

RADIO TEST REPORT

Test Report No. 15383311S-B-R1

Customer	Panasonic Automotive Systems Co., Ltd.	
Description of EUT	Car Navigation	
Model Number of EUT	AT2401	
FCC ID	ACJ932AT2401	
Test Regulation	FCC Part 15 Subpart C	
Test Result	Complied	
Issue Date	January 22, 2025	
Remarks	Wireless LAN (2.4 GHz band) and Bluetooth Low Energy part(s) Antenna Terminal Conducted Tests	

Representative Test Engineer	Approved By
2. Rollershi	S. Takano
Shiro Kobayashi Engineer	Shinichi Takano Engineer ACCREDITED
	CERTIFICATE 1266.03
The testing in which "Non-accreditation" is displayed	is outside the accreditation scopes in UL Japan, Inc.
There is no testing item of "Non-accreditation".	

Report Cover Page - Form-ULID-003532 (DCS:13-EM-F0429) Issue# 23.0

Test Report No. 15383311S-B-R1 Page 2 of 34

ANNOUNCEMENT

- This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- The results in this report apply only to the sample tested. (Laboratory was not involved in sampling.)
- This sample tested is in compliance with the limits of the above regulation.
- The test results in this test report are traceable to the national or international standards.
- This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- This test report covers Radio technical requirements.
 It does not cover administrative issues such as Manual or non-Radio test related Requirements.
 (if applicable)
- The all test items in this test report are conducted by UL Japan, Inc. Shonan EMC Lab.
- The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan, Inc. has been accredited.
- The information provided by the customer for this report is identified in SECTION 1.
- The laboratory is not responsible for information provided by the customer which can impact the validity of the results.
- For test report(s) referred in this report, the latest version (including any revisions) is always referred.

REVISION HISTORY

Original Test Report No.: 15383311S-B

This report is a revised version of 15383311S-B. 15383311S-B is replaced with this report.

Revision	Test Report No.	Date	Page Revised Contents	
-	15383311S-B	September 12,	-	
(Original)		2024		
1	15383311S-B-R1	January 22, 2025	Cover page: Addition of FCC ID	
			1: Addition of remarks	
			*1) The Grantee name in the FCC application is	
			"Panasonic Corporation of North America".	
			1: Correction of remarks	
			From: "- Customer, Description of EUT, Model Number	
			of EUT on the cover and other relevant pages"	
			To: "- Customer, Description of EUT, Model Number of	
			EUT. FCC ID on the cover and other relevant pages"	

Test Report No. 15383311S-B-R1 Page 3 of 34

Reference: Abbreviations (Including words undescribed in this report)

A2LA	The American Association for Laboratory Accreditation	ICES	Interference-Causing Equipment Standard
AC	Alternating Current	IEC	International Electrotechnical Commission
AFH	Adaptive Frequency Hopping	IEEE	Institute of Electrical and Electronics Engineers
AM	Amplitude Modulation	IF	Intermediate Frequency
Amp, AMP	Amplifier	ILAC	International Laboratory Accreditation Conference
ANSI	American National Standards Institute	ISED	Innovation, Science and Economic Development Canada
Ant, ANT	Antenna	ISO	International Organization for Standardization
AP	Access Point	JAB	Japan Accreditation Board
ASK	Amplitude Shift Keying	LAN	Local Area Network
Atten., ATT	Attenuator	LIMS	Laboratory Information Management System
AV	Average	MCS	Modulation and Coding Scheme
BPSK	Binary Phase-Shift Keying	MRA	Mutual Recognition Arrangement
BR	Bluetooth Basic Rate	N/A	Not Applicable
BT	Bluetooth	NIST	National Institute of Standards and Technology
BT LE	Bluetooth Low Energy	NS	No signal detect.
BW	BandWidth	NSA	Normalized Site Attenuation
Cal Int	Calibration Interval	NVLAP	National Voluntary Laboratory Accreditation Program
CCK	Complementary Code Keying	OBW	Occupied Band Width
Ch., CH	Channel	OFDM	Orthogonal Frequency Division Multiplexing
CISPR	Comite International Special des Perturbations Radioelectriques	P/M	Power meter
CW	Continuous Wave	PCB	Printed Circuit Board
DBPSK	Differential BPSK	PER	Packet Error Rate
DC	Direct Current	PHY	Physical Layer
D-factor	Distance factor	PK	Peak
DFS	Dynamic Frequency Selection	PN	Pseudo random Noise
DQPSK	Differential QPSK	PRBS	Pseudo-Random Bit Sequence
DSSS	Direct Sequence Spread Spectrum	PSD	Power Spectral Density
EDR	Enhanced Data Rate	QAM	Quadrature Amplitude Modulation
EIRP, e.i.r.p.	Equivalent Isotropically Radiated Power	QP	Quasi-Peak
EMC	ElectroMagnetic Compatibility	QPSK	Quadri-Phase Shift Keying
EMI	ElectroMagnetic Interference	RBW	Resolution Band Width
EN	European Norm	RDS	Radio Data System
ERP, e.r.p.	Effective Radiated Power	RE	Radio Equipment
EU	European Union	RF	Radio Frequency
EUT	Equipment Under Test	RMS	Root Mean Square
Fac.	Factor	RSS	Radio Standards Specifications
FCC	Federal Communications Commission	Rx	Receiving
FHSS	Frequency Hopping Spread Spectrum	SA, S/A	Spectrum Analyzer
FM	Frequency Modulation	SG	Signal Generator
Freq.	Frequency	SVSWR	Site-Voltage Standing Wave Ratio
FSK	Frequency Shift Keying	TR	Test Receiver
GFSK	Gaussian Frequency-Shift Keying	Tx	Transmitting
GNSS	Global Navigation Satellite System	VBW	Video BandWidth
GPS	Global Positioning System	Vert.	Vertical

CONTENTS	PAGE
SECTION 1: Customer Information	5
SECTION 2: Equipment Under Test (EUT)	5
SECTION 3: Test Specification, Procedures & Results	
SECTION 4: Operation of EUT during testing	
SECTION 5: Antenna Terminal Conducted Tests	
APPENDIX 1: Test Data	
99 % Occupied Bandwidth and 6 dB Bandwidth	
Maximum Peak Output Power	17
Average Output Power	
Conducted Spurious Emission	
Power Density	
APPENDIX 2: Test Instruments	
APPENDIX 3: Photographs of Test Setup	
Antenna Terminal Conducted Tests	

Test Report No. 15383311S-B-R1 Page 5 of 34

SECTION 1: Customer Information

Company Name	Panasonic Automotive Systems Co., Ltd. *1)	
Address	4261, Ikonobe-cho, Tsuzuki-ku, Yokohama-shi, Kanagawa-ken 224-8520, Japan	
Telephone Number	+81-50-1802-5117	
Contact Person	Daisuke Takahata	

^{*1)} The Grantee name in the FCC application is "Panasonic Corporation of North America".

The information provided by the customer is as follows;

- Customer, Description of EUT, Model Number of EUT, FCC ID on the cover and other relevant pages
- Operating/Test Mode(s) (Mode(s)) on all the relevant pages
- SECTION 1: Customer Information
- SECTION 2: Equipment Under Test (EUT) other than the Receipt Date and Test Date
- SECTION 4: Operation of EUT during testing

SECTION 2: Equipment Under Test (EUT)

2.1 Identification of EUT

Description	Car Navigation
Model Number	AT2401
Serial Number	Refer to SECTION 4.2
Condition	Production prototype
	(Not for Sale: This sample is equivalent to mass-produced items.)
Modification	No Modification by the test lab
Receipt Date	September 25, 2023
Test Date	September 25 to October 5, 2023

2.2 Product Description

General Specification

Rating	DC 13.2 V
Operating temperature	-30 deg. C to +65 deg. C

Radio Specification

This report contains data provided by the customer which can impact the validity of results. UL Japan, Inc. is only responsible for the validity of results after the integration of the data provided by the customer. The data provided by the customer is marked "a)" in the table below.

Bluetooth (BR / EDR / BT LE)

Equipment Type	Transceiver
Frequency of Operation	2402 MHz to 2480 MHz
Type of Modulation	FHSS, GFSK / π/4-DQPSK, 8DPSK / GFSK
Antenna Gain ^{a)}	4.00 dBi

WLAN (IEEE802.11b/11q/11n-20)

Equipment Type	Transceiver
Frequency of Operation	2412 MHz to 2462 MHz
Type of Modulation	DSSS, OFDM
Antenna Gain ^{a)}	4.00 dBi

Test Report No. 15383311S-B-R1 Page 6 of 34

SECTION 3: Test Specification, Procedures & Results

3.1 Test Specification

Test Specification	FCC Part 15 Subpart C	
	The latest version on the first day of the testing period	
Title	FCC 47 CFR Part 15 Radio Frequency Device Subpart C Intentional Radiators	
	Section 15.207 Conducted limits	
	Section 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz,	
	and 5725-5850 MHz	

3.2 Procedures and Results

Item	Test Procedure	Specification	Worst Margin	Results	Remarks
Conducted	FCC: ANSI C63.10-2013	FCC: Section 15.207	-	N/A	*1)
Emission	6. Standard test methods				,
	ISED: RSS-Gen 8.8	ISED: RSS-Gen 8.8			
6dB Bandwidth	FCC: KDB 558074 D01	FCC: Section	See data.	Complied	Conducted
	15.247	15.247(a)(2)			
	Meas Guidance v05r02				
	ISED: -	ISED: RSS-247 5.2(a)			
Maximum	FCC: KDB 558074 D01	FCC: Section	1	Complied	Conducted
Peak	15.247	15.247(b)(3)			
Output Power	Meas Guidance v05r02				
	ISED: RSS-Gen 6.12	ISED: RSS-247 5.4(d)			
Power Density	FCC: KDB 558074 D01	FCC: Section 15.247(e)		Complied	Conducted
	15.247				
	Meas Guidance v05r02				
	ISED: -	ISED: RSS-247 5.2(b)			
Spurious	FCC: KDB 558074 D01	FCC: Section15.247(d)	See data.	Complied	Conducted
Emission	15.247			·	(below 30 MHz)
Restricted	Meas Guidance v05r02				, ,
Band Edges	ISED: RSS-Gen 6.13	ISED: RSS-247 5.5			
		RSS-Gen 8.9			
		RSS-Gen 8.10			

Note: UL Japan, Inc.'s EMI Work Procedures: Work Instructions-ULID-003591 and Work Instructions-ULID-003593.

FCC Part 15.31 (e)

The EUT provides stable voltage constantly to the RF Part regardless of input voltage. Instead of a new battery, DC power supply was used for the test. That does not affect the test result, therefore the EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT. Therefore, the equipment complies with the antenna requirement of Section 15.203.

3.3 Addition to Standard

Item	Test Procedure	Specification	Worst Margin	Results	Remarks
99 % Occupied	ISED: RSS-Gen 6.7	ISED: -	N/A	-	Conducted
Bandwidth					

Other than above, no addition, exclusion nor deviation has been made from the standard.

^{*} In case any questions arise about test procedure, ANSI C63.10: 2013 is also referred.

^{*1)} The test is not applicable since the EUT does not have AC Mains.

Test Report No. 15383311S-B-R1 Page 7 of 34

3.4 Uncertainty

Measurement uncertainty is not taken into account when stating conformity with a specified requirement. Note: When margins obtained from test results are less than the measurement uncertainty, the test results may exceed the limit.

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k = 2.

Antenna terminal test	Uncertainty (+/-)
Power Measurement above 1 GHz (Average Detector)	1.3 dB
Power Measurement above 1 GHz (Peak Detector)	1.8 dB
Spurious Emission (Conducted) below 1 GHz	0.91 dB
Conducted Emissions Power Density Measurement 1 GHz to 3 GHz	1.3 dB
Conducted Emissions Power Density Measurement 3 GHz to 18 GHz	2.5 dB
Spurious Emission (Conducted) 18 GHz to 26.5 GHz	2.8 dB
Spurious Emission (Conducted) 26.5 GHz to 40 GHz	2.6 dB
Bandwidth Measurement	0.012 %
Duty Cycle and Time Measurement	0.27 %
Temperature	2.2 deg.C.
Humidity	4.0 %
Voltage	0.74 %

3.5 Test Location

UL Japan, Inc. Shonan EMC Lab.

1-22-3, Megumigaoka, Hiratsuka-shi, Kanagawa-ken 259-1220 Japan

Telephone: +81-463-50-6400 A2LA Certificate Number: 1266.03

(FCC test firm registration number: 626366, ISED lab company number: 2973D / CAB identifier: JP0001)

(1 CC lest littl registration number, 0203	100, IOLD IAD COMPANY I	IUITIDEI. 2913D / CAD IUEI	itilier. 3F 000 r)
Test room	Width x Depth x Height	Size of reference ground	Maximum
	(m)	plane (m) / horizontal	measurement
		conducting plane	distance
No.1 Semi-anechoic chamber (SAC1)	20.6 x 11.3 x 7.65	20.6 x 11.3	10 m
No.2 Semi-anechoic chamber (SAC2)	20.6 x 11.3 x 7.65	20.6 x 11.3	10 m
No.3 Semi-anechoic chamber (SAC3)	12.7 x 7.7 x 5.35	12.7 x 7.7	5 m
No.4 Semi-anechoic chamber (SAC4)	8.1 x 5.1 x 3.55	8.1 x 5.1	-
Wireless anechoic chamber 1 (WAC1)	9.5 x 6.0 x 5.4	9.5 x 6.0	3 m
Wireless anechoic chamber 2 (WAC2)	9.5 x 6.0 x 5.4	9.5 x 6.0	3 m
No.1 Shielded room	6.8 x 4.1 x 2.7	6.8 x 4.1	-
No.2 Shielded room	6.8 x 4.1 x 2.7	6.8 x 4.1	-
No.3 Shielded room	6.3 x 4.7 x 2.7	6.3 x 4.7	-
No.4 Shielded room	4.4 x 4.7 x 2.7	4.4 x 4.7	-
No.5 Shielded room	7.8 x 6.4 x 2.7	7.8 x 6.4	-
No.6 Shielded room	7.8 x 6.4 x 2.7	7.8 x 6.4	-
No.8 Shielded room	3.45 x 5.5 x 2.4	3.45 x 5.5	-
No.1 Measurement room	2.55 x 4.1 x 2.5	-	-
No.2 Measurement room	4.5 x 3.5 x 2.5	-	-
Wireless shielded room 1	3.0 x 4.5 x 2.7	3.0 x 4.5	-
Wireless shielded room 2	3.0 x 4.5 x 2.7	3.0 x 4.5	-

3.6 Test Data, Test Instruments, and Test Set Up

Refer to APPENDIX.

Test Report No. 15383311S-B-R1 Page 8 of 34

SECTION 4: Operation of EUT during testing

4.1 Operating Mode(s)

Remarks*
2 Mbps, PN9
36 Mbps, PN9
MCS 6 (GI 400 ns), PN9
1M-PHY Uncoded PHY (1M-PHY), Maximum Packet
Size, PRBS9
2M-PHY Uncoded PHY (2M-PHY), Maximum Packet
Size, PRBS9

^{*}The worst condition was determined based on the test result of Maximum Peak Output Power (Low Channel)

*Power of the EUT was set by the software as follows; Power Setting: 11b: 12 dBm, 11g/11n-20: 6 dBm

BT LE: Fixed

Software: For WLAN:

wifi_2g_Lowgrade Version: 1

(Date: 2023.09.19, Storage location: Driven by connected PC)

For BT LE:

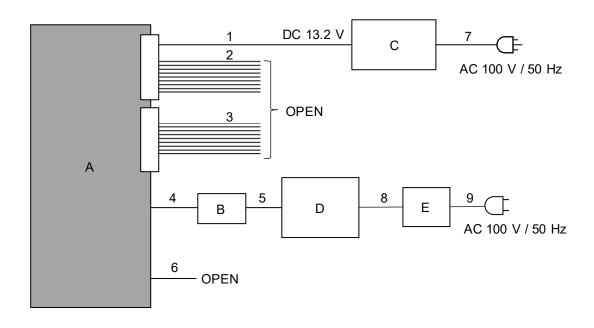
bluetooth_LowGrade Version: 3

(Date: 2023.09.27, Storage location: Driven by connected PC)

Any conditions under the normal use do not exceed the condition of setting. In addition, end users cannot change the settings of the output power of the product.

Test operating mode was determined as follows according to "Section 1 of 6 802.11 a/b/g/n testing - Managing Complex Regulatory Approvals - " of TCB Council Workshop October 2009.

*The Details of Operating Mode(s)


Test Item	Operating Mode	Tested Frequency
Conducted Spurious Emission	Tx 11n-20 *1)	2412 MHz
	Tx BT LE, 2M-PHY *2)	2480 MHz
6 dB Bandwidth,	Tx 11b	2412 MHz
Maximum Peak Output Power,	Tx 11g	2437 MHz
Power Density,	Tx 11n-20	2462 MHz
99 % Occupied Bandwidth	Tx BT LE, 1M-PHY	2402 MHz
	Tx BT LE, 2M-PHY	2440 MHz
		2480 MHz

^{*1)} The mode was tested as a representative, because it had the highest power at antenna terminal test.

^{*}This setting of software is the worst case.

^{*2)} Conducted emissions were limited to the channel that had the highest power during the antenna terminal test, as preliminary testing indicated that changing the operating frequency had no significant impact on the emissions in those frequency bands.

4.2 **Configuration and Peripherals**

Description of EUT and Support Equipment

No.	Item	Model number	Serial Number	Manufacturer	Remarks
Α	Car Navigation	AT2401	045	Panasonic	EUT
В	Jig Board	-	=	-	-
С	Power Supply(DC)	PAN35-10A	DE001677	KIKUSUI	-
D	Laptop Computer	ThinkPad E14 Gen2	PF397TQG	LENOVO	-
E	AC Adapter	ADLX65YCC2D	8SSA10R16922 C2TJ19M1368	LENOVO	-

List of Cables Used

No.	Name	Length (m)	Shield		Remarks
			Cable	Connector	
1	DC	1.0 + 1.9	Unshielded	Unshielded	-
2	Signal	1.0	Unshielded	Unshielded	-
3	Signal	1.0	Unshielded	Unshielded	-
4	Signal	0.1	Unshielded	Unshielded	-
5	USB	0.8	Shielded	Shielded	-
6	Signal	0.1	Unshielded	Unshielded	-
7	AC	2.0	Unshielded	Unshielded	-
8	DC	1.8	Unshielded	Unshielded	-
9	AC	0.9	Unshielded	Unshielded	-

Test Report No. 15383311S-B-R1 Page 10 of 34

SECTION 5: Antenna Terminal Conducted Tests

Test Procedure

The tests were made with below setting connected to the antenna port.

Test	Span	RBW	VBW	Sweep time	Detector	Trace	Instrument Used
6 dB Bandwidth	50 MHz, 3 MHz	100 kHz	300 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
99 % Occupied Bandwidth *1)	Enough width to display emission skirts	1 to 5 % of OBW	Three times of RBW	Auto	Peak	Max Hold	Spectrum Analyzer
Maximum Peak Output Power	-	-	-	Auto	Peak/ Average *2)	-	Power Meter (Sensor: 160 MHz BW)
Peak Power Density	1.5 times the 6dB Bandwidth	3 kHz	9.1 kHz	Auto	Peak	Max Hold	Spectrum Analyzer *3)
Conducted	9 kHz to 150 kHz	200 Hz	620 Hz	Auto	Peak	Max Hold	Spectrum Analyzer
Spurious Emission *4) *5)	150 kHz to 30 MHz	10 kHz	30 kHz				

^{*1)} Peak hold was applied as Worst-case measurement.

Test results are rounded off and limit are rounded down, so some differences might be observed. The equipment and cables were not used for factor 0 dB of the data sheets.

Test Data : APPENDIX
Test Result : Pass

^{*2)} Reference data

^{*3)} Section 11.10.2 Method PKPSD (peak PSD) of "ANSI C63.10-2013".

^{*4)} In the frequency range below 30MHz, RBW was narrowed to separate the noise contents.

Then, wide-band noise near the limit was checked separately, however the noise was not detected as shown in the chart.

(9 kHz - 150 kHz: RBW = 200 Hz, 150 kHz - 30 MHz: RBW = 10 kHz)

^{*5)} The limits in CFR 47, Part 15, Subpart C, paragraph 15.209(a), are identical to those in RSS-Gen section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377 Ohmes. For example, the measurement at frequency 9 kHz resulted in a level of 45.5 dBuV/m, which is equivalent to 45.5 - 51.5 = -6.0 dBuA/m, which has the same margin, 3 dB, to the corresponding RSS-Gen Table 6 limit as it has to 15.209(a) limit.

Test Report No. 15383311S-B-R1 Page 11 of 34

APPENDIX 1: Test Data

99 % Occupied Bandwidth and 6 dB Bandwidth

Test place Shonan EMC Lab. No.5 Shielded Room
Date September 25, 2023 September 27, 2023
Temperature / Humidity 25 deg. C / 55 % RH 26 deg. C / 48 % RH
Engineer Shiro Kobayashi Yosuke Murakami

Mode T

11b

Frequency	99 % Occupied	6 dB Bandwidth	Limit for
	Bandwidth		6 dB Bandwidth
[MHz]	[kHz]	[MHz]	[MHz]
2412	13955.0	8.135	> 0.5000
2437	13932.0	8.135	> 0.5000
2462	13944.0	8.133	> 0.5000

11g

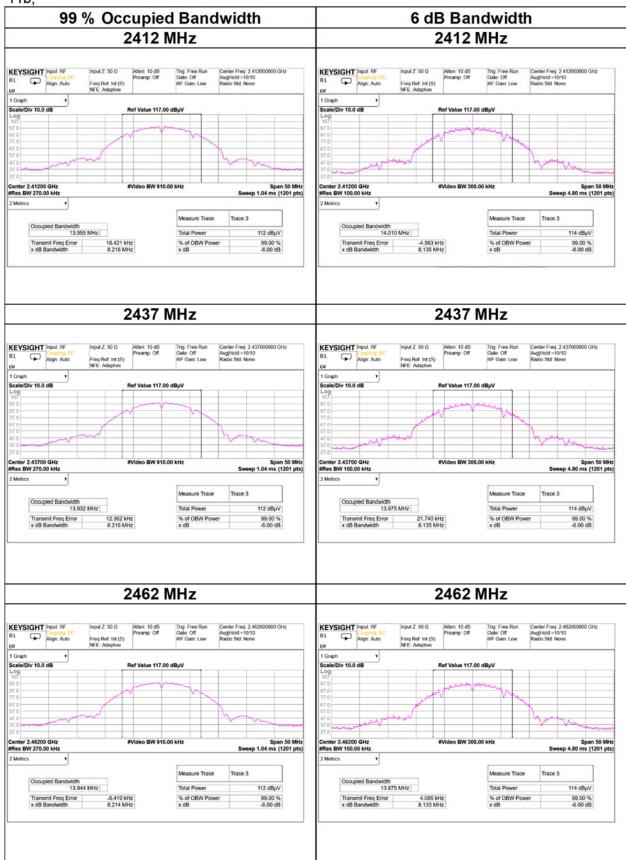
<u>a</u>			
Frequency	99 % Occupied	6 dB Bandwidth	Limit for
	Bandwidth		6 dB Bandwidth
[MHz]	[kHz]	[MHz]	[MHz]
2412	17279.0	16.530	> 0.5000
2437	17292.0	16.530	> 0.5000
2462	17283.0	16.540	> 0.5000

11n-20

Frequency	99 % Occupied	6 dB Bandwidth	Limit for
	Bandwidth		6 dB Bandwidth
[MHz]	[kHz]	[MHz]	[MHz]
2412	18557.0	17.800	> 0.5000
2437	18540.0	17.800	> 0.5000
2462	18563.0	17.800	> 0.5000

BT LE 1M-PHY

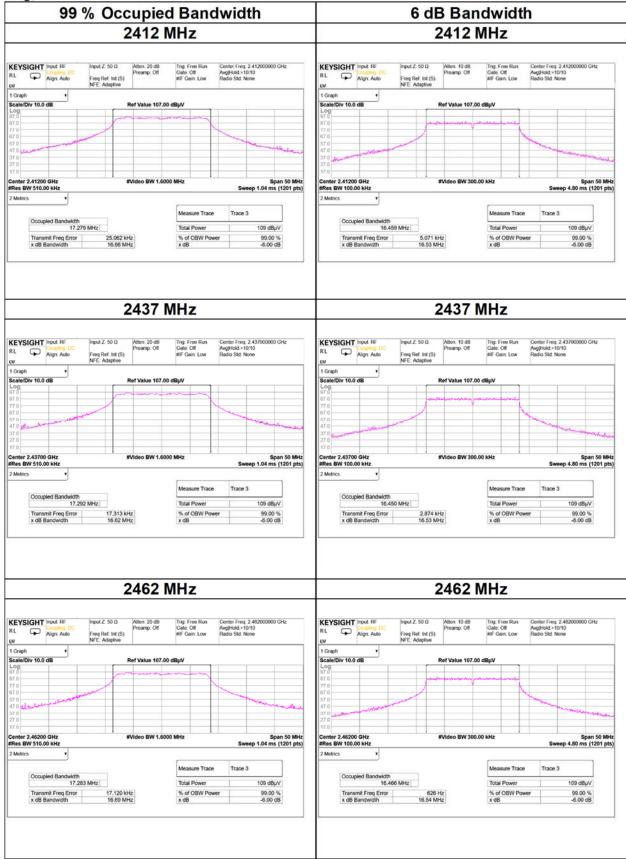
DI LL IIVI			
Frequency	99 % Occupied	6 dB Bandwidth	Limit for
	Bandwidth		6 dB Bandwidth
[MHz]	[kHz]	[MHz]	[MHz]
2402	1017.4	0.661	> 0.5000
2440	1017.2	0.660	> 0.5000
2480	1017.1	0.661	> 0.5000


BT LE 2M-PHY

Frequency	99 % Occupied	6 dB Bandwidth	Limit for
	Bandwidth		6 dB Bandwidth
[MHz]	[kHz]	[MHz]	[MHz]
2402	1991.6	1.130	> 0.5000
2440	1991.8	1.126	> 0.5000
2480	1992.0	1.130	> 0.5000

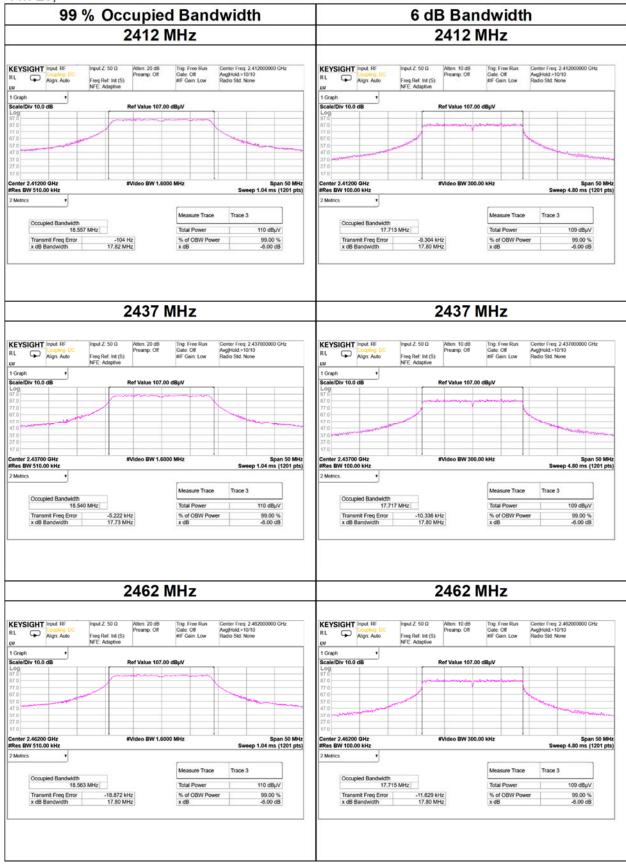
Test Report No. 15383311S-B-R1 Page 12 of 34

99 % Occupied Bandwidth and 6 dB Bandwidth


11b,

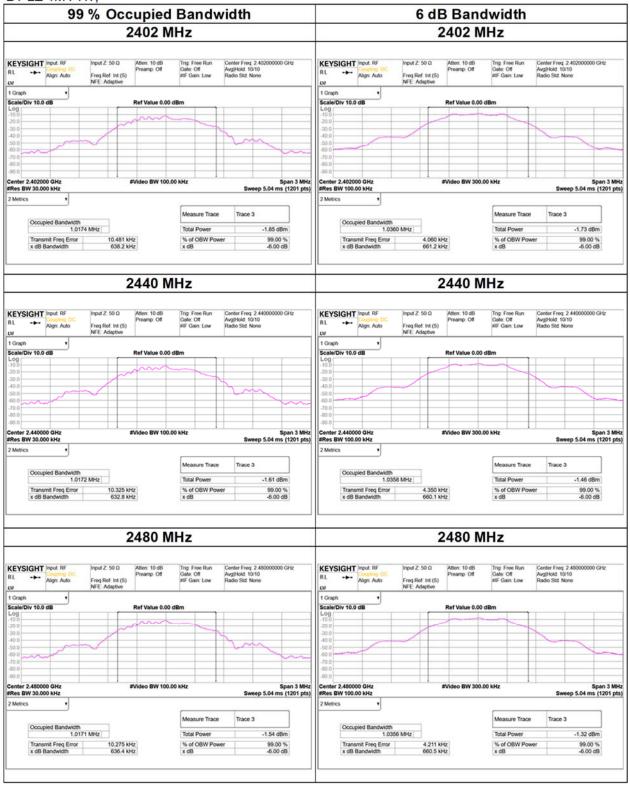
Test Report No. 15383311S-B-R1 Page 13 of 34

99 % Occupied Bandwidth and 6 dB Bandwidth


11g,

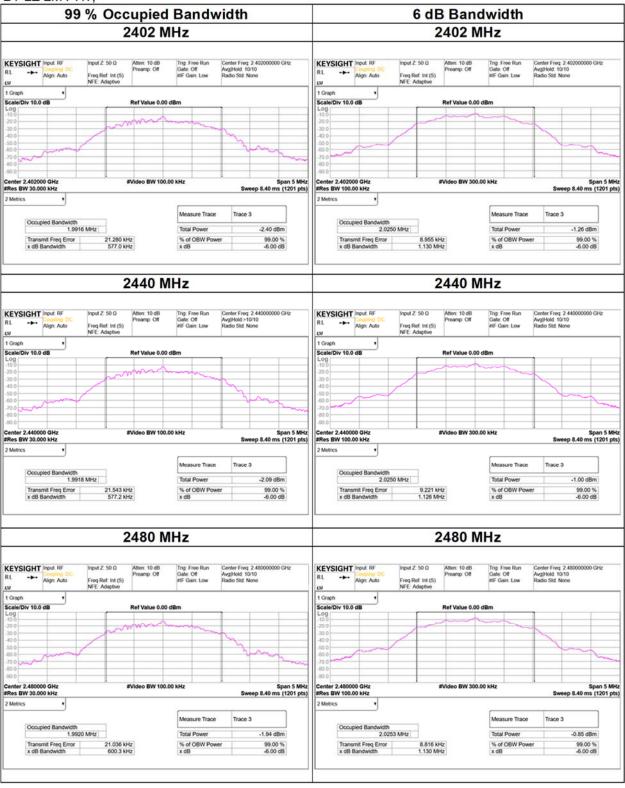
Test Report No. 15383311S-B-R1 Page 14 of 34

99 % Occupied Bandwidth and 6 dB Bandwidth


11n-20,

Test Report No. 15383311S-B-R1 Page 15 of 34

99 % Occupied Bandwidth and 6 dB Bandwidth


BT LE 1M-PHY,

Test Report No. 15383311S-B-R1 Page 16 of 34

99 % Occupied Bandwidth and 6 dB Bandwidth

BT LE 2M-PHY,

Test Report No. 15383311S-B-R1 Page 17 of 34

Maximum Peak Output Power

Test place Shonan EMC Lab. No.5 Shielded Room

Date September 25, 2023 September 29, 2023 Temperature / Humidity 25 deg. C / 55 % RH 24 deg. C / 47 % RH

Engineer Shiro Kobayashi Ken Fujita

Mode T:

<u>11b</u>

Maximum peak output power 2 Mbps (worst)

					Conducted Power				e.i.r.p. for RSS-247					
Freq.	Reading	Cable	Atten.	Res	Result		Limit		Antenna	Result		Lir	nit	Margin
		Loss	Loss						Gain					
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]	[dBi]	[dBm]	[mW]	[dBm]	[mW]	[dB]
2412	2.66	2.13	9.82	14.61	28.91	30.00	1000	15.39	4.00	18.61	72.61	36.02	4000	17.41
2437	2.44	2.15	9.82	14.41	27.61	30.00	1000	15.59	4.00	18.41	69.34	36.02	4000	17.61
2462	2.45	2.16	9.82	14.43	27.73	30.00	1000	15.57	4.00	18.43	69.66	36.02	4000	17.59

<u>11g</u>

Maximum peak output power 36 Mbps (worst)

					Conducted Power				e.i.r.p. for RSS-247					
Freq.	Reading	Cable	Atten.	Res	Result Limit N		Margin	Antenna	Result		Limit		Margin	
		Loss	Loss						Gain					
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]	[dBi]	[dBm]	[mW]	[dBm]	[mW]	[dB]
2412	4.96	2.13	9.82	16.91	49.09	30.00	1000	13.09	4.00	20.91	123.31	36.02	4000	15.11
2437	4.80	2.15	9.82	16.77	47.53	30.00	1000	13.23	4.00	20.77	119.40	36.02	4000	15.25
2462	4.66	2.16	9.82	16.64	46.13	30.00	1000	13.36	4.00	20.64	115.88	36.02	4000	15.38

11n-20

Maximum peak output power MCS 6 (worst)

						Conducted Power				e.i.r.p. for RSS-247					
ſ	Freq.	Reading	Cable	Atten.	Re	Result		Limit		Antenna	Result		Limit		Margin
			Loss	Loss						Gain					
	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]	[dBi]	[dBm]	[mW]	[dBm]	[mW]	[dB]
ſ	2412	5.58	2.13	9.82	17.53	56.62	30.00	1000	12.47	4.00	21.53	142.23	36.02	4000	14.49
ſ	2437	5.40	2.15	9.82	17.37	54.58	30.00	1000	12.63	4.00	21.37	137.09	36.02	4000	14.65
ſ	2462	5.27	2.16	9.82	17.25	53.09	30.00	1000	12.75	4.00	21.25	133.35	36.02	4000	14.77

BT LE 1M-PHY

Maximum peak output power

					Conducted Power				e.i.r.p. for RSS-247					
Freq.	Reading	Cable	Atten.	Res	Result Limit I		Margin	Antenna	Result		Lir	nit	Margin	
		Loss	Loss						Gain					
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]	[dBi]	[dBm]	[mW]	[dBm]	[mW]	[dB]
2402	-7.40	2.03	10.18	4.81	3.03	30.00	1000	25.19	4.00	8.81	7.60	36.02	4000	27.21
2440	-7.17	2.05	10.18	5.06	3.21	30.00	1000	24.94	4.00	9.06	8.05	36.02	4000	26.96
2480	-7.02	2.07	10.18	5.23	3.33	30.00	1000	24.77	4.00	9.23	8.38	36.02	4000	26.79

BT LE 2M-PHY

Maximum peak output power

					Conducted Power				e.i.r.p. for RSS-247					
Freq.	Reading	Cable	Atten.	Res	Result		Limit		Antenna	Result		Lir	nit	Margin
		Loss	Loss						Gain					
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]	[dBi]	[dBm]	[mW]	[dBm]	[mW]	[dB]
2402	-7.21	2.03	10.18	5.00	3.16	30.00	1000	25.00	4.00	9.00	7.94	36.02	4000	27.02
2440	-6.94	2.05	10.18	5.29	3.38	30.00	1000	24.71	4.00	9.29	8.49	36.02	4000	26.73
2480	-6.78	2.07	10.18	5.47	3.52	30.00	1000	24.53	4.00	9.47	8.85	36.02	4000	26.55

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss

e.i.r.p. Result = Conducted Power Result + Antenna Gain

Test Report No. 15383311S-B-R1 Page 18 of 34

Maximum Peak Output Power

Test place Shonan EMC Lab. No.5 Shielded Room

Date September 25, 2023
Temperature / Humidity 25 deg. C / 55 % RH
Engineer Shiro Kobayashi

Mode

11b 2412 MHz

Rate	Reading	Remark
[Mbps]	[dBm]	
1	2.53	
2	2.66	*
5.5	2.64	
11	2.61	

^{*:} Worst Rate

11g 2412 MHz

Reading	Remark									
[dBm]										
-0.42										
-0.44										
-0.44										
1.82										
1.79										
4.96	*									
4.79										
4.73										
	[dBm] -0.42 -0.44 -0.44 1.82 1.79 4.96 4.79									

^{*:} Worst Rate

All comparisons were carried out on same frequency and measurement factors.

Test Report No. 15383311S-B-R1 Page 19 of 34

Maximum Peak Output Power

Test place Shonan EMC Lab. No.5 Shielded Room

September 25, 2023 25 deg. C / 55 % RH Date Temperature / Humidity Engineer Shiro Kobayashi

Mode

11n-20	2412 MHz

G.I.	MCS	Reading	Remark
		[dBm]	
800 ns	0	-0.46	
	1	-0.48	
	2	1.79	
	3	1.80	
	4	4.22	
	5	4.89	
	6	5.52	
	7	4.81	
400 ns	0	-0.38	
	1	-0.38	
	2	1.76	
	3	1.77	
	4	4.51	
	5	5.04	
	6	5.58	*
	7	4.52	

^{*:} Worst Rate

All comparisons were carried out on same frequency and measurement factors.

Test Report No. 15383311S-B-R1 Page 20 of 34

Average Output Power (Reference data for RF Exposure)

Test place Shonan EMC Lab. No.5 Shielded Room

Date September 25, 2023
Temperature / Humidity 25 deg. C / 55 % RH
Engineer Shiro Kobayashi

Mode Tx

11b Average power

Freq.	Reading	Cable	Atten.	Result		Duty	Re	sult
		Loss	Loss	(Time average)		factor	(Burst pow er average	
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dB]	[dBm]	[mW]
2412	0.37	2.13	9.82	12.32	17.06	0.00	12.32	17.06
2437	0.13	2.15	9.82	12.10	16.22	0.00	12.10	16.22
2462	0.09	2.16	9.82	12.07	16.11	0.00	12.07	16.11

11g Average power

Freq.	Reading	Cable	Atten.	Result		Duty	Re	sult
		Loss	Loss	(Time average)		factor	(Burst pow er average	
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dB]	[dBm]	[mW]
2412	-4.47	2.13	9.82	7.48	5.60	0.00	7.48	5.60
2437	-4.67	2.15	9.82	7.30	5.37	0.00	7.30	5.37
2462	-4.68	2.16	9.82	7.30	5.37	0.00	7.30	5.37

11n-20 Average power

Freq.	Reading	Cable	Atten.	Result		Duty	Res	sult
		Loss	Loss	(Time average)		factor	(Burst pow	er average)
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dB]	[dBm]	[mW]
2412	-4.63	2.13	9.82	7.32	5.40	0.00	7.32	5.40
2437	-4.84	2.15	9.82	7.13	5.16	0.00	7.13	5.16
2462	-4.87	2.16	9.82	7.11	5.14	0.00	7.11	5.14

Sample Calculation:

Result (Time average) = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss Result (Burst power average) = Result (Time average) + Duty factor

^{*}The Duty Factor is 0 dB, since this measurement was performed only on the on time using the gate function of power meter.

Test Report No. 15383311S-B-R1 Page 21 of 34

Average Output Power (Reference data for RF Exposure)

Test place Shonan EMC Lab. No.5 Shielded Room

Date September 29, 2023 Temperature / Humidity 24 deg. C / 47 % RH

Engineer Ken Fujita Mode Tx

BT LE 1M-PHY

Average power

F	req.	Reading	Cable	Atten.	Res	Result		Res	sult
			Loss	Loss	(Time average)		factor	(Burst pow er avera	
[N	1Hz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dB]	[dBm]	[mW]
24	402	-7.65	2.03	10.18	4.56	2.86	0.00	4.56	2.86
24	440	-7.85	2.05	10.18	4.38	2.74	0.00	4.38	2.74
24	480	-7.70	2.07	10.18	4.55	2.85	0.00	4.55	2.85

BT LE 2M-PHY

Average power

Freq.	Reading	Cable	Atten.	Result		Duty	Res	sult
		Loss	Loss	(Time average)		factor	(Burst pow	er average)
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dB]	[dBm]	[mW]
2402	-8.01	2.03	10.18	4.20	2.63	0.00	4.20	2.63
2440	-7.86	2.05	10.18	4.37	2.74	0.00	4.37	2.74
2480	-7.73	2.07	10.18	4.52	2.83	0.00	4.52	2.83

Sample Calculation:

Result (Time average) = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss Result (Burst power average) = Result (Time average) + Duty factor

^{*}The Duty Factor is 0 dB, since this measurement was performed only on the on time using the gate function of power meter.

Test Report No. 15383311S-B-R1 Page 22 of 34

Average Output Power (Reference data for RF Exposure)

Shonan EMC Lab. No.5 Shielded Room September 25, 2023 25 deg. C / 55 % RH Shiro Kobayashi Test place Date Temperature / Humidity Engineer

Mode

11b 2412 MHz

Rate	Reading	Result	Remark
[Mbps]	[dBm]	[dBm]	
1	0.18	0.18	
2	0.29	0.29	
5.5	0.37	0.37	*
11	0.33	0.33	

^{*:} Worst Rate

11g 2412 MHz

Rate	Reading	Result	Remark
[Mbps]	[dBm]	[dBm]	
6	-5.04	-5.04	
9	-5.09	-5.09	
12	-5.11	-5.11	
18	-4.47	-4.47	*
24	-4.66	-4.66	
36	-5.06	-5.06	
48	-5.07	-5.07	
54	-5.09	-5.09	

^{*:} Worst Rate

Test Report No. 15383311S-B-R1 Page 23 of 34

<u>Average Output Power</u> (Reference data for RF Exposure)

Test place Shonan EMC Lab. No.5 Shielded Room

Date September 25, 2023
Temperature / Humidity 25 deg. C / 55 % RH
Engineer Shiro Kobayashi

Mode Tx

11n-20 2412 MHz

1111-20		24 12 IVIDZ	•
G.I.	MCS	Result	Remark
		[dBm]	
800 ns	0	-5.30	
	1	-5.44	
	2	-4.64	
	3	-4.65	
	4	-5.12	
	5	-5.11	
	6	-5.05	
	7	-5.06	
400 ns	0	-5.23	
	1	-5.33	
	2	-4.63	*
	3	-4.67	
	4	-5.01	
	5	- 5.09	
	6	-5.06	
	7	-5.09	

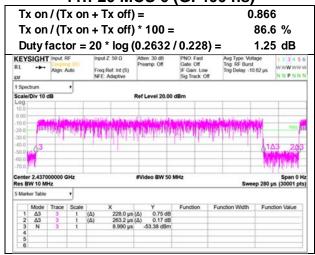
^{*:} Worst Rate

^{*} All comparisons were carried out on same frequency and measurement factors.

Test Report No. 15383311S-B-R1 Page 24 of 34


Burst rate confirmation

Test place Shonan EMC Lab. No.5 Shielded Room


Date October 5, 2023
Temperature / Humidity 25 deg. C / 45 % RH
Engineer Shiro Kobayashi

Mode Tx

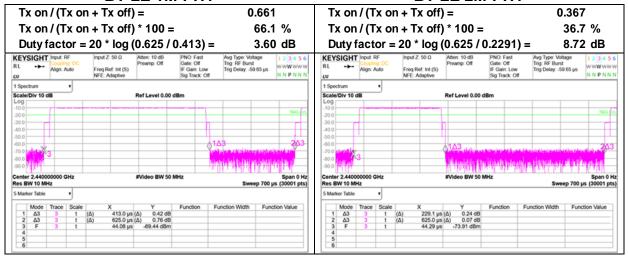
11b 2 Mbps 11g 36 Mbps
off) = 0.995 Tx on / (Tx on + Tx off) =

11n-20 MCS 6 (GI 400 ns)

^{*} Since the burst rate is not different between the channels, the data has been obtained on the representative channel.

Test Report No. 15383311S-B-R1 Page 25 of 34

Burst rate confirmation

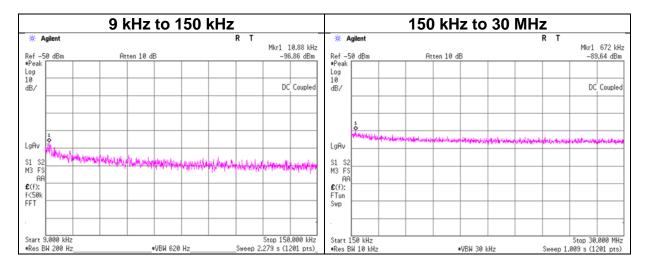

Test place Shonan EMC Lab. No.5 Shielded Room

Date October 5, 2023
Temperature / Humidity 25 deg. C / 45 % RH
Engineer Shiro Kobayashi

Mode T:

BT LE 1M-PHY

BT LE 2M-PHY


^{*} Since the burst rate is not different between the channels, the data has been obtained on the representative channel.

Test Report No. 15383311S-B-R1 Page 26 of 34

Conducted Spurious Emission

Test place Shonan EMC Lab. No.5 Shielded Room

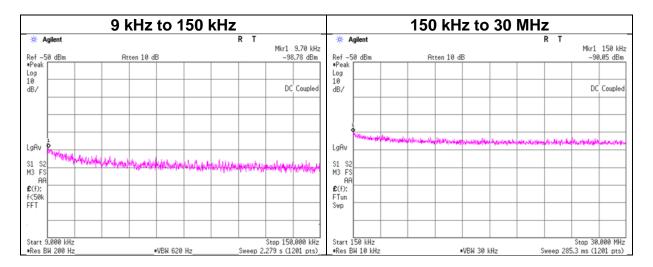
Date October 5, 2023
Temperature / Humidity 25 deg. C / 45 % RH
Engineer Shiro Kobayashi
Mode Tx 11n-20 2412 MHz

Frequency	Reading	Cable	Attenuator	Antenna	N	EIRP	Distance	Ground	E	Limit	Margin	Remark
		Loss	Loss	Gain	(Number			bounce	(field strength)			
[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
10.88	-96.86	0.01	9.80	4.0	1	-83.0	300	6.0	-21.8	46.8	68.6	-
672.00	-89.64	0.01	9.80	4.0	1	-75.8	30	6.0	5.4	31.0	25.6	-

E [dBuV/m] = EIRP [dBm] - 20 log (Distance [m]) + Ground bounce [dB] + 104.8 [dBuV/m]

EIRP[dBm] = Reading [dBm] + Cable loss [dB] + Attenuator Loss [dB] + Antenna gain [dBi] + 10 * log (N)

N: Number of output


Test Report No. 15383311S-B-R1 Page 27 of 34

Conducted Spurious Emission

Test place Shonan EMC Lab. No.5 Shielded Room

Date October 5, 2023
Temperature / Humidity 25 deg. C / 45 % RH
Engineer Shiro Kobayashi

Mode Tx BT LE 2M-PHY 2480 MHz

Frequency	Reading	Cable	Attenuator	Antenna	N	EIRP	Distance	Ground	E	Limit	Margin	Remark
		Loss	Loss	Gain	(Number			bounce	(field strength)			
[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
9.70	-98.78	0.01	10.12	4.0	1	-84.7	300	6.0	-23.4	47.8	71.2	-
150.00	-90.05	0.01	10.12	4.0	1	-75.9	300	6.0	-14.7	24.0	38.7	-

E [dBuV/m] = EIRP [dBm] - 20 log (Distance [m]) + Ground bounce [dB] + 104.8 [dBuV/m]

EIRP[dBm] = Reading [dBm] + Cable loss [dB] + Attenuator Loss [dB] + Antenna gain [dBi] + 10 * log (N)

N: Number of output

Test Report No. 15383311S-B-R1 Page 28 of 34

Power Density

Test place Shonan EMC Lab. No.5 Shielded Room

October 5, 2023 25 deg. C / 45 % RH Date Temperature / Humidity Engineer Shiro Kobayashi

Mode

11b

Frequency	Measured	Reading	Cable	Atten.	Result	Limit	Margin
	Frequency		Loss	Loss			
[MHz]	[MHz]	[dBm/3 kHz]	[dB]	[dB]	[dBm/3 kHz]	[dBm/3 kHz]	[dB]
2412	2410.996	-8.09	2.13	9.82	3.86	8.00	4.14
2437	2435.996	-8.40	2.15	9.82	3.57	8.00	4.43
2462	2460.996	-8.52	2.16	9.82	3.46	8.00	4.54

11g

Frequency	Measured	Reading	Cable	Atten.	Result	Limit	Margin
	Frequency		Loss	Loss			
[MHz]	[MHz]	[dBm/3 kHz]	[dB]	[dB]	[dBm/3 kHz]	[dBm/3 kHz]	[dB]
2412	2413.287	-30.17	2.13	9.82	-18.22	8.00	26.22
2437	2438.287	-30.48	2.15	9.82	-18.51	8.00	26.51
2462	2463.287	-30.27	2.16	9.82	-18.29	8.00	26.29

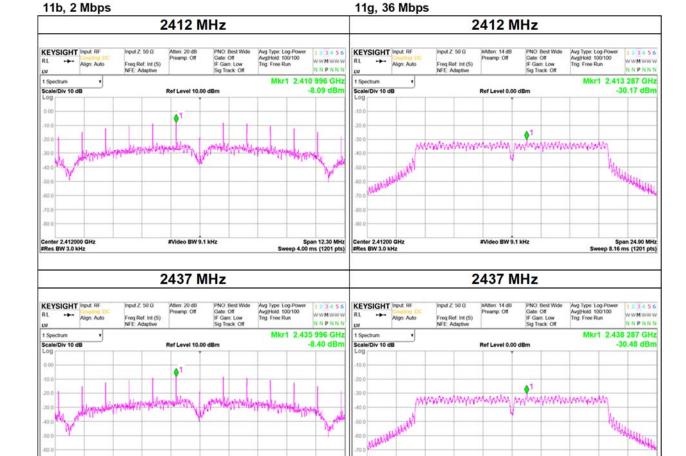
11n-20

Frequency	Measured	Reading	Cable	Atten.	Result	Limit	Margin
	Frequency		Loss	Loss			
[MHz]	[MHz]	[dBm/3 kHz]	[dB]	[dB]	[dBm/3 kHz]	[dBm/3 kHz]	[dB]
2412	2410.749	-31.00	2.13	9.82	-19.05	8.00	27.05
2437	2435.749	-31.15	2.15	9.82	-19.18	8.00	27.18
2462	2460.749	-31.14	2.16	9.82	-19.16	8.00	27.16

BT LE 1M-PHY

Frequency	Measured	Reading	Cable	Atten.	Result	Limit	Margin
	Frequency		Loss	Loss			
[MHz]	[MHz]	[dBm/3 kHz]	[dB]	[dB]	[dBm/3 kHz]	[dBm/3 kHz]	[dB]
2402	2401.980	-22.98	2.03	10.18	-10.77	8.00	18.77
2440	2439.980	-22.67	2.05	10.18	-10.44	8.00	18.44
2480	2479.980	-22.61	2.07	10.18	-10.36	8.00	18.36

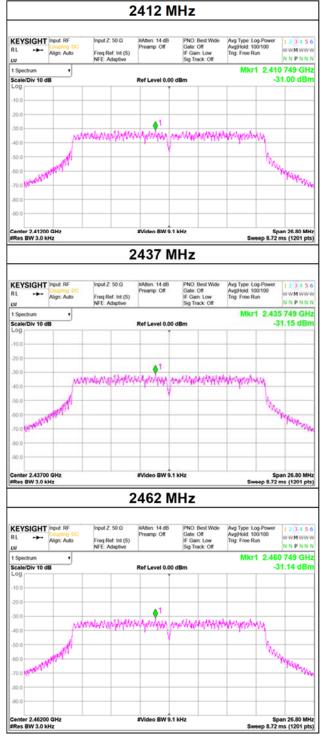
BT LE 2M-PHY

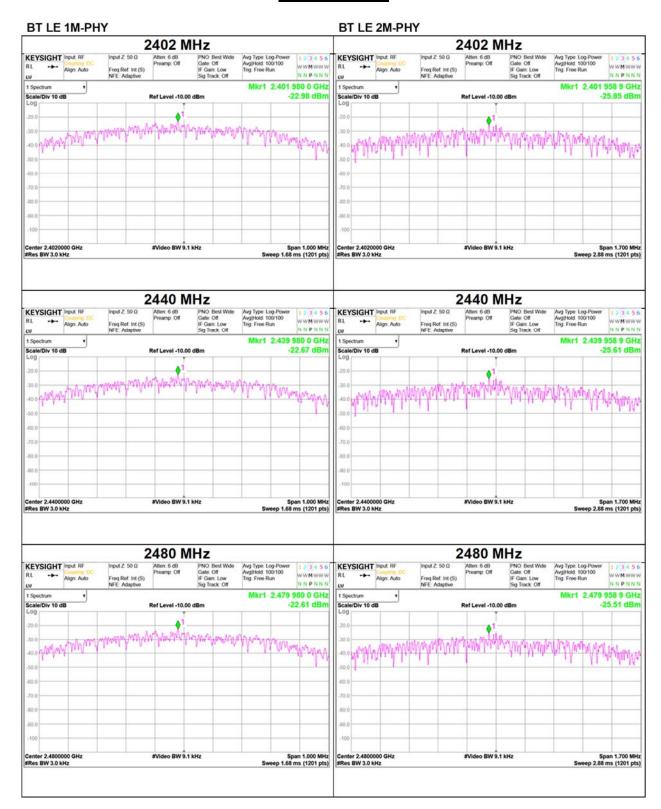

Frequency	Measured	Reading	Cable	Atten.	Result	Limit	Margin
	Frequency		Loss	Loss			
[MHz]	[MHz]	[dBm/3 kHz]	[dB]	[dB]	[dBm/3 kHz]	[dBm/3 kHz]	[dB]
2402	2401.959	-25.85	2.03	10.18	-13.64	8.00	21.64
2440	2439.959	-25.61	2.05	10.18	-13.38	8.00	21.38
2480	2479.959	-25.51	2.07	10.18	-13.26	8.00	21.26

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss

Test Report No. 15383311S-B-R1 Page 29 of 34


Power Density


Power Density

11n-20, MCS 6 (GI 400 ns)

Test Report No. 15383311S-B-R1 Page 31 of 34

Power Density

Test Report No. 15383311S-B-R1 Page 32 of 34

APPENDIX 2: Test Instruments

Test Equipment

Test Item	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
AT	145111	Digital Tester	SANWA	PC500	7019232	2023/09/25	12
AT	146247	Power Meter	Keysight Technologies Inc	8990B	MY51000272	2023/05/29	12
АТ	146310	Power sensor	Keysight Technologies Inc	N1923A	MY5326009	2023/05/29	12
АТ	146311	Power sensor	Keysight Technologies Inc	N1923A	MY5349008	2023/05/29	12
AT	154591	Attenuator	Weinschel Corp.	54A-10	81595	2023/04/12	12
AT	160493	Attenuator	Weinschel Corp.	54A-10	83406	2022/12/01	12
АТ	171614	Terminator	Weinschel - API Technologies Corp	M1459A	88995	2023/05/11	12
AT	191845	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	-	2023/08/07	12
AT	196949	Coaxial Cable	Huber+Suhner	SUCOFLEX 102	803480/2	2023/03/02	12
AT	235604	Spectrum Analyzer	Keysight Technologies Inc	E4440A	MY45300743	2023/05/18	12
АТ	236410	Spectrum Analyzer	Keysight Technologies Inc	N9030B	MY63050151	2023/04/10	12

^{*}Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Test item:

AT: Antenna Terminal Conducted test