TADIRAN-Telematics Proprietary ## Pal - US ## **Technical Description** Proposed for FCC Type Approval ## **Table of Contents** | 1. | GENERAL. | 3 | |-------|------------------------|------------| | 1.1 | System Description | 3 | | 2. | PAL DESCRIPTION. | 4 | | 2.1 | Digital Part | 5 | | 2.1.1 | PAL External Interface | 6 | | 2.1.2 | Custom digital LSI | ϵ | | 2.1.3 | Micro Controller | 6 | | 2.2 | PAL RF PART | 7 | | 2.2.1 | PAL Receiver | 8 | | 2.2.2 | PAL "Synthesizer" | 11 | # Pal -US Technical Description ## 1. General. This document describes TADIRAN TELEMATICS Personal Alarm & Locator (PAL). The commercial brand name of this product is: **Pal -US**. The Pal 2 -US is the mobile portion of Location and Messaging system. In this document we use the name PAL for the Pal 2-US unit. ## 1.1 System Description The system uses RF signals to provide a mean of locating people equipped with the Location system. The system based on Forward Channel (Paging) transmitted from Pagers to the mobile units and based on Reverse Channel used for Location signal and messaging (from the mobile units to Base-Stations). The PAL is the personal transmitter / receiver element of the system. The PAL has an omnidirectional antenna to receive and transmit signals. The PAL implements a Paging channel receiver , POCSAG format, FSK modulated at a carrier frequency of 927.778266 MHz to address, program, control the PAL and messages transmission to the PAL. The PAL is ready to receive the proper address from the paging channel and to reply in the reverse channel with location signal (Pseudo-Noise sequence, \sim 1.5 Mchip Rate) and status response. The reverse channel is phase shaping BPSK modulated signal at 907.997333 MHz in the proper time slot. ## 2. PAL Description. The PAL is based on one board with two main parts: Digital portion and RF portion. ## 2.1 Digital Part The digital part of the PAL contains the following functions: - PAL Controller and peripherals. - External interfaces - Custom ASIC for timing and processing. The block diagram of the digital part described in the following figure. #### 2.1.1 PAL External Interface The PAL digital interface consists of: - Serial wired interface. - Battery power input. - I/O interface. ## 2.1.2 Custom digital LSI The Custom digital LSI contain the following function: - Decoding the received POCSAG paging data. - POCSAG batch structure tracking logic. - Generate the Location PN code sequence. - Transmit data and timing control. - RF control. ### 2.1.3 Micro Controller The PAL digital control is based on $80\text{C}32~\mu\text{C}$. The PAL controller main functions are as follow. - Program and Parameters in an external FLASH. - UART link to external device. - PAL watchdog control. - VCTCXO control. ## 2.2 PAL RF PART The RF part consist of 3 main functions compatible with location network system. The main functions are: - FSK Receiver (RF to base-band) - PSK Transmitter (base band to RF) - Frequency Generator (LO frequency generator) The following figure describes the block diagram of the RF part. The antenna input is connected by T/R switch to the receiver or transmitter according to the CPU control. The received RF signal pass through filter and LNA in the receiver front end and down converted to the IF receiver. The IF receiver demodulates the signal and generates the data signal. In the transmission branch, the RF part receives base band signal in quadrature mode I,Q of the transmitted signal. The base band signal enters to transversal filter that generates band limited base band signal with the required spectrum. The output of the transversal filter is modulated by vector modulator. The vector modulator output is the RF signal that enters to the power amplifier. The T/R switch controls the connection of the transmitted signal to the antenna. The Local Oscillator for down conversion is the same LO (Local Oscillator) signal that modulate the transmission. The LO is generated from TCXO reference by PLL and multiplier. #### 2.2.1 PAL Receiver The PAL receiver is a FSK receiver with the following parameters: - Center frequency - 927.778266 Mhz. Modulation Bit rate Frequency deviation FSK 2400 bps. ± 4.5 KHz. The following figure describes the receiver block diagram. The input signal is filtered and entered to Low Noise Amplifier (LNA). The amplified RF signal pass through band pass filter and down converted to IF level. The LO1 frequency is of 24.349666 MHZ. The IF signal enter to crystal filter (BPF) and entered to standard FM discriminator integrated circuit. The output of the discriminator enters to threshold comperator that generates the data signal. #### **PAL Transmitter** The PAL transmitter parameters: - Center frequency - 907.997333 MHz. - Bit rate - 1.49140625 Mbps or ~11.7 Kbps - Modulation - CPSK with constant envelop for the ~1.5 Mbps bit rate. BPSK for the 11.7 Kbps bit rate. - Power output - 2.5- 4.5 Watt. The power is not adjustable The RF transmitter transmits two types of signals, narrow band of ~ 11.7 Kbps and wide-band of ~ 1.5 Mcps. The narrow band signal is the messages data signal and the wide-band signal is the PN signal for location processing. The transmitter block diagram is described in the following figure. The data signal for transmission that is generated in the digital part and pass the first process that generates I,Q signal. To achieve the required spectrum, the IQ signals pass through transversal filter. The transversal filter is implemented inside the ASIC by shift registers outputs that are combining through resistors. The transversal filter output signals pass through LPF at the input of the vector modulator for receiving the final shaping. The shaped IQ signal is modulated by vector modulator (IQ quadrature modulator). The modulator output is amplified to the required output power and pass through LPF and T/R switch to the antenna. #### 2.2.2 PAL "Synthesizer" The LO frequencies for transmission and down conversion are generated by the "synthesizer" block. The synthesizer is based on two PLLs and mixer. First PLL operates in range 195-205 MHz, the second one operates in range 703-715 MHz. The mixer outputs a summ of these frequencies. The reference source is VCTCXO with accuracy of at least ± 2.5 ppm. The clock sourse based on a standard VCTCXO controlled by the CPU. The compensation value is calculated and it is using to control the VCTCXO. The multiplier output is filtered by BPF to achieve the requirements of the LO.