

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

FCC PART 15 SUBPART C TEST REPORT

FCC PART 15.247

Report Reference No. CTA24121101602

FCC ID.: : 2AXCX-GT60

Compiled by

(position+printed name+signature) .: File administrators Xudong Zhang

Supervised by

(position+printed name+signature) .: Project Engineer Zoey Cao

Approved by

(position+printed name+signature) .: RF Manager Eric Wang

Date of issue: Dec. 23, 2024

Testing Laboratory Name.....: Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community,

Fuhai Street, Bao'an District, Shenzhen, China

Applicant's name Shenzhen Foxwell Technology Co., Ltd.

5/F, Plant C, Baocheng 71st Zone, Xin'an Street, Baoan District,

Shenzhen, China 518106

Test specification:

Standard..... FCC Part 15.247

TRF Originator Shenzhen CTA Testing Technology Co., Ltd.

Shenzhen CTA Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTA Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTA Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

CTATESTIN'

Test item description.....: Android Tablet Scanners

Trade Mark.....: N/A

Manufacturer: Shenzhen Foxwell Technology Co., Ltd.

Model/Type reference: GT60

Listed Models: i70, GT60Plus

Modulation Type.....: CCK/DSSS/OFDM

Operation Frequency: From 2412 - 2462MHz

Rating...... DC 3.7V From battery and DC 5.0V From external circuit

Result: PASS

Page 2 of 37 Report No.: CTA24121101602

TEST REPORT

Equipment under Test **Android Tablet Scanners**

Model /Type GT60

Listed Models i70, GT60Plus

Model difference The PCB board, circuit, structure and internal of these models are the

same, Only model number is different for these model.

Shenzhen Foxwell Technology Co., Ltd. **Applicant**

Address 5/F, Plant C, Baocheng 71st Zone, Xin'an Street, Baoan District,

Shenzhen, China 518106

Shenzhen Foxwell Technology Co., Ltd. Manufacturer

Address 5/F, Plant C, Baocheng 71st Zone, Xin'an Street, Baoan District,

	CW CV	CTATESTING	
.JG	Test Result:	PASS	E CT
TESTING			

It is not permitted to copy extracts of these test result without the written permission of the test CTATEST laboratory.

Page 3 of 37 Report No.: CTA24121101602

Contents

		TATESTING	
		TATE	
	1	TEST STANDARDS	4
	<u>2</u>	SUMMARY	<u>5</u>
	2.1	General Remarks	5
	2.2	Product Description	5. 0
	2.3	Equipment Under Test	5
	2.4	Short description of the Equipment under Test (EUT)	5
	2.5	EUT configuration	6
	2.6	EUT operation mode	6
CIL	2.0 2.7		6
	2. <i>1</i> 2.8	Block Diagram of Test Setup	6
	2.6 2.9	Related Submittal(s) / Grant (s) Modifications	TING
	2.9	Modifications	ESTING 6
	<u>3</u>	TEST ENVIRONMENT	7
	_		TES
			CTATES 7
	3.1	Address of the test laboratory	7
	3.2	Test Facility	
	3.3	Environmental conditions	7
	3.4	Test Description	8
	3.5	Statement of the measurement uncertainty	8
	3.6	Equipments Used during the Test	9
	4	TEST CONDITIONS AND RESULTS	10
	THE WALL STATE OF THE STATE OF	TEST CONDITIONS AND RESOLTS	
	4.4	10 Paris October 1 February	10 13 19 20
	4.1	AC Power Conducted Emission	10
	4.2	Radiated Emission	13
	4.3	Maximum Peak Conducted Output Power	19
	4.4	Power Spectral Density	
	4.5	6dB Bandwidth	23
	4.6	Out-of-band Emissions	26
CTATE	4.7	Antenna Requirement	35
TATE			
	<u>5</u>	TEST SETUP PHOTOS OF THE EUT	36
	<u>-</u>	1201 02101 1110100 01 1112 201	
		CIA	
	<u>6</u>	EXTERNAL AND INTERNAL PHOTOS OF	THE EUT 37
		-147	GTA TESTING
		CI	

Page 4 of 37 Report No.: CTA24121101602

1 TEST STANDARDS

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices KDB558074 D01 v05r02: Guidance for Compliance Measurements on Digital Transmission Systems CTATE (DTS), Frequency Hopping Spread Spectrum System(HFSS), and Hybrid System Devices Operating Under §15.247 of The FCC rules. CTATESTING

Page 5 of 37 Report No.: CTA24121101602

SUMMARY

2.1 General Remarks

2.1 General Remarks		
Date of receipt of test sample		Dec. 11, 2024
Testing commenced on		Dec. 11, 2024
Testing concluded on	:	Dec. 23, 2024

2.2 Product Description

Product Name:	Android Tablet Scanners
Model/Type reference:	GT60
Power supply:	DC 3.7V From battery and DC 5.0V From external circuit
Adapter information:	Model: PSY0502000 Input: AC 100-240V 50/60Hz 0.6A Max Output: DC 5.0V 2.0A
Hardware version:	V1.0
Software version:	V1.0
testing sample ID:	CTA241211016-1# (Engineer sample) CTA241211016-2# (Normal sample)
WIFI:	
Supported type:	802.11b/802.11g/802.11n(H20)/ 802.11n(H40)
Modulation:	802.11b: DSSS 802.11g/802.11n(H20)/ 802.11n(H40): OFDM
Operation frequency:	802.11b/802.11g/802.11n(H20): 2412MHz~2462MHz 802.11n(H40): 2422MHz~2452MHz
Channel number:	802.11b/802.11g/802.11n(H20): 11 802.11n(H40):7
Channel separation:	5MHz
Antenna type:	PIFA antenna
Antenna gain:	0.85 dBi
	er Test
2.3 Equipment Und	er Test
Power supply system	1 utilised

2.3 Equipment Under Test

Power supply system utilised

Power supply voltage	:	0	230V / 50 Hz	0	120V / 60Hz
ESTIL		0	12 V DC	0	24 V DC
TAIL		•	Other (specified in blank below)		

DC 3.7V From battery and DC 5.0V From external circuit

Short description of the Equipment under Test (EUT)

This is an Android Tablet Scanners.

For more details, refer to the user's manual of the EUT.

Page 6 of 37 Report No.: CTA24121101602

EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

supplied by the manufacturer

 supplied by the lab 	TEST	
0	CKA.	TESTING

2.6 EUT operation mode

The application provider specific test software(AT command) to control sample in continuous TX and RX (Duty Cycle >98%) for testing meet KDB558074 test requirement.

IEEE 802.11b/g/n: Thirteen channels are provided to the EUT.

Channel	Frequency(MHz)	Channel	Frequency(MHz)
1	2412	8	2447
2	2417	9	2452
3	2422	10	2457
4	2427	11	2462
5	2432	CTA	NG
6	2437		STILL
7	2442		TATES

Block Diagram of Test Setup

Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.9 **Modifications**

CTA TESTING No modifications were implemented to meet testing criteria.

Page 7 of 37 Report No.: CTA24121101602

3 TEST ENVIRONMENT

3.1 Address of the test laboratory

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory
Accreditation to perform electromagnetic emission measurement

ISED#: 27890 **CAB identifier: CN0127**

Shenzhen CTA Testing Technology Co., Ltd. has been listed by Innovation, Science and Economic Development Canada to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:
Radiated Emission:

Temperature:	25 ° C
Humidity:	45 %
Atmospheric pressure:	950-1050mbar

Conducted testing:

Temperature:	25 ° C
- CTA	
Humidity:	44 %
Atmospheric pressure:	950-1050mbar

AC Power Conducted Emission

Temperature:	24 ° C
Humidity:	44 %
Atazarah aria Silahara	050 4050mh - r
Atmospheric pressure:	950-1050mbar
CTA.	ESTIN
	CEVIN U.

Report No.: CTA24121101602 Page 8 of 37

3.4 Test Description

	FCC PART 15.247		
	FCC Part 15.207	AC Power Conducted Emission	PASS
	FCC Part 15.247(a)(2)	6dB Bandwidth	PASS
	FCC Part 15.247(d)	Spurious RF Conducted Emission	PASS
	FCC Part 15.247(b)	Maximum Peak Conducted Output Power	PASS
	FCC Part 15.247(e)	Power Spectral Density	PASS
	FCC Part 15.109/ 15.205/ 15.209	Radiated Emissions	PASS
CIL	FCC Part 15.247(d)	Band Edge	PASS
	FCC Part 15.203/15.247 (b)	Antenna Requirement	PASS

Data Rate Used:

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode	Data Rate	Channel
Maximum Peak Conducted Output Power	11b/DSSS	1 Mbps	1/6/11
Power Spectral Density 6dB Bandwidth	11g/OFDM	6 Mbps	1/6/11
Spurious RF conducted emission Radiated Emission 9KHz~1GHz&	11n(20MHz)/OFDM	6.5Mbps	1/6/11
Radiated Emission 1GHz~10th Harmonic	11n(40MHz)/OFDM	13.5Mbps	3/6/9
(Car	11b/DSSS	1 Mbps	1/11
Band Edge	11g/OFDM	6 Mbps	1/11
	11n(20MHz)/OFDM	6.5Mbps	1/11
	11n(40MHz)/OFDM	13.5Mbps	3/9

3.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd.:

Test	Range	Measurement Uncertainty	Notes		
Radiated Emission	9KHz~30MHz	3.02 dB	(1)		
Radiated Emission	30~1000MHz	4.06 dB	(1)		
Radiated Emission	1~18GHz	5.14 dB	(1)		
Radiated Emission	18-40GHz	5.38 dB	(1)		
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)		
Output Peak power	k power 30MHz~18GHz				
Power spectral density	1	0.57 dB	(1)		
Spectrum bandwidth		1.1%	(1)		

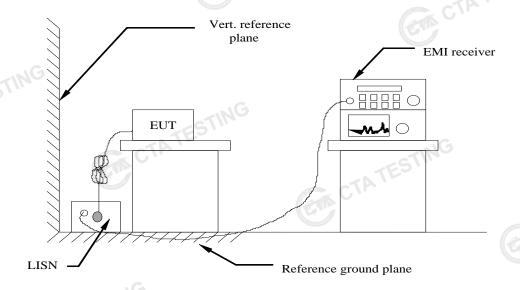
Page 9 of 37 Report No.: CTA24121101602

Radiated spurious emission (30MHz-1GHz)	30~1000MHz	4.10 dB	(1)
Radiated spurious emission (1GHz-18GHz)	1~18GHz	4.32 dB	(1)
Radiated spurious emission (18GHz-40GHz)	18-40GHz	5.54 dB	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% CTATE! confidence level using a coverage factor of k=2.

3.6 Equipments Used during the Test

CTATE	Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date
CALL	LISN	R&S	ENV216	CTA-308	2024/08/03	2025/08/02
1	LISN	R&S	ENV216	CTA-314	2024/08/03	2025/08/02
	EMI Test Receiver	R&S	ESPI	CTA-307	2024/08/03	2025/08/02
	EMI Test Receiver	R&S	ESCI	CTA-306	2024/08/03	2025/08/02
	Spectrum Analyzer	Agilent	N9020A	CTA-301	2024/08/03	2025/08/02
	Spectrum Analyzer	R&S	FSU	CTA-337	2024/08/03	2025/08/02
'G	Vector Signal generator	Agilent	N5182A	CTA-305	2024/08/03	2025/08/02
	Analog Signal Generator	R&S	SML03	CTA-304	2024/08/03	2025/08/02
	WIDEBAND RADIO COMMUNICATION TESTER	CMW500	R&S	CTA-302	2024/08/03	2025/08/02
	Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2024/08/03	2025/08/02
	Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2023/10/17	2026/10/16
	Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2023/10/13	2026/10/12
	Loop Antenna	Zhinan	ZN30900C	CTA-311	2023/10/17	2026/10/16
CTATE	Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2023/10/17	2026/10/16
	Amplifier	Schwarzbeck	BBV 9745	CTA-312	2024/08/03	2025/08/02
1	Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2024/08/03	2025/08/02
	Directional coupler	NARDA	4226-10	CTA-303	2024/08/03	2025/08/02
	High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2024/08/03	2025/08/02
	High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2024/08/03	2025/08/02
G	Automated filter bank	Tonscend	JS0806-F	CTA-404	2024/08/03	2025/08/02
	Power Sensor	Agilent	U2021XA	CTA-405	2024/08/03	2025/08/02
	Amplifier	Schwarzbeck	BBV9719	CTA-406	2024/08/03	2025/08/02
•	· C / I'					


Test Equipment	Manufacturer	Model No.	Version number	Calibration Date	Calibration Due Date
EMI Test Software	I Test Software Tonscend		5.0.0.2	N/A	N/A
EMI Test Software	Tonscend	TS®JS32-CE	5.0.0.1	N/A	N/A
RF Test Software	RF Test Software Tonscend		3.1.65	N/A	N/A
RF Test Software	Tonscend	TS®JS1120	3.1.46	N/A	N/A

Report No.: CTA24121101602 Page 10 of 37

TEST CONDITIONS AND RESULTS

4.1 AC Power Conducted Emission

TEST CONFIGURATION

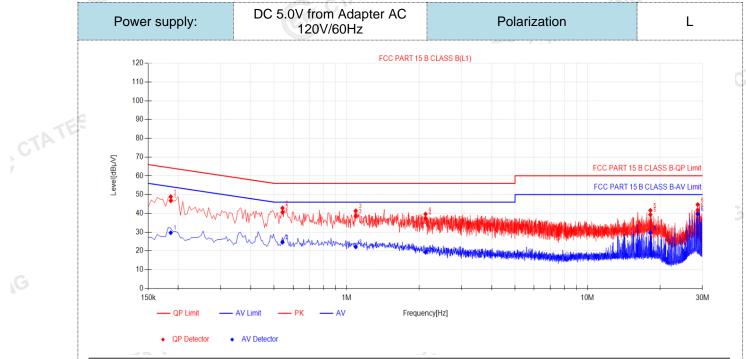
TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2013
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013
- 4 The EUT received power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load: the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

Fraguency range (MHz)	Limit (dBuV)				
Frequency range (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			
* Decreases with the logarithm of the fr	equency.				
TEST RESULTS	CIA	TATESTING			

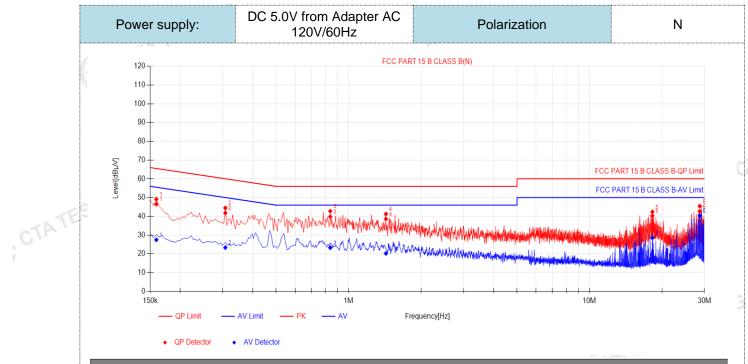

TEST RESULTS

Report No.: CTA24121101602 Page 11 of 37

Remark:

1. All modes of 802.11b/g/n were tested at Low, Middle, and High channel; only the worst result of 802.11b CH11 was reported as below:

2. Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:


Fina	l Data Lis	t									
NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB μV]	QP Value [dΒμV]	QP Limit [dBμV]	QP Margin [dB]	AV Reading [dBμV]	AV Value [dBμV]	AV Limit [dBμV]	AV Margin [dB]	Verdict
1	0.186	10.03	36.70	46.73	64.21	17.48	19.63	29.66	54.21	24.55	PASS
2	0.5415	10.03	30.61	40.64	56.00	15.36	14.63	24.66	46.00	21.34	PASS
3	1.0905	9.91	28.67	38.58	56.00	17.42	12.22	22.13	46.00	23.87	PASS
4	2.1255	9.97	27.48	37.45	56.00	18.55	9.32	19.29	46.00	26.71	PASS
5	18.2445	10.38	28.93	39.31	60.00	20.69	19.24	29.62	50.00	20.38	PASS
6	28.6845	10.59	31.19	41.78	60.00	18.22	29.14	39.73	50.00	10.27	PASS

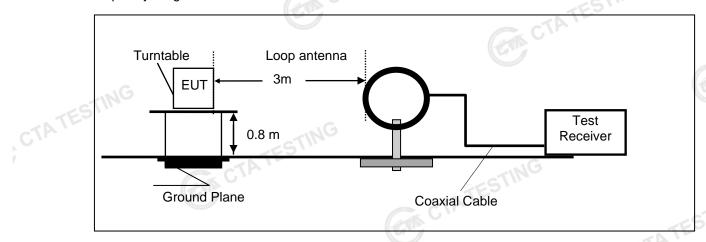
Note:1).QP Value ($dB\mu V$)= QP Reading ($dB\mu V$)+ Factor (dB)

- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
 - 4). $AVMargin(dB) = AV Limit (dB\mu V) AV Value (dB\mu V)$

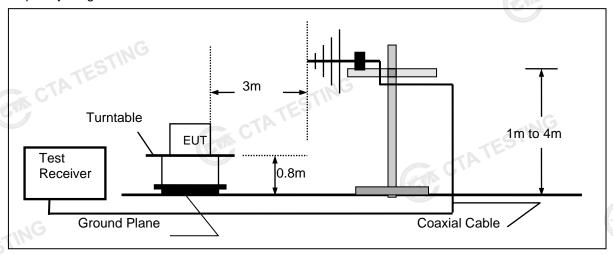
CTATESTING

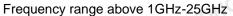
Page 12 of 37 Report No.: CTA24121101602

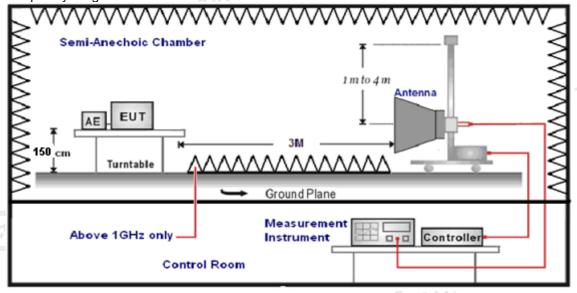
	Final	l Data Lis	st										
	NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB μV]	QP Value [dBµV]	QP Limit [dΒμV]	QP Margin [dB]	AV Reading [dBμV]	ΑV Value [dBμV]	AV Limit [dBμV]	AV Margin [dB]	Verdict	
	1	0.159	10.03	36.47	46.50	65.52	19.02	17.49	27.52	55.52	28.00	PASS	
	2	0.3075	9.86	31.97	41.83	60.04	18.21	13.50	23.36	50.04	26.68	PASS	
4	3	0.8385	10.14	29.66	39.80	56.00	16.20	13.16	23.30	46.00	22.70	PASS	
	4	1.428	10.14	28.48	38.62	56.00	17.38	10.11	20.25	46.00	25.75	PASS	
	5	18.2445	10.51	29.79	40.30	60.00	19.70	18.08	28.59	50.00	21.41	PASS	
	6	28.6845	10.81	31.85	42.66	60.00	17.34	29.51	40.32	50.00	9.68	PASS	
2	2). Fac 3). QP).QP Value tor (dB)=ir Margin(dB . AVMargir	nsertion) = QP L	loss of LI imit (dBµ	SN (dB) V) - QP	+ Cable Value (d	loss (dB BµV)					(FIR)	CTATE


- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
 - 4). AVMargin(dB) = AV Limit (dBμV) AV Value (dBμV) CTATESTING

Report No.: CTA24121101602 Page 13 of 37


4.2 Radiated Emission


TEST CONFIGURATION


Frequency range 9 KHz - 30MHz

Frequency range 30MHz - 1000MHz

Report No.: CTA24121101602 Page 14 of 37

TEST PROCEDURE

- The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz -1GHz;the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz – 25GHz.
- Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
- And also, each emission was to be maximized by changing the polarization of receiving 3. antenna both horizontal and vertical.
- Repeat above procedures until all frequency measurements have been completed.
- 5. Radiated emission test frequency band from 9KHz to 25GHz.
- The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance	(- C V)
9KHz-30MHz	Active Loop Antenna	3	AND THE PROPERTY OF
30MHz-1GHz	Ultra-Broadband Antenna	3	
1GHz-18GHz	Double Ridged Horn Antenna	3	
18GHz-25GHz	Horn Anternna	1	

Setting test receiver/spectrum as following table states:

9	Test Frequency range	Test Receiver/Spectrum Setting	Detector
	9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
	150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
	30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
	1GHz-40GHz	Peak Value: RBW=1MHz/VBW=3MHz, Sweep time=Auto Average Value: RBW=1MHz/VBW=10Hz, Sweep time=Auto	Peak

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

FS = RA + AF + CL - AG	CTATESTING
Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

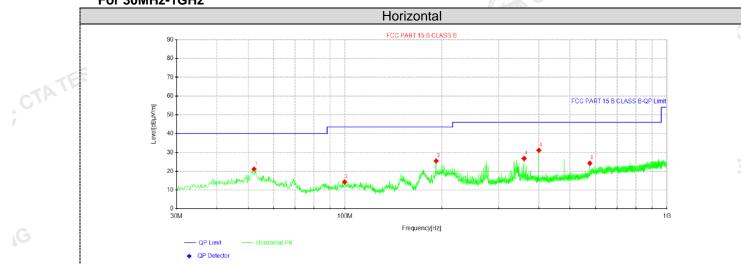
Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

Frequency (MHz)	Distance	Radiated (dBµV/m)	Radiated (µV/m)	
	(Meters)			
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)	
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)	
1.705-30	3	20log(30)+ 40log(30/3)	30	
30-88	3	40.0	100	
88-216	3	43.5	150	
216-960	3	46.0	200	
Above 960	3	54.0	500	

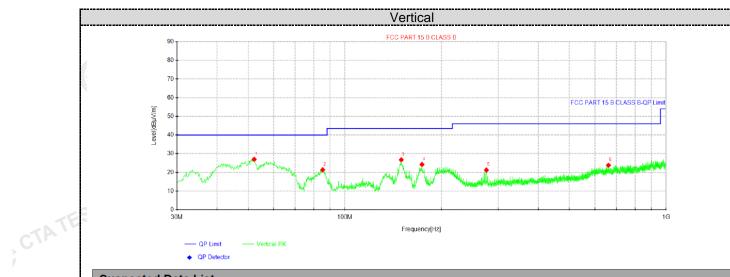

Page 15 of 37 Report No.: CTA24121101602

TEST RESULTS

Remark:

- This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X
- 2. All three channels (lowest/middle/highest) of each mode were measured below 1GHz and recorded worst case at 802.11b low channel.
- Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.

For 30MHz-1GHz



Suspe	ected Data	List								
NO.	Freq. Reading Level Factor Limit Margin Height Angle								Dolority	
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity	
1	52.1888	32.58	21.26	-11.32	40.00	18.74	100	207	Horizontal	
2	99.7188	27.26	14.27	-12.99	43.50	29.23	100	360	Horizontal	
3	191.99	39.05	25.65	-13.40	43.50	17.85	100	91	Horizontal	
4	360.042	37.51	26.96	-10.55	46.00	19.04	100	3	Horizontal	
5	400.055	41.39	31.30	-10.09	46.00	14.70	100	81	Horizontal	TE
6	575.988	31.68	24.42	-7.26	46.00	21.58	100	174	Horizontal	-14 .
	,	βμV/m)= Re		-						
2).	Factor(dE	3/m)=Anteni	na Factor (dB/m) + (Cable loss (d	dB) - Pre Ar	nplifier ga	in (dB)		

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

CTATES

Page 16 of 37 Report No.: CTA24121101602

Suspe	Suspected Data List												
NO	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Dolovity				
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity				
1	52.1888	38.33	27.01	-11.32	40.00	12.99	100	221	Vertical				
2	85.29	37.16	21.38	-15.78	40.00	18.62	100	152	Vertical				
3	149.795	42.14	26.74	-15.40	43.50	16.76	100	221	Vertical				
4	173.802	39.13	24.26	-14.87	43.50	19.24	100	221	Vertical				
5	275.652	32.75	21.25	-11.50	46.00	24.75	100	127	Vertical				
6	661.227	29.30	23.82	-5.48	46.00	22.18	100	0	Vertical				

CTA TES

Note:1).Level $(dB\mu V/m) = Reading (dB\mu V) + Factor (dB/m)$

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

Page 17 of 37 Report No.: CTA24121101602

For 1GHz to 25GHz

Note: 802.11b/802.11g/802.11n (H20)/802.11n (H40)Mode all have been tested, only worse case 802.11b mode is reported

(above 1GHz)

Frequency(MHz):			2412		Polarity:		HORIZONTAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4824.00	61.70	PK	74	12.30	66.06	32.4	5.11	41.87	-4.36
4824.00	44.78	ΑV	54	9.22	49.14	32.4	5.11	41.87	-4.36
7236.00	53.50	PK	74	20.50	54.13	36.58	6.43	43.64	-0.63
7236.00	42.99	AV	54	11.01	43.62	36.58	6.43	43.64	-0.63

	TING								,	May 22 west with
Ī	Freque	ncy(MHz)):	2412		Polarity:		VERTICAL		
	Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
	4824.00	59.38	PK	74	14.62	63.74	32.4	5.11	41.87	-4.36
	4824.00	43.24	AV	54	10.76	47.60	32.4	5.11	41.87	-4.36
	7236.00	51.89	PK	74	22.11	52.52	36.58	6.43	43.64	-0.63
Ī	7236.00	41.43	AV	54	12.57	42.06	36.58	6.43	43.64	-0.63

Freque	Frequency(MHz):		2437		Polarity:		HORIZONTAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4874.00	61.18	PK	74	12.82	65.13	32.56	5.34	41.85	-3.95
4874.00	44.24	AV	54	9.76	48.19	32.56	5.34	41.85	-3.95
7311.00	52.87	PK	74	21.13	53.23	36.54	6.81	43.71	-0.36
7311.00	42.46	AV	54	11.54	42.82	36.54	6.81	43.71	-0.36

Freque	Frequency(MHz):		2437		Polarity:		VERTICAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4874.00	59.18	PK	74	14.82	63.13	32.56	5.34	41.85	-3.95
4874.00	42.24	AV	54	11.76	46.19	32.56	5.34	41.85	-3.95
7311.00	51.30	PK	74	22.70	51.66	36.54	6.81	43.71	-0.36
7311.00	40.48	AV	54	13.52	40.84	36.54	6.81	43.71	-0.36

		ATA				JAG				
Freque	Frequency(MHz):			2462		Polarity:		HORIZONTAL		
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4924.00	60.67	PK	74	13.33	64.13	32.73	5.64	41.83	-3.46	
4924.00	43.54	AV	54	10.46	47.00	32.73	5.64	41.83	-3.46	
7386.00	52.26	PK	74	21.74	52.32	36.5	7.23	43.79	-0.06	
7386.00	41.86	PK	54	12.14	41.92	36.5	7.23	43.79	-0.06	
•	671	110			•					

Freque	ncy(MHz)	:	2462		Polarity:		VERTICAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4924.00	58.61	PK	74	15.39	62.07	32.73	5.64	41.83	-3.46
4924.00	41.93	ΑV	54	12.07	45.39	32.73	5.64	41.83	-3.46
7386.00	50.33	PK	74	23.67	50.39	36.5	7.23	43.79	-0.06
7386.00	40.07	PK	54	13.93	40.13	36.5	7.23	43.79	-0.06

Report No.: CTA24121101602 Page 18 of 37

- 1) Emission level (dBuV/m) = Meter Reading+ antenna Factor+ cable loss- preamp factor.
- 2) Margin value = Limits-Emission level.
- 3) -- Mean the PK detector measured value is below average limit.
- 4) The other emission levels were very low against the limit.
- 5) RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV value.

Results of Band Edges Test (Radiated)

Note: 802.11b/802.11g/802.11n (H20) /802.11n (H40) Mode all have been tested, only worse case 802.11b mode is reported

Freque	Frequency(MHz):		2412		Polarity:		HORIZONTAL		
Frequency (MHz)			Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	61.79	PK	74	12.21	72.21	27.42	4.31	42.15	-10.42
2390.00	42.81	AV	54	11.19	53.23	27.42	4.31	42.15	-10.42
Freque	Frequency(MHz):		24	12	Pola	arity:		VERTICAL	
Frequency (MHz)	Emis Lev (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	59.62	PK	74	14.38	70.04	27.42	4.31	42.15	-10.42
2390.00	40.90	AV	54	13.10	51.32	27.42	4.31	42.15	-10.42
Freque	ncy(MHz)	:	2462		Pola	arity:	Н	IORIZONTA	\L
Frequency (MHz)	Emis Lev (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	61.00	PK	74	13.00	71.11	27.7	4.47	42.28	-10.11
2483.50	42.24	AV	54	11.76	52.35	27.7	4.47	42.28	-10.11
Freque	Frequency(MHz):		24	62	Pola	arity:		VERTICAL	
Frequency	Emis Lev		Limit (dBuV/m)	Margin (dB)	Raw Value	Antenna Factor	Cable Factor	Pre- amplifier	Correction
(MHz)	(dBu	V/m)	(42417111)	(-)	(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)
(MHz) 2483.50	(dBu ² 59.16	V/m) PK	74	14.84	(dBuV) 69.27	(dB/m) 27.7	(dB) 4.47	42.28	-10.11

Note:

- 1) Emission level (dBuV/m) = Meter Reading+ antenna Factor+ cable loss- preamp factor.
- 2) Margin value = Limits-Emission level.
- 3) -- Mean the PK detector measured value is below average limit.
- 4) The other emission levels were very low against the limit.
- 5) RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV value.

Page 19 of 37 Report No.: CTA24121101602

Maximum Peak Conducted Output Power

<u>Limit</u>

The Maximum Peak Output Power Measurement is 30dBm.

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power sensor.

Test Configuration

Test Results

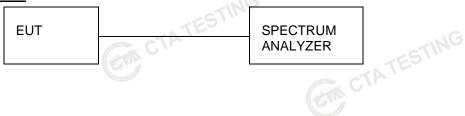
Test Results	(N)	CTATESTING					
Туре	Channel	Output power PK (dBm)	Limit (dBm)	Result			
	01	14.95					
802.11b	06	14.04	30.00	Pass			
OTATES.	11	14.48					
EW.	01	13.71					
802.11g	06	13.30	30.00	Pass			
	11	13.09	CTATES				
	01	13.65	0				
802.11n(HT20)	06	13.15	30.00	Pass			
TING	11	13.06		Townson or the same			
5,	03	12.94					
802.11n(HT40)	06	12.55	30.00	Pass			
C	09	13.75	G				

Note:

- Measured output power at difference data rate for each mode and recorded worst case for each mode. 1)
- 2) Test results including cable loss.
- Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20; 3) 13.5Mbps at IEEE 802.11n HT40;

Page 20 of 37 Report No.: CTA24121101602

Power Spectral Density

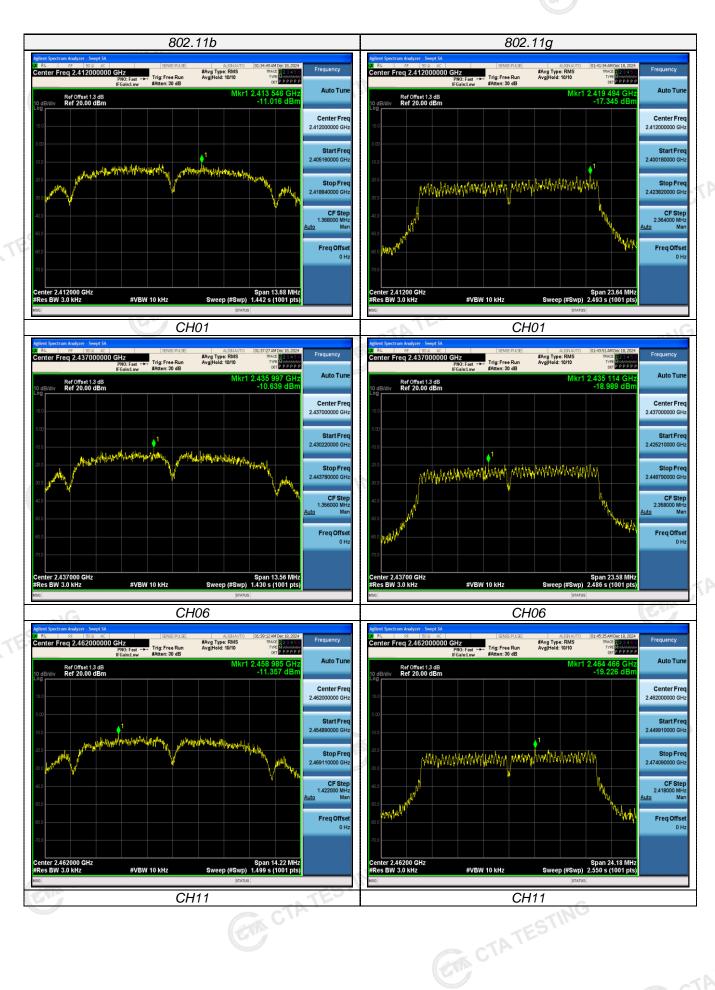

Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Test Procedure

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- Set the RBW ≥ 3 kHz. 2.
- Set the VBW ≥ 3× RBW.
- CTA TESTING Set the span to 1.5 times the DTS channel bandwidth.
- Detector = peak.
- Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum power level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 11. The resulting peak PSD level must be 8dBm.

Test Configuration


Test Results


Туре	Channel	Power Spectral Density (dBm/3KHz)	Limit (dBm/3KHz)	Result
511	01	-11.02		
802.11b	06	-10.64	8.00	Pass
	11,45	-11.36		
	01	-17.35	ING	
802.11g	06	-18.99	8.00	Pass
	11	-19.23		-1G
	01	-18.24		ESTIN
802.11n(HT20)	06	-17.61	8.00	Pass
	11	-18.36	All and the second	CAL
	03	-20.84		
802.11n(HT40)	06	-21.25	8.00	Pass
	09	-21.34		

Note:

- Measured peak power spectrum density at difference data rate for each mode and recorded worst case for each mode.
- Test results including cable loss;
- Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20; 13.5Mbps at IEEE 802.11n HT40;

Please refer to following plots;

Page 23 of 37 Report No.: CTA24121101602

4.5 6dB Bandwidth

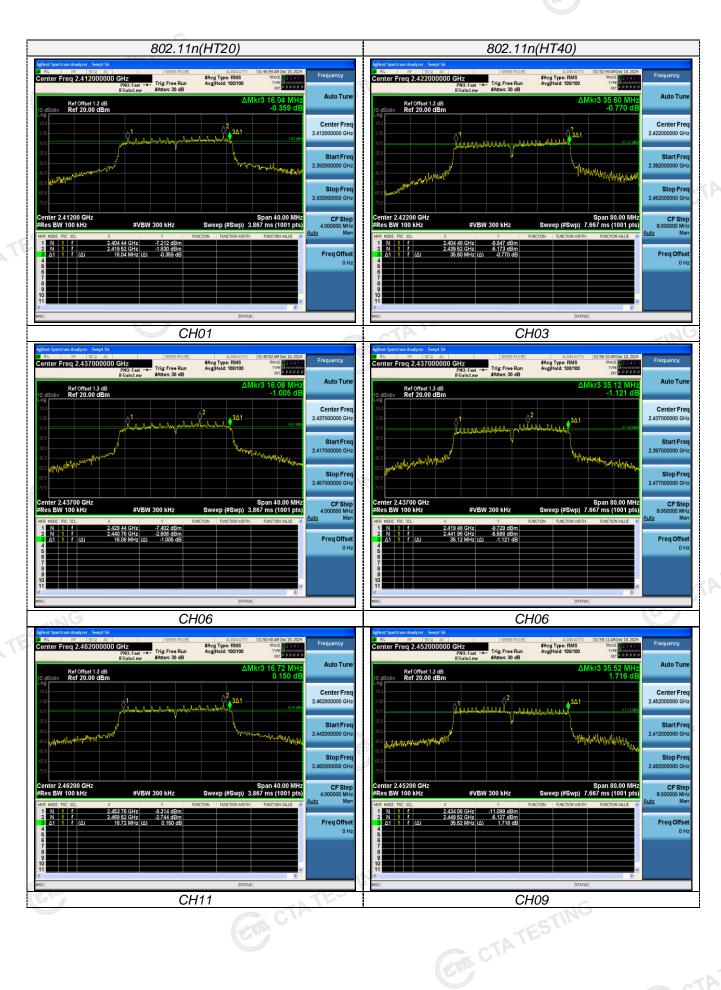
<u>Limit</u>

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

Test Configuration


Test Results

Test Results		CTATES!		CATESTING
Туре	Channel	6dB Bandwidth (MHz)	Limit (KHz)	Result
	01	9.120	72) us4 miles	
802.11b	06	9.040	≥500	Pass
GTIN	11	9.480]	
TES	01	15.760		
802.11g	06	15.720	≥500	Pass
GVI)	11	16.120		
	01	16.040	GTING	
802.11n(HT20)	06	16.080	≥500	Pass
	11	16.720	CAL	
	03	35.600		
802.11n(HT40)	06	35.120	≥500	Pass
ING	09	35.520		

- Measured peak power spectrum density at difference data rate for each mode and recorded worst case for each mode.
- Test results including cable loss:
- CTA TESTING Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20; 13.5Mbps at IEEE 802.11n HT40;

Please refer to following plots;

Report No.: CTA24121101602 Page 26 of 37

Out-of-band Emissions

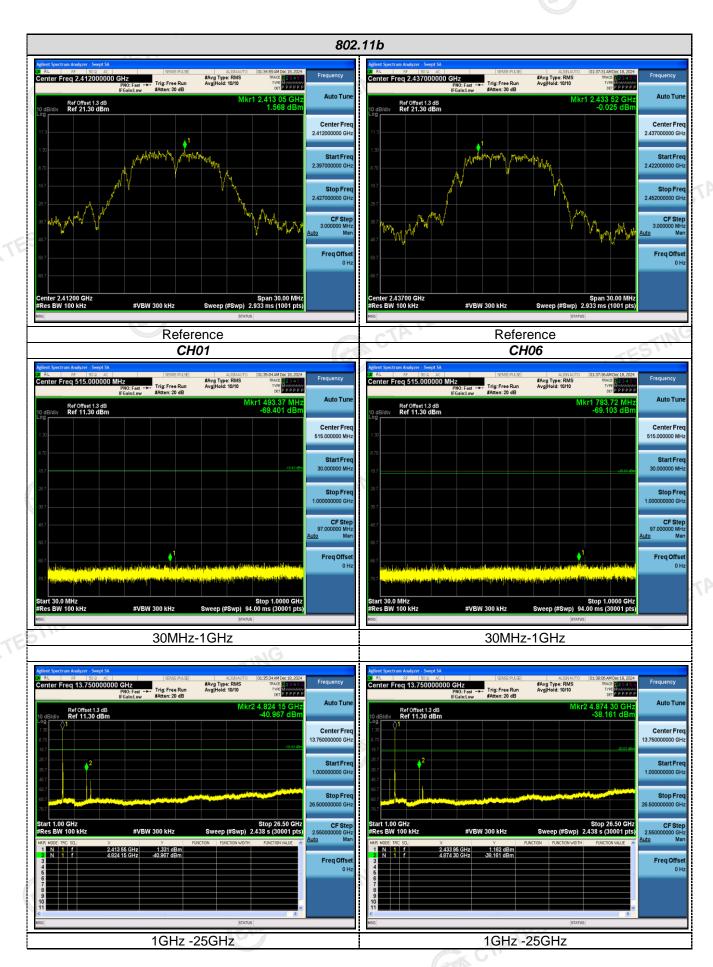
Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF con-ducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

Test Procedure

Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector, and max hold. Measurements utilizing these setting are CTA TESTING made of the in-band reference level, bandedge and out-of-band emissions.

Test Configuration



Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage measurement data. And record the worst data in the report.

Test plot as follows: CTATESTING

Page 27 of 37 Report No.: CTA24121101602

