Channel Number	Frequency
e @ # Thoughout come @ #	600 CC	2402MHz
	01	2403MHz
	· · · · · · · · · · · · · · · · · · ·	
	38	2440 MHz
2402~2480MHz	39	2441 MHz
	40	2442 MHz
	The accomplished to the state of the state o	
	od Color 777	2479 MHz
	78	2480 MHz

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Page 7 of 69

@ 400 089 2118

2.3. RECEIVER INPUT BANDWIDTH

The input bandwidth of the receiver is 1.3MHZ, In every connection one Bluetooth device is the master and the other one is slave. The master determines the hopping sequence. The slave follows this sequence. Both devices shift between RX and TX time slot according to the clock of the master. Additionally the type of connection(e.g. single of multislot packet) is set up at the beginning of the connection. The master adapts its hopping frequency and its TX/RX timing according to the packet type of the connection. Also the slave of the connection will use these settings.

Repeating of a packet has no influence on the hopping sequence. The hopping sequence generated by the master of the connection will be followed in any case. That means, a repeated packet will not be send on the same frequency, it is send on the next frequency of the hopping sequence.

2.4. EXAMPLE OF A HOPPING SEQUENCY IN DATA MODE

Example of a 79 hopping sequence in data mode: 40,21,44,23,42,53,46,55,48,33,52,35,50,65,54,67 56,37,60,39,58,69,62,71,64,25,68,27,66,57,70,59 72,29,76,31,74,61,78,63,01,41,05,43,03,73,07,75 09,45,13,47,11,77,15,00,64,49,66,53,68,02,70,06 01, 51, 03, 55, 05, 04

2.5. EQUALLY AVERAGE USE OF FREQUENCIES AND BEHAVIOUR

The generation of the hopping sequence in connection mode depends essentially on two input values:

- 1. LAP/UAP of the master of the connection.
- 2. Internal master clock

The LAP(lower address part) are the 24 LSB's of the 48 BD ADDRESS. The BD ADDRESS is an unambiguous number of every Bluetooth unit. The UAP(upper address part) are the 24MSB's of the 48BD ADDRESS

The internal clock of a Bluetooth unit is derived from a free running clock which is never adjusted and is never turned off. For synchronization with other units only offset are used. It has no relation to the time of the day. Its resolution is at least half the RX/TX slot length of 312.5us. The clock has a cycle of about one day(23h30). In most case it is implemented as 28 bit counter. For the deriving of the hopping sequence the entire. LAP(24 bits),4LSB's(4bits)(Input 1) and the 27MSB's of the clock(Input 2) are used. With this input values different mathematical procedures(permutations, additions, XOR-operations) are performed to generate te Sequence This will be done at the beginning of every new transmission.

Regarding short transmissions the Bluetooth system has the following behavior:

The first connection between the two devices is established, a hopping sequence was generated. For Transmitting the wanted data the complete hopping sequence was not used. The connection ended. The second connection will be established. A new hopping sequence is generated. Due to the fact the Bluetooth clock has a different value, because the period between the two transmission is longer(and it Cannot be shorter) than the minimum resolution of the clock(312.5us). The hopping sequence will always Differ from the first one.

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 💢 Ĉ, this documant be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-gert.com.

C C S

Page 8 of 69

2.6. TEST METHOD

All measurements contained in this report were conducted with ANSI C63.10-2013.

2.7. EQUIPMENT MODIFICATIONS

Not available for this EUT intended for grant.

3. MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y ±U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %

- Uncertainty of Conducted Emission, Uc = ±3.2 dB
- Uncertainty of Radiated Emission below 1GHz, Uc = ±3.9 dB
- Uncertainty of Radiated Emission above 1GHz, Uc = ±4.8 dB

The results spowfill this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 100°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true www.ago.gott.com.

Attestation of Global Compliance

4. DESCRIPTION OF TEST MODES

VIII.		
	NO.	TEST MODE DESCRIPTION
KET HIM	1 Parising	Low channel GFSK
© 4	2	Middle channel GFSK
GG	3	High channel GFSK
,	4	Low channel π /4-DQPSK
The Lation of Globa	5	Middle channel π /4-DQPSK
Atten	6	High channel π /4-DQPSK
	7 点 测。	Low channel 8DPSK
® 4	8	Middle channel 8DPSK
CC	9 _ C	High channel 8DPSK
	10	BT Link with charging

Note: 1. Only the result of the worst case was recorded in the report, if no other cases.

- 2. For Radiated Emission, 3axis were chosen for testing for each applicable mode.
- 3. The EUT used fully-charged battery when tested.
- 4. For Conducted Test method, a temporary antenna connector is provided by the manufacture.

The results shows if this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by (CC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true; //www.agc gatt.com.

Page 10 of 69

5. SYSTEM TEST CONFIGURATION 5.1. CONFIGURATION OF EUT SYSTEM

Configure 1: (Normal hopping)

Configure 2: (Control continuous TX)

EUT	Station	PC

5.2. EQUIPMENT USED IN EUT SYSTEM

Item	Equipment	Model No.	ID or Specification	Remark
150	Multifunctional FM Radio Speaker	CR3037A	AUSCR3037A	EUT
2	Adapter	BSY012U100100U	DC 10V 1A	Accessory

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

5.3. SUMMARY OF TEST RESULTS

FCC RULES	DESCRIPTION OF TEST	RESULT
§15.247 b(1)	Peak Output Power	Compliant
§15.247 a(1)	20 dB Bandwidth	Compliant
§15.247 d	Conducted Spurious Emission	Compliant
§15.247 d §15.209	Radiated Emission	Compliant
§15.247 d	Band Edges	Compliant
§15.247 a(1)(iii)	Number of hopping frequency	Compliant
§15.247 a(1)(iii)	Time of Occupancy	Compliant
§15.247 a(1)	Frequency Separation	Compliant
§15.207	Line conduction Emission	Compliant

The results spouroid this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Page 12 of 69

6. TEST FACILITY

Test Site	Attestation of Global Compliance (Shenzhen) Co., Ltd	
Location 1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Hepin Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong,C		
Designation Number	CN1259	
FCC Test Firm Registration Number	975832	
A2LA Cert. No.	5054.02	
Description	Attestation of Global Compliance(Shenzhen) Co., Ltd is accredited by A2LA	

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Page 13 of 69

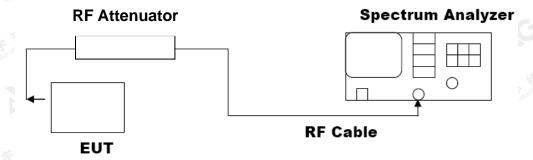
7. TEST EQUIPMENT LIST

TEST EQUIPMENT OF RADIATED EMISSION TEST

Jan 1011		3333 310				
Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Due	
TEST RECEIVER	R&S	ESCI	10096	Jun. 12, 2018	Jun. 11, 2019	
EXA Signal Analyzer	Aglient	N9010A	MY53470504	Dec. 20, 2018	Dec. 19, 2019	
2.4GHz Fliter	Micro-tronics	087	N/A	Jun. 12, 2018	Jun. 11, 2019	
Attenuator	Weinachel Corp	58-30-33	N/A	Jun. 12, 2018	Jun. 11, 2019	
Horn antenna	SCHWARZBECK	BBHA 9170	#768	Sep. 21, 2017	Sep. 20, 2020	
Active loop antenna (9K-30MHz)	ZHINAN	ZN30900C	18051	Jun. 14, 2018	Jun. 13, 2020	
Double-Ridged Waveguide Horn	ETS LINDGREN	3117	00034609	May. 26, 2018	May. 25, 2020	
Broadband Preamplifier	ETS LINDGREN	3117PA	00225134	Oct. 25, 2018	Oct. 24, 2019	
ANTENNA	SCHWARZBECK	VULB9168	D69250	Sep. 28, 2017	Sep. 27, 2019	

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 100°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

Page 14 of 69


8. PEAK OUTPUT POWER

8.1. MEASUREMENT PROCEDURE

For peak power test:

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the EUT Work on the top, middle and the bottom operation frequency individually.
- 3. RBW > the 20 dB bandwidth of the emission being measured, VBW ≥ RBW.
- 4. Record the maximum power from the Spectrum Analyzer.
- 5. The maximum peak power shall be less 30dBm.

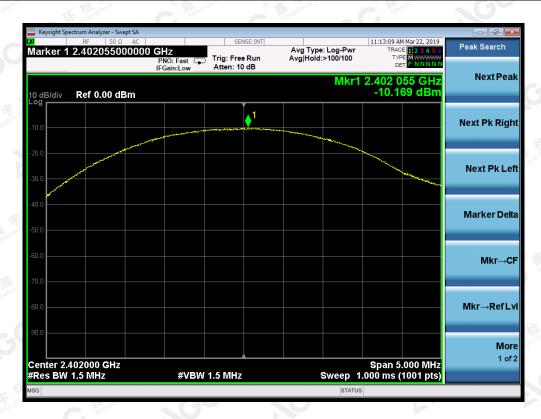
8.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

The results spowed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 40°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

8.3. LIMITS AND MEASUREMENT RESULT

Mode	Frequency (GHz)	Peak Power (dBm)	Applicable Limits (dBm)	Pass or Fail	
Chord Comban	2.402	-8.413	30	Pass	
GFSK	2.441	-8.625	30	Pass	
C W	2.480	-9.007	30	Pass	

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by (CC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a tittp://www.agc.com.



The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Mode	Frequency (GHz)	Peak Power (dBm)	Applicable Limits (dBm)	Pass or Fail	
A Compliant	2.402	-10.169	30	Pass	
π /4-DQPSK	2.441	-10.307	30	Pass	
	2.480	-11.545	30	Pass	

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 40°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

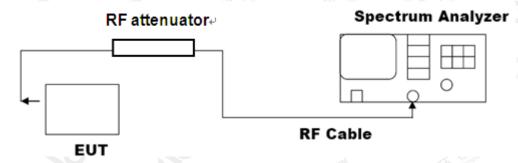
IGC 8

The results spowth this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Mode	Frequency (GHz)	Peak Power (dBm)	Applicable Limits (dBm)	Pass or Fail
K Compilar	2.402	-10.661	30	Pass
8DQPSK	2.441	-10.848	30	Pass
	2.480	-11.427	30	Pass

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.


Page 21 of 69

9. BANDWIDTH

9.1. MEASUREMENT PROCEDURE

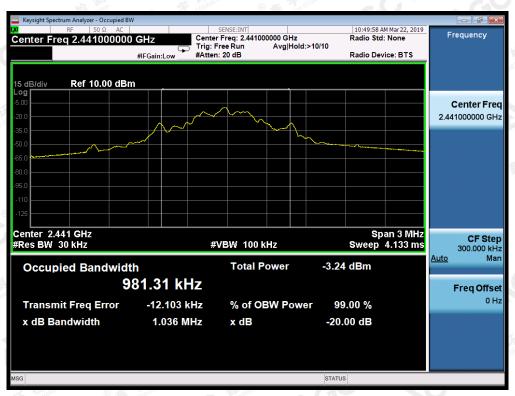
- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 3. Set Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hoping channel RBW \geq 1% of the 20 dB bandwidth, VBW \geq 3RBW; Sweep = auto; Detector function = peak
- 4. Set SPA Trace 1 Max hold, then View.

9.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

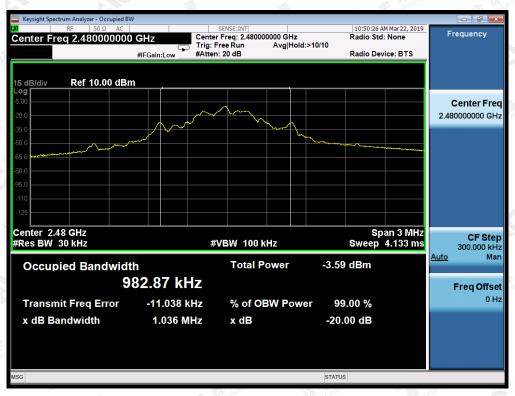
Note: The EUT has been used temporary antenna connector for testing.

9.3. LIMITS AND MEASUREMENT RESULTS

	BLUETOOTH	1MBPS LIMITS AN	ID MEASUREMENT	RESULT			
	Measurement Result						
Applicable Limits		Test Data (MHz))	D 16			
		99%OBW (MHz)	-20dB BW(MHz)	Result			
a C Allestation	Low Channel	0.980	1.036	PASS			
N/A	Middle Channel	0.981	1.036	PASS			
	High Channel	0.983	1.036	PASS			


The results spowed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 40°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

TEST PLOT OF BANDWIDTH FOR LOW CHANNEL


TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XQC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gott.com.

TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

IGC 8

			all to the state of the state o				
	BLUETOOTH 2	MBPS LIMITS AN	D MEASUREMENT RES	ULT			
	Measurement Result						
Applicable Limits			Decode				
		99%OBW (MHz)	-20dB BW(MHz)	Result			
The Completions	Low Channel	1.0694	1.130	PASS			
N/A	Middle Channel	1.0712	1.126	PASS			
	High Channel	1.0666	1.124	PASS			

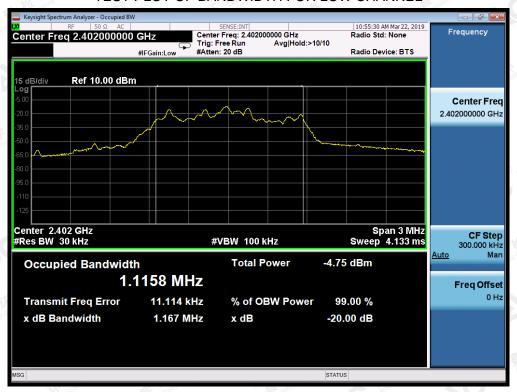
TEST PLOT OF BANDWIDTH FOR LOW CHANNEL

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.


Attestation of Global Compliance

TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL

TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL


The results spowed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 40°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.go.tt.com.

IGC 8

Alle		-711	3/1	30 Cou.,				
	BLUETOOTH 3	BMBPS LIMITS AN	D MEASUREMENT RE	SULT				
	Measurement Result							
Applicable Limits		Test Data (MHz	Dooult					
		99%OBW (MHz)	-20dB BW(MHz)	Result				
EK Kampane	Low Channel	1.1158	1.167	PASS				
N/A	Middle Channel	1.1211	1.173	PASS				
	High Channel	1.1164	1.172	PASS				

TEST PLOT OF BANDWIDTH FOR LOW CHANNEL

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by (CC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a tittp://www.agc.com.

Attestation of Global Compliance

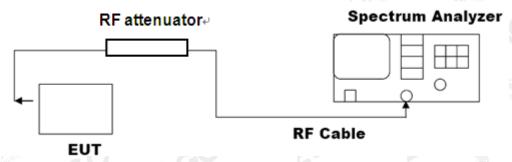
Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 E-mail: agc@agc-cert.com @ 400 089 2118 Add: 2/F. , Building 2, No.1-4,Chaxi Sanwei Technical Industrial Park,Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL

TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true.//www.agc.gatt.com.

IGC 8


Page 28 of 69

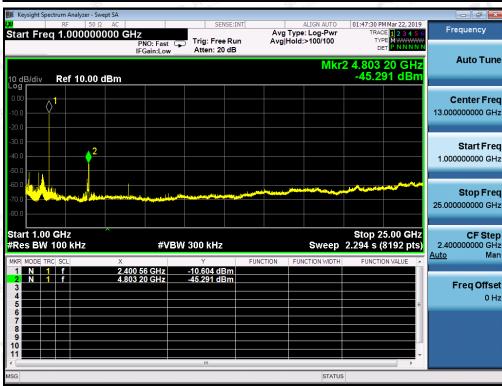
10. CONDUCTED SPURIOUS EMISSION

10.1. MEASUREMENT PROCEDURE

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the EUT Work on the top, the Middle and the bottom operation frequency individually.
- Set the Span = wide enough to capture the peak level of the in-band emission and all spurious emissions
 from the lowest frequency generated in the EUT up through the 10th harmonic.
 - RBW = 100 kHz; VBW = 300kHz; Sweep = auto; Detector function = peak.
- 4. Set SPA Trace 1 Max hold, then View.

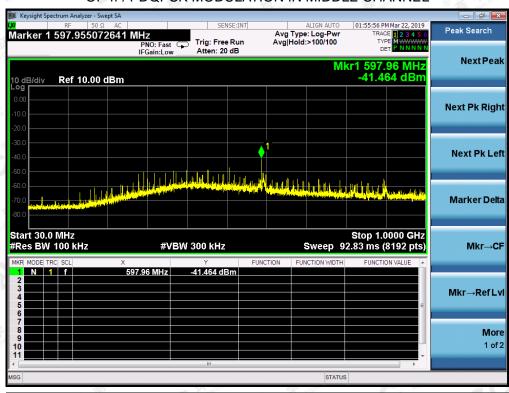
10.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

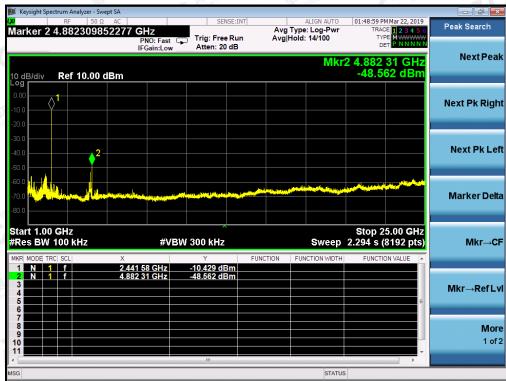

10.3. LIMITS AND MEASUREMENT RESULT


LIMITS AND MEASUREMENT RESULT							
Applicable Limite	Measurement Re	sult					
Applicable Limits	Test Data	Result					
In any 100 KHz Bandwidth Outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency	At least -20dBc than the limit Specified on the BOTTOM Channel	PASS					
power that is produce by the intentional radiator shall be at least 20 dB below that in 100KHz bandwidth within the band that contains the highest level of the desired power. In addition, radiation emissions which fall in the	At least -20dBc than the limit Specified on the TOP Channel	PASS					
restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a))							

The results spowed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 40°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.go.tt.com.

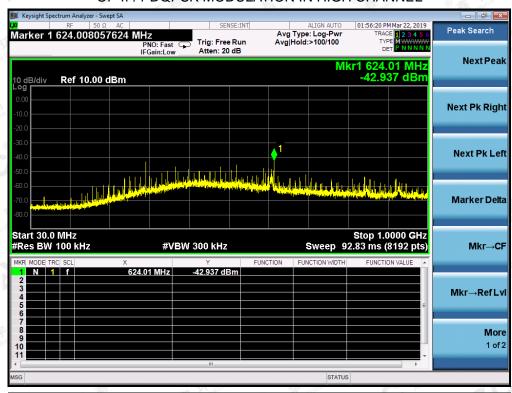
TEST PLOT OF OUT OF BAND EMISSIONS WITH THE WORST CASE OF π /4-DQPSK MODULATION IN LOW CHANNEL

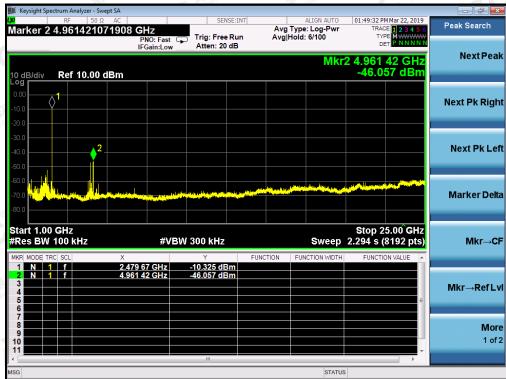




The results spowed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XQC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

TEST PLOT OF OUT OF BAND EMISSIONS OF π /4-DQPSK MODULATION IN MIDDLE CHANNEL





The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

TEST PLOT OF OUT OF BAND EMISSIONS OF π /4-DQPSK MODULATION IN HIGH CHANNEL

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Page 32 of 69

11. RADIATED EMISSION

11.1. TEST LIMIT

Frequency	Distance	Field Stren	gths Limit	
(MHz)	Meters	μ V/m	dB(μV)/m	
0.009 ~ 0.490	300	2400/F(kHz)	THE STATE OF THE S	
0.490 ~ 1.705	30	24000/F(kHz)	<u> </u>	
1.705 ~ 30	30	30		
30 ~ 88	3	100	40.0	
88 ~ 216	3	150	43.5	
216 ~ 960	(200	46.0	
960 ~ 1000	3 Marian of Glob	500	54.0	
Above 1000	3	Other:74.0 dB(µV)/m (Peak) 54.0 dB(µV)/m (Ave	

Remark:

- (1) Emission level dB μ V = 20 log Emission level μ V/m.
- (2) The smaller limit shall apply at the cross point between two frequency bands.
- (3) Distance is the distance in meters between the measuring instrument, antenna and the closest point of any part of the device or system.

11.2. MEASUREMENT PROCEDURE

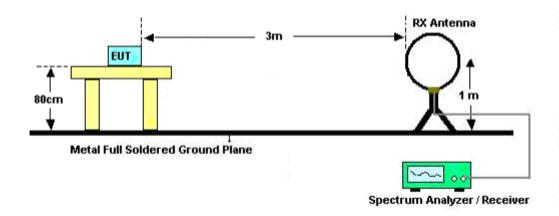
- 1. The measuring distance of 3m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation(Below 1GHz)
- 2. The measuring distance of 3m shall used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation(Above 1GHz)
- 3. The height of the test antenna shall vary between 1m to 4m.Both horizontal and vertical polarization Of the antenna are set to make the measurement.
- 4. The initial step in collecting radiated emission data is a receive peak detector mode. Pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- All readings are peak unless otherwise stated QP in column of Note. Peak denoted that the Peak reading compliance with the QP limits and then QP Mode measurement didn't perform(Below 1GHz)
- 6. All readings are Peak mode value unless otherwise stated AVG in column of Note. If the Peak mode measured value compliance with the Peak limits and lower than AVG Limits, the EUT shall be deemed to meet Peak&AVG limits and then only Peak mode was measured, but AVG mode didn't perform.(Above 1GHz)

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gott.com.

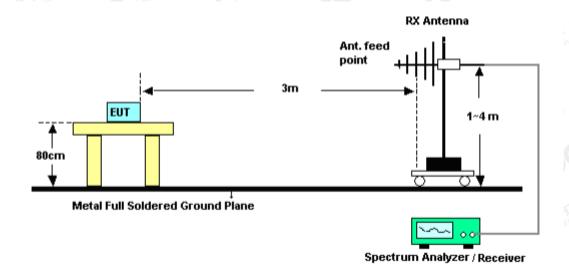
Page 33 of 69

The following table is the setting of spectrum analyzer and receiver.

	Spectrum Parameter	Setting
K Kampianes	Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP
(S)	Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP
CO	Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP
松		1GHz~26.5GHz
I IN Colonal Co	Start ~Stop Frequency	RBW 1MHz/ VBW 3MHz for Peak,
3 Allostation of C	© Management of the Company of the C	RBW 1MHz/ VBW 10Hz for Average


Receiver Parameter	Setting
Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP
Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP
Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP

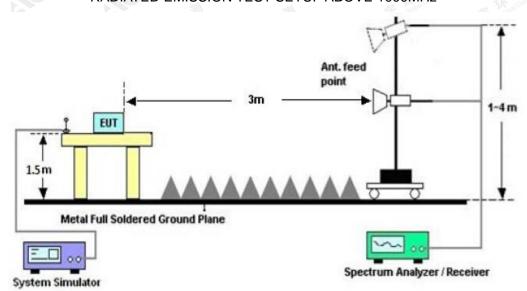
The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attr://www.agc-gett.com.



11.3. TEST SETUP

RADIATED EMISSION TEST SETUP BELOW 30MHz

RADIATED EMISSION TEST SETUP 30MHz-1000MHz



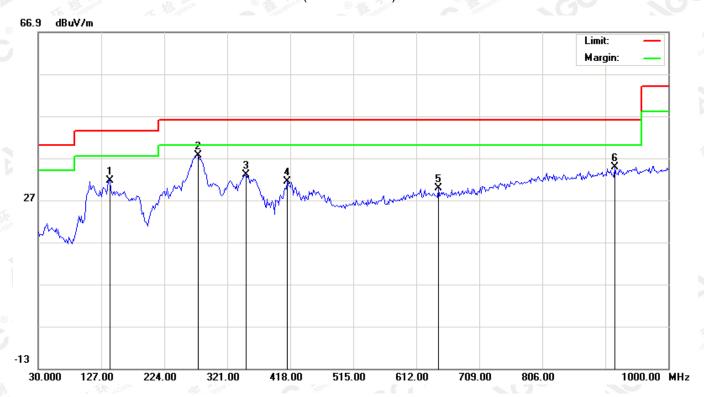
The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

RADIATED EMISSION TEST SETUP ABOVE 1000MHz

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attr://www.agc-gett.com.

Page 36 of 69

11.4. TEST RESULT


(Worst Modulation: π /4-DQPSK)

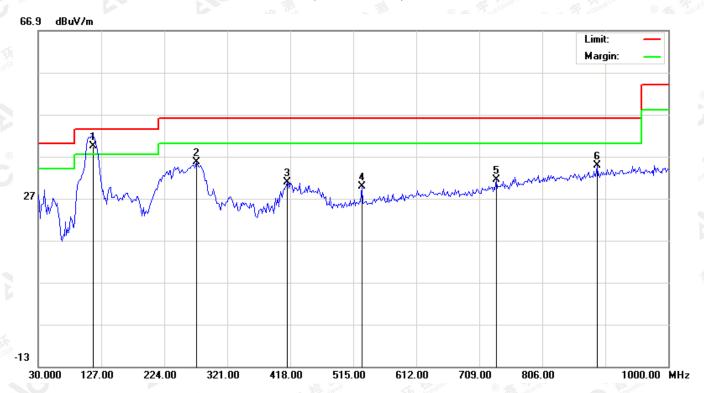
RADIATED EMISSION BR/EDR OW 30MHz

No emission found between lowest internal used/generated frequencies to 30MHz.

RADIATED EMISSION BR/EDR OW 1GHz

RADIATED EMISSION TEST- (30MHz-1GHz)-LOW CHANNEL-HORIZONTAL

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	-	MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
1		139.9333	12.35	19.23	31.58	43.50	-11.92	peak			
2	*	275.7333	18.05	19.59	37.64	46.00	-8.36	peak			
3		350.1000	11.85	21.23	33.08	46.00	-12.92	peak			
4		413.1500	8.20	23.24	31.44	46.00	-14.56	peak			
5		645.9500	2.21	27.50	29.71	46.00	-16.29	peak	·		
6		917.5500	2.99	31.85	34.84	46.00	-11.16	peak		·	


RESULT: PASS

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 40°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.go.tt.com.

Page 37 of 69

RADIATED EMISSION TEST- (30MHz-1GHz)-LOW CHANNEL -VERTICAL

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	-	MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
1	*	114.0667	22.10	17.39	39.49	43.50	-4.01	QP			
2		274.1167	16.10	19.46	35.56	46.00	-10.44	peak			
3		413.1500	7.50	23.24	30.74	46.00	-15.26	peak			
4		527.9333	4.18	25.54	29.72	46.00	-16.28	peak			
5		734.8667	2.44	28.94	31.38	46.00	-14.62	peak			
6		890.0667	3.15	31.57	34.72	46.00	-11.28	peak			

RESULT: PASS

Note: 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.

- 2. The "Factor" value can be calculated automatically by software of measurement system.
- 3. All modes were tested, and only the data of worst case mode 4 was recorded in this report.

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 40°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.go.tt.com.

Page 38 of 69

RADIATED EMISSION ABOVE 1GHZ FOR BR/EDR

EUT:	Multifunctional FM Radio Speaker	Model Name. :	CR3037A
Temperature :	20 ℃	Relative Humidtity:	48%
Pressure :	1010 hPa	Test Voltage :	AC 120V/60 Hz
Test Mode :	Mode 4	Polarization :	Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	® Station of Gir
4804.026	54.34	7.12	61.46	74	-12.54	peak
4804.026	34.82	7.12	41.94	54	-12.06	AVG
7206.039	40.07	9.84	49.91	74	-24.09	peak
7206.039	30.12	9.84	39.96	54	-14.04	AVG
Remark:			The Market	(S) A TOO GOODALC	© Majoron of Glo	CO.
Factor = Ante	enna Factor + Ca	able Loss – Pre-a	mplifier.	Alleste	60	

EUT:	Multifunctional FM Radio Speaker	Model Name. :	CR3037A
Temperature:	20 ℃	Relative Humidtity:	48%
Pressure:	1010 hPa	Test Voltage :	AC 120V/60 Hz
Test Mode :	Mode 4	Polarization :	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
4804.026	53.63	7.12	60.75	74	-13.25	peak
4804.026	34.26	7.12	41.38	54	-12.62	AVG
7206.039	39.03	9.84	48.87	74	-25.13	peak
7206.039	29.89	9.84	39.73	54	-14.27	AVG
Remark:	0 .6			TIE!	10 m	# 1
Factor = Ant	enna Factor + Ca	able Loss – Pre-a	amplifier.	TK Compliance	The Complie	(B) Mestation of

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 1000, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

Page 39 of 69

EUT:	Multifunctional FM Radio Speaker	Model Name. :	CR3037A
Temperature:	20 ℃	Relative Humidtity:	48%
Pressure :	1010 hPa	Test Voltage :	AC 120V/60 Hz
Test Mode :	Mode 5	Polarization :	Horizontal

Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
55.17	7.12	62.29	74	-11.71	peak
35.39	7.12	42.51	54	-11.49	AVG
41.2	9.84	51.04	74	-22.96	peak
30.76	9.84	40.60	54	-13.40	AVG
Allesta	60			1101:	III.
	Reading (dBµV) 55.17 35.39 41.2	Reading Factor (dBμV) (dB) 55.17 7.12 35.39 7.12 41.2 9.84	Reading Factor Level (dBμV) (dB) (dBμV/m) 55.17 7.12 62.29 35.39 7.12 42.51 41.2 9.84 51.04	Reading Factor Level Limits (dBμV) (dB) (dBμV/m) (dBμV/m) 55.17 7.12 62.29 74 35.39 7.12 42.51 54 41.2 9.84 51.04 74	Reading Factor Level Limits Margin (dBμV) (dB) (dBμV/m) (dBμV/m) (dB) 55.17 7.12 62.29 74 -11.71 35.39 7.12 42.51 54 -11.49 41.2 9.84 51.04 74 -22.96

Factor = Antenna Factor + Cable Loss – Pre-amplifier.

EUT:	Multifunctional FM Radio Speaker	Model Name. :	CR3037A
Temperature :	20 ℃	Relative Humidtity:	48%
Pressure :	1010 hPa	Test Voltage :	AC 120V/60 Hz
Test Mode :	Mode 5	Polarization:	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	aG "
4882.032	54.99	7.12	62.11	74	-11.89	peak
4882.032	34.55	7.12	41.67	54	-12.33	AVG
7323.048	39.95	9.84	49.79	74	-24.21	peak
7323.048	29.88	9.84	39.72	54	-14.28	AVG
Remark:	F Global Compile	® # John Clobal C	Attestation of	Allesta		
Factor = Ante	nna Factor + Ca	ble Loss – Pre-	amplifier			

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 40°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Report No.: AGC02728190302FE03 Page 40 of 69

EUT:	Multifunctional FM Radio Speaker	Model Name. :	CR3037A	
Temperature :	20 ℃	Relative Humidtity:	48%	
Pressure :	1010 hPa	Test Voltage :	AC 120V/60 Hz	
Test Mode :	Mode 6	Polarization :	Horizontal	

Frequenc y	Meter Reading	Factor	Emission Level	Limits	Margin	Value
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4960.042	54.73	7.12	61.85	74	-12.15	peak
4960.042	34.82	7.12	41.94	54	-12.06	AVG
7440.063	40.32	9.84	50.16	74	-23.84	peak
7440.063	30.86	9.84	40.70	54	-13.3	AVG
Remark:	C Allesta				liji:	
Factor = Ant	enna Factor + 0	Cable Loss – Pi	e-amplifier.		The Compliance	Z Jobal Compile

EUT:	Multifunctional FM Radio Speaker	Model Name. :	CR3037A
Temperature:	20 ℃	Relative Humidtity:	48%
Pressure :	1010 hPa	Test Voltage :	AC 120V/60 Hz
Test Mode :	Mode 6	Polarization :	Vertical

Frequenc y	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
4960.042	52.74	7.12	59.86	74	-14.14	peak
4960.042	33.56	7.12	40.68	54	-13.32	AVG
7440.063	39.68	9.84	49.52	74	-24.48	peak
7440.063	30.18	9.84	40.02	54	-13.98	AVG
E AND	The Global Compile	(B) Francisco de la constante	Remark:	Allesta		

Note: Other emissions from 8G to 25 GHz are considered as ambient noise. No recording in the test report. Factor=Antenna Factor + Cable loss - Amplifier gain, Margin=Measurement-Limit.

The "Factor" value can be calculated automatically by software of measurement system.

The π /4-DQPSK modulation was the worst case and only the data of worst recorded in this report.

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.go.tt.com.