

CFR 47 FCC PART 15 SUBPART C

TEST REPORT

For

CAR MULTIMEDIA

MODEL NUMBER: A2GL93L, A2GL93R

REPORT NUMBER: 4791189108-RF-3

ISSUE DATE: March 29, 2024

FCC ID: 2AEQT-A2GL93L

Prepared for

Huizhou Desay SV Automotive Co., Ltd. NO.103, Hechang 5th Road West, Zhongkai National Hi-tech Industrial Development Zone, Huizhou, Guangdong, P.R. China

Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch

Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, 523808, People's Republic of China

> Tel: +86 769 22038881 Fax: +86 769 33244054 Website: www.ul.com

The results reported herein have been performed in accordance with the laboratory's terms of accreditation. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report apply to the test sample(s) mentioned above at the time of the testing period only and are not to be used to indicate applicability to other similar products.

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	March 29, 2024	Initial Issue	

Test Item	Clause	Limit/Requirement	Result
Antenna Requirement /		FCC 15.203	Pass
Conducted Output Power	ANSI C63.10-2013 Clause 7.8.5	FCC 15.247 (b) (1)	Pass
20 dB Bandwidth and 99% Occupied Bandwidth	ANSI C63.10-2013 Clause 6.9.2	FCC 15.247 (a) (1)	Pass
Carrier Hopping Channel Separation	ANSI C63.10-2013 Clause 7.8.2	FCC 15.247 (a) (1)	Pass
Number of Hopping Frequency	ANSI C63.10-2013 Clause 7.8.3	15.247 (a) (1) III	Pass
Time of Occupancy (Dwell Time)	ANSI C63.10-2013 Clause 7.8.4	15.247 (a) (1) III	Pass
Conducted Bandedge and Spurious Emission	ANSI C63.10-2013 Clause 6.10.4 & Clause 7.8.8	FCC 15.247 (d)	Pass
Radiated Band edge and Spurious Emission	ANSI C63.10-2013 Clause 6.3 & 6.5 & 6.6	FCC 15.247 (d) FCC 15.209 FCC 15.205	Pass
Duty Cycle	ANSI C63.10-2013, Clause 11.6	None; for reporting purposes only.	Pass

Summary of Test Results

Note:

1. N/A: In this whole report not applicable.

*This test report is only published to and used by the applicant, and it is not for evidence purpose in China.

*The measurement result for the sample received is <Pass> according to <CFR 47 FCC PART 15 SUBPART C > when <Simple Acceptance> decision rule is applied.

CONTENTS

1.	ATTESTATION OF TEST RESULTS6				
2.	TEST METHODOLOGY	7			
3.	FACILITIES AND ACCREDITATION	7			
4.	CALIBRATION AND UNCERTAINTY	8			
4	.1. MEASURING INSTRUMENT CALIBRATION	8			
4	.2. MEASUREMENT UNCERTAINTY	8			
5.	EQUIPMENT UNDER TEST	9			
5	.1. DESCRIPTION OF EUT	9			
5	.2. CHANNEL LIST	9			
5	.3. MAXIMUM POWER	9			
5	.4. TEST CHANNEL CONFIGURATION	0			
5	.5. TEST CHANNEL CONFIGURATION 1	0			
5	.6. PACKET TYPE CONFIGURATION1	0			
5	.7. WORST-CASE CONFIGURATIONS1	0			
5	.8. THE WORSE CASE POWER SETTING PARAMETER 1	1			
5	.9. DESCRIPTION OF AVAILABLE ANTENNAS 1	1			
5	.10. DESCRIPTION OF TEST SETUP1	2			
6.	MEASURING EQUIPMENT AND SOFTWARE USED1	3			
7.	ANTENNA PORT TEST RESULTS1	5			
7	.1. CONDUCTED OUTPUT POWER1	5			
7	20 DB BANDWIDTH AND 99% OCCUPIED BANDWIDTH	6			
7	.3. CARRIER HOPPING CHANNEL SEPARATION 1	7			
7	.4. NUMBER OF HOPPING FREQUENCY1	9			
7	.5. TIME OF OCCUPANCY (DWELL TIME)2	0			
7	.6. CONDUCTED BANDEDGE AND SPURIOUS EMISSION	2			
7	.7. DUTY CYCLE	4			
8.	RADIATED TEST RESULTS	5			
8	.1. RESTRICTED BANDEDGE	3			
8	.2. SPURIOUS EMISSIONS (1 GHZ ~ 3 GHZ)	8			
8	.3. SPURIOUS EMISSIONS (3 GHZ ~ 18 GHZ)	4			
8	.4. SPURIOUS EMISSIONS (9 KHZ ~ 30 MHZ)5	6			
8	.5. SPURIOUS EMISSIONS (18 GHZ ~ 26 GHZ)	9			
8	.6. SPURIOUS EMISSIONS (30 MHZ ~ 1 GHZ)6	1			

9. ANTEN	NA REQUIREMENT	63
10.	TEST DATA	64
<i>10.1.</i> 10.1.1. 10.1.2.	APPENDIX A: 20DB EMISSION BANDWIDTH Test Result Test Graphs	64
<i>10.2.</i> 10.2.1. 10.2.2.	APPENDIX B: OCCUPIED CHANNEL BANDWIDTH Test Result Test Graphs	67
<i>10.3.</i> 10.3.1.	APPENDIX C: MAXIMUM PEAK CONDUCTED OUTPUT POWER Test Result	
<i>10.4.</i> 10.4.1. 10.4.2.	APPENDIX D: CARRIER FREQUENCY SEPARATION Test Result Test Graphs	71
10.5. 10.5.1. 10.5.2.	APPENDIX E: TIME OF OCCUPANCY Test Result Test Graphs	73
<i>10.6.</i> 10.6.1. 10.6.2.	APPENDIX F: NUMBER OF HOPPING CHANNELS Test Result Test Graphs	76
<i>10.7.</i> 10.7.1. 10.7.2.	APPENDIX G: BAND EDGE MEASUREMENTS Test Result Test Graphs	78
<i>10.8.</i> 10.8.1. 10.8.2.	APPENDIX H: CONDUCTED SPURIOUS EMISSION Test Result Test Graphs	82
<i>10.9.</i> 10.9.1. 10.9.2.	APPENDIX I: DUTY CYCLE Test Result Test Graphs	89

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name: Address:	Huizhou Desay SV Automotive Co., Ltd. NO.103, Hechang 5th Road West, Zhongkai National Hi-tech Industrial Development Zone, Huizhou, Guangdong, P.R. China
Manufacturer Information Company Name: Address:	Huizhou Desay SV Automotive Co., Ltd. NO.103, Hechang 5th Road West, Zhongkai National Hi-tech Industrial Development Zone, Huizhou, Guangdong, P.R. China
EUT Information EUT Name:	CAR MULTIMEDIA
Model:	A2GL93L, A2GL93R
Model Difference:	The difference between the two models is only left rudder and right rudder, only the touch buttons on the front panel are reverse, internal structure, design, layout are the same.
Sample Received Date:	February 23, 2024
Date of Tested:	February 23, 2024 to March 29, 2024

APPLICABLE STANDARDS STANDARD TEST RESULTS				

Prepared By:

Bucu Down

Denny Huang Senior Project Engineer

Approved By:

Sportino

Stephen Guo Operations Manager

Checked By:

Kebo Zhang Senior Project Engineer

2. TEST METHODOLOGY

All tests were performed in accordance with the standard CFR 47 FCC PART 15 SUBPART C, KDB 558074 D01 15.247 Meas Guidance v05r02, 414788 D01 Radiated Test Site v01r01, CFR 47 FCC Part 2 and ANSI C63.10-2013.

3. FACILITIES AND ACCREDITATION

	A2LA (Certificate No.: 4102.01)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	has been assessed and proved to be in compliance with A2LA.
	FCC (FCC Designation No.: CN1187)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	Has been recognized to perform compliance testing on equipment subject
	to the Commission's Declaration of Conformity (DoC) and Certification
	rules
	ISED (Company No.: 21320)
Accreditation	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
Certificate	has been registered and fully described in a report filed with ISED.
	The Company Number is 21320 and the test lab Conformity Assessment
	Body Identifier (CABID) is CN0046.
	VCCI (Registration No.: G-20192, C-20153, T-20155 and R-20202)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	has been assessed and proved to be in compliance with VCCI, the
	Membership No. is 3793.
	Facility Name:
	Chamber D, the VCCI registration No. is G-20192 and R-20202
	Shielding Room B, the VCCI registration No. is C-20153 and T-20155

Note 1:

All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, 523808, People's Republic of China.

Note 2:

The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

Note 3:

For below 30 MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. And these measurements below 30 MHz had been correlated to measurements performed on an OFS.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty			
Conduction emission	3.62 dB			
Radiated Emission (Included Fundamental Emission) (9 kHz ~ 30 MHz)	2.2 dB			
Radiated Emission (Included Fundamental Emission) (30 MHz ~ 1 GHz)	4.00 dB			
Radiated Emission	5.78 dB (1 GHz ~ 18 GHz)			
(Included Fundamental Emission) (1 GHz to 26 GHz)	5.23 dB (18 GHz ~ 26 GHz)			
Duty Cycle	±0.028%			
20dB Emission Bandwidth and 99% Occupied Bandwidth	±0.0196%			
Carrier Frequency Separation	±1.9%			
Maximum Conducted Output Power	±0.743 dB			
Number of Hopping Channel	±1.9%			
Time of Occupancy	±0.028%			
Conducted Band-edge Compliance	±1.328 dB			
Conducted Unwanted Emissions In Non-restricted	±0.746 dB (9 kHz ~ 1 GHz)			
Frequency Bands	±1.328dB (1 GHz ~ 26 GHz)			
Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.				

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name	CAR MULTIMEDIA		
Model	A2GL93L, A2GL93R		
Model Difference	The difference between the two models is only left rudder and right rudder, only the touch buttons on the front panel are reverse, internal structure, design, layout are the same.		
Normal Test Voltage	DC 12 V		

Technology	Bluetooth – BR & EDR			
Transmit Frequency Range	2402 MHz ~ 2480 MHz			
Mode	Basic Rate	Enhanced Data Rate		
Modulation	GFSK	∏/4-DQPSK	8DPSK	
Packet Type (Maximum Payload):	DH5	2DH5	3DH5	
Data Rate	1 Mbps	2 Mbps	3 Mbps	

5.2. CHANNEL LIST

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	20	2422	40	2442	60	2462
01	2403	21	2423	41	2443	61	2463
02	2404	22	2424	42	2444	62	2464
03	2405	23	2425	43	2445	63	2465
04	2406	24	2426	44	2446	64	2466
05	2407	25	2427	45	2447	65	2467
06	2408	26	2428	46	2448	66	2468
07	2409	27	2429	47	2449	67	2469
08	2410	28	2430	48	2450	68	2470
09	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461	/	/

5.3. MAXIMUM POWER

Test Mode	Frequency (MHz)	Channel Number	Maximum Peak Output Power (dBm)
GFSK	2402 ~ 2480	0-78[79]	7.14
8DPSK	2402 ~ 2480	0-78[79]	10.22

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

5.4. TEST CHANNEL CONFIGURATION

Test Mode	Test Channel	Frequency			
GFSK-DH5	CH 00(Low Channel), CH 39(MID Channel), CH 78(High Channel)	2402 MHz, 2441 MHz, 2480 MHz			
8DPSK-3DH5	CH 00(Low Channel), CH 39(MID Channel), CH 78(High Channel)	2402 MHz, 2441 MHz, 2480 MHz			
GFSK-DH5	Hopping				
8DPSK-3DH5	Hopping				

5.5. TEST CHANNEL CONFIGURATION

Test Mode	Test Channel	Frequency				
GFSK-DH5	CH 00(Low Channel), CH 39(MID Channel), CH 78(High Channel)	2402 MHz, 2441 MHz, 2480 MHz				
8DPSK-3DH5	CH 00(Low Channel), CH 39(MID Channel), CH 78(High Channel)	2402 MHz, 2441 MHz, 2480 MHz				
GFSK-DH5	Hopping					
8DPSK-3DH5	Hopping					

5.6. PACKET TYPE CONFIGURATION

Test Mode	Packet Type	Setting (Packet Length)	
	DH1	27	
GFSK	DH3	183	
	DH5	339	
	2-DH1	54	
∏/4-DQPSK	2-DH3	367	
	2-DH5	679	
	3-DH1	83	
8DPSK	3-DH3	552	
	3-DH5	1021	

5.7. WORST-CASE CONFIGURATIONS

Bluetooth Mode	Modulation Technology	Modulation Type	Data Rate (Mbps)
BR	FHSS	GFSK	1Mbit/s
EDR	FHSS	8DPSK	3Mbit/s

Note: Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates.

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

5.8. THE WORSE CASE POWER SETTING PARAMETER

The Worse Case Power Setting Parameter under 2400 ~ 2483.5 MHz Band						
Test So	oftware	BlueTest3				
Modulation Type Transmit Antenna		Test Software setting value				
	Number	CH 00	CH 39	CH 78		
GFSK	1	Default	Default	Default		
8DPSK	1	Default Default Defau				

5.9. DESCRIPTION OF AVAILABLE ANTENNAS

Antenna	Frequency (MHz)	Antenna Type	Maximum Antenna Gain (dBi)
1	2402-2480	PCB	-4.828

Test Mode	Transmit and Receive Mode	Description
GFSK	⊠1TX, 1RX	Antenna 1 can be used as transmitting/receiving antenna.
∏/4-DQPSK	⊠1TX, 1RX	Antenna 1 can be used as transmitting/receiving antenna.
8DPSK	⊠1TX, 1RX	Antenna 1 can be used as transmitting/receiving antenna.

Note: The value of the antenna gain was declared by customer.

5.10. DESCRIPTION OF TEST SETUP

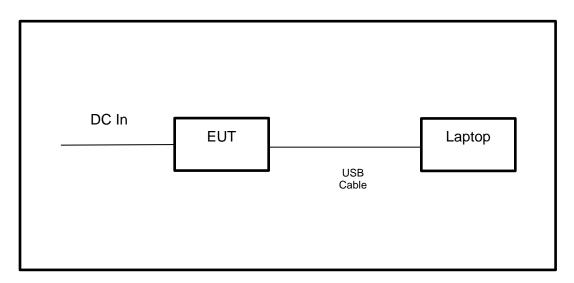
SUPPORT EQUIPMENT

Item	Equipment	Brand Name	Model Name	Remarks	
1	Laptop	Lenovo	XIAOXIN 5000	/	

I/O CABLES

Cable No	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
1	DC	/	/	1	/

ACCESSORIES


Item	Accessory	Brand Name	Model Name	Description
/	/	/	/	/

TEST SETUP

The EUT can work in engineering mode with a software through a Laptop.

Testing was performed on fully populated setup and minimal setup and worst is being report.

SETUP DIAGRAM FOR TESTS

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

6. MEASURING EQUIPMENT AND SOFTWARE USED

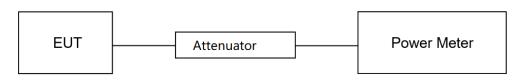
R&S TS 8997 Test System									
Equipment	Manufac	turer	Model	No.	Serial No.	Last C	Cal.	Due. Date	
Power sensor, Power N	leter	R&S	R&S		20	100921	Mar.31,	2023	Mar.30,2024
Vector Signal Genera	tor	R&S	5	SMBV1	00A	261637	Oct.12,	2023	Oct.11, 2024
Signal Generator		R&S	6	SMB10	00A	178553	Oct.12,	2023	Oct.11, 2024
Signal Analyzer		R&S	5	FSV4	0	101118	Oct.12,	2023	Oct.11, 2024
				Softwa	re		1		
Description		ſ	Manuf	acturer		Nam	е		Version
For R&S TS 8997 Test	Syste	em Ro	hde 8	Schwa	z	EMC	32		10.60.10
		То	nsen	d RF Te	st S	ystem			
Equipment	Man	ufacturer	Мос	del No.	S	Serial No.	Last C	Cal.	Due. Date
Wideband Radio Communication Tester		R&S	СМ	IW500	155523		Oct.12, 2023		Oct.11, 2024
Wireless Connectivity Tester		R&S	CM	IW270	120	1.0002N75- 102	Sep.25,	2023	Sep.24, 2024
PXA Signal Analyzer	Ke	eysight	N9	030A	ΜY	⁄55410512	Oct.12,	2023	Oct.11, 2024
MXG Vector Signal Generator	Ke	eysight	N5	5182B	ΜY	/56200284	Oct.12,	2023	Oct.11, 2024
MXG Vector Signal Generator	Ke	eysight	N5	5172B	ΜY	⁄56200301	Oct.12,	2023	Oct.11, 2024
DC power supply	Ke	eysight	E3	642A	ΜY	⁄55159130	Oct.12,	2023	Oct.11, 2024
Temperature & Humidity Chamber	SAN	NMOOD	SG-8	30-CC-2		2088	Oct.12,	2023	Oct.11, 2024
Attenuator	A	glient	84	495B	28	14a12853	Oct.12,	2023	Oct.11, 2024
RF Control Unit	То	nscend JS08)806-2	23E	380620666	April 18,	2023	April 17, 2024
				Softwa	re		<u>.</u>		
Description		Manufact	turer			Name			Version
Tonsend SRD Test Syst	tem	Tonser	nd	JS1	120-:	3 RF Test S	ystem		V3.2.22

		Radiated	l Emissions		
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
MXE EMI Receiver	KESIGHT	N9038A	MY56400036	Oct.12, 2023	Oct.11, 2024
Hybrid Log Periodic Antenna	TDK	HLP-3003C	130959	Aug.02, 2021	Aug.01, 2024
Preamplifier	HP	8447D	2944A09099	Oct.12, 2023	Oct.11, 2024
EMI Measurement Receiver	R&S	ESR26	101377	Oct.12, 2023	Oct.11, 2024
Horn Antenna	TDK	HRN-0118	130940	July 20, 2021	July 19, 2024
Preamplifier	TDK	PA-02-0118	TRS-305- 00067	Oct.12, 2023	Oct.11, 2024
Horn Antenna	Schwarzbeck	BBHA9170	697	July 20, 2021	July 19, 2024
Preamplifier	TDK	PA-02-2	TRS-307- 00003	Oct.12, 2023	Oct.11, 2024
Preamplifier	TDK	PA-02-3	TRS-308- 00002	Oct.12, 2023	Oct.11, 2024
Loop antenna	Schwarzbeck	1519B	00008	Dec.14, 2021	Dec.13, 2024
Preamplifier	TDK	PA-02-001- 3000	TRS-302- 00050	Oct.12, 2023	Oct.11, 2024
High Pass Filter	Wi	WHKX10- 2700-3000- 18000-40SS	23	Oct.12, 2023	Oct.11, 2024
Band Reject Filter Wainwright WRCJV8- 2350-2400- 2483.5- 2533.5-40SS		4	Oct.12, 2023	Oct.11, 2024	
		So	ftware		
[Description		Manufacturer	Name	Version
Test Software	for Radiated E	imissions	Farad	EZ-EMC	Ver. UL-3A1

7. ANTENNA PORT TEST RESULTS

7.1. CONDUCTED OUTPUT POWER

LIMITS


CFR 47 FCC Part15 (15.247), Subpart C				
Section	Frequency Range (MHz)			
CFR 47 FCC 15.247 (b) (1)	Peak Conducted Output Power	Hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel: 1 watt or 30 dBm; Hopping channel carrier frequencies that are separated by 25 kHz or two- thirds of the 20 dB bandwidth of the hopping channel: 125 mW or 21 dBm		

TEST PROCEDURE

Connect the EUT to a low loss RF cable from the antenna port to the power sensor (video bandwidth is greater than the occupied bandwidth).

Measure peak emission level, the indicated level is the peak output power, after any corrections for external attenuators and cables.

TEST SETUP

TEST ENVIRONMENT

Temperature	25.3 ℃	Relative Humidity	52.0%
Atmosphere Pressure	101 kPa	Test Voltage	DC 12 V

TEST RESULTS

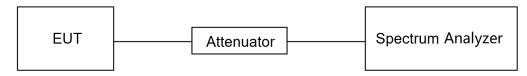
Please refer to section "Test Data" - Appendix C

7.2. 20 DB BANDWIDTH AND 99% OCCUPIED BANDWIDTH

LIMITS

CFR 47FCC Part15 (15.247) Subpart C			
Section Test Item Limit Frequency Range (MHz)			Frequency Range (MHz)
CFR 47 FCC 15.247 (a) (1)	20 dB Bandwidth	None; for reporting purposes only.	2400-2483.5
ISED RSS-Gen Clause 6.7	99 % Occupied Bandwidth	None; for reporting purposes only.	2400-2483.5

TEST PROCEDURE


Refer to ANSI C63.10-2013 clause 6.9.2.

Connect the EUT to the spectrum analyzer and use the following settings:

Center Frequency	The center frequency of the channel under test	
Detector	Peak	
RBW	For 20 dB Bandwidth: 1 % to 5 % of the 20 dB bandwidth For 99 % Occupied Bandwidth: 1 % to 5 % of the occupied bandwidth	
	For 20 dB Bandwidth: approximately 3×RBW For 99 % Occupied Bandwidth: ≥ 3×RBW	
Span	Approximately 2 to 3 times the 20dB bandwidth	
Trace	Max hold	
Sweep	Auto couple	

a) Use the occupied bandwidth function of the instrument, allow the trace to stabilize and report the measured 99 % occupied bandwidth and 20 dB Bandwidth.

TEST SETUP

TEST ENVIRONMENT

Temperature	25.3 ℃	Relative Humidity	52.0%
Atmosphere Pressure	101 kPa	Test Voltage	DC 12 V

TEST RESULTS

Please refer to section "Test Data" - Appendix A&B

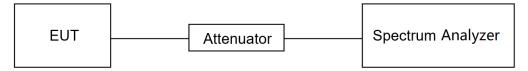
7.3. CARRIER HOPPING CHANNEL SEPARATION

LIMITS

CFR 47 FCC Part15 (15.247), Subpart C			
Section	Section Test Item Limit		Frequency Range (MHz)
CFR 47 FCC 15.247 (a) (1)	Carrier Frequency Separation	Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel.	2400-2483.5

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 7.8.2.


Connect the EUT to the spectrum analyzer and use the following settings:

Center Frequency	The center frequency of the channel under test	
Span	wide enough to capture the peaks of two adjacent channels	
Detector	Peak	
BBW	Start with the RBW set to approximately 30 % of the channel spacing; adjust as necessary to best identify the center of each individual channel.	
VBW	≥RBW	
Trace	Max hold	
Sweep time	Auto couple	

Allow the trace to stabilize and use the marker-delta function to determine the separation between the peaks of the adjacent channels.

Compliance of an EUT with the appropriate regulatory limit shall be determined.

TEST SETUP

TEST ENVIRONMENT

Temperature	25.3 ℃	Relative Humidity	52.0%
Atmosphere Pressure	101 kPa	Test Voltage	DC 12 V

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

TEST RESULTS

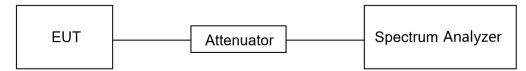
Please refer to section "Test Data" - Appendix D

7.4. NUMBER OF HOPPING FREQUENCY

LIMITS

CFR 47 FCC Part15 (15.247), Subpart C			
Section Test Item Limit			
CFR 47 15.247 (a) (1) III	Number of Hopping Frequency	at least 15 hopping channels	

TEST PROCEDURE


Refer to ANSI C63.10-2013 clause 7.8.3.

Connect the EUT to the spectrum Analyzer and use the following settings:

Detector	Peak	
RBW	To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.	
VBW	≥RBW	
	The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.	
Trace	Max hold	
Sweep time	Auto couple	

Set EUT to transmit maximum output power and switch on frequency hopping function. then set enough count time (larger than 5000 times) to get all the hopping frequency channel displayed on the screen of spectrum analyzer, count the quantity of peaks to get the number of hopping channels.

TEST SETUP

TEST ENVIRONMENT

Temperature	25.3 ℃	Relative Humidity	52.0%
Atmosphere Pressure	101 kPa	Test Voltage	DC 12 V

TEST RESULTS

Please refer to section "Test Data" - Appendix F

7.5. TIME OF OCCUPANCY (DWELL TIME)

LIMITS

CFR 47 FCC Part15 (15.247), Subpart C			
Section	Test Item	Limit	
CFR 47 15.247 (a) (1) III	Time of Occupancy (Dwell Time)	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds, multiplied by the number of hopping channels employed.	

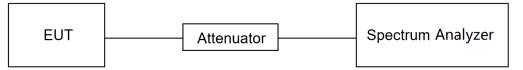
TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 7.8.4.

Connect the EUT to the spectrum Analyzer and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	1 MHz
VBW	≥RBW
Span	Zero span, centered on a hopping channel
Trace	Max hold
Sweep time	As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel

Use the marker-delta function to determine the transmit time per hop (Burst Width). If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time.


For FHSS Mode (79 Channel):

DH1/3DH1 Dwell Time: Burst Width * (1600/2) * 31.6 / (channel number) DH3/3DH3 Dwell Time: Burst Width * (1600/4) * 31.6 / (channel number) DH5/3DH5 Dwell Time: Burst Width * (1600/6) * 31.6 / (channel number)

For AFHSS Mode (20 Channel):

DH1/3DH1 Dwell Time: Burst Width * (800/2) * 8 / (channel number) DH3/3DH3 Dwell Time: Burst Width * (800/4) * 8 / (channel number) DH5/3DH5 Dwell Time: Burst Width * (800/6) * 8 / (channel number)

TEST SETUP

TEST ENVIRONMENT

Temperature	25.3 ℃	Relative Humidity	52.0%
Atmosphere Pressure	101 kPa	Test Voltage	DC 12 V

TEST RESULTS

Please refer to section "Test Data" - Appendix E

7.6. CONDUCTED BANDEDGE AND SPURIOUS EMISSION

LIMITS

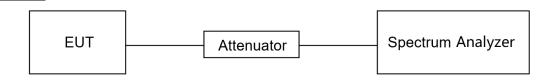
CFR 47 FCC Part15 (15.247), Subpart C			
Section	Test Item	Limit	
CFR 47 FCC §15.247 (d)	Conducted Spurious Emission	at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power	

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 7.8.6 and 7.8.8.

Connect the EUT to the spectrum analyzer and use the following settings for reference level measurement:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	100 kHz
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.


Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level.

Change the settings for emission level measurement:

Shan	Set the center frequency and span to encompass frequency range to be measured
Detector	Peak
RBW	100 kHz
VBW	≥3 × RBW
measurement points	≥span/RBW
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum

TEST SETUP

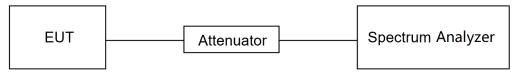
TEST ENVIRONMENT

Temperature	25.3 ℃	Relative Humidity	52.0%
Atmosphere Pressure	101 kPa	Test Voltage	DC 12 V

TEST RESULTS

Please refer to section "Test Data" - Appendix G&H

7.7. DUTY CYCLE


LIMITS

None; for reporting purposes only.

TEST PROCEDURE

Refer to ANSI C63.10-2013 Zero – Span Spectrum Analyzer method.

TEST SETUP

TEST ENVIRONMENT

Temperature	25.3 ℃	Relative Humidity	52.0%
Atmosphere Pressure	101 kPa	Test Voltage	DC 12 V

TEST RESULTS

Please refer to section "Test Data" - Appendix I

8. RADIATED TEST RESULTS

<u>LIMITS</u>

Please refer to CFR 47 FCC §15.205 and §15.209.

Radiation Disturbance Test Limit for FCC (Class B) (9 kHz-1 GHz)

Emissions radiated outside of the specified frequency bands above 30 MHz			
Frequency Range	Field Strength Limit	Field Strength Limit	
(MHz)	(uV/m) at 3 m	(dBuV/m) at 3 m
(Quasi-Peak	
30 - 88	100	40	
88 - 216	150	43.5	
216 - 960	200	46	
Above 960	500	54	
Above 1000	500	Peak	Average
		74	54

FCC Emissions radiated outside of the specified frequency bands below 30 MHz		
Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30

FCC Restricted bands of operation refer to FCC §15.205 (a):

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

Note: ¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ²Above 38.6c

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

TEST PROCEDURE

Below 30 MHz

The setting of the spectrum analyzer

RBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
VBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
Sweep	Auto

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.4.

2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80 cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a 1 m height antenna tower.

5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz Radiated emission limits in these three bands are based on measurements employing an average detector.

6. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak and average detector mode remeasured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak and average detector and reported.

7. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field site based on KDB 414788.

8. The limits in CFR 47, Part 15, Subpart C, paragraph 15.209 (a), are identical to those in RSS-GEN Section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377Ω . For example, the measurement frequency X kHz resulted in a level of Y dBuV/m, which is equivalent to Y-51.5 = Z dBuA/m, which has the same margin, W dB, to the corresponding RSS-GEN Table 6 limit as it has to be 15.209(a) limit.

Below 1 GHz and above 30 MHz

The setting of the spectrum analyzer

RBW	120 kHz
VBW	300 kHz
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.5.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80 cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

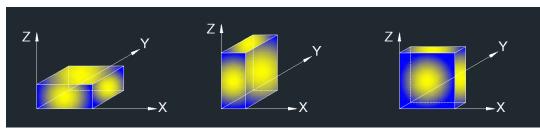
5. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

Above 1 GHz

The setting of the spectrum analyzer

RBW	1 MHz
VBW	PEAK: 3 MHz AVG: see note 6
Sweep	Auto
Detector	Peak
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.6.


2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 1.5 m above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement above 1 GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.

6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 7.7. ON TIME AND DUTY CYCLE.

X axis, Y axis, Z axis positions:

Note 1: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

Note 2: The EUT was fully exercised with external accessories during the test. In the case of multiple accessory external ports, an external accessory shall be connected to one of each type of port.

For Restricted Bandedge:

Note:

1. Measurement = Reading Level + Correct Factor.

2. If the peak values are less than the average limit of 54 dBuV/m, the average result is deemed to comply with average limit.

3. PK=Peak: Peak detector.

4. AV=Average: VBW=1/Ton, where: Ton is the transmitting duration.

5. For the transmitting duration, please refer to clause 7.7.

6. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

7. Both horizontal and vertical have been tested, only the worst data was recorded in the report.

8. All modes have been tested, but only the worst data was recorded in the report.

For Radiate Spurious emission (9 kHz ~ 30 MHz): Note:

1. Measurement = Reading Level + Correct Factor.

2. If the peak values are less than the QP limit, the QP result is deemed to comply with QP limit.

3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

4. All modes have been tested, but only the worst data was recorded in the report.

5. dBuA/m= dBuV/m- 20Log10[120π] = dBuV/m- 51.5

For Radiate Spurious Emission (30 MHz ~ 1 GHz): Note:

1. Result Level = Read Level + Correct Factor.

2. If the peak values are less than the QP limit, the QP result is deemed to comply with QP limit.

3. All modes have been tested, but only the worst data was recorded in the report.

For Radiate Spurious Emission (1 GHz ~ 3 GHz):

1. Measurement = Reading Level + Correct Factor.

2. If the peak values are less than the average limit of 54 dBuV/m, the average result is deemed

to comply with average limit.

3. Peak: Peak detector.

4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

5. For the transmitting duration, please refer to clause 7.7.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.

7. Proper operation of the transmitter prior to adding the filter to the measurement chain.

8. All modes have been tested, but only the worst data was recorded in the report.

For Radiate Spurious Emission (3 GHz ~ 18 GHz): Note:

1. Peak Result = Reading Level + Correct Factor.

2. If the peak values are less than the average limit of 54 dBuV/m, the average result is deemed to comply with average limit.

3. Peak: Peak detector.

4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

5. For the transmitting duration, please refer to clause 7.7.

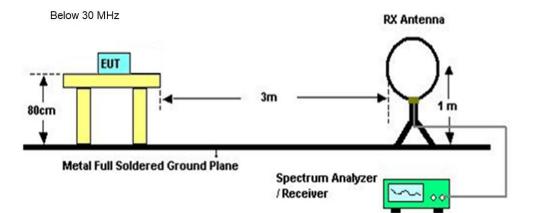
6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

7. Proper operation of the transmitter prior to adding the filter to the measurement chain.

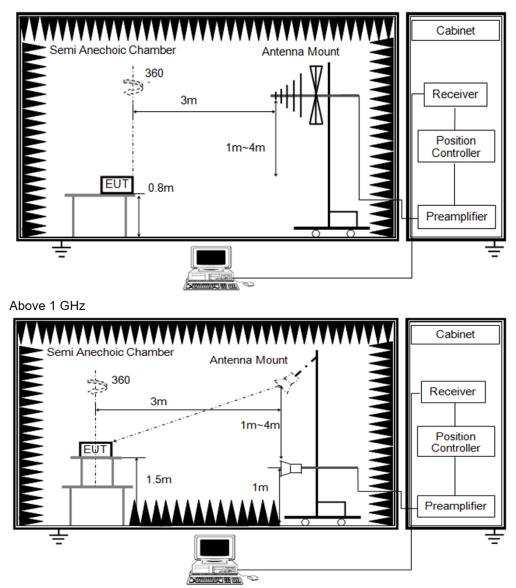
8. All modes have been tested, but only the worst data was recorded in the report.

For Radiate Spurious emission (18 GHz ~ 26 GHz): Note:

1. Measurement = Reading Level + Correct Factor.


2. If the peak values are less than the average limit of 54 dBuV/m, the average result is deemed to comply with average limit.

3. Peak: Peak detector.

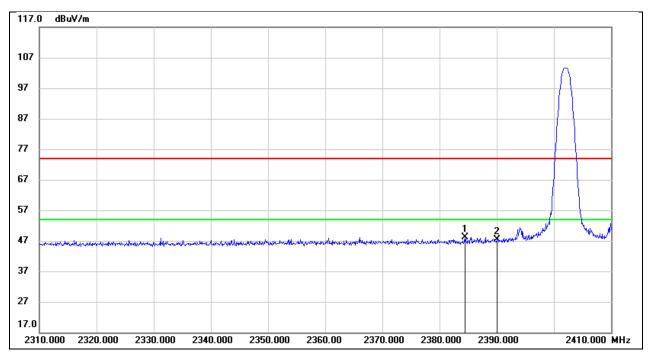

4. All modes have been tested, but only the worst data was recorded in the report.

TEST SETUP

Below 1 GHz and above 30 MHz

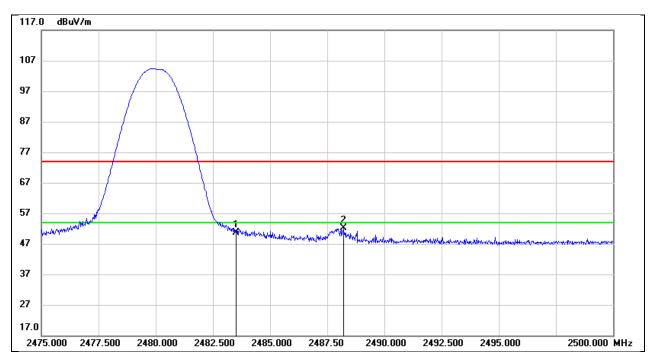
UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

TEST ENVIRONMENT


Temperature	24.7 ℃	Relative Humidity	55%
Atmosphere Pressure	101kPa	Test Voltage	DC 12 V

TEST RESULTS

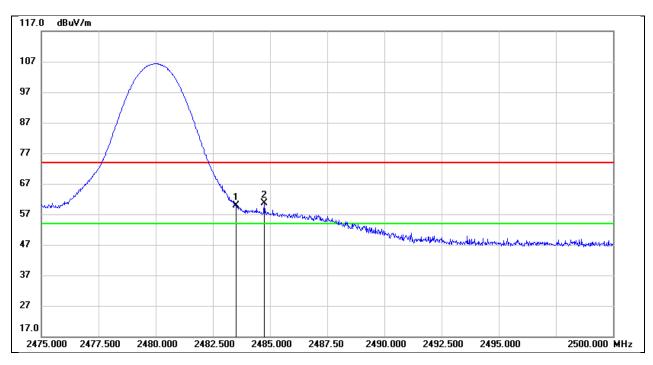
8.1. RESTRICTED BANDEDGE


Test Mode:	GFSK PK	Frequency(MHz):	2402
Polarity:	Horizontal	Test Voltage:	DC 12 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2384.400	15.92	32.14	48.06	74.00	-25.94	peak
2	2390.000	15.25	32.16	47.41	74.00	-26.59	peak

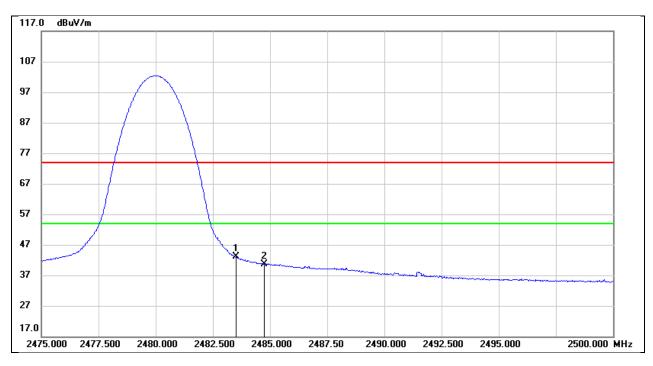
Test Mode:	GFSK PK	Frequency(MHz):	2480
Polarity:	Horizontal	Test Voltage:	DC 12 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	18.18	32.44	50.62	74.00	-23.38	peak
2	2488.200	19.78	32.46	52.24	74.00	-21.76	peak



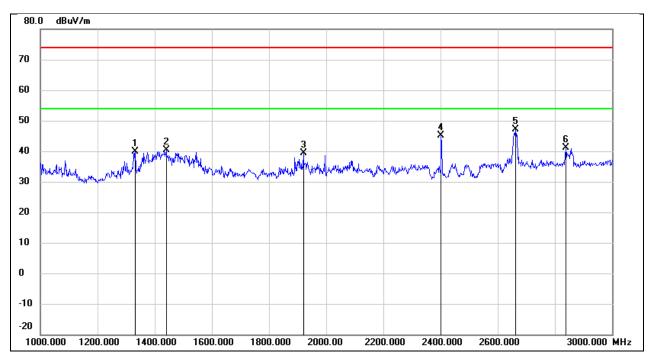
Fest Mode:	8DPSK PK Frequency(MHz):		2402
Polarity:	Horizontal	Test Voltage:	DC 12 V
117.0 dBu∀/m			
107			
87			
<i>m</i>			
57			
17 investigation of the second management	Heathroad to the second s	namaanan madalaa dagaa dagaa ay ahaa ahaa ahaa ahaa ahaa ahaa ah	Am 2 M
27			
7.0			

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2333.300	17.88	31.99	49.87	74.00	-24.13	peak
2	2390.000	15.51	32.16	47.67	74.00	-26.33	peak


Test Mode:	8DPSK PK	Frequency(MHz):	2480
Polarity:	Horizontal	Test Voltage:	DC 12 V

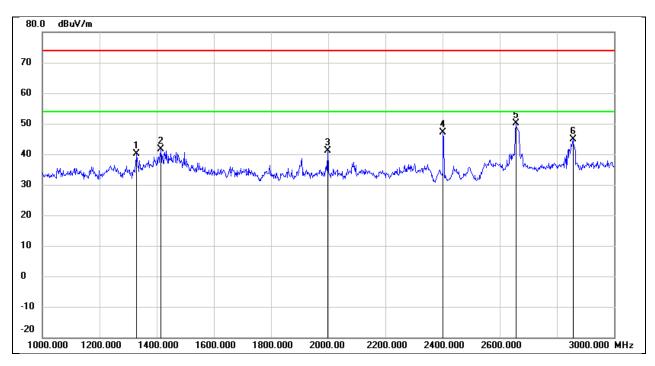
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	27.52	32.44	59.96	74.00	-14.04	peak
2	2484.750	28.09	32.44	60.53	74.00	-13.47	peak

Test Mode:	8DPSK AV	Frequency(MHz):	2480
Polarity:	Horizontal	Test Voltage:	DC 12 V

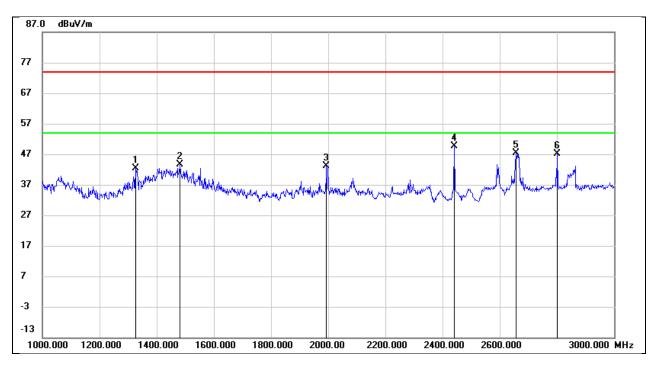


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	10.58	32.44	43.02	54.00	-10.98	AVG
2	2484.750	8.14	32.44	40.58	54.00	-13.42	AVG

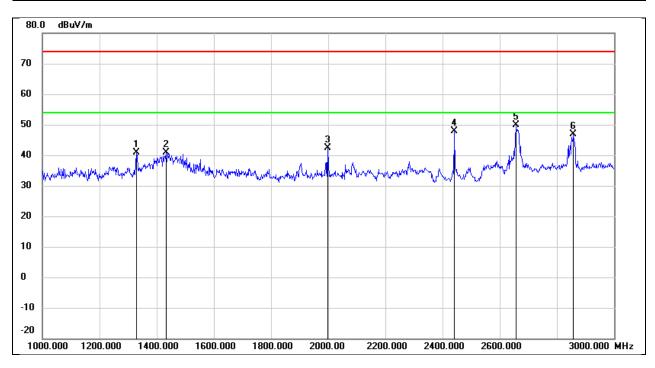
8.2. SPURIOUS EMISSIONS (1 GHZ ~ 3 GHZ)


Test Mode:	GFSK	Frequency(MHz):	2402
Polarity:	Horizontal	Test Voltage:	DC 12 V

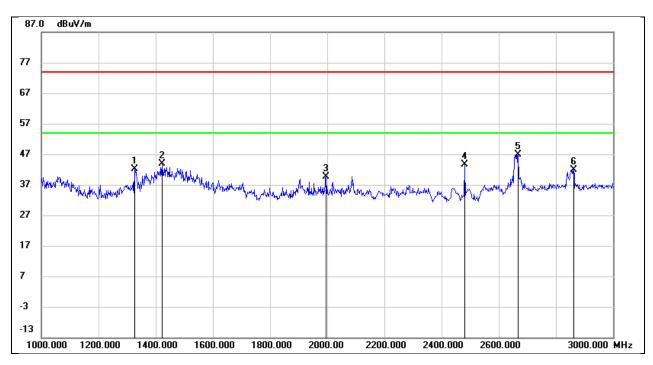
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1332.000	53.28	-13.49	39.79	74.00	-34.21	peak
2	1440.000	53.35	-12.98	40.37	74.00	-33.63	peak
3	1920.000	50.73	-11.32	39.41	74.00	-34.59	peak
4	2402.000	54.23	-8.99	45.24	/	/	Fundamental
5	2662.000	54.69	-7.68	47.01	74.00	-26.99	peak
6	2838.000	47.96	-6.79	41.17	74.00	-32.83	peak


Test Mode:	GFSK	Frequency(MHz):	2402
Polarity:	Vertical	Test Voltage:	DC 12 V

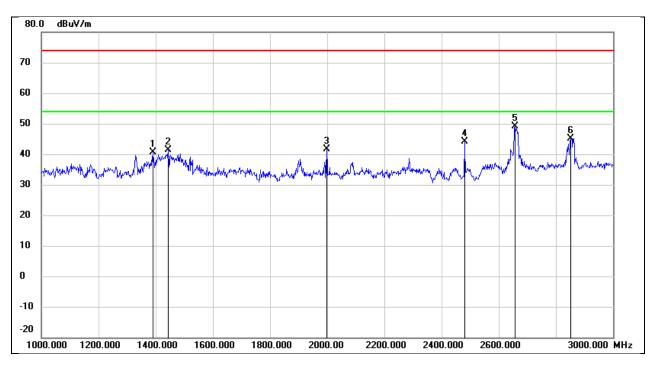
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1330.000	53.51	-13.50	40.01	74.00	-33.99	peak
2	1414.000	54.71	-13.11	41.60	74.00	-32.40	peak
3	1998.000	52.10	-11.06	41.04	74.00	-32.96	peak
4	2402.000	56.18	-8.99	47.19	/	/	Fundamental
5	2656.000	57.82	-7.71	50.11	74.00	-23.89	peak
6	2856.000	51.62	-6.70	44.92	74.00	-29.08	peak


Test Mode:	GFSK	Frequency(MHz):	2441
Polarity:	Horizontal	Test Voltage:	DC 12 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1326.000	55.93	-13.52	42.41	74.00	-31.59	peak
2	1482.000	56.51	-12.79	43.72	74.00	-30.28	peak
3	1994.000	54.28	-11.08	43.20	74.00	-30.80	peak
4	2441.000	58.49	-8.80	49.69	/	/	Fundamental
5	2658.000	55.04	-7.70	47.34	74.00	-26.66	peak
6	2802.000	54.11	-6.98	47.13	74.00	-26.87	peak

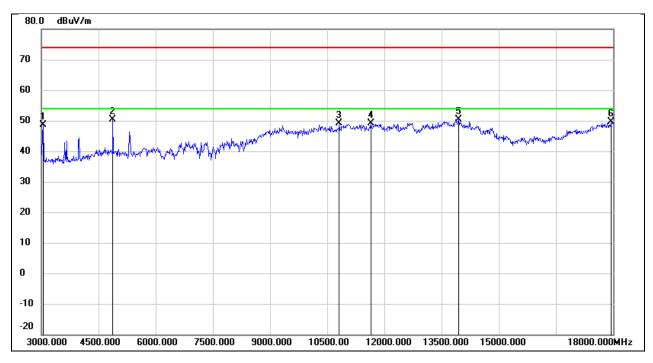

Test Mode:	GFSK	Frequency(MHz):	2441
Polarity:	Vertical	Test Voltage:	DC 12 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1328.000	54.31	-13.50	40.81	74.00	-33.19	peak
2	1432.000	53.96	-13.02	40.94	74.00	-33.06	peak
3	1998.000	53.42	-11.06	42.36	74.00	-31.64	peak
4	2441.000	56.70	-8.79	47.91	/	/	Fundamental
5	2656.000	57.54	-7.71	49.83	74.00	-24.17	peak
6	2858.000	53.62	-6.70	46.92	74.00	-27.08	peak


Test Mode:	GFSK	Frequency(MHz):	2480
Polarity:	Horizontal	Test Voltage:	DC 12 V

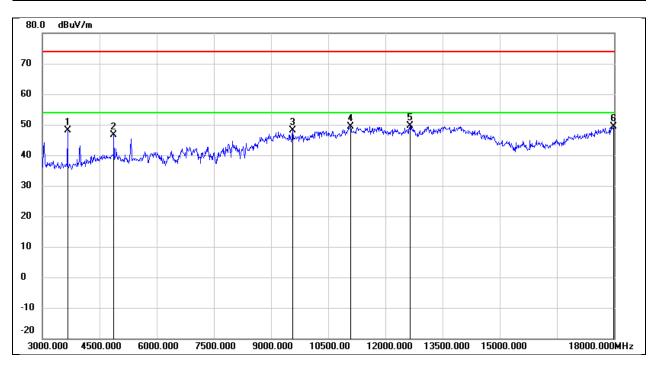
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1326.000	55.55	-13.52	42.03	74.00	-31.97	peak
2	1422.000	56.91	-13.08	43.83	74.00	-30.17	peak
3	1996.000	50.79	-11.07	39.72	74.00	-34.28	peak
4	2480.000	52.12	-8.59	43.53	/	/	Fundamental
5	2668.000	54.45	-7.65	46.80	74.00	-27.20	peak
6	2862.000	48.49	-6.68	41.81	74.00	-32.19	peak

Test Mode:	GFSK	Frequency(MHz):	2480
Polarity:	Vertical	Test Voltage:	DC 12 V

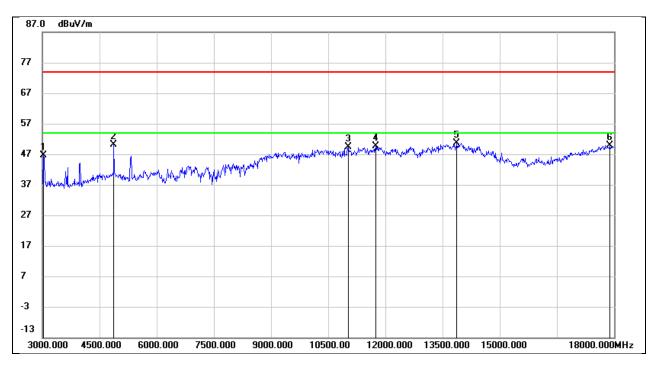


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1390.000	53.91	-13.22	40.69	74.00	-33.31	peak
2	1444.000	54.32	-12.97	41.35	74.00	-32.65	peak
3	1998.000	52.59	-11.06	41.53	74.00	-32.47	peak
4	2480.000	52.65	-8.59	44.06	/	/	Fundamental
5	2656.000	56.78	-7.71	49.07	74.00	-24.93	peak
6	2852.000	51.87	-6.72	45.15	74.00	-28.85	peak

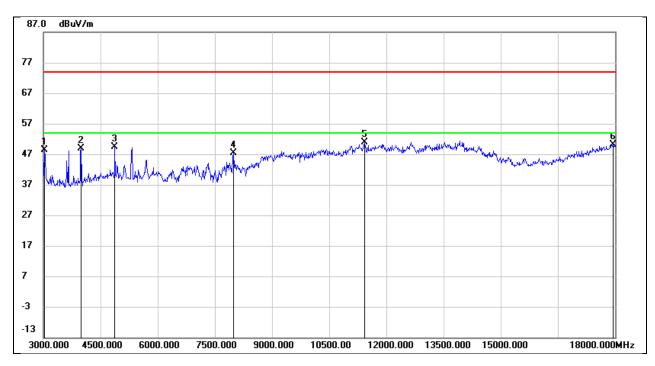
8.3. SPURIOUS EMISSIONS (3 GHZ ~ 18 GHZ)


Test Mode:	GFSK	Frequency(MHz):	2402
Polarity:	Horizontal	Test Voltage:	DC 12 V

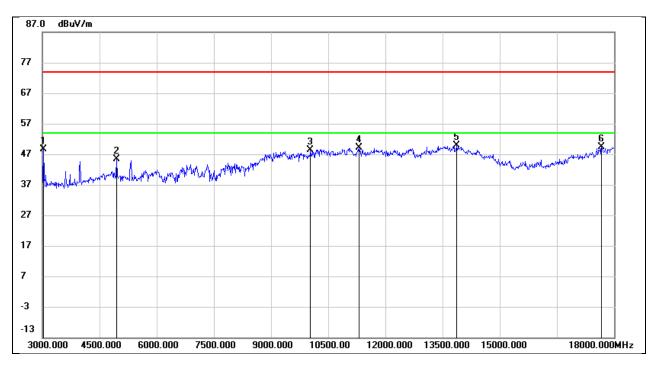
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3045.000	53.74	-5.22	48.52	74.00	-25.48	peak
2	4875.000	50.44	-0.03	50.41	74.00	-23.59	peak
3	10815.000	35.03	14.11	49.14	74.00	-24.86	peak
4	11640.000	32.17	16.98	49.15	74.00	-24.85	peak
5	13950.000	28.50	21.86	50.36	74.00	-23.64	peak
6	17955.000	24.23	25.42	49.65	74.00	-24.35	peak


Test Mode:	GFSK	Frequency(MHz):	2402
Polarity:	Vertical	Test Voltage:	DC 12 V

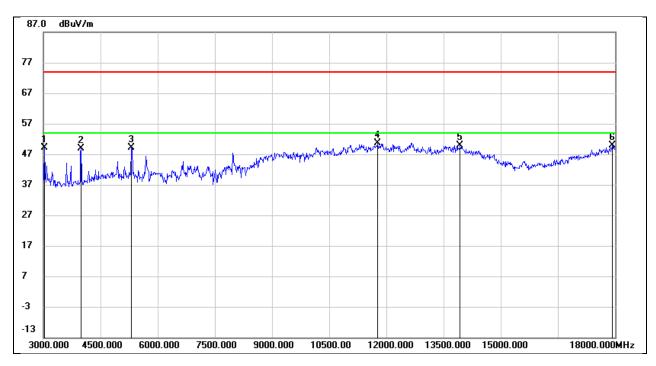
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3660.000	52.67	-4.59	48.08	74.00	-25.92	peak
2	4875.000	46.58	-0.03	46.55	74.00	-27.45	peak
3	9570.000	37.34	10.87	48.21	74.00	-25.79	peak
4	11085.000	34.28	15.08	49.36	74.00	-24.64	peak
5	12645.000	31.78	17.92	49.70	74.00	-24.30	peak
6	17985.000	23.82	25.60	49.42	74.00	-24.58	peak


Test Mode:	GFSK	Frequency(MHz):	2441
Polarity:	Horizontal	Test Voltage:	DC 12 V

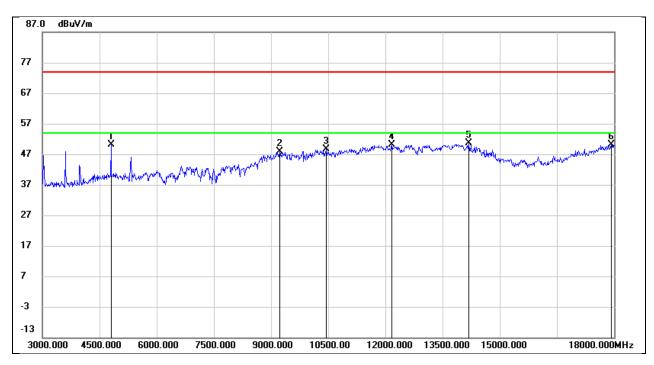
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3030.000	51.89	-5.22	46.67	74.00	-27.33	peak
2	4875.000	50.20	-0.03	50.17	74.00	-23.83	peak
3	11025.000	34.51	14.85	49.36	74.00	-24.64	peak
4	11745.000	32.33	17.27	49.60	74.00	-24.40	peak
5	13875.000	28.96	21.70	50.66	74.00	-23.34	peak
6	17895.000	24.88	25.07	49.95	74.00	-24.05	peak


Test Mode:	GFSK	Frequency(MHz):	2441
Polarity:	Vertical	Test Voltage:	DC 12 V

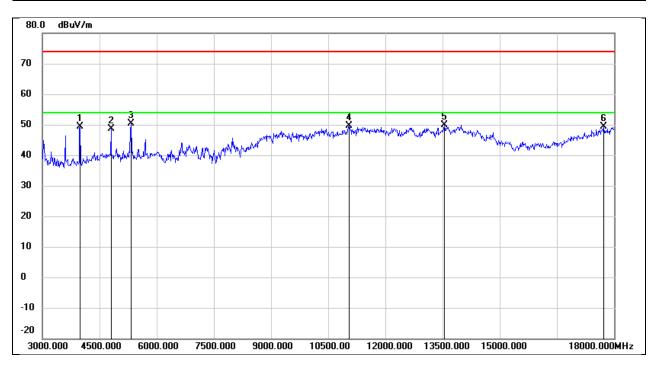
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3030.000	53.54	-5.22	48.32	74.00	-25.68	peak
2	3990.000	52.74	-3.82	48.92	74.00	-25.08	peak
3	4875.000	49.53	-0.03	49.50	74.00	-24.50	peak
4	7995.000	41.10	6.31	47.41	74.00	-26.59	peak
5	11430.000	34.45	16.34	50.79	74.00	-23.21	peak
6	17955.000	24.68	25.42	50.10	74.00	-23.90	peak


Test Mode:	GFSK	Frequency(MHz):	2480
Polarity:	Horizontal	Test Voltage:	DC 12 V

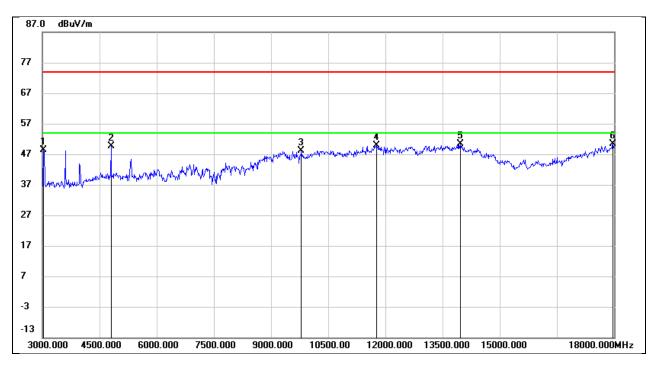
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3030.000	53.84	-5.22	48.62	74.00	-25.38	peak
2	4950.000	45.01	0.26	45.27	74.00	-28.73	peak
3	10035.000	36.35	12.08	48.43	74.00	-25.57	peak
4	11310.000	33.12	15.91	49.03	74.00	-24.97	peak
5	13875.000	28.15	21.70	49.85	74.00	-24.15	peak
6	17670.000	25.68	23.73	49.41	74.00	-24.59	peak


Test Mode:	GFSK	Frequency(MHz):	2480
Polarity:	Vertical	Test Voltage:	DC 12 V

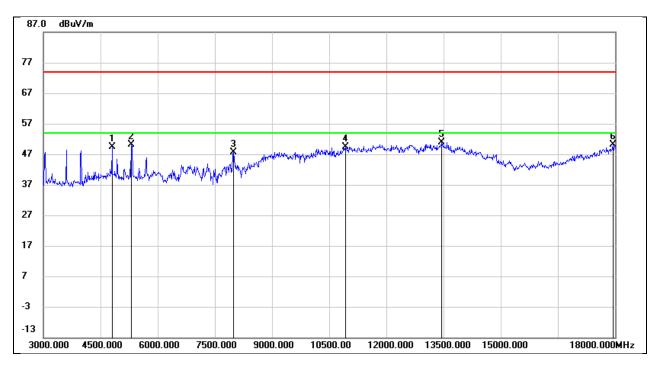
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3030.000	54.24	-5.22	49.02	74.00	-24.98	peak
2	3990.000	52.80	-3.82	48.98	74.00	-25.02	peak
3	5310.000	48.51	0.70	49.21	74.00	-24.79	peak
4	11775.000	33.30	17.35	50.65	74.00	-23.35	peak
5	13935.000	28.02	21.82	49.84	74.00	-24.16	peak
6	17925.000	24.56	25.25	49.81	74.00	-24.19	peak


Test Mode:	8DPSK	Frequency(MHz):	2402
Polarity:	Horizontal	Test Voltage:	DC 12 V

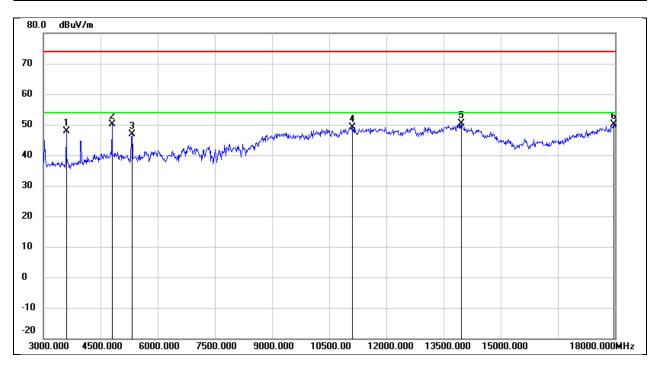
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4800.000	50.56	-0.31	50.25	74.00	-23.75	peak
2	9225.000	37.36	10.58	47.94	74.00	-26.06	peak
3	10455.000	35.74	12.91	48.65	74.00	-25.35	peak
4	12165.000	32.28	17.84	50.12	74.00	-23.88	peak
5	14190.000	29.52	21.17	50.69	74.00	-23.31	peak
6	17925.000	24.92	25.25	50.17	74.00	-23.83	peak


Test Mode:	8DPSK	Frequency(MHz):	2402
Polarity:	Vertical	Test Voltage:	DC 12 V

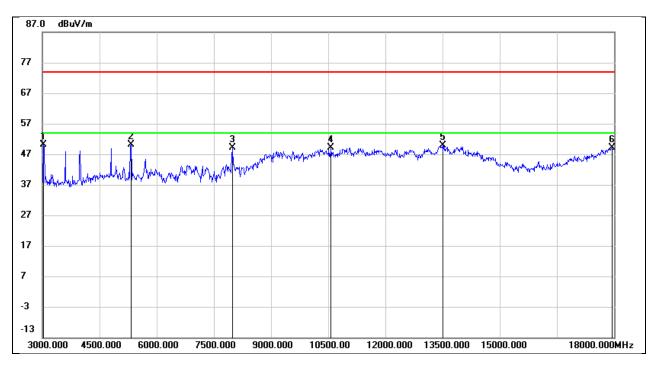
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3990.000	53.27	-3.82	49.45	74.00	-24.55	peak
2	4800.000	49.03	-0.31	48.72	74.00	-25.28	peak
3	5325.000	49.70	0.71	50.41	74.00	-23.59	peak
4	11055.000	34.62	14.96	49.58	74.00	-24.42	peak
5	13545.000	28.93	20.99	49.92	74.00	-24.08	peak
6	17730.000	25.22	24.09	49.31	74.00	-24.69	peak


Test Mode:	8DPSK	Frequency(MHz):	2441
Polarity:	Horizontal	Test Voltage:	DC 12 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3030.000	53.48	-5.22	48.26	74.00	-25.74	peak
2	4800.000	50.04	-0.31	49.73	74.00	-24.27	peak
3	9795.000	36.61	11.48	48.09	74.00	-25.91	peak
4	11760.000	32.53	17.31	49.84	74.00	-24.16	peak
5	13965.000	28.58	21.89	50.47	74.00	-23.53	peak
6	17970.000	24.75	25.51	50.26	74.00	-23.74	peak

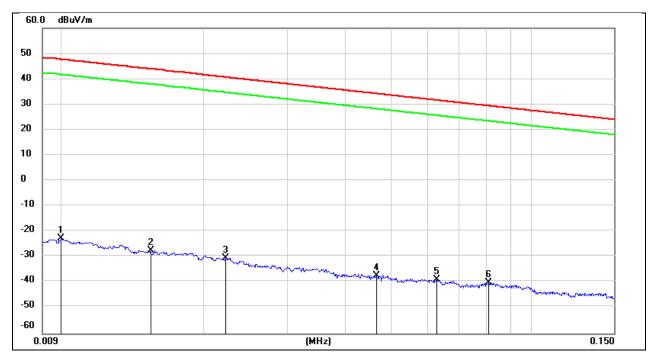

Test Mode:	8DPSK	Frequency(MHz):	2441
Polarity:	Vertical	Test Voltage:	DC 12 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4800.000	49.75	-0.31	49.44	74.00	-24.56	peak
2	5310.000	49.35	0.70	50.05	74.00	-23.95	peak
3	7980.000	41.39	6.31	47.70	74.00	-26.30	peak
4	10920.000	34.95	14.49	49.44	74.00	-24.56	peak
5	13455.000	30.27	20.71	50.98	74.00	-23.02	peak
6	17940.000	24.78	25.34	50.12	74.00	-23.88	peak


Test Mode:	8DPSK	Frequency(MHz):	2480
Polarity:	Horizontal	Test Voltage:	DC 12 V

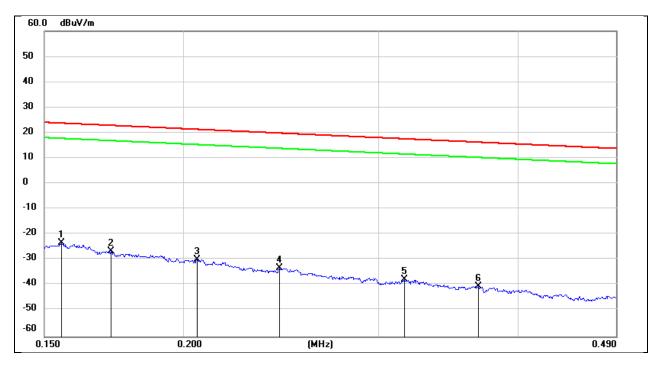
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3600.000	52.72	-4.73	47.99	74.00	-26.01	peak
2	4800.000	50.36	-0.31	50.05	74.00	-23.95	peak
3	5325.000	46.06	0.71	46.77	74.00	-27.23	peak
4	11115.000	33.96	15.20	49.16	74.00	-24.84	peak
5	13965.000	28.38	21.89	50.27	74.00	-23.73	peak
6	17970.000	24.65	25.51	50.16	74.00	-23.84	peak

Test Mode:	8DPSK	Frequency(MHz):	2480
Polarity:	Vertical	Test Voltage:	DC 12 V

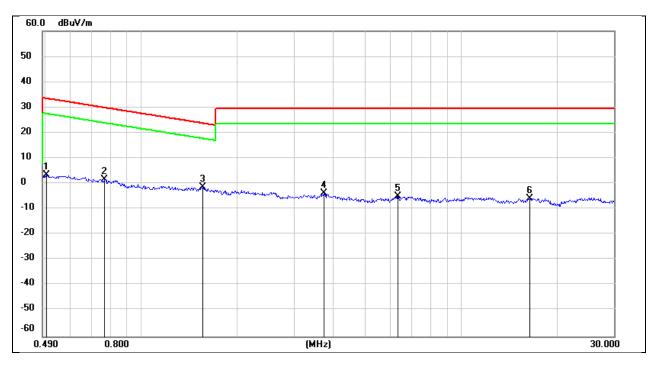


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3030.000	55.45	-5.22	50.23	74.00	-23.77	peak
2	5325.000	49.53	0.71	50.24	74.00	-23.76	peak
3	7995.000	42.84	6.31	49.15	74.00	-24.85	peak
4	10575.000	35.94	13.25	49.19	74.00	-24.81	peak
5	13500.000	28.88	20.90	49.78	74.00	-24.22	peak
6	17955.000	23.80	25.42	49.22	74.00	-24.78	peak

8.4. SPURIOUS EMISSIONS (9 KHZ ~ 30 MHZ)

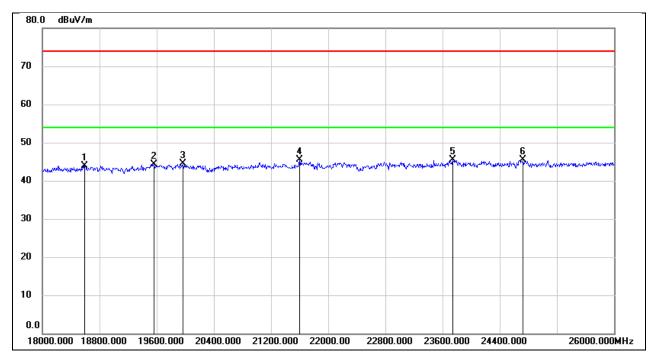

Test Mode:	GFSK	Frequency(MHz):	2402
Polarity:	Horizontal	Test Voltage:	DC 12 V

No.	Frequency	Reading	Correct	Result	Result	Limit	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuA/m)	(dBuV/m)	(dBuA/m)	(dB)	
1	0.01	78.72	-101.4	-22.68	-74.18	47.6	-3.9	-70.28	peak
2	0.0154	73.94	-101.37	-27.43	-78.93	43.85	-7.65	-71.28	peak
3	0.0222	70.86	-101.35	-30.49	-81.99	40.67	-10.83	-71.16	peak
4	0.0466	64.17	-101.46	-37.29	-88.79	34.23	-17.27	-71.52	peak
5	0.0627	62.65	-101.53	-38.88	-90.38	31.66	-19.84	-70.54	peak
6	0.0806	61.68	-101.63	-39.95	-91.45	29.47	-22.03	-69.42	peak


Test Mode:	GFSK	Frequency(MHz):	2402
Polarity:	Horizontal	Test Voltage:	DC 12 V

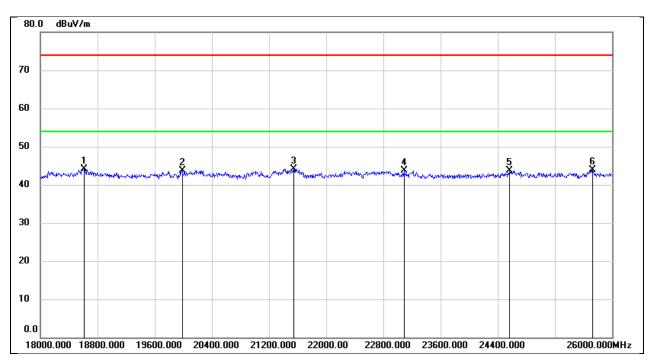
No.	Frequency	Reading	Correct	Result	Result	Limit	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuA/m)	(dBuV/m)	(dBuA/m)	(dB)	
1	0.1554	78.27	-101.65	-23.38	-74.88	23.77	-27.73	-47.15	peak
2	0.172	75.19	-101.67	-26.48	-77.98	22.9	-28.6	-49.38	peak
3	0.2058	71.76	-101.73	-29.97	-81.47	21.33	-30.17	-51.30	peak
4	0.2442	68.53	-101.79	-33.26	-84.76	19.85	-31.65	-53.11	peak
5	0.3163	64.2	-101.87	-37.67	-89.17	17.6	-33.9	-55.27	peak
6	0.3684	61.48	-101.93	-40.45	-91.95	16.27	-35.23	-56.72	peak

Test Mode:	GFSK	Frequency(MHz):	2402
Polarity:	Horizontal	Test Voltage:	DC 12 V



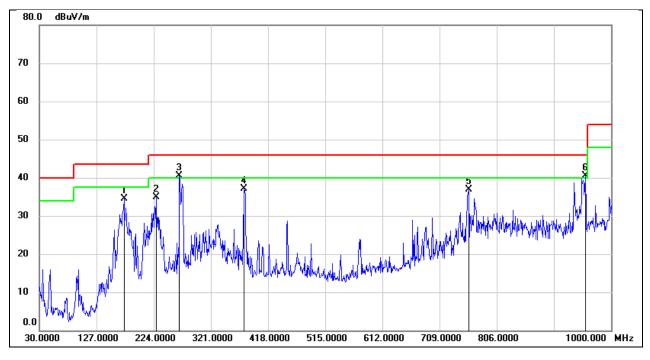
No.	Frequency	Reading	Correct	Result	Result	Limit	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuA/m)	(dBuV/m)	(dBuA/m)	(dB)	
1	0.5039	65.43	-62.07	3.36	-48.14	33.56	-17.94	-30.20	peak
2	0.7641	63.92	-62.12	1.8	-49.70	29.94	-21.56	-28.14	peak
3	1.5564	60.68	-62.02	-1.34	-52.84	23.76	-27.74	-25.10	peak
4	3.71	57.7	-61.41	-3.71	-55.21	29.54	-21.96	-33.25	peak
5	6.3338	56.37	-61.31	-4.94	-56.44	29.54	-21.96	-34.48	peak
6	16.3959	55.17	-60.96	-5.79	-57.29	29.54	-21.96	-35.33	peak

8.5. SPURIOUS EMISSIONS (18 GHZ ~ 26 GHZ)

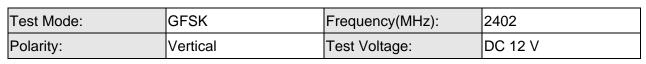

Test Mode:	GFSK	Frequency(MHz):	2402
Polarity:	Horizontal	Test Voltage:	DC 12 V

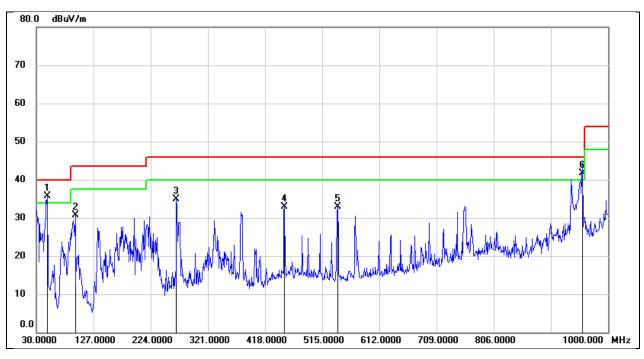
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	18592.000	49.25	-5.31	43.94	74.00	-30.06	peak
2	19560.000	49.86	-5.48	44.38	74.00	-29.62	peak
3	19968.000	49.98	-5.42	44.56	74.00	-29.44	peak
4	21600.000	50.02	-4.54	45.48	74.00	-28.52	peak
5	23744.000	48.65	-3.20	45.45	74.00	-28.55	peak
6	24728.000	47.87	-2.31	45.56	74.00	-28.44	peak

Test Mode:	GFSK	Frequency(MHz):	2402
Polarity:	Vertical	Test Voltage:	DC 12 V



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	18616.000	49.39	-5.34	44.05	74.00	-29.95	peak
2	19984.000	49.21	-5.44	43.77	74.00	-30.23	peak
3	21544.000	48.76	-4.63	44.13	74.00	-29.87	peak
4	23088.000	47.02	-3.41	43.61	74.00	-30.39	peak
5	24568.000	46.10	-2.33	43.77	74.00	-30.23	peak
6	25728.000	44.61	-0.72	43.89	74.00	-30.11	peak


8.6. SPURIOUS EMISSIONS (30 MHZ ~ 1 GHZ)


Test Mode:	GFSK	Frequency(MHz):	2402
Polarity:	Horizontal	Test Voltage:	DC 12 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	173.5600	50.63	-16.15	34.48	43.50	-9.02	QP
2	227.8800	52.15	-17.20	34.95	46.00	-11.05	QP
3	267.6500	57.53	-17.10	40.43	46.00	-5.57	QP
4	377.2600	49.58	-12.50	37.08	46.00	-8.92	QP
5	758.4699	43.48	-6.54	36.94	46.00	-9.06	QP
6	956.3500	45.03	-4.45	40.58	46.00	-5.42	QP

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	48.4300	55.58	-19.93	35.65	40.00	-4.35	QP
2	95.9600	52.02	-21.22	30.80	43.50	-12.70	QP
3	267.6500	51.94	-17.10	34.84	46.00	-11.16	QP
4	450.9800	44.17	-11.36	32.81	46.00	-13.19	QP
5	541.1900	43.19	-10.32	32.87	46.00	-13.13	QP
6	956.3500	46.14	-4.45	41.69	46.00	-4.31	QP

9. ANTENNA REQUIREMENT

REQUIREMENT

Please refer to FCC part 15.203

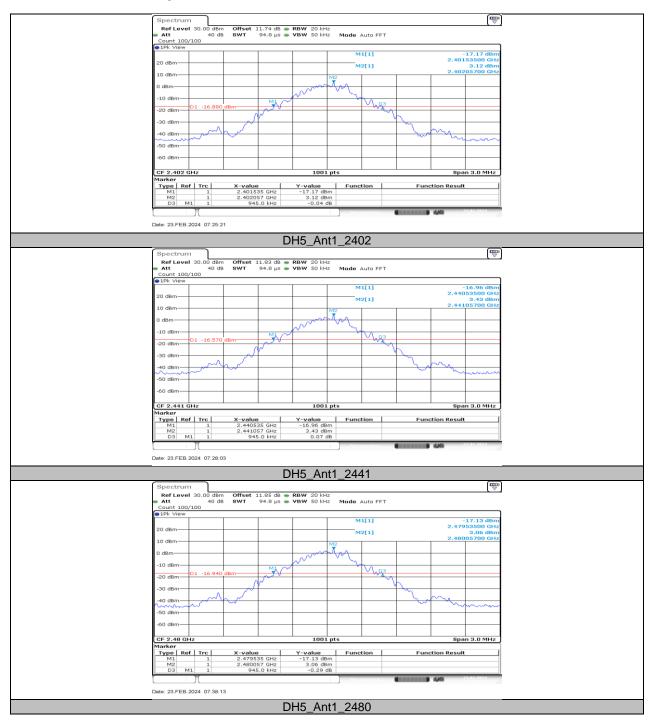
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Please refer to FCC part 15.247(b)(4)

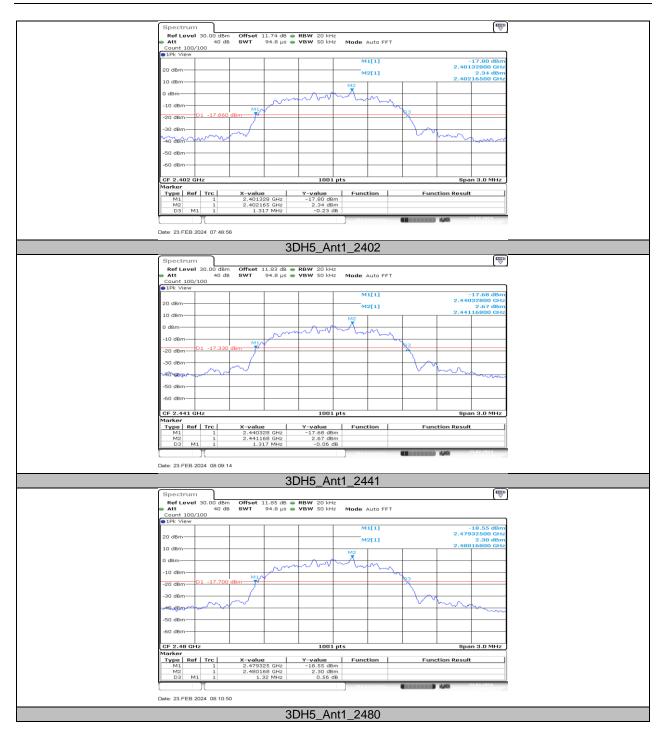
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DESCRIPTION

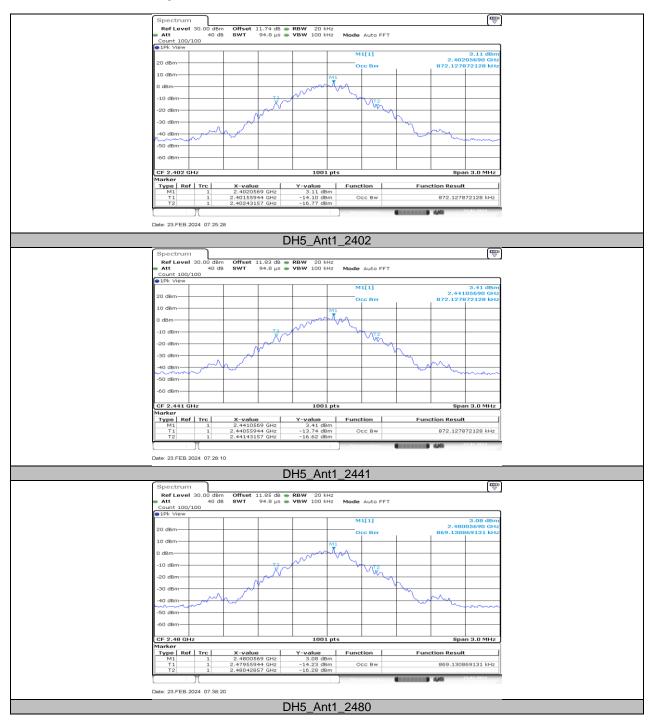
Pass


10. TEST DATA

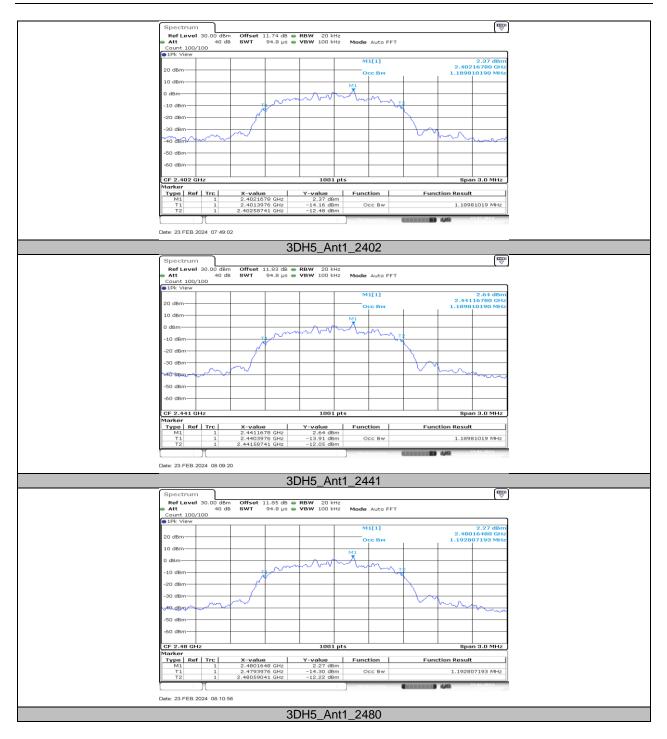
10.1. APPENDIX A: 20DB EMISSION BANDWIDTH 10.1.1. Test Result


Test Mode	Antenna	Frequency[MHz]	20db EBW[MHz]	FL[MHz]	FH[MHz]	Verdict
		2402	0.95	2401.54	2402.48	PASS
DH5	Ant1	2441	0.95	2440.54	2441.48	PASS
		2480	0.95	2479.54	2480.48	PASS
		2402	1.32	2401.33	2402.65	PASS
3DH5	Ant1	2441	1.32	2440.33	2441.65	PASS
		2480	1.32	2479.33	2480.65	PASS

10.1.2. Test Graphs



10.2. APPENDIX B: OCCUPIED CHANNEL BANDWIDTH 10.2.1. Test Result


Test Mode	Antenna	Frequency[MHz]	OCB [MHz]	FL[MHz]	FH[MHz]	Verdict
		2402	0.872	2401.5594	2402.4316	PASS
DH5	Ant1	2441	0.872	2440.5594	2441.4316	PASS
		2480	0.869	2479.5594	2480.4286	PASS
		2402	1.19	2401.3976	2402.5874	PASS
3DH5	Ant1	2441	1.19	2440.3976	2441.5874	PASS
		2480	1.193	2479.3976	2480.5904	PASS

10.2.2. Test Graphs

10.3. APPENDIX C: MAXIMUM PEAK CONDUCTED OUTPUT POWER 10.3.1. Test Result

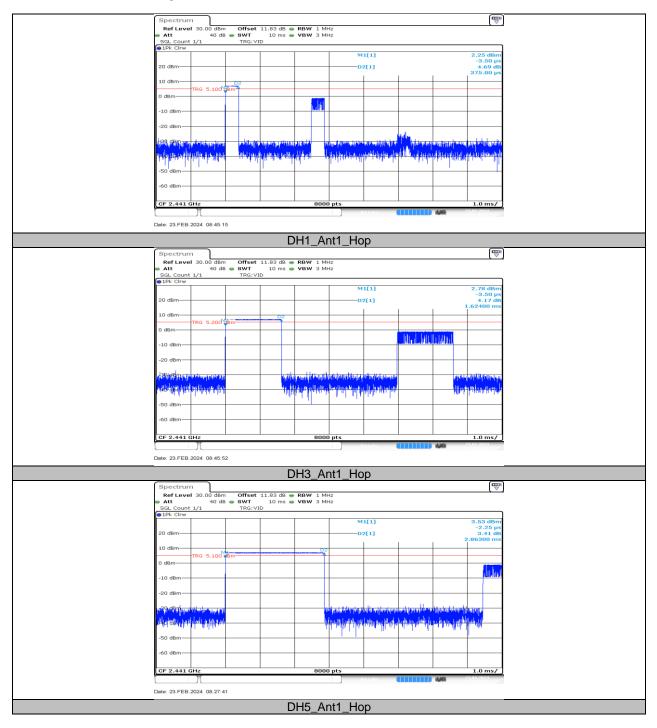
Test Mode	Antenna	Frequency[MHz]	Result[dBm]	Limit[dBm]	Verdict
		2402	6.84	≤30.00	PASS
DH5	Ant1	2441	7.14	≤30.00	PASS
		2480	7.02	≤30.00	PASS
		2402	9.95	≤20.97	PASS
3DH5	Ant1	2441	10.22	≤20.97	PASS
		2480	9.83	≤20.97	PASS

10.4. APPENDIX D: CARRIER FREQUENCY SEPARATION 10.4.1. Test Result

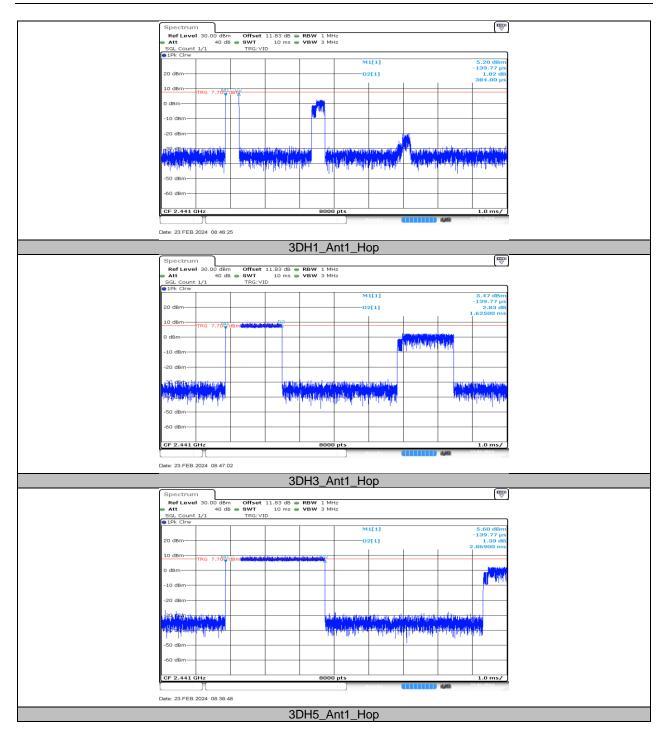
Test Mode	Antenna	Frequency[MHz]	Result[MHz]	Limit[MHz]	Verdict
DH5	Ant1	Нор	1.009	≥0.950	PASS
3DH5	Ant1	Нор	1.003	≥0.880	PASS

10.4.2. Test Graphs

Spectru					(mm)	
					B	
		fset 11.83 dB 👄 RBW				
- Att		VT 6.3 µs 👄 VBW	1 MHz Mode Au	uto FFT		
Count 10 Pk View						
IPK VIEV			M1[11	7.08 dBm	
					2.44216087 GHz	
10 dBm-			D2[1	u M1	D20.06 dB	
					1.08870 MHz	
0_dBm						
		~	Y I			
-10 dBm—						
-20 dBm—						
-30 dBm-						
10 40-						
-40 dBm-						
-50 dBm-						
-50 UBIT						
-60 dBm-						
-00 dbm						
-70 dBm-						
-> 0 dBii						
Start 2.4	395 GHz		691 pts		Stop 2.4435 GHz	
			Measu	de de la companya de	UKA 23.02.2024	
Date: 22 EE	3.2024 08:26:19					
Date: 23.FE	5.2024 00.20.19					
			5_Ant1_Hop			
			_Апст_пор			
Spectru	m					
		fset 11.83 dB 👄 RBW	300 kHz		(*)	
- Att	30 dB 81					
		VT 6.3 µs 👄 VBW	1 MHz Mode Au	uto FFT		
Count 10	0/100	VT 6.3 µs 👄 VBW	1 MHZ Mode A	uto FFT		
Count 10 IPk View	0/100	VT 6.3 µs • VBW				
Count 10 ●1Pk View	0/100	•T 6.3 µs • •Bw	1 MHZ Mode A		6.97 dBm	
Count 10 IPK View 10 dBm—	0/100	VT 6.3 µs • VBW	M1[1]	2.44016087 GHz	
IPk View	0/100	02		1]	6.97 dBm 2.44016087 GHz 0.02 dB 1.00290 MHz	
IPk View	0/100	D2	M1[1]	2.44016087 GHz 0.02 dB	
●1Pk Viev 10 dBm—	0/100		M1[1]	2.44016087 GHz 0.02 dB	
●1Pk Viev 10 dBm—	0/100		M1[1]	2.44016087 GHz 0.02 dB	
1Pk Viev 10 dBm- 0 dBm-	0/100	0.3 µs • VBW	M1[1]	2.44016087 GHz 0.02 dB	
1Pk Viev 10 dBm- 0 dBm-	0/100		M1[1]	2.44016087 GHz 0.02 dB	
1Pk Viev 10 dBm 0 dBm -10 dBm	0/100		M1[1]	2.44016087 GHz 0.02 dB	
1Pk Viev 10 dBm 0 dBm -10 dBm	0/100		M1[1]	2.44016087 GHz 0.02 dB	
© 1Pk Viev 10 dBm 0 dBm -10 dBm -20 dBm	0/100		M1[1]	2.44016087 GHz 0.02 dB	
© 1Pk Viev 10 dBm 0 dBm -10 dBm -20 dBm	0/100		M1[1]	2.44016087 GHz 0.02 dB	
● 1Pk Viev 10 dBm— 0 dBm— -10 dBm— -20 dBm— -30 dBm—	0/100		M1[1]	2.44016087 GHz 0.02 dB	
● 1Pk Viev 10 dBm— 0 dBm— -10 dBm— -20 dBm— -30 dBm—	0/100		M1[1]	2.44016087 GHz 0.02 dB	
● 1PE Viev 10 dBm- 0 dBm- -10 dBm- -20 dBm- -30 dBm- -40 dBm-	0/100		M1[1]	2.44016087 GHz 0.02 dB	
● 1PE Viev 10 dBm- 0 dBm- -10 dBm- -20 dBm- -30 dBm- -40 dBm-	0/100		M1[1]	2.44016087 GHz 0.02 dB	
● 1PE Viev 10 dBm 	0/100		M1[1]	2.44016087 GHz 0.02 dB	
● 1PE Viev 10 dBm 	0/100		M1[1]	2.44016087 GHz 0.02 dB	
● IPE Viev 10 dBm 	0/100		M1[1]	2.44016087 GHz 0.02 dB	
■ 1Pk Viev 10 dBm 0 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -70 dBm				1]	2.44036087 GHz 0.02 dB 1.00290 MHz	
● IPE Viev 10 dBm 			M1[2,44036087 GHz 0,02 dB 1,00290 MHs 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
■ 1Pk Viev 10 dBm 0 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm -70 dBm				1]	2,44036087 GHz 0,02 dB 1,00290 MHs 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
■ 1Pk Viev 10 dBm					2,44036087 GHz 0,02 dB 1,00290 MHs 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
■ 1Pk Viev 10 dBm	0/100		691 pts		2,44036087 GHz 0,02 dB 1,00290 MHs 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
■ 1Pk Viev 10 dBm	0/100				2,44036087 GHz 0,02 dB 1,00290 MHs 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	



10.5. APPENDIX E: TIME OF OCCUPANCY 10.5.1. Test Result


FHSS Mode							
Test Mode	Antonno	Channel	BurstWidth	Deputtel	Limit[o]	Verdict	
Test Mode	Antenna	Channel	[ms]	Result[s]	Limit[s]	verdict	
DH1	Ant1	Нор	0.375	0.120	≤0.4	PASS	
DH3	Ant1	Нор	1.624	0.260	≤0.4	PASS	
DH5	Ant1	Нор	2.863	0.305	≤0.4	PASS	
3DH1	Ant1	Нор	0.384	0.123	≤0.4	PASS	
3DH3	Ant1	Нор	1.625	0.260	≤0.4	PASS	
3DH5	Ant1	Нор	2.869	0.306	≤0.4	PASS	
			AFHSS Mode				
Test Mode	Antonio	ntenna Channel	BurstWidth	Deputtel	Limit[o]	Verdict	
Test Mode	Antenna	Channel	[ms]	Result[s]	Limit[s]	Verdict	
DH1	Ant1	Нор	0.375	0.060	≤0.4	PASS	
DH3	Ant1	Нор	1.624	0.130	≤0.4	PASS	
DH5	Ant1	Нор	2.863	0.153	≤0.4	PASS	
3DH1	Ant1	Нор	0.384	0.061	≤0.4	PASS	
3DH3	Ant1	Нор	1.625	0.130	≤0.4	PASS	
3DH5	Ant1	Нор	2.869	0.153	≤0.4	PASS	

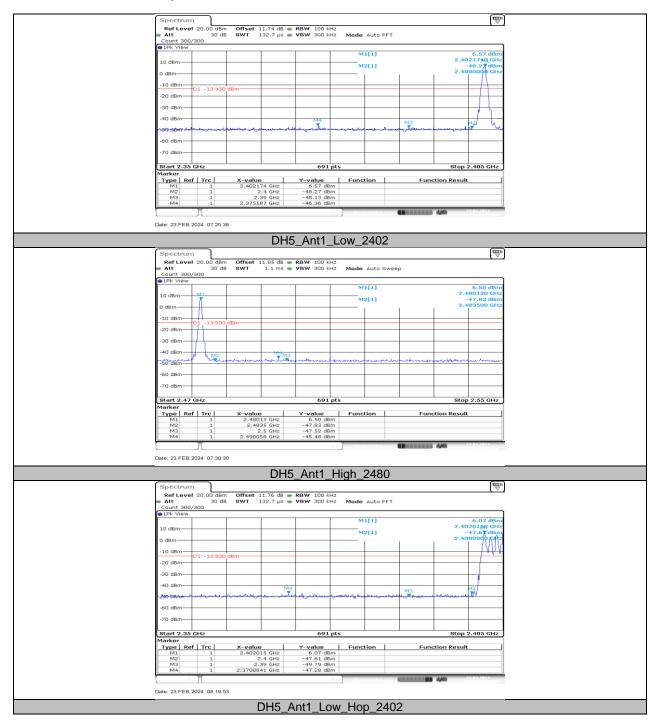
10.5.2. Test Graphs

10.6. APPENDIX F: NUMBER OF HOPPING CHANNELS 10.6.1. Test Result

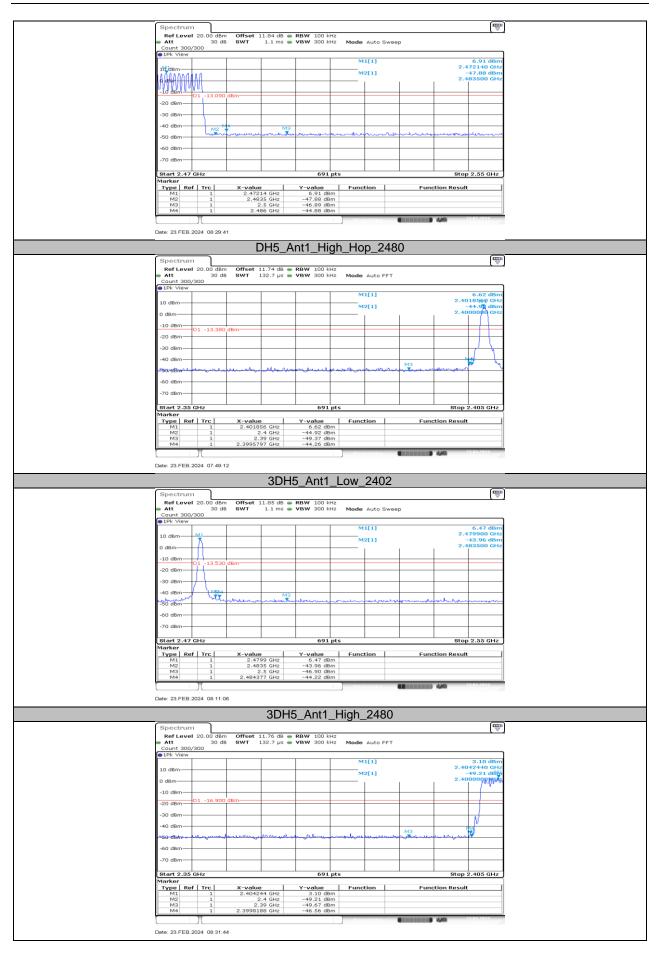
Test Mode	Antenna	Frequency[MHz]	Result[Num]	Limit[Num]	Verdict
DH5	Ant1	Нор	79	≥15	PASS
3DH5	Ant1	Нор	79	≥15	PASS

10.6.2. Test Graphs

Spectrum							
Ref Level 30.00 dBm Offset 11.74 dB RBW 100 kHz Att 40 dB SWT 1 ms VBW 300 kHz Mode Auto Sweep							
Count 1000/1000							
• 1Pk View							
20 dBm							
10 dBm							
00803807000000000	NABADANANANANANANANANANANA	000000000000000000000000000000000000000	AUDUNATION CONTRACTOR				
oldEm	VUIVVVVVVVVVVVVVVVVVVV		VANAAAAAAAAAAAAAA				
-10 dBm							
-20 dBm							
-30 dBm							
1			line				
-40 dBm							
-50 dBm							
-60 dBm							
Start 2.4 GHz	691	pts	Stop 2.4835 GHz				
Date: 23.FEB.2024 08:27:26							
Date: 23.FED.2024 06.27.20							
	DH5_A	nt1_Hop					
Spectrum							
Att 40 dB	Offset 11.74 dB RBW 100 SWT 1 ms VBW 300	Hz Mode Auto Sweep					
Att 40 dB Count 1000/1000	Offset 11.74 dB RBW 100 SWT 1 ms VBW 300						
Att 40 dB Count 1000/1000 IPk View	Offset 11.74 dB RBW 100 SWT 1 ms VBW 300						
 Att 40 dB Count 1000/1000 	Offset 11.74 dB RBW 100 SWT 1 ms VBW 300						
Att 40 dB Count 1000/1000 PIPk View 20 dBm 10 dBm	SWT 1 ms • VBW 300	Hz Mode Auto Sweep					
Att 40 dB Count 1000/1000 PIPk View 20 dBm 10 dBm	SWT 1 ms • VBW 300		านขนพุพมพาน				
Att 40 dB Count 1000/1000 PIk View 20 dBm 10 dBm 0 dBm	SWT 1 ms • VBW 300	Hz Mode Auto Sweep	uluuuuu				
Att 40 dB Count 1000/1000 IPk View 20 dBm 10 dBm dbm dbm dbm	SWT 1 ms • VBW 300	Hz Mode Auto Sweep					
Att 40 dB Count 1000/1000 PIk View 20 dBm 10 dBm 0 dBm	SWT 1 ms • VBW 300	Hz Mode Auto Sweep					
Att 40 dB Count 1000/1000 IPk View 20 dBm 10 dBm dbm dbm dbm	SWT 1 ms • VBW 300	Hz Mode Auto Sweep					
Att 40 dB Count 1000/1000 1Pk View 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm	SWT 1 ms • VBW 300	Hz Mode Auto Sweep					
Att 40 dB Count 1000/1000 IPk View 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm	SWT 1 ms • VBW 300	Hz Mode Auto Sweep					
Att 40 dB Count 1000/1000 IPk View 20 dBm 10 dBm -0 dBm -20 dBm -20 dBm -30 dBm -30 dBm -50 dBm -	SWT 1 ms • VBW 300	Hz Mode Auto Sweep					
Att 40 dB Count 1000/1000 IPk View 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm	SWT 1 ms • VBW 300	Hz Mode Auto Sweep					
Att 40 dB Count 1000/1000 IPk View 20 dBm 10 dBm -0 dBm -20 dBm -20 dBm -30 dBm -30 dBm -50 dBm -	SWT 1 ms VBW 300 I	Hz Mode Auto Sweep	Stop 2.4835 GHz				
Att 40 dB Count 1000/1000 IPk View 20 dBm 20 dBm 40 dBm 20 dBm 20 dBm 40 dBm 50	SWT 1 ms VBW 300 I	H2 Mode Auto Sweep	Stop 2.4835 GHz				
Att 40 dB Count 1000/1000 IPk View 20 dBm 20 dBm 40 dBm 20 dBm 20 dBm 40 dBm 50	SWT 1 ms VBW 300 I	H2 Mode Auto Sweep	Stop 2.4835 GHz				
Att 40 dB Count 1000/1000 IPk View 20 dBm 20 dBm 40 dBm 40 dBm 50	SWT 1 ms = VBW 300 I 	H2 Mode Auto Sweep	Stop 2.4835 GHz				

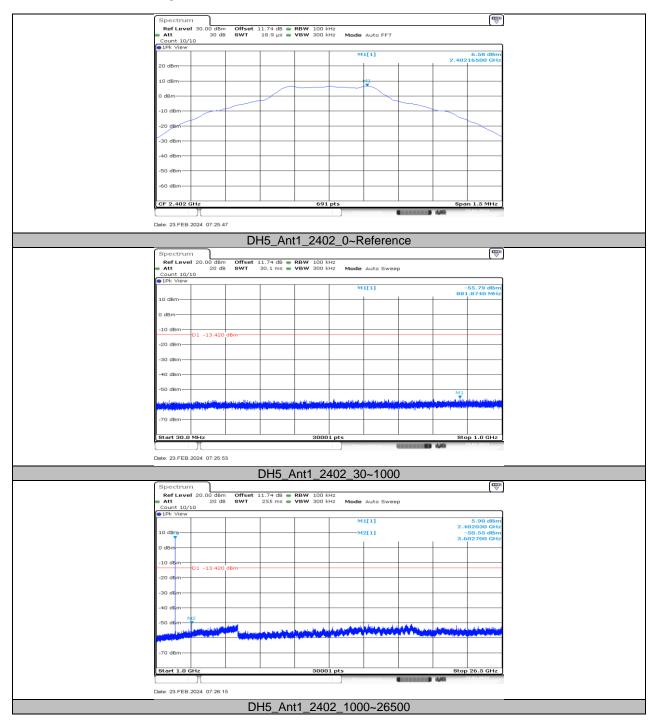


10.7. APPENDIX G: BAND EDGE MEASUREMENTS	
10.7.1. Test Result	

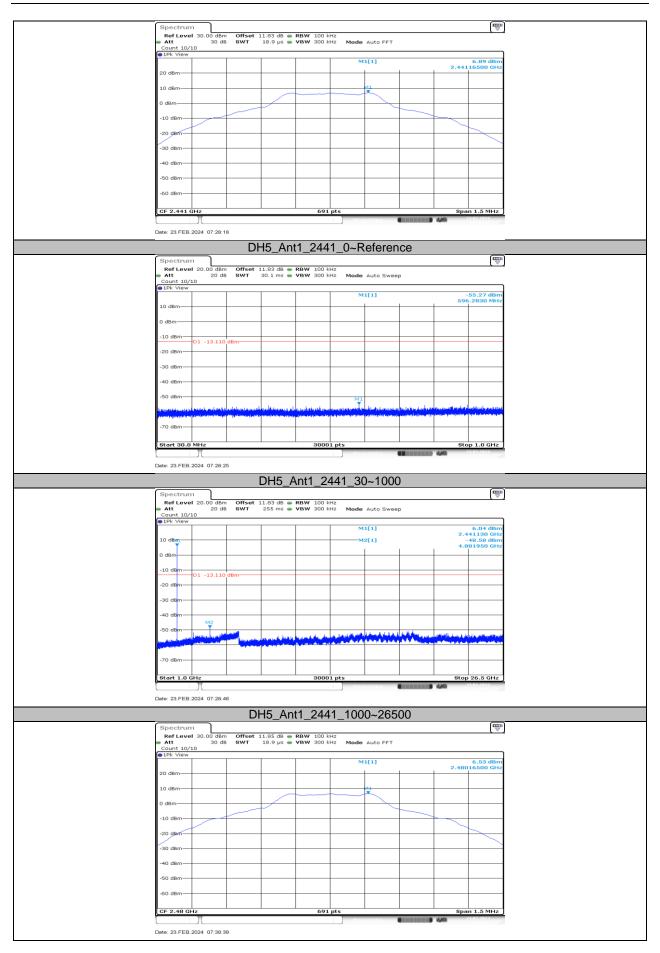

Test Mode	Antenna	ChName	Frequency [MHz]	RefLevel [dBm]	Result [dBm]	Limit [dBm]	Verdict
	Ant1	Low	2402	6.57	-46.36	≤-13.43	PASS
DH5		High	2480	6.50	-45.48	≤-13.5	PASS
DHD		Low	Hop_2402	6.07	-47.28	≤-13.93	PASS
		High	Hop_2480	6.91	-44.88	≤-13.09	PASS
3DH5	Ant1	Low	2402	6.62	-44.26	≤-13.38	PASS
		High	2480	6.47	-44.22	≤-13.53	PASS
		Low	Hop_2402	3.10	-46.56	≤-16.9	PASS
		High	Hop_2480	6.08	-45.67	≤-13.92	PASS

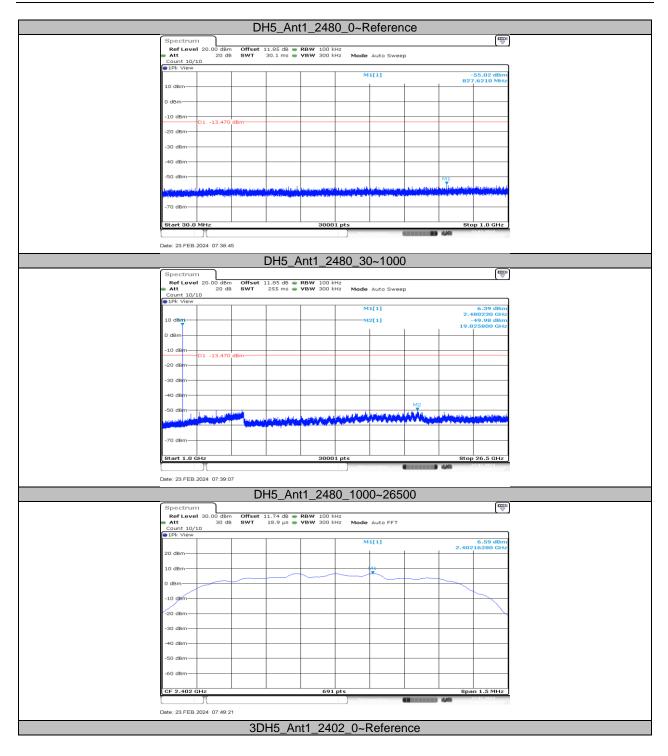
10.7.2. Test Graphs

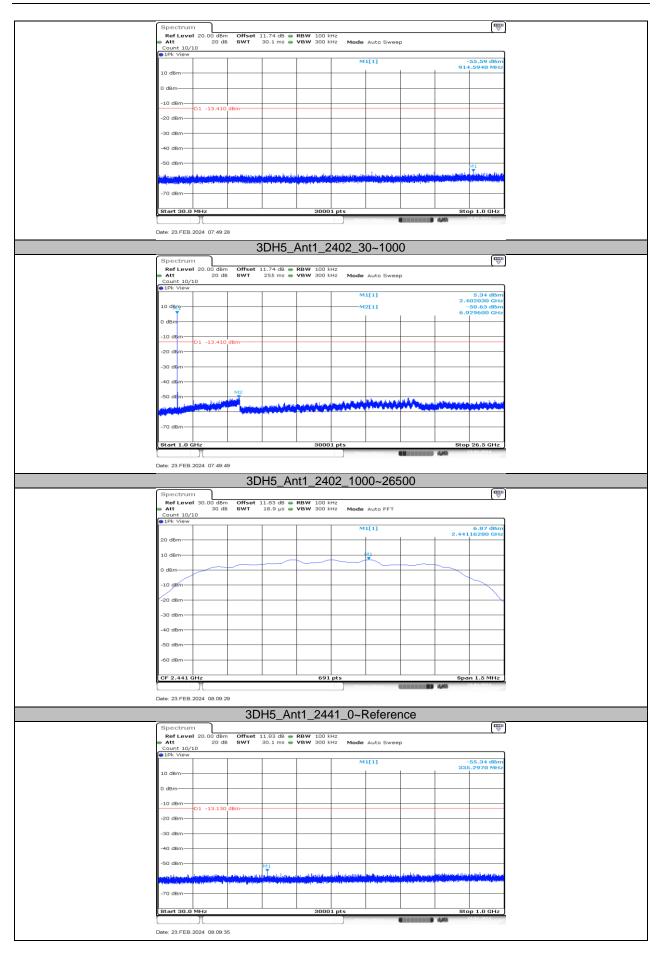
3DH5_Ant1_Low_Hop_2402								
Spectrum				₿				
Ref Level	20.00 dBm Offset	11.84 dB 👄 RBW 100 kH	7	· ·	1			
 Att 								
Count 300/3	00							
1Pk View								
			M1[1]	6.08 dBm 2.476080 GHz				
10 dBm ⁴¹			M2[1]	-48.01 dBm				
a san wanter	9			2.483500 GHz				
-10 dBm	1 -13.920 dBm							
-20 dBm	1 -13.920 dbm							
-30 dBm								
-40 dBm			10120					
	M2	M3	Number And	-				
-50 dBm								
-60 dBm								
-70 dBm								
Start 2.47 G	Hz	691 p	its	Stop 2.55 GHz				
Marker Type Ref	Trc X-valu	e Y-value	Function	Function Result				
M1		6.08 GHz 6.08 dBn		Function Result				
M2	1 2.48	335 GHz -48.01 dBn	1					
M3		2.5 GHz -48.00 dBn						
M4	1 2.5204	135 GHz -45.67 dBn			J			
	ЛЛ		Measuring	4/4				
Date: 23.FEB.20	24 09:20:50							
Date: 23.FEB.20	24 00.39.39							
	3	DH5_Ant1_Hi	ah Hop 24	480				

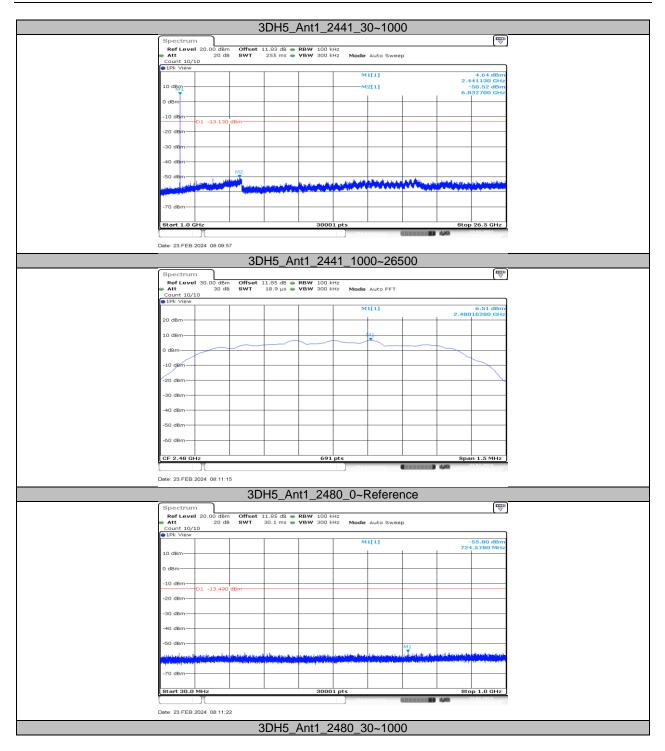


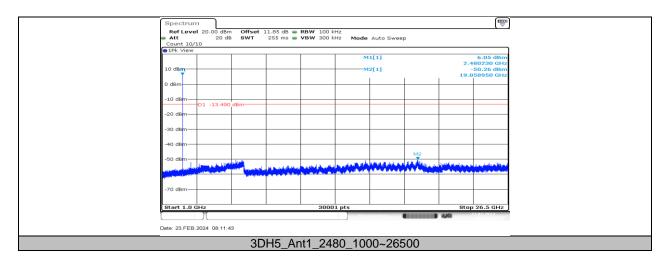
10.8. APPENDIX H: CONDUCTED SPURIOUS EMISSION 10.8.1. Test Result


Test Mode	Antenna	Frequency[MHz]	FreqRange [MHz]	Result [dBm]	Limit [dBm]	Verdict
			Reference	6.58		PASS
		2402	30~1000	-55.79	≤-13.42	PASS
			1000~26500	-50.55	≤-13.42	PASS
			Reference	6.89		PASS
DH5	Ant1	2441	30~1000	-55.27	≤-13.11	PASS
			1000~26500	-48.58	≤-13.11	PASS
		2480	Reference	6.53		PASS
			30~1000	-55.02	≤-13.47	PASS
			1000~26500	-49.98	≤-13.47	PASS
	Ant1	2402 2441 2480	Reference	6.59		PASS
			30~1000	-55.59	≤-13.41	PASS
			1000~26500	-50.63	≤-13.41	PASS
			Reference	6.87		PASS
3DH5			30~1000	-55.34	≤-13.13	PASS
			1000~26500	-50.52	≤-13.13	PASS
			Reference	6.51		PASS
			30~1000	-55.8	≤-13.49	PASS
			1000~26500	-50.26	≤-13.49	PASS


10.8.2. Test Graphs





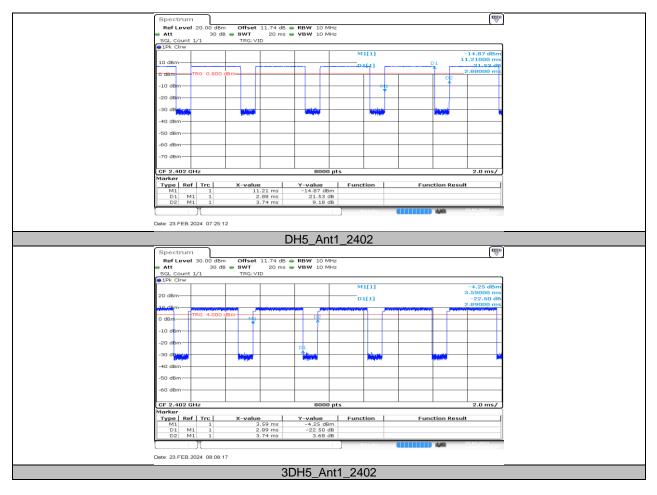


10.9. APPENDIX I: DUTY CYCLE 10.9.1. Test Result

Test Mode	On Time (msec)	Period (msec)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (dB)	1/T Minimum VBW (kHz)	Final setting For VBW (kHz)
DH5	2.88	3.74	0.7701	77.01	1.13	0.35	1
3DH5	2.89	3.74	0.7727	77.27	1.12	0.35	1

Note:

Duty Cycle Correction Factor=10log (1/x).


Where: x is Duty Cycle (Linear)

Where: T is On Time

If that calculated VBW is not available on the analyzer then the next higher value should be used.

10.9.2. Test Graphs

END OF REPORT