FCC TEST REPORT				
	FCC ID: 2BOOG-UC300			
Report No.	: SSP25020010-3E			
Applicant	: Guizhou Duowei Zhichuang Technology Co., Ltd			
Product Name	: LED intelligent projector			
Model Name	: <u>UC300</u>			
Test Standard	: FCC Part 15 Subpart E			
Date of Issue	: 2025-04-09			
	CCUT			
	nzhen CCUT Quality Technology Co., Ltd.			
	hnology Industrial Park, Yutang Street, Guangming District, Shenzhen, (Tel.:+86-755-23406590 website: www.ccuttest.com)			
This test report is limited to the ab	oove client company and the product model only. It may not be duplicated ermitted by Shenzhen CCUT Quality Technology Co., Ltd.			

Test Report Basic Information

Applicant: Address of Applicant:	Guizhou Duowei Zhichuang Technology Co., Ltd No. 153, Gaozhai Group, Diaobao Village Committee, Shawen Town, Baiyun District, Guiyang City, Guizhou Province, China			
Manufacturer: Address of Manufacturer:	Guizhou Duowei Zhichuang Technology Co., Ltd No. 153, Gaozhai Group, Diaobao Village Committee, Shawen Town, Baiyun District, Guiyang City, Guizhou Province, China			
Product Name	LED intelligent projector			
Brand Name:	ViVIDEO;UNIC;			
Main Model	UC300			
Series Models	V300C, V300T, V300S, U300C, U300T, U300S, UC300G, UC300T, UC300S, UC300+, U300			
	FCC Part 15 Subpart E KDB 789033 D02 v02r01 ANSI C63.4-2014			
Test Standard	ANSI C63.10-2013			
Date of Test	2025-02-14 to 2025-03-04			
Test Result:	Passed			
Tested By	Walker Wu (Walker Wu)			
Reviewed By	Lieber Ouyang (Lieber Ouyang)			
Authorized Signatory	Lahm Peng (Lahm Peng)			
-	to the above client company and the product model only. It may not be ted by Shenzhen CCUT Quality Technology Co., Ltd All test data presented in			
this test report is only applicable to presented test sample.				

CONTENTS

1. General Information	
1.1 Product Information	5
1.2 Test Setup Information	
1.3 Compliance Standards	8
1.4 Test Facilities	-
1.5 List of Measurement Instruments	
1.6 Measurement Uncertainty	
2. Summary of Test Results	
3. Antenna Requirement	12
3.1 Standard and Limit	12
3.2 Test Result	12
4. Conducted Emissions	13
4.1 Standard and Limit	13
4.2 Test Procedure	
4.3 Test Data and Results	14
5. Radiated Emissions(Below 1GHz)	17
5.1 Standard and Limit	17
5.2 Test Procedure	17
5.3 Test Data and Results	
6. Spurious Emissions(Above 1GHz)	21
6.1 Standard and Limit	
6.2 Test Procedure	21
6.3 Test Data and Results	22
7. Band-edge Emissions(Radiated)	24
7.1 Standard and Limit	24
7.2 Test Procedure	24
7.3 Test Data and Results	24
8. Maximum Conducted Output Power	26
8.1 Standard and Limit	26
8.2 Test Procedure	26
8.3 Test Data and Results	26
9. Occupied Bandwidth	27
9.1 Standard and Limit	27
9.2 Test Procedure	27
9.3 Test Data and Results	27
10. Maximum Power Spectral Density	28
10.1 Standard and Limit	28
10.2 Test Procedure	
10.3 Test Data and Results	
11. Frequency Stability	29
11.1 Standard and Limit	29
11.2 Test Procedure	
11.3 Test Data and Results	29

Revision History

Revision	Issue Date	Description	Revised By	
V1.0	2025-04-09	Initial Release	Lahm Peng	

1. General Information

1.1 Product Information

Product Name:	LED intelligent projector		
Trade Name:	ViVIDEO;UNIC;		
Main Model:	UC300		
Series Models:	V300C, V300T, V300S, U300C, U300T, U300S, UC300G, UC300T, UC300S, UC300+,		
Series Models.	U300		
Rated Voltage:	-		
Power Adapter:	Input: AC 100-240V~50/60Hz, 100W Max		
Battery:	-		
Test Sample No:	SSP25020010-1		
Hardware Version:	V1.0		
Software Version:	V1.0		
Note 1: The test data is gathered from a production sample, provided by the manufacturer.			
Note 2: The color of appearance and model name of series models listed are different from the main model, but			
the circuit and the electronic construction are the same, declared by the manufacturer.			

Wireless Specification			
Wireless Standard:	802.11a		
wireless standard:	802.11n(HT20/HT40)		
	802.11a/n(HT20):		
Operating Frequency	U-NII Band 1: 5180MHz to 5240MHz,		
Operating Frequency:	802.11n(HT40):		
	U-NII Band 1: 5190MHz to 5230MHz,		
Number of Channel:	Refer to the following channel list		
Modulation:	OFDM (BPSK, QPSK, BPSK, 16QAM, 64QAM, 256QAM)		
Antenna Gain:	1.61dBi		
Type of Antenna:	FPCB Antenna		
Type of Device:	Portable Device Mobile Device Modular Device		

Channel List	Channel List for UNII Band 1 (5150-5250MHz)						
802.11a/n(20MHz) 802.11n				802.11n	(40MHz)	802.11ac/	ax(80MHz)
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
36	<u>5180</u>	44	5220	38	<u>5190</u>		
40	<u>5200</u>	48	<u>5240</u>	46	<u>5230</u>		

1.2 Test Setup Information

List of Test Modes					
Test Mode	Description		Remark		
TM1		802.11a	Band 1		
TM2		802.11n(HT20)	Band 1		
TM3		802.11n(HT40)	Ban	id 1	
-		-	-	-	
List and Detail	s of Auxiliary	Cable			
Descrip	otion	Length (cm)	Shielded/Unshielded	With/Without Ferrite	
-			-	-	
-					
List and Detail	s of Auxiliary	Equipment			
Descrip	otion	Manufacturer	Model Serial Number		
-			-	-	
Test Software & Power level setup of EUT					
	Test Software Power level setup				
	VanDyke Software 40				

Note: The DUT was installed in a test fixture and this test fixture is connected to a laptop computer. The laptop computer was used to configure the EUT to continuously transmit at a specified output power using all different modes and modulation schemes, using the proprietary tool VanDyke Software.

1.3 Compliance Standards

Compliance Standards				
ECC Dort 15 Subnort E	FEDERAL COMMUNICATIONS COMMISSION, RADIO FREQUENCY DEVICES,			
FCC Part 15 Subpart E	Unlicensed National Information Infrastructure Devices			
All measurements contained in this	report were conducted with all above standards			
According to standards for test n	nethodology			
ECC Davit 15 Carbon ant E	FEDERAL COMMUNICATIONS COMMISSION, RADIO FREQUENCY DEVICES,			
FCC Part 15 Subpart E	Unlicensed National Information Infrastructure Devices			
	GUIDELINES FOR COMPLIANCE TESTING OF			
KDB 789033 D02 v02r01	UNLICENSED NATIONAL INFORMATION INFRASTRUCTURE (U-NII) DEVICES			
	PART 15, SUBPART E			
American National Standard for Methods of Measurement of Radio-Noise Emission				
ANSI C63.4-2014	from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.			
ANSI C63.10-2013	American National Standard of Procedures for Compliance Testing of Unlicensed			
ANSI C03.10-2015	Wireless Devices			
Maintenance of compliance is the responsibility of the manufacturer or applicant. Any modification of the product, which				
result is lowering the emission, should be checked to ensure compliance has been maintained.				

1.4 Test Facilities

	Shenzhen CCUT Quality Technology Co., Ltd.			
Laboratory Name:	1F, Building 35, Changxing Technology Industrial Park, Yutang Street,			
	Guangming District, Shenzhen, Guangdong, China			
CNAS Laboratory No.:	L18863			
A2LA Certificate No.:	6893.01			
FCC Registration No:	583813			
FCC Designation No.:	CN1373			
ISED Registration No.:	CN0164			
All measurement facilities used to collect the measurement data are located at 1F, Building 35, Changxing				
Technology Industrial Park, Yutang Street, Guangming District, Shenzhen, Guangdong, China.				

1.5 List of Measurement Instruments

Description	Manufacturer	Model	Serial Number	Cal. Date	Due. Date	
Conducted Emissions						
AMN	ROHDE&SCHWARZ	ENV216	101097	2024-08-07	2025-08-06	
EMI Test Receiver	ROHDE&SCHWARZ	ESPI	100242	2024-08-07	2025-08-06	
Test Cable	N/A	Cable 5	N/A	2024-08-07	2025-08-06	
EMI Test Software	FARA	EZ-EMC	EMEC-3A1+	N/A	N/A	
		Radiated Emission	IS			
EMI Test Receiver	ROHDE&SCHWARZ	ESPI	100154	2024-08-07	2025-08-06	
Spectrum Analyzer	KEYSIGHT	N9020A	MY48030972	2024-08-07	2025-08-06	
Spectrum Analyzer	ROHDE&SCHWARZ	FSV40-N	101692	2024-08-07	2025-08-06	
Amplifier	SCHWARZBECK	BBV 9743B	00251	2024-08-07	2025-08-06	
Amplifier	HUABO	YXL0518-2.5-45		2024-08-07	2025-08-06	
Amplifier	COM-MW	DLAN-18G-4G-02	10229104	2024-08-07	2025-08-06	
Loop Antenna	DAZE	ZN30900C	21104	2024-08-03	2025-08-02	
Broadband Antenna	SCHWARZBECK	VULB 9168	01320	2024-08-03	2025-08-02	
Horn Antenna	SCHWARZBECK	BBHA 9120D	02553	2024-08-03	2025-08-02	
Horn Antenna	COM-MW	ZLB7-18-40G-950	12221225	2024-08-03	2025-08-02	
Attenuator	QUANJUDA	6dB	220731	2024-08-07	2025-08-06	
Test Cable	N/A	Cable 1	N/A	2024-08-07	2025-08-06	
Test Cable	N/A	Cable 2	N/A	2024-08-07	2025-08-06	
Test Cable	N/A	Cable 3	N/A	2024-08-07	2025-08-06	
Test Cable	N/A	Cable 4	N/A	2024-08-07	2025-08-06	
Test Cable	N/A	Cable 8	N/A	2024-08-07	2025-08-06	
Test Cable	N/A	Cable 9	N/A	2024-08-07	2025-08-06	
EMI Test Software	FARA	EZ-EMC	FA-03A2 RE+	N/A	N/A	
Conducted RF Testing						
RF Test System	MWRFTest	MW100-RFCB	220418SQS-37	2024-08-07	2025-08-06	
Spectrum Analyzer	KEYSIGHT	N9020A	ATO-90521	2024-08-07	2025-08-06	
RF Test Software	MWRFTest	MTS 8310	N/A	N/A	N/A	
Laptop	Lenovo	ThlnkPad E15 Gen 3	SPPOZ22485	N/A	N/A	
DUT Test Software	VanDyke Software	Rtwpriv	N/A	N/A	N/A	

1.6 Measurement Uncertainty

Test Item	Conditions	Uncertainty	
Conducted Emissions	9kHz ~ 30MHz	±1.64 dB	
	9kHz ~ 30MHz	±2.88 dB	
Dedicted Emissions	30MHz ~ 1GHz	±3.32 dB	
Radiated Emissions	1GHz ~ 18GHz	±3.50 dB	
	18GHz ~ 40GHz	±3.66 dB	
Conducted Output Power	9kHz ~ 26GHz	±0.50 dB	
Occupied Bandwidth	9kHz ~ 26GHz	±4.0 %	
Conducted Spurious Emission	9kHz ~ 26GHz	±1.32 dB	
Power Spectrum Density	9kHz ~ 26GHz	±0.62 dB	

2. Summary of Test Results

FCC Rule	Description of Test Item	Result						
FCC Part 15.203	Antenna Requirement	Passed						
FCC Part 15.247(f)	RF Exposure(see the RF exposure report)	Passed						
FCC Part 15.207, 15.407(b)(9)	Conducted Emissions	Passed						
FCC Part 15.209, 15.407(b)(9), (10)	Radiated Emissions	Passed						
FCC Part 15.407(b)(10)	Band-edge Emissions(Radiated)	Passed						
FCC Part 15.407(a)(1), (2), (3)	Maximum Peak Conducted Output Power	Passed						
FCC Part 15.407(a)(2), (e)	Occupied Bandwidth	Passed						
FCC Part 15.407(a)(1), (2), (3)	Maximum Power Spectral Density	Passed						
FCC Part 15.407 (g)	Frequency Stability	Passed						
FCC Part 15.407 (h)	Transmit Power Control (TPC)	N/A						
FCC Part 15.407 (h)	Dynamic Frequency Selection (DFS)	N/A						
Passed: The EUT complies with the essential requirements in the standard Failed: The EUT does not comply with the essential requirements in the standard N/A: Not applicable								

3. Antenna Requirement

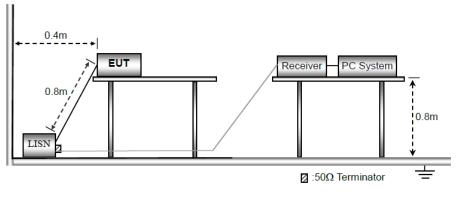
3.1 Standard and Limit

According to FCC Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

3.2 Test Result

This product has an FPCB antenna, and the maximum antenna gain is 1.61dBi, fulfill the requirement of this section.

4. Conducted Emissions


4.1 Standard and Limit

According to the rule FCC Part 15.207, Conducted emissions limit, the limit for a wireless device as below:

Frequency of Emission	Conducted emis	ssions (dBuV)						
(MHz)	Quasi-peak	Average						
0.15-0.5	66 to 56	56 to 46						
0.5-5	56	46						
5-30	60	50						
Note 1: Decreases with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz								
Note 2: The lower limit applies at the band edges								

4.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.2.

Test Setup Block Diagram

a) The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

b) The following is the setting of the receiver
Attenuation: 10dB
Start Frequency: 0.15MHz
Stop Frequency: 30MHz
IF Bandwidth: 9kHz

c) The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.

d) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

e) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

f) LISN is at least 80 cm from nearest part of EUT chassis.

g) For the actual test configuration, please refer to the related Item - photographs of the test setup.

4.3 Test Data and Results

The band1 all of the 802.11a, 802.11n modes have been tested, the EUT complied with the FCC Part 15.207 standard limit for a wireless device, and with the worst case 802.11a_5180 as below: Remark: Level = Reading + Factor, Margin = Level - Limit

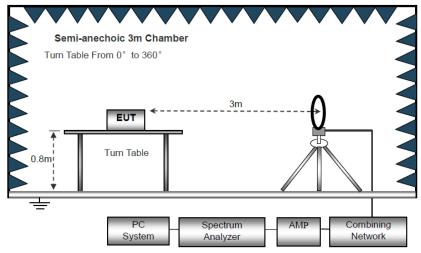
Test F	Plots and Data of Cor	nducted Emiss	ions						
Teste	d Mode:	TM1							
Test V	/oltage:	AC 120V/601	Ηz						
Test F	Power Line:	Neutral							
Rema	ırk:								
90.0	dBu¥								
00.0									
80									
70									
60 >								FCC Part15 CE-Class B_QP	
50								FCC Part15 CE-Class B_AVe X	
40			7	- 9					
30		WYWWWWWWWWWWWW	und pay the	L IN LIMMY	war worth	mound	haver	per	ak:
	MILMIAN			19-19 AVY			* I'		
20		Hummen with		WH LL	MAM	monte	hull	Mahrondhar Margaret AV	/G
10		·				·	- VW~~~		
0									
-10									
	150	0.500		(MHz)		5.0	100	30.000	
No.		ding Factor SuV) (dB)	Level (dBuV)	Limit I (dBuV)	Margin (dB)	Detector	P/F	Remark	
1	0.1500 60	.08 0.00	60.08	66.00	-5.92	QP	Р		
2		.68 0.00	29.68	56.00	-26.32	AVG	P		
3 *		.41 0.00	58.41	63.45	-5.04	QP	P		
4		.88 0.00	36.88		-16.57	AVG	P		_
5 6		.45 0.00	51.45		-7.78 -19.78	QP AVG	P P		\neg
7		.45 0.00 .40 0.00	29.45 35.40		-19.78	QP	P		-
8		.40 0.00	17.66		-20.60	AVG	P		\neg
9		.87 0.00	36.87		-19.13	QP	P		-
10		.55 0.00	20.55		-25.45	AVG	P		\neg
11		.67 0.00	52.67		-7.33	QP	P		\neg
							1 1		- 1

Test F	Plots and Data of Co	nducted Emi	issions						
Teste	d Mode:	TM1							
Test \	/oltage:	AC 120V/6	50Hz						
Test I	Power Line:	Live							
Rema	ırk:								
90.0	dBuV								
80									
70						_			
60								FCC Part15 CE-Class B_QP	
								FCC Part15 CE-Class B_AVe	11
50	March Mills	3		F		7		9	<u>۲</u>
40	<u>}</u> , ₩ ₩ ₩	MANA .	her the second			WWW	they have	All and and the second	12
30			har an d'freisann de sanne	KUNGKANTA!	N/Williamserier	~~~			peak
		1 de partir han h	and the state of t	. Mary	ALL .	and and a	my .	mante ($ \rangle $
20	I I I I I I I I I I I I I I I I I I I	R. Abû - hakk		htter a	- Houter				VAVG
10									+-1
0									<u> </u>
-10									
0.	150	0.500		(MHz)		5.0	00		30.000
No.		ading Fact BuV) (dB		Limit (dBuV)	Margin (dB)	Detector	P/F	Remark	
1 *	0.1860 60	0.33 0.0	0 60.33	64.21	-3.88	QP	Ρ		
2		7.30 0.0		54.21	-16.91	AVG	P		
3		5.93 0.00		56.68	-9.75	QP	P P		
4		0.75 0.00 0.67 0.00		46.68 56.00	-25.93 -15.33	AVG QP	P P		
6		3.50 0.0		46.00	-22.50	AVG	P		
7		1.24 0.0		56.00	-14.76	QP	Р		
8		4.82 0.0		46.00	-21.18	AVG	Ρ		
9	10.5450 42	2.23 0.0	0 42.23	60.00	-17.77	QP	Ρ		
10		5.30 0.0		50.00	-23.70	AVG	Р		
11		9.89 0.0		60.00	-10.11	QP	P		
12	24.3779 33	3.97 0.0	0 33.97	50.00	-16.03	AVG	P		

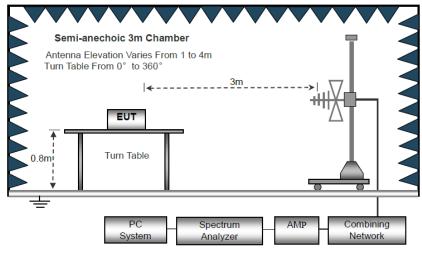
5. Radiated Emissions(Below 1GHz)

5.1 Standard and Limit

According to FCC Part 15.407(b)(9), Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in FCC Part 15.209.


Frequency of Emission	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3
Note: The more stringent limit applies	at transition frequencies.	

According to the rule FCC Part 15.209, Radiated emission limit for a wireless device as below:


Note: Spurious Radiated Emissions measurements starting below or at the lowest crystal frequency.

5.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.3 to 6.6.

Block Diagram of Radiated Emission Below 30MHz

Block Diagram of Radiated Emission From 30MHz to 1GHz

a) The EUT is placed on a turntable, which is 0.8m above ground plane for test frequency range blew 1GHz.

b) EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.

c) Use the following spectrum analyzer settings:

Span = wide enough to fully capture the emission being measured

RBW = 100 kHz

 $VBW \ge RBW$, Sweep = auto

Detector function = peak


Trace = max hold

d) Follow the guidelines in ANSI C63.4-2014 with respect to maximizing the emission by rotating the EUT, adjusting the measurement antenna height and polarization, etc. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, submit this data. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.e) For the actual test configuration, please refer to the related item - EUT test photos.

5.3 Test Data and Results

The band1 all of the 802.11a, 802.11n modes have been tested, the EUT complied with the FCC Part 15.209 standard limit for a wireless device, and with the worst case 802.11a_5180 as below: Remark: Level = Reading + Factor, Margin = Level - Limit

Radia	ated E	missio	n Tes	st Da	ta (3	30M	Hz	to	1GHz)												
Teste	ed Mo	de:				ТΜ	1														
Test	Voltag	e:				AC 120V/60Hz															
Test	Anten	na Pola	rizat	tion:		Ноі	izo	nta	ıl												
Rema	ark:																				
80.0	dB	ıV/m				I															
00.0																					
70																					
60	<u> </u>	_	_														<u> </u>	-		_	
												F	CC Part1	15 RI	E-Class	B_30	1000	MHz		Ч	
50											<u> </u>		argin - 6	-40							
40							_ſ			4		ş Whinyilmi	6 								
40							ſ		4	An press management		What	Nor H	W	Munudy						
30	Milling Stars	and the second	M Jahr	m	A.M.L	han de la			Jul Mark	n wei in the second	<u>wr</u>				"WWW	η	<u> </u>		1.1	Д.,	
						424.14	т "Ny	h	null have							MANY	Mr Vin	n ham	aryanyi u	·	
20	<u> </u>		-											+						\neg	
10																					
10																					
0.0 כי	0.000									(MHz)										D00.0	000
	0.000			60	.00					(MIIZ)		31	00.00							000.1	000
No.		equenc <u>y</u> (MHz)		Read (dBu			acto 3/m		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detecto	or Hei		Azimu (deg		7/F	Rem	nark		
1	! 3	9.8542	+	43.9	0	-8	.33		35.57	40.00	-4.43	QP	10	0	89		P				
2		4.7433		43.5			.25		35.33	40.00	-4.67	QP	10		56		P				
3		34.0881		46.0			5.57		37.45	43.50	-6.05	QP	10		321		P				
4 '		87.0956 45.9510		51.3 52.1			0.99 0.19		40.36 41.91	43.50 46.00	-3.14 -4.09	QP QP	10		41 58		P P				
6		45.9510 48.0274		52.1 49.4			0.1e 7.38	'	41.91	46.00	-4.09	QP QP	10		217		P P				
	. 0	10.0214		10.7	<u> </u>	-	.00		12.00	+0.00	0.00										

Note 1: this EUT was tested in 3 orthogonal positions, with the X-axis being the worst, and the worst case position data was reported.

Note 2: Testing is carried out with frequency rang 9kHz to 1GHz. The measurements greater than 20dB below the limit from 9kHz to 30MHz.

6. Spurious Emissions(Above 1GHz)

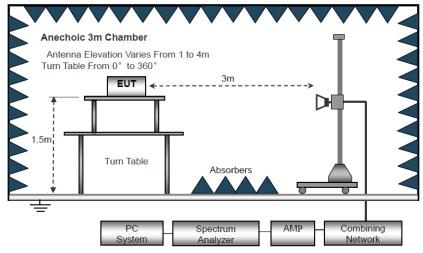
6.1 Standard and Limit

According to FCC Part 15.407(b), Undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

(1) For transmitters operating in the 5.15–5.25 GHz band: All emissions outside of the 5.15–5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

(2) For transmitters operating in the 5.25–5.35 GHz band: All emissions outside of the 5.15–5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

(3) For transmitters operating in the 5.47–5.725 GHz band: All emissions outside of the 5.47–5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.


(4) For transmitters operating solely in the 5.725–5.850 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at 5 MHz above or below the band edge.

(5) The provisions of § 15.205 apply to intentional radiators operating under this section.

(6) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the upper and lower frequency band edges as the design of the equipment permits.

6.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.3 to 6.6.

Block Diagram of Radiated Emission Above 1GHz

a) The EUT is placed on a turntable, which is 1.5m above ground plane for test frequency range above 1GHz.

b) EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.

c) Use the following spectrum analyzer settings: Span = wide enough to fully capture the emission being measured RBW = 1 MHz for $f \ge 1$ GHz VBW \ge RBW, Sweep = auto Detector function = peak Trace = max hold

d) Follow the guidelines in ANSI C63.4-2014 with respect to maximizing the emission by rotating the EUT, adjusting the measurement antenna height and polarization, etc. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, submit this data. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.

e) For the actual test configuration, please refer to the related item - EUT test photos.

6.3 Test Data and Results

The band1 all of the 802.11a, 802.11n modes have been tested, the EUT complied with the FCC Part 15.407 standard limit, and with the worst case 802.11a, 802.11n_HT20 below: Remark: Level = Reading + Factor, Margin = Level - Limit

Frequency	Reading	Correct	Result	Limit	Margin	Polar	Detector
MHz	dBuV/m	dB/m	dBuV/m	dBuV/m	dB	H/V	Peak
		802	11a_Lowest C	hannel (5180N	/Hz)		
10360	62.85	-6.22	56.63	68.2	-11.57	Н	Peak
15540	50.2	-5.4	44.8	74	-29.2	Н	Peak
10360	65.02	-6.22	58.8	68.2	-9.4	V	Peak
15540	54.77	-5.4	49.37	74	-24.63	V	Peak
		802.	11a_Highest C	hannel (52401	MHz)		
10480	61.65	-5.99	55.66	68.2	-12.54	Н	Peak
15720	57.63	-5.53	52.1	74	-21.9	Н	Peak
10480	64.46	-5.99	58.47	68.2	-9.73	V	Peak
15720	57.89	-5.53	52.36	74	-21.64	V	Peak
		802.11n	_20MHz_Lowe	st Channel (51	L80MHz)		
10360	66.73	-6.22	60.51	68.2	-7.69	Н	Peak
15540	51.99	-5.4	46.59	74	-27.41	Н	Peak
10360	61.86	-6.22	55.64	68.2	-12.56	V	Peak
15540	54.97	-5.4	49.57	74	-24.43	V	Peak
		802.11n	_20MHz_Highe	est Channel (52	240MHz)		
10480	65.8	-5.99	59.81	68.2	-8.39	Н	Peak
15720	55.32	-5.53	49.79	74	-24.21	Н	Peak
10480	65.55	-5.99	59.56	68.2	-8.64	V	Peak
15720	57.59	-5.53	52.06	74	-21.94	V	Peak

UNII Band 1

Note 1: this EUT was tested in 3 orthogonal positions, with the X-axis being the worst, and the worst case position data was reported.

Note 2: Testing is carried out with frequency rang 1GHz to the tenth harmonics, If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit, so there is no record. Note 3: Above 18GHz not recorded for no spurious point have a margin of less than 6 dB with respect to the limits.

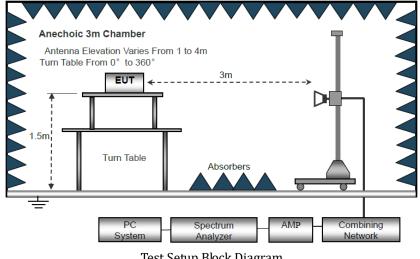
7. Band-edge Emissions(Radiated)

7.1 Standard and Limit

According to \$15.407(b), Undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

(1) For transmitters operating in the 5.15–5.25 GHz band: All emissions outside of the 5.15–5.35 GHz band shall

not exceed an e.i.r.p. of -27 dBm/MHz.


(2) For transmitters operating in the 5.25–5.35 GHz band: All emissions outside of the 5.15–5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

(3) For transmitters operating in the 5.47–5.725 GHz band: All emissions outside of the 5.47–5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

(4) For transmitters operating solely in the 5.725-5.850 GHz band: All emissions shall be limited to a level of -27dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

7.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.3 to 6.6 and section 6.10.

Test Setup Block Diagram

7.3 Test Data and Results

Based on all tested data, the EUT complied with the FCC Part 15.407 standard limit, and with the worst case as below:

Remark: Level = Reading + Factor, Margin = Level - Limit

Frequency	Reading	Correct	Result	Limit	Margin	Polar	Detector
MHz	dBuV/m	dB/m	dBuV/m	dBuV/m	dB	H/V	Peak
5150	63.77	-13.96	49.81	74	-24.19	Н	Peak
5150	64.36	-13.96	50.4	74	-23.6	V	Peak

UNII Band 1_ 802.11a_Lowest Channel (5180MHz)

UNII Band 1_802.11a_Highest Channel (5240MHz)

Frequency	Reading	Correct	Result	Limit	Margin	Polar	Detector
MHz	dBuV/m	dB/m	dBuV/m	dBuV/m	dB	H/V	Peak
5350	59.95	-13.26	46.69	74	-27.31	Н	Peak
5460	52.75	-12.88	39.87	74	-34.13	Н	Peak
5350	54.53	-13.26	41.27	74	-32.73	V	Peak
5460	55.35	-12.88	42.47	74	-31.53	V	Peak

UNII Band 1_802.11n_40MHz_Lowest Channel (5190MHz)

Frequency	Reading	Correct	Result	Limit	Margin	Polar	Detector
MHz	dBuV/m	dB/m	dBuV/m	dBuV/m	dB	H/V	Peak
5150	67.02	-13.96	53.06	74	-20.94	Н	Peak
5150	63.82	-13.96	49.86	74	-24.14	V	Peak

UNII Band 1_802.11n_40MHz_Highest Channel (5230MHz)

		-	-	-			
Frequency	Reading	Correct	Result	Limit	Margin	Polar	Detector
MHz	dBuV/m	dB/m	dBuV/m	dBuV/m	dB	H/V	Peak
5350	58.09	-13.26	44.83	74	-29.17	Н	Peak
5460	50.08	-12.88	37.2	74	-36.8	Н	Peak
5350	54.52	-13.26	41.26	74	-32.74	V	Peak
5460	55.47	-12.88	42.59	74	-31.41	V	Peak

Note: If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit, so there is no record.

8. Maximum Conducted Output Power

8.1 Standard and Limit

According to 15.407(a): (1) For the band 5.15–5.25 GHz.

For an outdoor or indoor access point operating in the band 5.15–5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band.

For client devices in the 5.15–5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band.

(2) For the 5.25–5.35 GHz and 5.47–5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(3) For the band 5.725–5.895 GHz: the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500–kHz band.

8.2 Test Procedure

A spectrum analyzer or similar device shall be used to observe a sample of the modulated transmitter's radio frequency power output.

1) A measurement instrument with an integrated channel bandwidth function may be used to

automate the test process.

2) Set center of frequency = operating frequency.

3) Connect the EUT to the RF input of the spectrum analyzer via a low loss RF cable

4) Set the RBW = 1MHz, VBW = 3MHz, Detector = RMS, Sweep = Auto.

- 5) Set the SPAN to 40MHz/80MHz/160MHz for 20MHz/40MHz/80MHz emission bandwidth mode.
- 6) Measure the highest amplitude appearing on spectral display and mark the value.
- 7) Repeat the above procedures until all frequency measured was complete.

Test Setup Block Diagram

8.3 Test Data and Results

Please refer to the appendix for details.

9. Occupied Bandwidth

9.1 Standard and Limit

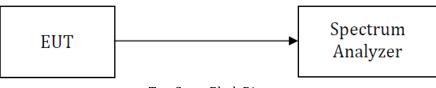
According to 15.407(a), Within the 5.250–5.350 GHz and 5.470–5.725 GHz bands the 26 dB bandwidth shall be tested.

According to 15.407(e), Within the 5.725–5.850 GHz and 5.850–5.895 GHz bands, the minimum 6 dB bandwidth of U–NII devices shall be at least 500 kHz.

9.2 Test Procedure

According to the ANSI 63.10-2013, section 6.9, the emission bandwidth test method as follows.

- 1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.
- 2) Set the spectrum analyzer to any one measured frequency within its operating range.
- 3) 6dB: Set RBW = 100kHz, VBW ≥ [3 × RBW], Sweep = Auto.


26dB: Set RBW to $1\% \sim 5\%$ of bandwidth, VBW = RBW, Sweep = Auto.

4) Set a reference level on the measuring instrument equal to the highest peak value.

5) Measure the frequency difference of two frequencies that were attenuated 6dB or 26dB from the reference

level. Record the frequency difference as the emission bandwidth.

6) Repeat the above procedures until all frequencies measured were complete.

Test Setup Block Diagram

9.3 Test Data and Results

Please refer to the appendix for details.

10. Maximum Power Spectral Density

10.1 Standard and Limit

According to 15.407(a):

(1) For the band 5.15–5.25 GHz.

For an outdoor or indoor access point operating in the band 5.15–5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band.

For client devices in the 5.15–5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band.

(2) For the 5.25–5.35 GHz and 5.47–5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(3) For the band 5.725–5.895 GHz: the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500–kHz band.

10.2 Test Procedure

1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.

2) Set the spectrum analyzer to any one measured frequency within its operating range.

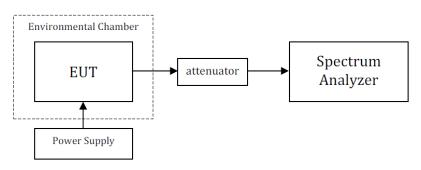
3) Set RBW = 1MHz, VBW = 3MHz, Sweep = Auto, Detector = RMS.

4) Measure the highest amplitude appearing on spectral display and mark the value.

5) Repeat above procedures until all frequencies measured were complete.

10.3 Test Data and Results

Please refer to the appendix for details.


11. Frequency Stability

11.1 Standard and Limit

According to 15.407(g), Manufactures of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

11.2 Test Procedure

Test is conducting under the description of ANSI C63.10-2013 section 6.8.

11.3 Test Data and Results

Mode	Frequency	Temperature	Voltage	Measured Frequency	Limit	Verdict
	(MHz)	(°C)	(VAC)	(MHz)	(MHz)	vertuiet
			110	5179.951	5150 to 5250	Pass
		20	119	5179.952	5150 to 5250	Pass
			134	5179.946	5150 to 5250	Pass
		-30	119	5179.963	5150 to 5250	Pass
		-20	119	5179.951	5150 to 5250	Pass
	5180	-10	119	5179.942	5150 to 5250	Pass
		0	119	5179.955	5150 to 5250	Pass
		10	119	5179.967	5150 to 5250	Pass
		30	119	5179.973	5150 to 5250	Pass
		40	119	5179.974	5150 to 5250	Pass
		50	119	5179.958	5150 to 5250	Pass
			110	5199.911	5150 to 5250	Pass
		20	119	5199.913	5150 to 5250	Pass
			134	5199.917	5150 to 5250	Pass
		-30	119	5199.911	5150 to 5250	Pass
		-20	119	5199.918	5150 to 5250	Pass
Carrier Wave	5200	-10	119	5199.914	5150 to 5250	Pass
		0	119	5199.916	5150 to 5250	Pass
		10	119	5199.928	5150 to 5250	Pass
		30	119	5199.912	5150 to 5250	Pass
		40	119	5199.929	5150 to 5250	Pass
		50	119	5199.925	5150 to 5250	Pass
			110	5239.923	5150 to 5250	Pass
		20	118	5239.944	5150 to 5250	Pass
			118	5239.926	5150 to 5250	Pass
		-30	118	5239.94	5150 to 5250	Pass
		-20	119	5239.936	5150 to 5250	Pass
	5240	-10	119	5239.968	5150 to 5250	Pass
		0	119	5239.958	5150 to 5250	Pass
		10	119	5239.946	5150 to 5250	Pass
		30	119	5239.947	5150 to 5250	Pass
		40	119	5239.942	5150 to 5250	Pass
		50	119	5239.947	5150 to 5250	Pass

***** END OF REPORT *****