

FCC PART 15.247

TEST REPORT

For

PO FUNG ELECTRONIC (HK) INTERNATONAL GROUP COMPANY LIMITED

Room 1508, 15/F, Office Tower II, Grand Plaza, 625 Nathan Road, Kowloon, Hong Kong

FCC ID: 2AJGM-NA32UV

Report Type: Original Report		Product Name: Amateur Radio
Report Number:	_2407A60454E-1	RF-01
Report Date:	2025-03-05	
Reviewed By:	Ash Lin	Adr Lin
Approves By:	Miles Chen	
Prepared By:	Unit 102, No. 9	

TABLE OF CONTENTS

REPORT REVISION HISTORY	4
GENERAL INFORMATION	
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT) Objective	
Test Methodology	6
Measurement Uncertainty	
SYSTEM TEST CONFIGURATION	
TEST MODE AND VOLTAGE	
Description of Test Configuration Equipment Modifications	
★EUT Exercise Software	7
DUTY CYCLE Support Equipment List and Details	
External I/O Cable	9
BLOCK DIAGRAM OF TEST SETUP	10
SUMMARY OF TEST RESULTS	13
TEST EQUIPMENT LIST	14
FCC §15.203 - ANTENNA REQUIREMENT	15
Applicable Standard	
ANTENNA CONNECTOR CONSTRUCTION	
FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS	16
APPLICABLE STANDARD	16
EUT SETUP EMI Test Receiver Setup	
Test Procedure	
Result & Margin Calculation	
TEST DATA	
FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS	
Applicable Standard EUT Setup	
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	23
Test Procedure Result &Margin Calculation	
TEST DATA	
FCC §15.247(a) (2) – 6 dB EMISSION BANDWIDTH	52
APPLICABLE STANDARD	
EUT SETUP	
Test Procedure Test Data	-
FCC §15.247(b) (3) - MAXIMUM CONDUCTED OUTPUT POWER	-
Applicable Standard	
EUT Setup	55
Test Procedure Test Data	
FCC §15.247(d) – 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE	
AFFLICADLE STANDARD	

FCC Part 15.247

Page 2 of 65

Bay Area Compliance Laboratories Corp. (Xiamen)	Report No.: 2407A60454E-RF-01
EUT SETUP	
Test Procedure	
TEST DATA	
FCC §15.247(e) - POWER SPECTRAL DENSITY	
APPLICABLE STANDARD	
EUT SETUP	
Test Procedure	
TEST DATA	
EUT PHOTOGRAPHS	
TEST SETUP PHOTOGRAPHS	

Report No.: 2407A60454E-RF-01

REPORT REVISION HISTORY

Number of Revisions	Report No.	Version	Issue Date	Description
0	2407A60454E-RF-01	R1V1	2025-03-05	Initial Release

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Applicant: PO FUNG ELECTRONIC (HK) INTERNATONAL GROUP COMPANY LIM		PO FUNG ELECTRONIC (HK) INTERNATONAL GROUP COMPANY LIMITED
Product Name	Product Name: Amateur Radio	
Tested Model:		UV-32
Series Model:		NA-32UV, BF-32UV, AR-32UV, GT-32UV, TH32UV
Trade Mark:		BAOFENG, pofung, Alervites
Power Supply:		DC 7.4V from battery or DC 5V from adapter or DC 5V from charger
	Model:	A318-050100W-US2
Adapter Information	Input:	AC 100-240V, 50/60Hz, 0.2A
Information	Output:	DC 5.0V, 1.0A, 5.0W
Charger Information Model:		TC-UV32
		DC 5V, 1A
Information	Output:	DC 5V
Maximum Cor Output Power:		0.65 dBm
RF Function:		BLE
Operating Ban	d/Frequency:	2402-2480 MHz
Channel Numb	ber:	40
Channel Separation:		2 MHz
Modulation Type:		GFSK
★Maximum A	ntenna Gain:	0 dBi
EUT Received	Status:	Good
Notes		·

Note:

1. The maximum antenna gain is provided by the applicant.

2. The series model is identify with tested model except for the model name, please refer to declaration letter for more detail.

3. All measurement and test data in this report was gathered from production sample serial number:

2WIM-3 (Assigned by BACL (Xiamen). The EUT was received on 2024-12-27).

Objective

This report is prepared on behalf of *PO FUNG ELECTRONIC (HK) INTERNATONAL GROUP COMPANY LIMITED* in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commission's rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

And KDB 558074 D01 15.247 Meas Guidance v05r02.

All emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Xiamen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Test Facility

The test site used by Bay Area Compliance Laboratories Corp. (Xiamen) to collect test data is located on the Unit 102, No. 902 Meifeng South Road, Binhai West Avenue, Science and Technology Innovation Park, Torch High tech Zone XiaMen.

Bay Area Compliance Laboratories Corp. (Xiamen) Lab is accredited to ISO/IEC 17025 by A2LA (Certificate Number: 7134.01) and the lab has been recognized as the FCC accredited lab under the KDB 974614 D01, the FCC Designation No. : CN1384.

Measurement Uncertainty

Item	U _{lab}	
Conducted Emission	150kHz-30MHz	2.33 dB
	9kHz-30MHz	2.59 dB
	30MHz~200MHz	4.38dB
Radiated Emission	200MHz~1GHz	4.50dB
Radiated Emission	1GHz~6GHz	4.58dB
	6GHz-18GHz	5.43dB
	18GHz~26.5GHz	5.47dB
Occupied Channel Bandwidth	0.053kHz	
Transmitter Conducted Power(Conducted)	0.624 dB	
Conducted Spurious Emission		2.52 dB
Power Spectral Density		0.61dB
Duty Cycle	1%	
Temperature	1°C	
Humidity	5%	
Supply voltages	0.4%	

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

SYSTEM TEST CONFIGURATION

Test Mode and Voltage

The system was configured for testing in a typical mode (as normally used by a typical user).			
Test mode:	Test Mode 1: Transmitting		
Test voltage:	Test Mode 1: AC 120V/60Hz		

Description of Test Configuration

For BLE mode, 40 channels are provided to testing:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	20	2442
1	2404	21	2444
2	2406	22	2446
3	2408	23	2448
4	2410	24	2450
5	2412	25	2452
6	2414	26	2454
7	2416	27	2456
8	2418	28	2458
9	2420	29	2460
10	2422	30	2462
11	2424	31	2464
12	2426	32	2466
13	2428	33	2468
14	2430	34	2470
15	2432	35	2472
16	2434	36	2474
17	2436	37	2476
18	2438	38	2478
19	2440	39	2480

EUT was tested with Channel 0, 19 and 39.

Equipment Modifications

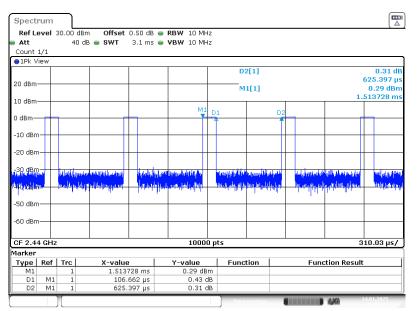
No modification was made to the EUT tested.

★EUT Exercise Software

RF Test Tool: RFTest 0720 boxed.exe

Mode	Power level			
wioue	Low channel Middle channel Hig			
BLE 1Mbps	default	default	default	

Note: the applicant declared the power level.


FCC Part 15.247

Duty cycle

Test Mode:	Transmitting	Test Engineer:	Jason Hu
Test Date:	2025-01-14	Environment:	Temp.: 22.3°C Humi.: 44% Atm :100.1 kPa

Test Modes	Test Frequency (MHz)	Ton (ms)	Ton+off (ms)	Duty cycle (%)	1/T (Hz)	VBW Setting (KHz)
BLE 1Mbps	2440	0.107	0.625	17.12	9346	10.00

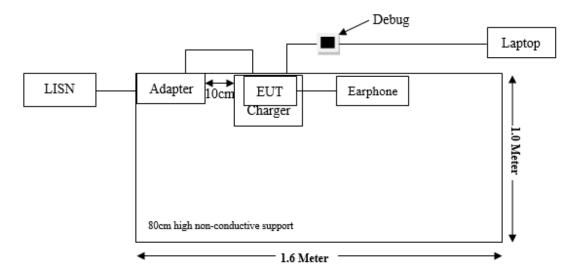
BLE 1Mbps: Middle Channel

ProjectNo.:2407A60454E-RF Tester:Jason Hu

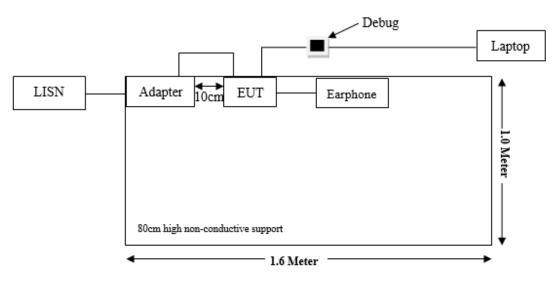
Date: 14.JAN.2025 15:20:32

Support Equipment List and Details

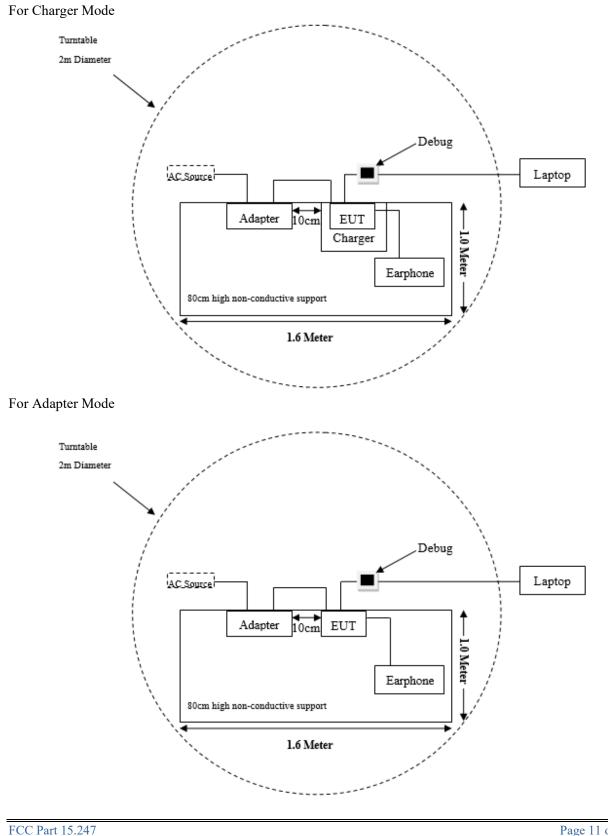
Manufacturer	Description	Model	Serial Number
Lenovo	Laptop	T480	PF1P5K4F
Unknown	Debug	Unknown	Unknown
JianAohai	Adapter	A318-050100W-US2	Unknown
Unknown	Earphone	Unknown	Unknown


External I/O Cable

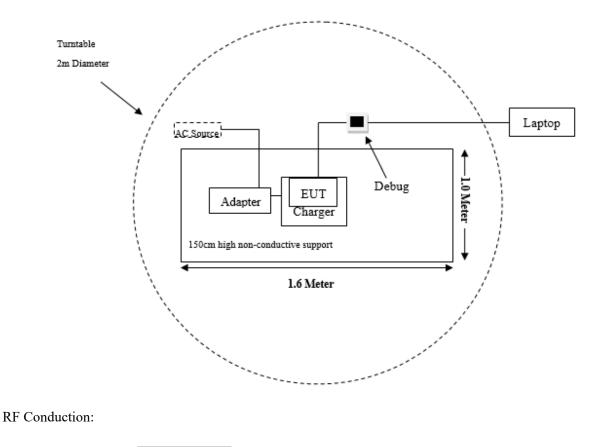
Cable Description	Length (m)	From Port	То
Cable	0.1	EUT	Debug
USB Cable	10	Debug	Laptop
Cable	0.5	EUT/ Charger	Adapter

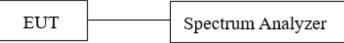

Block Diagram of Test Setup

Conducted Emission:


For Charger Mode

For Adapter Mode




Radiated Emission (below 1GHz)

Page 11 of 65

Radiated Emission (Above 1GHz)

Note: The cable assembly insertion loss of 0.5dB was entered as an offset in the Spectrum Analyzer. (Actual cable loss was unavailable at the time of testing, therefore loss of 0.5dB was assumed as worst case.) This was later verified to be true by laboratory.

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.203	Antenna Requirement	Compliant
§15.207(a)	AC Line Conducted Emissions	Compliant
§15.205, §15.209, §15.247(d)	Spurious Emissions	Compliant
§15.247(a)(2)	6 dB Emission Bandwidth	Compliant
§15.247(b)(3)	Maximum Conducted Output Power	Compliant
§15.247(d)	100 kHz Bandwidth of Frequency Band Edge	Compliant
§15.247(e)	Power Spectral Density	Compliant

TEST EQUIPMENT LIST

Test Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due Date				
	Conducted Emissions								
EMI Test Receiver	Rohde & Schwarz	ESR3	103105	2024/03/29	2025/03/28				
LISN	Rohde & Schwarz	ENV216	100129	2024/03/29	2025/03/28				
Pulse Limiter	Rohde & Schwarz	ESH3-Z2	0357.8810.54	2024/03/29	2025/03/28				
Coaxial Cable	XINHANGWEIBO	XH400T-N-4M	CC001	2024/03/29	2025/03/28				
Test Software	Audix	E3	18621a	N/A	N/A				
	Rad	liated Emissions Belo	w 1GHz						
EMI Test Receiver	Rohde & Schwarz	ESR3	103103	2024/03/29	2025/03/28				
Loop Antenna	Rohde & Schwarz	HFH2-Z2	830749/001	2023/07/27	2026/07/26				
Antenna	Sunol Sciences	JB6	A122022-5	2023/07/27	2026/07/26				
Amplifier	Sonoma	310B	120903	2024/03/29	2025/03/28				
Coaxial Cable	XINHANGWEIBO	XH400T-N-4M	CC002	2024/03/29	2025/03/28				
Coaxial Cable	XINHANGWEIBO	XH460B-N-2M	CC006	2024/03/29	2025/03/28				
Coaxial Cable	XINHANGWEIBO	XH460B-N-12M	CC007	2024/03/29	2025/03/28				
Coaxial Cable	XINHANGWEIBO	HFH2-CC	335.3609	2024/03/29	2025/03/28				
Test Software	Audix	E3	18621a	N/A	N/A				
	Rad	iated Emissions Abov	e 1 GHz						
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102051	2024/03/29	2025/03/28				
Filter Switch Unit	Decentest	DT7220FSU	DS79904	2025/02/21	2026/02/20				
Multiplex Switch Test Control Set	Decentest	DT7220SCU	DS79901	2025/02/21	2026/02/20				
Horn Aantenna	EMCO	3115	9002-3355	2024/11/19	2027/11/18				
Preamplifier	A.H.Systems	PAM-0118P	489	2024/03/29	2025/03/28				
Coaxial Cable	XINHANGWEIBO	XH800A-N-6M	CC003	2024/03/29	2025/03/28				
Coaxial Cable	XINHANGWEIBO	XH800A-N-1M	CC005	2024/03/29	2025/03/28				
Horn Antenna	EMCO	3116	9407-2232	2023/07/31	2026/07/30				
Preamplifier	A.H.Systems	PAM-1840	200	2024/03/29	2025/03/28				
Coaxial Cable	XINHANGWEIBO	XH360A-2.92-3M	CC008	2024/03/29	2025/03/28				
Coaxial Cable	XINHANGWEIBO	XH360A-2.92-1M	CC009	2024/03/29	2025/03/28				
Test Software	Audix	E3	18621a	N/A	N/A				
		RF Conducted Tes	st						
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102051	2024/03/29	2025/03/28				
Coaxial Cable	N/A	N/A	N/A	Each time	N/A				

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Xiamen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC §15.203 - ANTENNA REQUIREMENT

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

a. Antenna must be permanently attached to the unit.

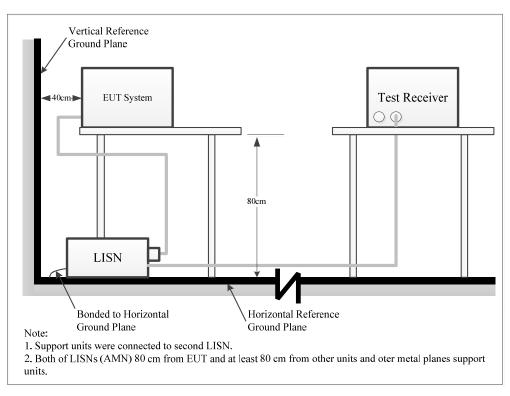
b. Antenna must use a unique type of connector to attach to the EUT.

Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Antenna Connector Construction

The EUT has one PCB antenna arrangement for BLE, which was permanently attached and the antenna gain is 0 dBi, fulfill the requirement of this section. Please refer to the EUT photos.


Result: Compliant

FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC§15.207

EUT Setup

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Procedure

ANSI C63.10-2013 clause 6.2

During the conducted emission test, the adapter was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

If the maximum peak value of the emissions is below the average limit, the QP value and average value measurement will not need to be performed and only record the maximum peak measured value to meet the requirements.

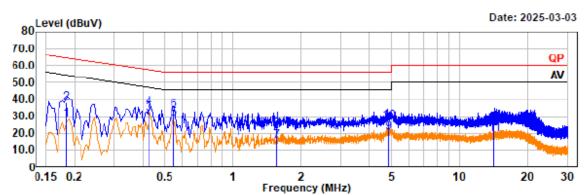
Result & Margin Calculation

The Result is calculated by adding LISN VDF (Voltage Division Factor), Cable Loss and Transient Limiter Attenuation from the Meter Reading. The basic equation is as follows:

Factor (dB) = LISN VDF (dB) + Cable Loss (dB) + Transient Limiter Attenuation (dB) Result (dB μ V) = Reading (dB μ V) + Factor (dB)

The "**Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin (dB) = Limit (dB μ V) –Result (dB μ V)

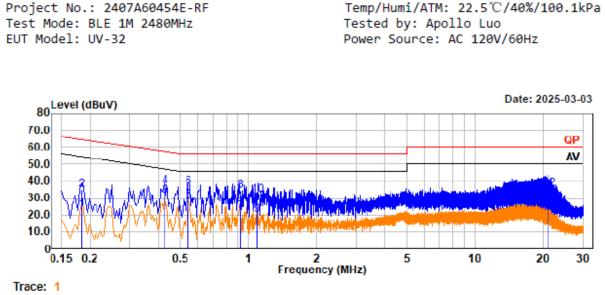

Test Data

Test Frequency:	150kHz~30MHz
Temperature:	22.5°C
Relative Humidity:	40%
ATM Pressure:	100.1kPa
Test Date:	2025-03-03
Test Engineer:	Apollo Luo

EUT operation mode: Transmitting in high channel of BLE 1Mbps (worst case)

For Charger

Project No.: 2407A60454E-RF Test Mode: BLE 1M 2480MHz EUT Model: UV-32 Temp/Humi/ATM: 22.5°C/40%/100.1kPa Tested by: Apollo Luo Power Source: AC 120V/60Hz



Trace: 1

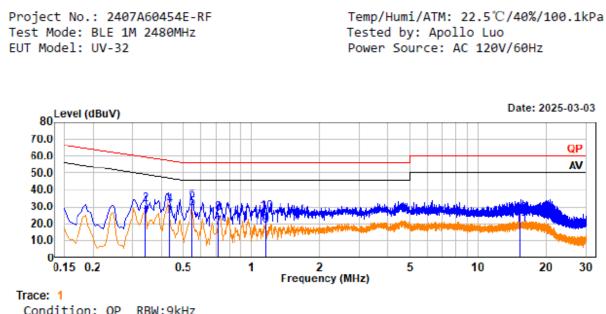
Conditi	on: QP RBW AV RBW	l:9kHz l:9kHz					
Freq	Reading	Factor	Result	Limit	Margin	Phase	Remark
MHz	dBuV	dB	dBuV	dBuV	ďB		
0.18	7.41	20.67	28.08	54.27	26.19	Line	Average
0.18	17.42	20.67	38.09	64.27	26.18	Line	QP
0.43	11.19	20.34	31.53	47.31	15.78	Line	Average
0.43	14.91	20.34	35.25	57.31	22.06	Line	QP
0.55	8.43	20.35	28.78	46.00	17.22	Line	Average
0.55	13.34	20.35	33.69	56.00	22.31	Line	QP -
1.56	-5.63	21.06	15.43	46.00	30.57	Line	Average
1.56	1.82	21.06	22.88	56.00	33.12	Line	QP
4.86	-0.22	20.82	20.60	46.00	25.40	Line	Average
4.86	6.11	20.82	26.93	56.00	29.07	Line	QP
14.24	-1.77	20.83	19.06	50.00	30.94	Line	Average
14.24	4.94	20.83	25.77	60.00	34.23	Line	QP

FCC Part 15.247

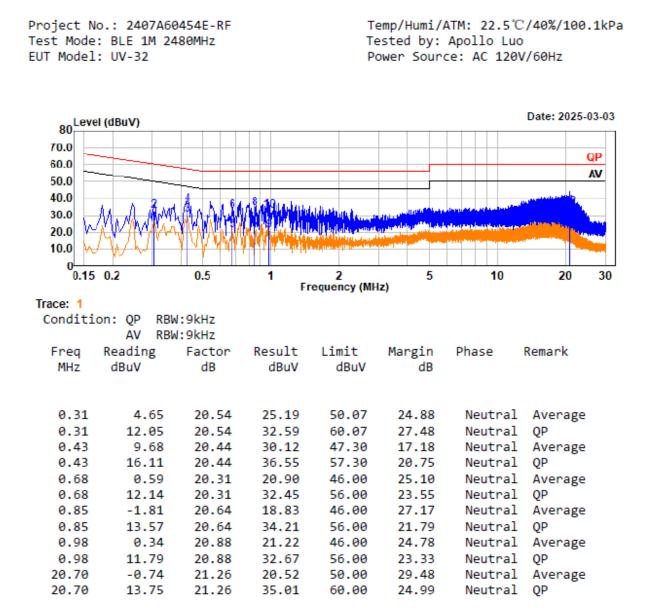
Page 18 of 65

Conditi	-	l:9kHz l:9kHz					
Freq MHz	Reading dBuV	Factor dB	Result dBuV	Limit dBuV	Margin dB	Phase	Remark
0.18	2.71	20.69	23.40	54.28	30.88	Neutral	Average
0.18 0.43	14.05 10.45	20.69 20.44	34.74 30.89	64.28 47.29	29.54 16.40	Neutral Neutral	QP Average
0.43	16.43	20.44	36.87	57.29	20.42	Neutral	QP
0.55	7.79 15.82	20.36 20.36	28.15 36.18	46.00 56.00	17.85 19.82	Neutral Neutral	Average OP
0.92	1.48	20.78	22.26	46.00	23.74	Neutral	Average
0.92 1.10	13.22 -1.03	20.78 20.93	34.00 19.90	56.00 46.00	22.00 26.10	Neutral Neutral	QP Average
1.10	10.33	20.93	31.26	56.00	24.74	Neutral	QP
21.08 21.08	-0.42 13.86	21.27 21.27	20.85 35.13	50.00 60.00	29.15 24.87	Neutral Neutral	Average QP

FCC Part 15.247


Page 19 of 65

QP

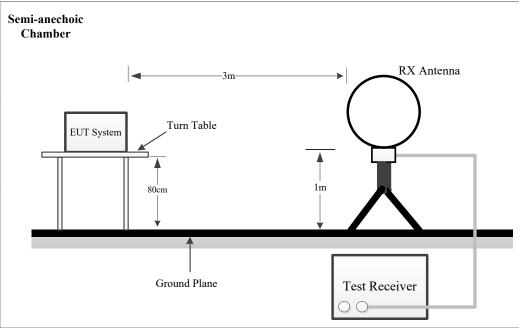

AV

30

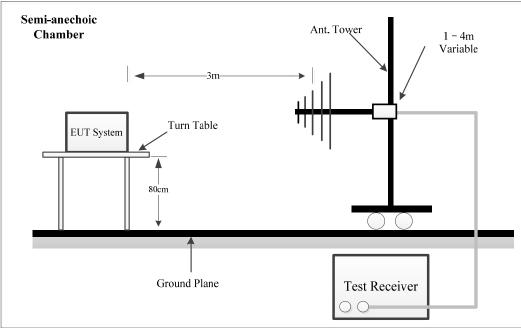
For Adapter

					W:9KHZ W:9kHz	-	Conditi
Remark	Phase	Margin	Limit	Result	Factor	Reading	Freq
		dB	dBuV	dBuV	dB	dBuV	MHz
Average	Line	25.26	49.19	23.93	20.41	3.52	0.34
QP	Line	28.01	59.19	31.18	20.41	10.77	0.34
Average	Line	22.65	47.11	24.46	20.33	4.13	0.44
QP	Line	25.96	57.11	31.15	20.33	10.82	0.44
Average	Line	16.97	46.00	29.03	20.34	8.69	0.55
QP	Line	22.38	56.00	33.62	20.34	13.28	0.55
Average	Line	28.42	46.00	17.58	20.52	-2.94	0.72
QP	Line	29.52	56.00	26.48	20.52	5.96	0.72
Average	Line	27.08	46.00	18.92	20.96	-2.04	1.16
QP	Line	28.85	56.00	27.15	20.96	6.19	1.16
Average	Line	30.59	50.00	19.41	20.91	-1.50	15.38
QP	Line	33.92	60.00	26.08	20.91	5.17	15.38

Report No.: 2407A60454E-RF-01

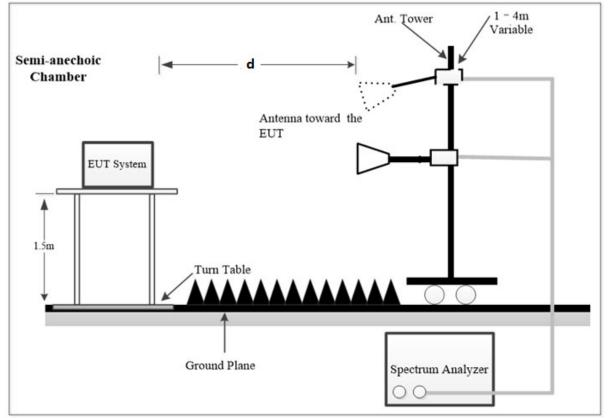

FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS

Applicable Standard


FCC §15.247 (d); §15.209; §15.205;

EUT Setup

9 kHz-30MHz:


30MHz -1 GHz:

FCC Part 15.247

Report No.: 2407A60454E-RF-01

The radiated emission tests using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, and FCC 15.247 limits.

NOTE: d is testing distance;

For Radiated Emission test (1GHz-18GHz) and Bandedge Emission test, which was performed at 3 m distance.

For Radiated Emission test (18GHz-25GHz), which was performed at 1.0 m distance, according to ANSI C63.10-2013, the test result shall be extrapolated to the specified distance using an extrapolation Factor of 20dB/decade from 3m to 1.0m.

Distance extrapolation Factor =20 log (specific distance [3m]/test distance [1.0m]) dB= 9.54 dB

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 9 kHz to 25 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Below 1GHz:

Frequency Range	RBW	VBW	Measurement			
	300Hz	1 kHz	PK			
9 kHz – 150 kHz	200Hz	/	QP			
	10 kHz	30 kHz	РК			
150 kHz – 30 MHz	9kHz	/	QP			
30 MHz – 1000 MHz	100 kHz	300 kHz	РК			
	120kHz	/	QP			

Above 1GHz:

Pre-scan:

Duty Cycle	RBW	VBW	Measurement
Any	1MHz	3MHz	РК
>98%	1MHz	5kHz	AV
<98%	1MHz	1/T, not less than 5kHz	AV

Final measurement for emission identified during the pre-scan:

Duty Cycle	RBW	VBW	Measurement
Any	1MHz	3MHz	РК
>98%	1MHz	10Hz	AV
<98%	1MHz	1/T	AV

Note: T is minimum transmission duration

If the maximized peak measured value complies with under the QP limit more than 6dB, then it is unnecessary to perform an QP measurement.

If the maximized peak measured value complies with under the Average limit, then it is unnecessary to perform an Average measurement.

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

For each measurement antenna alignment, the EUT shall be rotated through 0° to 360° on a turntable. The report shall list the six emissions with the smallest margin relative to the limit, for each of the three antenna orientations (parallel, perpendicular, and ground parallel) unless the margin is greater than 20 dB, then the following statement shall be made: "all emissions were greater than 20 dB below the limit."

Below 1GHz, if the measured peak level of the emissions that the measuring receiver reading level plus corrected factor is at least 6 dB below the QP emission limit, there's no need to record the measured QP level of the emissions in the report.

Above 1GHz, if the measured peak level of the emissions that the measuring receiver reading level plus corrected factor is below the AV emission limit, there's no need to record the measured AV level of the emissions in the report.

FCC Part 15.247

Result & Margin Calculation

The Result is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

For 9 kHz to 18GHz Radiated emission test Factor (dB/m) =Antenna Factor (dB/m) + Cable Loss (dB) - Amplifier Gain (dB)

For 18GHz to 25GHz Radiated emission test and Bandedge emissions test Factor (dB/m) =Antenna Factor (dB/m) + Cable Loss (dB) - Amplifier Gain (dB) - Extrapolation factor (dB)

Extrapolation factor=9.54dB (distance=1m)

Result $(dB\mu V/m) = Reading (dB\mu V) + Factor (dB/m)$

The "**Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

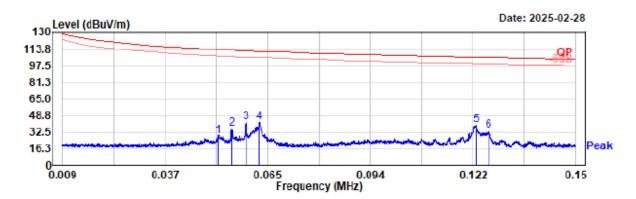
Margin (dB) = Limit (dB μ V/m) –Result (dB μ V/m)

Test Data

Please refer to the below table and plots.

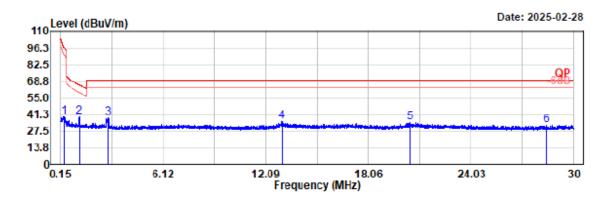
Frequency Range:	Below 1 GHz	Above 1 GHz
Temperature:	22.1°C	21.3°C
Relative Humidity:	45 %	49%
ATM Pressure:	100.2kPa	100.1kPa
Test Date:	2025-02-28	2025-02-25
Test Engineer:	Wlif Wu	Wlif Wu

Report No.: 2407A60454E-RF-01


1) 9 kHz~30MHz

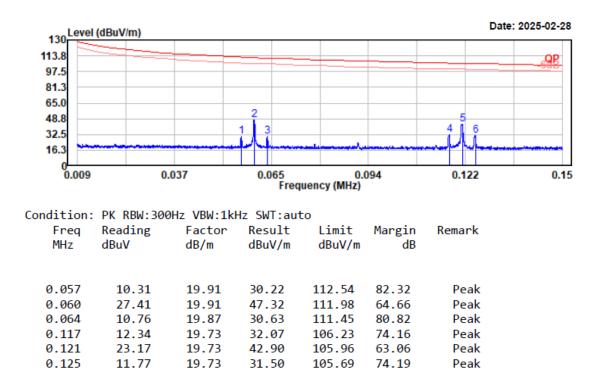
Pre-scan in parallel, ground-parallel and perpendicular of orientation of loop antenna, ground-parallel is worst case

EUT operation mode: Transmitting in high channel of BLE 1Mbps in parallel (worst case)

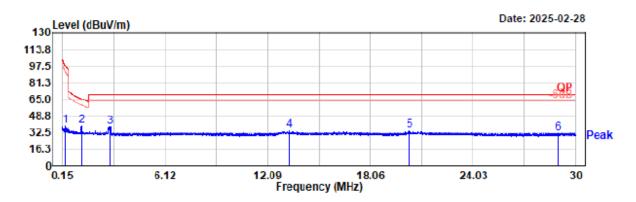

For Charger mode

Project No.: 2407A60454E-RF Test Mode: BLE 1M 2480MHz EUT Model: UV-32 Test distance: 3m Temp/Humi/ATM: 22.1°C/45%/100.2kPa Tested by: Wlif Wu Power Source: AC 120V/60Hz

Freq	Reading	Factor	Result	Limit	Margin	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	
0.052	9.04	19.91	28.95	113.33	84.38	Peak
0.056	15.85	19.91	35.76	112.70	76.94	Peak
0.060	21.91	19.91	41.82	112.11	70.29	Peak
0.063	22.17	19.88	42.05	111.63	69.58	Peak
0.123	19.48	19.73	39.21	105.83	66.62	Peak
0.126	13.92	19.73	33.65	105.60	71.95	Peak


Project No.: 2407A60454E-RF Test Mode: BLE 1M 2480MHz EUT Model: UV-32 Test distance: 3m Temp/Humi/ATM: 22.1°C/45%/100.2kPa Tested by: Wlif Wu Power Source: AC 120V/60Hz

Freq	Reading	Factor	Result	Limit	Margin	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	
0.356	20.04	19.75	39.79	96.58	56.79	Peak
1.237	19.43	19.70	39.13	65.76	26.63	Peak
2.929	18.72	19.83	38.55	69.54	30.99	Peak
13.045	15.73	19.74	35.47	69.54	34.07	Peak
20.508	14.75	20.10	34.85	69.54	34.69	Peak
28.403	12.84	20.05	32.89	69.54	36.65	Peak

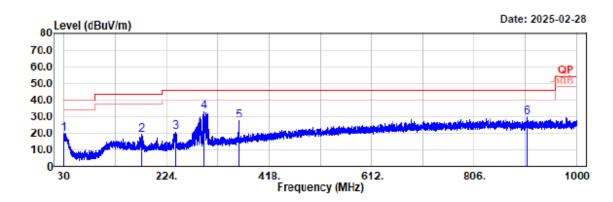

For Adapter mode

Project No.: 2407A60454E-RF Test Mode: BLE 1M 2480MHz EUT Model: UV-32 Test distance: 3m Temp/Humi/ATM: 22.1℃/45%/100.2kPa Tested by: Wlif Wu Power Source: AC 120V/60Hz

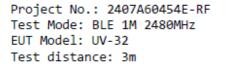
Temp/Humi/ATM: 22.1°C/45%/100.2kPa Tested by: Wlif Wu Power Source: AC 120V/60Hz

	eading BuV	Factor dB/m	Result dBuV/m	Limit dBuV/m	Margin H dB	Remark
0.284 1.240 2.929 13.356 20.326	19.79 19.74 18.67 15.16 14.54	19.72 19.70 19.83 19.74 20.10	39.51 39.44 38.50 34.90 34.64	98.53 65.74 69.54 69.54 69.54	59.02 26.30 31.04 34.64 34.90	Peak Peak Peak Peak Peak Peak

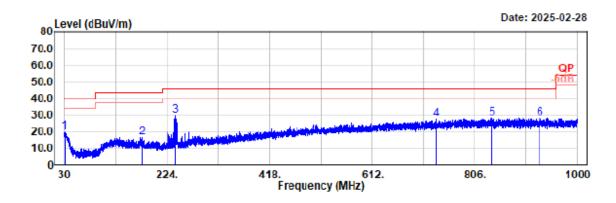
Report No.: 2407A60454E-RF-01


Bay Area Compliance Laboratories Corp. (Xiamen)

2) 30MHz-1GHz


EUT operation mode: Transmitting in high channel of BLE 1Mbps (worst case)

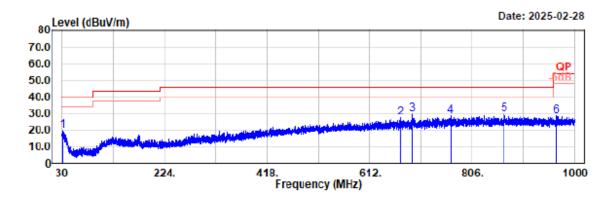
For Charger mode


Project No.: 2407A60454E-RF Test Mode: BLE 1M 2480MHz EUT Model: UV-32 Test distance: 3m Temp/Humi/ATM: 22.1°C/45%/100.2kPa Tested by: Wlif Wu Power Source: AC 120V/60Hz

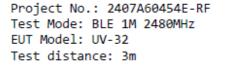
Freq MHz	Reading dBuV	Factor dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	Polarity	Remark
30.29 176.96 241.65 295.78 361.64 906.98	25.57 31.46 32.37 42.14 35.30 26.91	-5.68 -12.20 -11.61 -9.27 -7.67 2.61	19.89 19.26 20.76 32.87 27.63 29.52	40.00 43.50 46.00 46.00 46.00 46.00	20.11 24.24 25.24 13.13 18.37 16.48	Horizontal Horizontal Horizontal Horizontal Horizontal Horizontal	Peak Peak

Temp/Humi/ATM: 22.1°C/45%/100.2kPa Tested by: Wlif Wu Power Source: AC 120V/60Hz

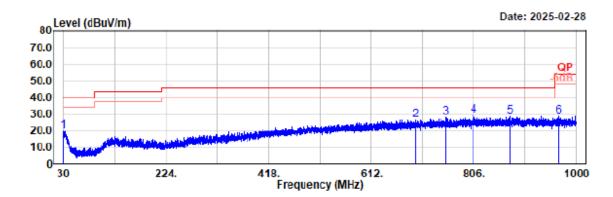
Freq MHz	Reading dBuV	Factor dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	Polarity	Remark
30.58	25.58	-5.74	19.84	40.00	20.16	Vertical	Peak
176.86	28.85	-12.19	16.66	43.50	26.84	Vertical	Peak
240.01	41.22	-11.69	29.53	46.00	16.47	Vertical	Peak
732.67	27.56	0.21	27.77	46.00	18.23	Vertical	Peak
839.56	26.43	1.80	28.23	46.00	17.77	Vertical	Peak
929.77	25.37	2.86	28.23	46.00	17.77	Vertical	Peak


Report No.: 2407A60454E-RF-01

Bay Area Compliance Laboratories Corp. (Xiamen)

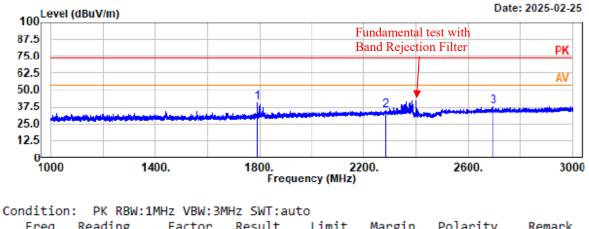

EUT operation mode: Transmitting in high channel of BLE 1Mbps (worst case)

For Adapter mode


Project No.: 2407A60454E-RF Test Mode: BLE 1M 2480MHz EUT Model: UV-32 Test distance: 3m Temp/Humi/ATM: 22.1°C/45%/100.2kPa Tested by: Wlif Wu Power Source: AC 120V/60Hz

Freq MHz	Reading dBuV	Factor dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	Polarity	Remark
31.46 670.88 692.80 765.07 867.40 964.89	26.10 28.19 29.96 28.05 27.49 25.44	-6.10 -0.62 -0.44 0.71 2.16 3.49	20.00 27.57 29.52 28.76 29.65 28.93	40.00 46.00 46.00 46.00 46.00 54.00	20.00 18.43 16.48 17.24 16.35 25.07	Horizontal Horizontal Horizontal Horizontal Horizontal Horizontal	Peak Peak

Temp/Humi/ATM: 22.1°C/45%/100.2kPa Tested by: Wlif Wu Power Source: AC 120V/60Hz

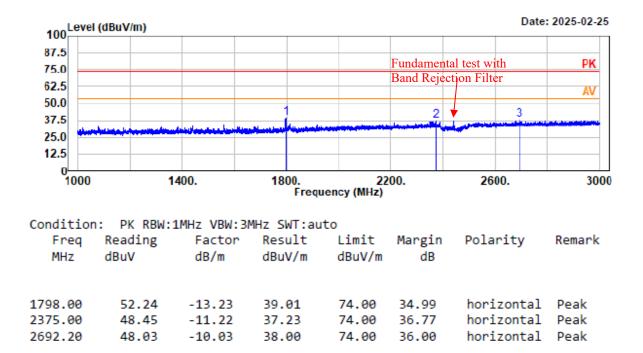


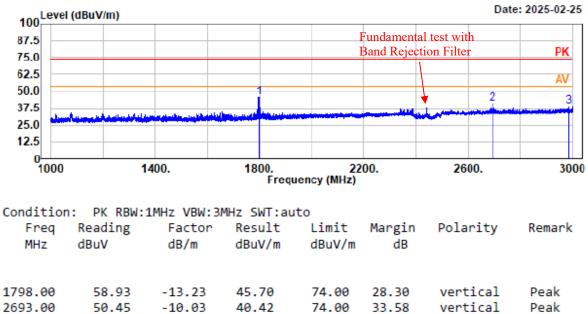
Freq MHz	Reading dBuV	Factor dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	Polarity	Remark
30.19	25.67	-5.65	20.02	40.00	19.98	Vertical	Peak
696.58	27.16	-0.43	26.73	46.00	19.27	Vertical	Peak
754.30	27.51	0.48	27.99	46.00	18.01	Vertical	Peak
805.22	27.81	1.27	29.08	46.00	16.92	Vertical	Peak
876.03	26.65	2.26	28.91	46.00	17.09	Vertical	Peak
967.60	25.32	3.45	28.77	54.00	25.23	Vertical	Peak

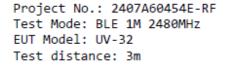
Report No.: 2407A60454E-RF-01

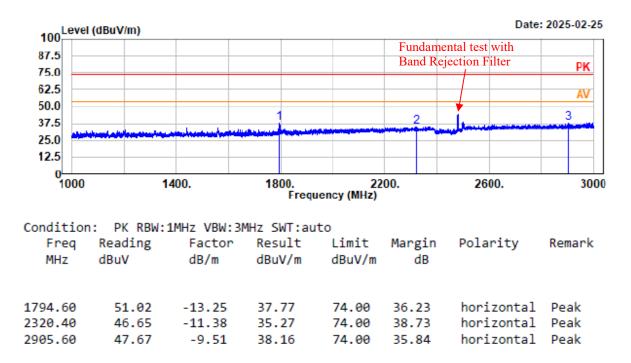
3) 1GHz~3GHz

Project No.: 2407A60454E-RF Test Mode: BLE 1M 2402MHz EUT Model: UV-32 Test distance: 3m Temp/Humi/ATM: 21.3°C/49%/100.1kPa Tested by: Wlif Wu Power Source: AC 120V/60Hz

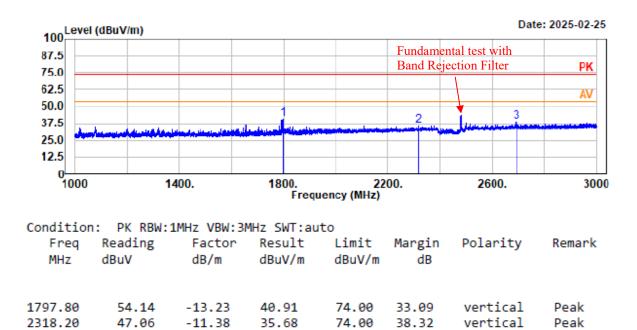

Freq MHz	Reading dBuV	Factor dB/m		Limit dBuV/m		Polarity	Remark
1791.80	53.62	-13.26	40.36	74.00	33.64	horizontal	Peak
2285.80	46.36	-11.53	34.83	74.00	39.17	horizontal	Peak
2696.40	47.79	-10.01	37.78	74.00	36.22	horizontal	Peak


Temp/Humi/ATM: 21.3°C/49%/100.1kPa Tested by: Wlif Wu Power Source: AC 120V/60Hz


Project No.: 2407A60454E-RF Test Mode: BLE 1M 2440MHz EUT Model: UV-32 Test distance: 3m Temp/Humi/ATM: 21.3°C/49%/100.1kPa Tested by: Wlif Wu Power Source: AC 120V/60Hz



Project No.: 2407A60454E-RF Test Mode: BLE 1M 2440MHz EUT Model: UV-32 Test distance: 3m



1798.00	58.93	-13.23	45.70	74.00	28.30	vertical	Peak
2693.00	50.45	-10.03	40.42	74.00	33.58	vertical	Peak
2984.80	47.93	-9.02	38.91	74.00	35.09	vertical	Peak

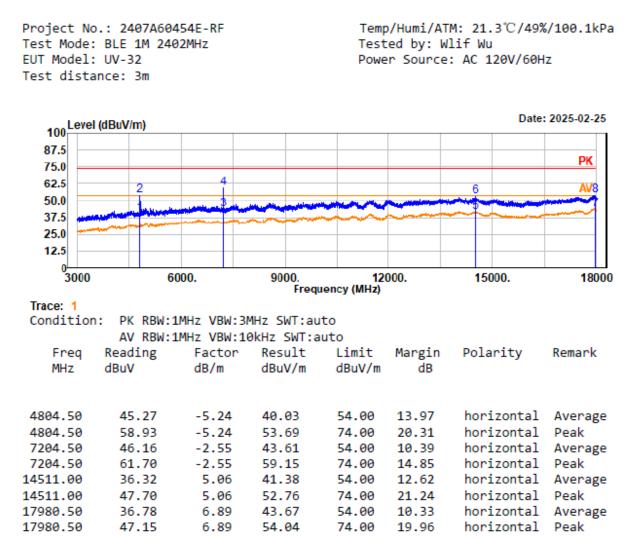
Project No.: 2407A60454E-RF Test Mode: BLE 1M 2480MHz EUT Model: UV-32 Test distance: 3m Temp/Humi/ATM: 21.3°C/49%/100.1kPa Tested by: Wlif Wu Power Source: AC 120V/60Hz

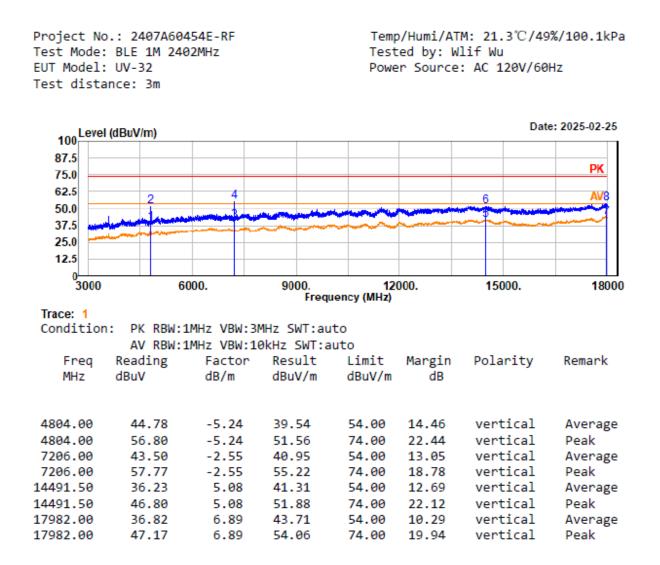
74.00

35.49

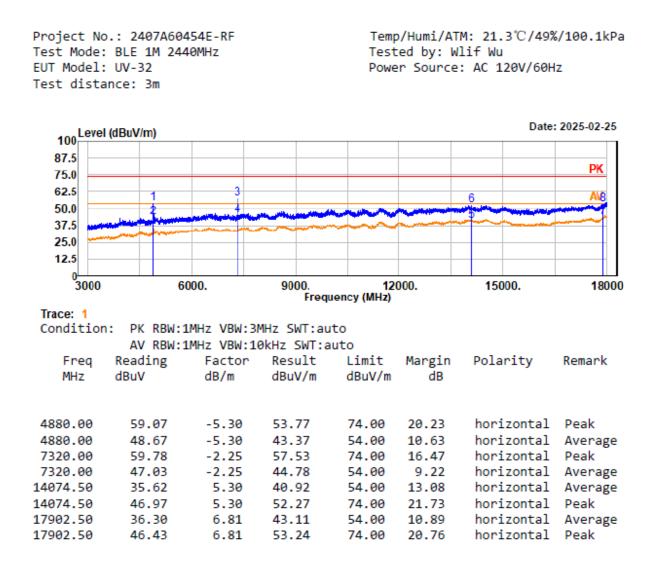
vertical

Peak

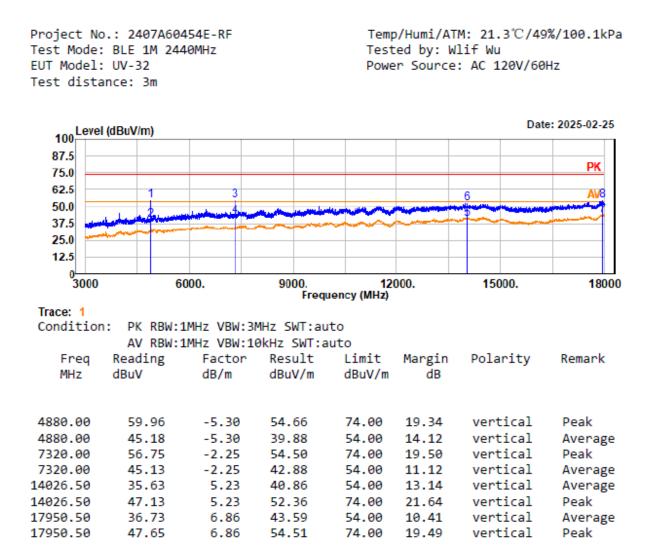

2692.00

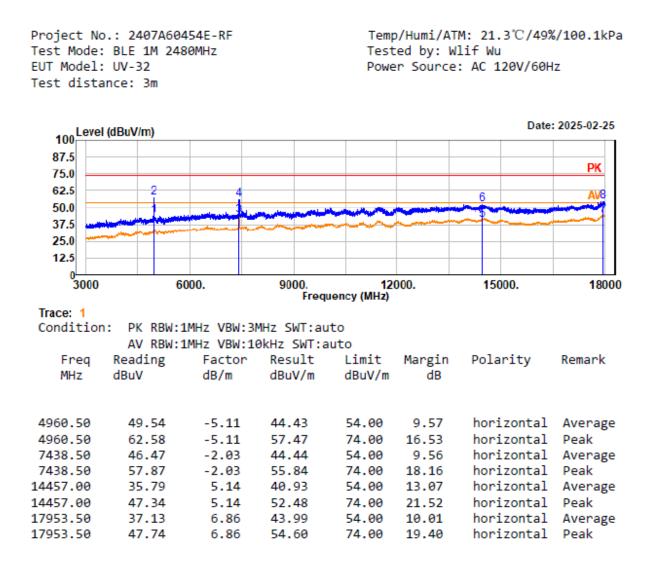

48.54

-10.03

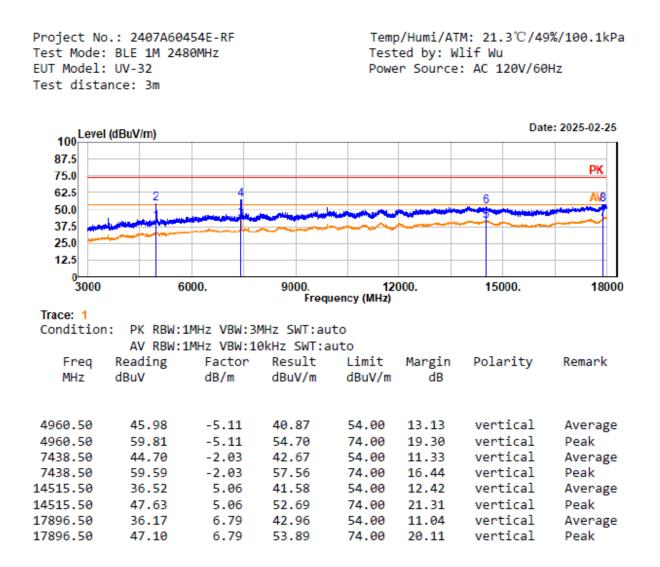

38.51

4) 3 GHz ~18 GHz



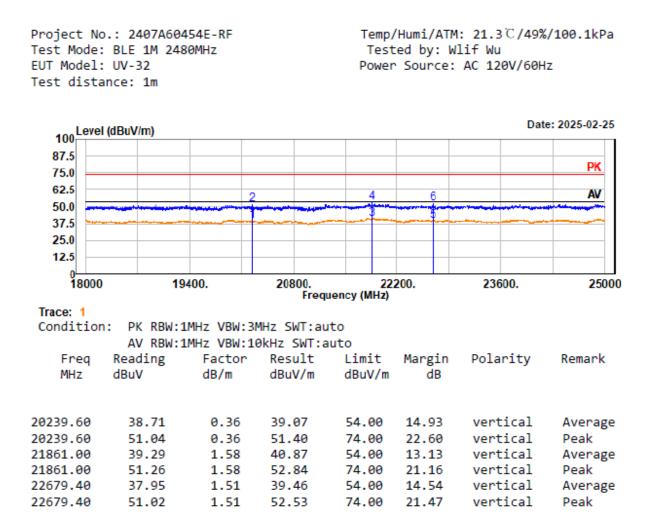


Page 41 of 65

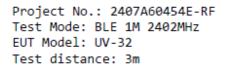


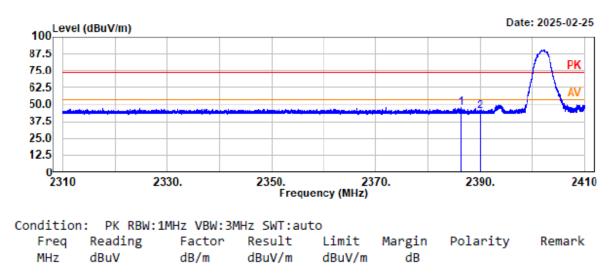
Page 42 of 65

Page 44 of 65

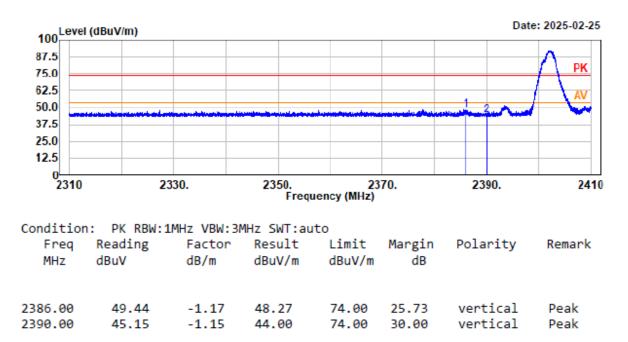


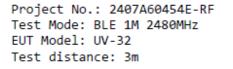
Page 45 of 65

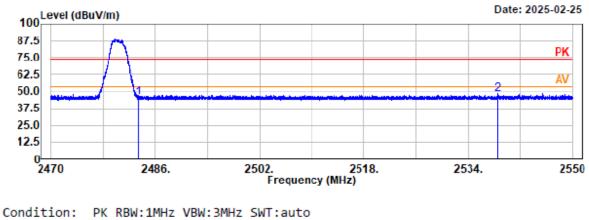

5) 18 GHz ~25 GHz


EUT operation mode: Transmitting in high channel of BLE 1Mbps (worst case)

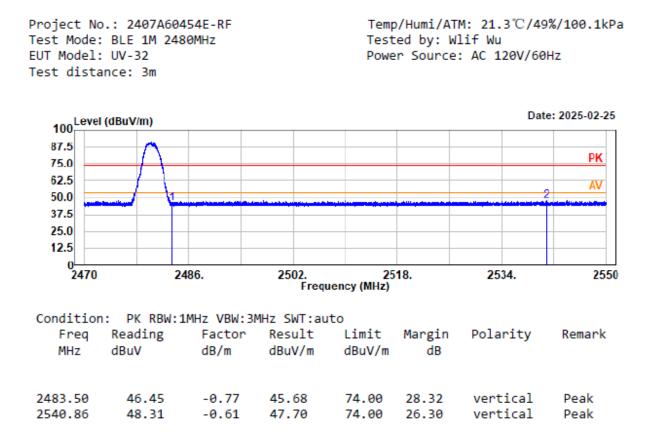
```
Project No.: 2407A60454E-RF
                                              Temp/Humi/ATM: 21.3℃/49%/100.1kPa
Test Mode: BLE 1M 2480MHz
                                               Tested by: Wlif Wu
EUT Model: UV-32
                                              Power Source: AC 120V/60Hz
Test distance: 1m
   100 Level (dBuV/m)
                                                                      Date: 2025-02-25
   87.5
                                                                              PK
   75.0
   62.5
                                                                              AV
                           2
   50.0
   37.5
   25.0
   12.5
     18000
                   19400.
                                  20800.
                                                 22200.
                                                                23600.
                                                                               25000
                                      Frequency (MHz)
 Trace: 1
Condition:
             PK RBW:1MHz VBW:3MHz SWT:auto
             AV RBW:1MHz VBW:10kHz SWT:auto
    Freq
           Reading
                        Factor
                                 Result
                                            Limit
                                                    Margin
                                                              Polarity
                                                                           Remark
    MHz
           dBuV
                        dB/m
                                 dBuV/m
                                            dBuV/m
                                                        dB
                                                              horizontal Average
19931.60
             39.76
                        -0.06
                                 39.70
                                            54.00
                                                     14.30
19931.60
             51.86
                        -0.06
                                 51.80
                                            74.00
                                                     22.20
                                                              horizontal Peak
21797.20
             39.55
                         1.45
                                 41.00
                                            54.00
                                                     13.00
                                                              horizontal Average
21797.20
             51.01
                         1.45
                                 52.46
                                            74.00
                                                     21.54
                                                              horizontal Peak
             37.88
                                 39.57
                                                     14.43
                                                              horizontal Average
23805.80
                         1.69
                                            54.00
                                            74.00
                                                     22.68
                                                              horizontal
23805.80
             49.63
                         1.69
                                 51.32
                                                                           Peak
```



Restricted Bands Emissions:



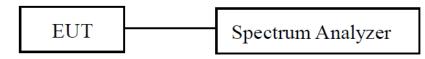


2386.34	48.60	-1.16	47.44	74.00	26.56	Horizontal	Peak
2390.00	45.89	-1.15	44.74	74.00	29.26	Horizontal	Peak



	Reading dBuV	Factor dB/m	Limit dBuV/m	Margin dB	Polarity	Remark
2483.50 2538.52					Horizontal Horizontal	

FCC Part 15.247


Bay Area Compliance Laboratories Corp. (Xiamen)

FCC §15.247(a) (2) – 6 dB EMISSION BANDWIDTH

Applicable Standard

Systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

EUT Setup

Test Procedure

According to ANSI C63.10-2013 Section 11.8

a) Set RBW = shall be in the range of 1% to 5% of the OBW but not less than 100 kHz.
b) Set the VBW ≥ [3 × RBW].

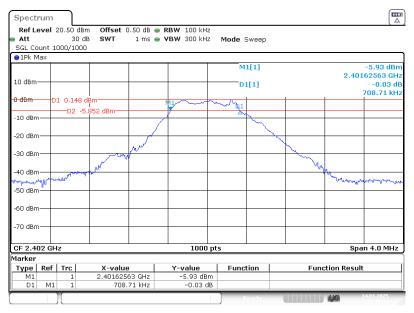
- c) Detector = peak.

d) Trace mode = max-hold.

e) Sweep = No faster than coupled (auto) time.

f) Allow the trace to stabilize.

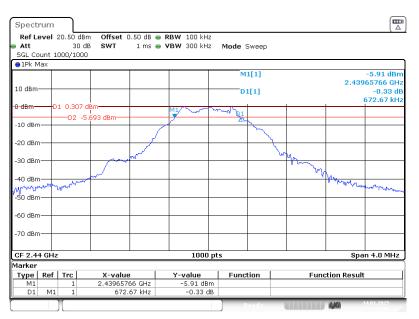
g) Measure the maximum width of the emission by placing two markers, one at the lowest frequency and the other at the highest frequency of the envelope of the spectral display, such that each marker is at or slightly below the "-6 dB down amplitude". If a marker is below this "-6 dB down amplitude" value, then it shall be as close as possible to this value.


Test Data

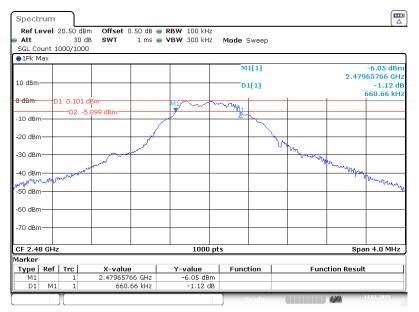
Test Mode:	Transmitting	Test Engineer:	Jason Hu
Test Date:	2025-01-14	Environment:	Temp.: 22.3°C Humi.: 44% Atm :100.1 kPa

Test Result: Compliant

Test Modes	Test Channel	Test Frequency (MHz)	6 dB Bandwidth (MHz)	Limit (MHz)
BLE 1Mbps	Lowest	2402	0.709	≥ 0.5
	Middle	2440	0.673	≥0.5
	Highest	2480	0.661	≥0.5


1Mbps_Lowest

ProjectNo.:2407A60454E-RF Tester:Jason Hu


Date: 14.JAN.2025 15:14:43

1Mbps_Middle

ProjectNo.:2407A60454E-RF Tester:Jason Hu Date: 14.JAN.2025 15:19:05

1Mbps_Highest

ProjectNo.:2407A60454E-RF Tester:Jason Hu

Date: 14.JAN.2025 15:22:28

FCC §15.247(b) (3) - MAXIMUM CONDUCTED OUTPUT POWER

Applicable Standard

According to FCC §15.247(b) (3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

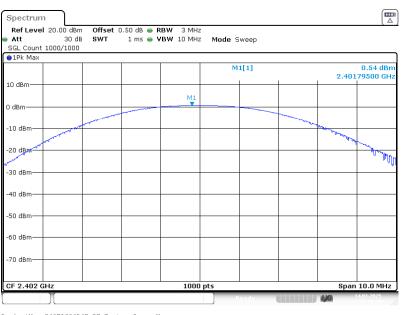
EUT Setup

Test Procedure

According to ANSI C63.10-2013 Section 11.9.1.1

The following procedure shall be used when an instrument with a resolution bandwidth that is greater than the DTS bandwidth is available to perform the measurement:

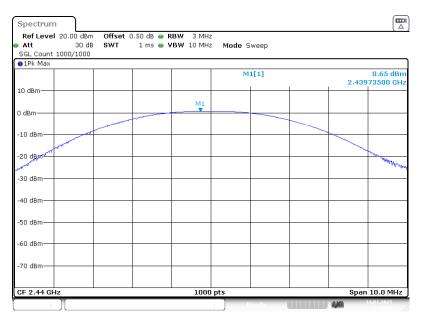
- a) Set the RBW \geq DTS bandwidth.
- b) Set VBW $\geq [3 \times RBW]$.
- c) Set span $\geq [3 \times RBW]$.
- d) Sweep time = No faster than coupled (auto) time.
- e) Detector = peak.
- f) Trace mode = max-hold.
- g) Allow trace to fully stabilize.
- h) Use peak marker function to determine the peak amplitude level.


Test Data

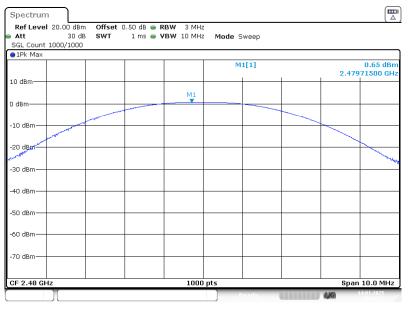
Test Mode:	Transmitting	Test Engineer:	Jason Hu
Test Date:	2025-01-14	Environment:	Temp.: 22.3°C Humi.: 44% Atm :100.1 kPa

Test Result: Compliant

Test Modes	Test Channel	Test Frequency (MHz)	Maximum Conducted Peak Output Power(dBm)	Limit (dBm)
	Lowest	2402	0.54	≤30
BLE 1Mbps	Middle	2440	0.65	≤30
	Highest	2480	0.65	≤30


FCC Part 15.247

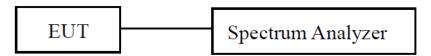
1Mbps_Lowest


ProjectNo.:2407A60454E-RF Tester:Jason Hu Date: 14.JAN.2025 15:16:59

ProjectNo.:2407A60454E-RF Tester:Jason Hu Date: 14.JAN.2025 15:20:44

1Mbps_Highest

ProjectNo.:2407A60454E-RF Tester:Jason Hu Date: 14.JAN.2025 15:24:25


Bay Area Compliance Laboratories Corp. (Xiamen)

FCC §15.247(d) – 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in 15.205(a), must also comply with the radiated emission limits specified in 15.205(c)).

EUT Setup

Test Procedure

According to ANSI C63.10-2013 Section 11.11

a) Set the center frequency and span to encompass frequency range to be measured.

- b) Set the RBW = 100 kHz.
- c) Set the VBW $\geq [3 \times \text{RBW}]$.
- d) Detector = peak.

e) Sweep time = No faster than coupled (auto) time.

f) Trace mode = max hold.

g) Allow trace to fully stabilize.

h) Use the peak marker function to determine the maximum amplitude level.

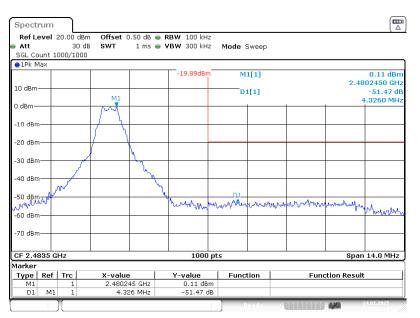
Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band

(excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11. Report the three highest emissions relative to the limit.

Test Data

Test Mode:	Transmitting	Test Engineer:	Jason Hu
Test Date:	2025-01-14	Environment:	Temp.: 22.3°C Humi.: 44% Atm :100.1 kPa

Test Result: Compliant


Spectrum Ref Level 20.00 dBm Offset 0.50 dB 👄 RBW 100 kHz Att 30 dB SGL Count 1000/1000 SWT 1 ms 👄 **VBW** 300 kHz Mode Sweep ●1Pk Max M1[1] -0.03 dBr 2.40225200 GH 10 dBm -44.98 dE -2.25600 MH D1[1] м1 0 dBm--10 dBm 00. d0.... 20. 03dBr -30 dBm 40 dBm m mound -50 dBm mon . ബ് m -60 dBm--70 dBm CF 2.4 GHz 1000 pts Span 8.0 MHz Marker Y-value Function -0.03 dBm -44.98 dB X-value 2.402252 GHz -2.256 MHz Type Ref Trc Function Result Μ1 M1 D1 LXI

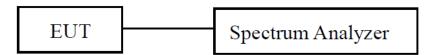
BLE 1Mbps_Lowest

ProjectNo.:2407A60454E-RF Tester:Jason Hu

Date: 14.JAN.2025 19:00:40

BLE 1Mbps_Highest

ProjectNo.:2407A60454E-RF Tester:Jason Hu Date: 14.JAN.2025 19:01:27


Bay Area Compliance Laboratories Corp. (Xiamen)

FCC §15.247(e) - POWER SPECTRAL DENSITY

Applicable Standard

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

EUT Setup

Test Procedure

According to ANSI C63.10-2013 Section 11.10.2

a) Set analyzer center frequency to DTS channel center frequency.

b) Set the span >1.5 times the DTS bandwidth.

c) Set the RBW to 3 kHz \leq RBW \leq 100 kHz.

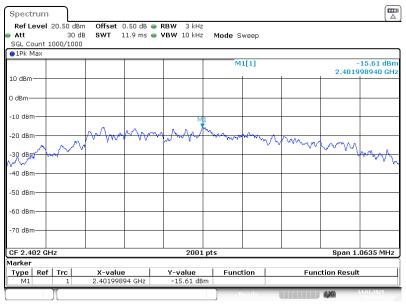
d) Set the VBW \geq [3 \times RBW].

e) Detector = peak.

f) Sweep time = No faster than coupled (auto) time.

g) Trace mode = max-hold.h) Allow trace to fully stabilize.

i) Use the peak marker function to determine the maximum amplitude level within the RBW.

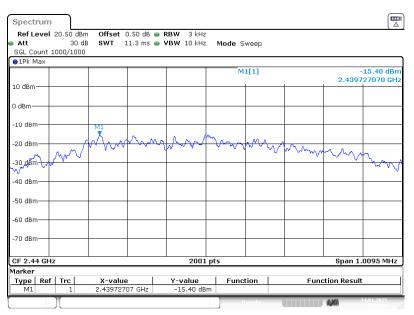

i) If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat

Test Data

Test Mode:	Transmitting	Test Engineer:	Jason Hu
Test Date:	2025-01-14	Environment:	Temp.: 22.3°C Humi.: 44% Atm :100.1 kPa

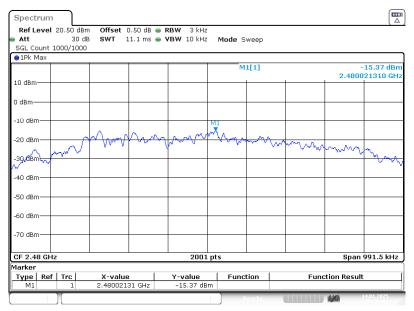
Test Result: Compliant

Test Modes	Test Channel	Test Frequency (MHz)	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)
BLE 1Mbps	Lowest	2402	-15.61	\leqslant 8.00
	Middle	2440	-15.4	≤ 8.00
	Highest	2480	-15.37	≤ 8.00



BLE 1Mbps_Lowest

ProjectNo.:2407A60454E-RF Tester:Jason Hu


Date: 14.JAN.2025 15:17:54

BLE 1Mbps_Middle

ProjectNo.:2407A60454E-RF Tester:Jason Hu Date: 14.JAN.2025 15:21:36

BLE 1Mbps_Highest

ProjectNo.:2407A60454E-RF Tester:Jason Hu Date: 14.JAN.2025 15:25:02

Date: 14.JAN.2025 15:25:03

Bay Area Compliance Laboratories Corp. (Xiamen)

EUT PHOTOGRAPHS

Please refer to the attachment 2407A60454E-RF-EXP EUT EXTERNAL PHOTOGRAPHS and 2407A60454E-RF-INP EUT INTERNAL PHOTOGRAPHS.

TEST SETUP PHOTOGRAPHS

Please refer to the attachment 2407A60454E-RF-TSP-02 SETUP PHOTOGRAPHS.

Bay Area Compliance Laboratories Corp. (Xiamen)

Declarations

1. Bay Area Compliance Laboratories Corp. (Xiamen) is not responsible for authenticity of any information provided by the applicant. Information from the applicant that may affect test results are marked with an asterisk " \star ".

2. Unless otherwise stated, the results shown in this test report refer only to the sample(s) tested.

3. Unless required by the rule provided by the applicant or product regulations, then decision rule in this report did not consider the uncertainty.

4. The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor k=2 with the 95% confidence interval.

5. This report cannot be reproduced except in full, without prior written approval of Bay Area Compliance Laboratories Corp. (Xiamen).

6. This report is valid only with a valid digital signature. The digital signature may be available only under the adobe software above version 7.0.

***** END OF REPORT *****