

BEC INCORPORATED

ANTENNA GAIN VALUE CALCULATION REPORT

REFERENCE DOCUMENT: KDB 789033 D02

Legrand Model WNR/WZ3R radiant 4-Button Scene Controller

FCC ID: 2AU5D-WRCB4

REPORT# BEC-2195-05

CUSTOMER:
Pass & Seymour/Legrand
50 Boyd Avenue
Syracuse, NY 13209

PREPARED BY:

Paul Banker, Test Engineer

REVIEWED and APPROVED BY:

Steve Fanella, Quality Manager

The results described in this report relate only to the item(s) tested. This document shall not be reproduced except in full without prior written permission of BEC Incorporated

TABLE OF CONTENTS

Notice	e To Customer	. 3
	ion History	
	Administrative Information	
1.1	General Information Table	. 4
1.2	Antenna Gain Value Calculation (EIRP Minus Maximum Conducted Output Power)	5
1.3	EIRP (dBm)	5
	Maximum Conducted Output Power (dBm)	

Notice To Customer

This report and any recommendations it contain represent the result of BEC's testing and assessment on behalf of your company. Testing has been conducted according to accepted engineering standards and practices. This report reflects testing and assessment of product samples provided by your company and may not reflect the characteristics of other samples, especially those produced at different times. This report and its findings and recommendations, if implemented, should not be construed as an assurance or implied warranty for the continuing electromagnetic compatibility (EMC) of the product. **BEC shall not be liable for incidental or consequential damages, even if advised of the possibility thereof.**

BEC will not disseminate this report to other parties without your express permission. You may reproduce this report in its entirety including this notice and the entireties of any supplemental test reports on the same product (e.g. reports on additional testing following modification). However 'you may not reproduce portions of the report (except for the entirety of the summary section) or quote from it for any purpose without specific prior written permission from BEC'.

Revision History

Revision #	Description of Changes	Date of Changes	Date Released	
0	Test Report Initial Release	N/A	05/23/2022	

1.0 Administrative Information

1.1 General Information Table

Project Number	BEC-2195				
Manufacturer	Legrand				
Model Number Tested	WNR/WZ3R				
Wiodel Number Tested	WNK/ WZ3K				
EUT Sample Type	FCC Test Code Radiated Sample				
EUT Serial Number	None				
EUT Sample Number	2195-01				
EUT Firmware Version	TestRadio_WNRL63.bin				
Frequency of Operation	2405 – 2480 MHz				
Antenna Gain Calculated Value	+ 4.28 dBi				
Antenna Type	Inverted F				
Modulation	O-QPSK				
FCC Classification	Digital Transmission System (DTS)				
Date Samples Received	02/27/2022				
Sample Type and Condition Received	Production Unit Suitable for Test				
EUT Description	radiant Wireless 4-Button Scene Controller				
FCC ID	2AU5D-WRCB4				
FCC KDB Guidance Document	KDB 789033 D02 General UNII Test Procedures New Rules v02r01 Section G 2(d)				

1.2 Antenna Gain Value Calculation (EIRP Minus Maximum Conducted Output Power)

Antenna Gain Value is calculated as the difference between the Radiated EIRP measurement value of the Highest Peak Corrected Fundamental Tx Frequency Minus the Highest Peak Corrected Maximum Conducted Output Power.

EIRP (dBm):

Maximum Conducted Output Power (dBm):

Calculated Antenna Gain

9.60 dBm

- 5.32 dBm

4.28 dBi

1.3 EIRP (dBm)

"EIRP" is calculated using the following KDB Guidance found in KDB 789033 D02 General UNII Test Procedures New Rules v02r01 Section G 2(d). Highest Peak Corrected Fundamental Tx Frequency converted from dBuV/m to dBm by subtracting 95.2 to get EIRP in (dBm).

- d) If radiated measurements are performed, field strength is then converted to EIRP as follows:
 - (i) EIRP = ((E×d)^2) / 30where:
 - . E is the field strength in V/m;
 - · d is the measurement distance in m;
 - EIRP is the equivalent isotropically radiated power in W.
 - (ii) Working in dB units, the preceding equation is equivalent to:

$$EIRP[dBm] = E[dB\mu V/m] + 20 log (d[m]) - 104.77$$

(iii) Or, if d is 3 m: $EIRP[dBm] = E[dB\mu V/m] - 95.2$

The Settings on the Measurement Analyzer for measuring the Fundamental Tx Frequency were:

Zigbee Radio, O-QPSK modulation						
Spec A	analyzer Se	ettings	ANSI C63.10 requirement			
Span	20	MHz	≥ 3 X RBW			
RBW	1	MHz	RBW ≥ DTS BW			
VBW	VBW 3 MHz		\geq 3 X RBW			
Sweep 5 ms			Auto			

Highest Peak Corrected Fundamental Tx Frequency=104.8 dBuV/m

Fundamental Tx	Peak Level Uncorrected	Axis (EUT)	Antenna	Turntable	Antenna	Correction	Peak Corrected
Frequency			Polarity	Angle	Height	Factor	Total
GHz	dBuV/m	X/Y/Z	H/V	degrees	cm	dB	dBuV/m
2.440	110.3	Y	Н	031	275	-5.5	104.8

104.8 dBuV/m minus 95.2 = 9.60 dBm (EIRP Final)

1.4 Maximum Conducted Output Power (dBm)

Maximum Conducted Output Power at the same Highest Tx Fundamental Frequency of 2.440 GHz during Bench testing of the EUT radio.

The Settings on the Measurement Analyzer for measuring the Fundamental Tx Frequency were:

Zigbee Radio, O-QPSK modulation							
Spec Analyzer Settings			ANSI C63.10 requirement				
Span	10	MHz	≥ 3 X RBW				
RBW	RBW 3 MHz		RBW ≥ DTS BW				
VBW	VBW 10 MHz		≥ 3 X RBW				
Sweep 5 ms			Auto				

Maximum Conducted Output Power at the same Highest Tx Fundamental Frequency of 2.440 GHz during Bench testing of the EUT radio= **5.32 dBm** (Maximum Conducted Output Power Final)

Channel	Modulation	Frequency	Measured	Cable #	Total	
Channel	Modulation	(MHz)	Level	962 Loss	dBm	Watts
11		2405.0	4.85	0.47	5.32	0.0034
18	O-QPSK	2440.0	4.85	0.47	5.32	0.0034
26		2480.0	4.98	0.47	5.45	0.0035