

_		2K-APL260B3 e): □Original Grant ⊠Class II Change
Project No. Equipment Model Name Applicant Address	: 1410101C : Access Poir : APL26-0B3 : Dell Inc. : One Dell W States	nt ay Round Rock, Texas 78682 United
Date of Receipt Date of Test Issued Date Tested by	: Nov. 06, 20 : Nov. 25, 20	15 ~ Nov. 24, 2015
Testing Enginee Technical Manag		: Josh Lin) : Josh Lin)
Authorized Sign	atory	(Jeff Yahg) :(Andy Chiu)
B1, Nei-H	No.37, Lane Iu District, T	INC . 365, Yang Guang St., aipei City 114, Taiwan. FAX: +886-2-2657-3331

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with the standards traceable to National Measurement Laboratory (**NML**) of **R.O.C.**, or National Institute of Standards and Technology (**NIST**) of **U.S.A.**

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

BTL's report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and **BTL-self**, extracts from the test report shall not be reproduced except in full with **BTL**'s authorized written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO Guide17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

	-
Table of Contents	Page
1. CERTIFICATION	5
2. EUT INFORMATION	6
2.1 EUT SPECIFICATION TABLE	6
2.2 DESCRIPTION OF AVAILABLE ANTENNAS TO THE EUT	6
2.3 CONDUCTED OUTPUT POWER AND EIRP POWER	7
2.4 EUT MAXIMUM AND MINIMUM E.I.R.P. POWER	8
3 .U-NII DFS RULE REQUIREMENTS	9
3.1 WORKING MODES AND REQUIRED TEST ITEMS	9
3.2 TEST LIMITS AND RADAR SIGNAL PARAMETERS	10
4. TEST INSTRUMENTS	14
5 .EMC EMISSION TEST	15
5.1 DFS MEASUREMENT SYSTEM	15
5.2 CALIBRATION OF DFS DETECTION THRESHOLD LEVEL	17
5.3 DEVIATION FROM TEST STANDARD	17
6 . TEST RESULTS	18
6.1 SUMMARY OF TEST RESULT	18
6.2 TEST MODE: DEVICE OPERATING IN MASTER MODE	18
6.3 DFS DETECTION THRESHOLD	18
6.4 CHANNEL AVAILABILITY CHECK TIME	30
6.5 CHANNEL CLOSING TRANSMISSION AND CHANNEL MOVE TI	ME WLAN TRAFF
	36
6.6 STATISTICAL PERFORMANCE CHECK	38
6.7 NON- OCCUPANCY PERIOD	40
6.8 UNIFORM SPREADING	41
6.9 U-NII DETECTION BANDWIDTH	41
7. EUT TEST PHOTO	45

JIE

REPORT ISSUED HISTORY

Issued No.	Description	Issued Date
BTL-FCCP-2-1410101A	Original Report.	Mar. 20, 2015
BTL-FCCP-1-1410101C	Compared with previous report (BTL-FCCP-2-1410101A), The standards are updated to the latest .All test item has been retested and recored in this report.	Nov. 25, 2015

1. CERTIFICATION

Brand Name Model Name Applicant Date of Test:	: APL26-0B3 : Dell Inc. : Nov. 06, 2015 ~ Nov. 24, 2015 : Enginnering Sample
	FCC KDB 789033 D02 General UNII Test Procedures New Rules v01
	905462 D02 UNII DFS Compliance Procedures New Rules v01r02

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc.

The test data, data evaluation, and equipment configuration contained in our test report (Ref No. BTL-FCCP-1-1410101C) were obtained utilizing the test procedures, test instruments, test sites that has been accredited by the Authority of TAF according to the ISO-17025 quality assessment standard and technical standard(s).

Test result included in this report is only for the DFS Mode part of the product.

2. EUT INFORMATION

2.1 EUT SPECIFICATION TABLE

Table 1: Specification of EUT

Product name	Access Point
Brand Name	DELL
Model	APL26-0B3
Operational Mode	Master
Operating FrequencyRange	5260~5320MHz&5500~5700MHz
Modulation	OFDM

Note: This device was functioned as a Master Slave device during the DF

2.2 DESCRIPTION OF AVAILABLE ANTENNAS TO THE EUT

Antenna Specification:

Ant.	Brand	Part NO.	Antenna Type	Connector	Gain (dBi)	Note
4	M.gear	C147-510905B	Dipole	Reversed TNC	5.89	TX/RX
5	M.gear	C147-510905B	Dipole	Reversed TNC	5.89	TX/RX
6	M.gear	C147-510905B	Dipole	Reversed TNC	5.89	TX/RX

Note:

1. 1. The EUT incorporates a MIMO function. Physically, the EUT provides three completed transmitters and receivers (3T3R). All transmit signals are completely uncorrelated, then, Direction gain = G_{ANT} , that is Directional gain=5.89

2.3 CONDUCTED OUTPUT POWER AND EIRP POWER

TABLE 3: THE CONDUCTED OUTPUT POWER LIST

TX (11a)

FREQUENCY	MAX. POWER			
BAND (MHz)	OUTPUT POWER(dBm)	OUTPUT POWER(mW)		
5260~5320	18.86	76.91		
5500~5700	19.14	82.04		

TX (11n 40MHz)

FREQUENCY	REQUENCY MAX. POWER		
BAND (MHz)	OUTPUT POWER(dBm)	OUTPUT POWER(mW)	
5270~5310	19.25	84.14	
5510~5670	19.56	90.36	

2.4 EUT MAXIMUM AND MINIMUM E.I.R.P. POWER

TABLE 4: THE MAX EIRP LIST

TX (11a)

FREQUENCY	Y MAX. POWER		
BAND (MHz)	OUTPUT POWER(dBm)	OUTPUT POWER(mW)	
5260~5320	24.75	298.54	
5500~5700	25.03	318.42	

TX (11n40MHz)

FREQUENCY	MAX. POWER		
BAND (MHz)	OUTPUT POWER(dBm)	OUTPUT POWER(mW)	
5270~5310	25.14	326.59	
5510~5670	25.45	350.75	

3.U-NII DFS RULE REQUIREMENTS

3.1 WORKING MODES AND REQUIRED TEST ITEMS

The manufacturer shall state whether the UUT is capable of operating as a Master and/or a Client. If the UUT is capable of operating in more than one operating mode then each operating mode shall be tested separately. See tables 1 and 2 for the applicability of DFS requirements for each of the operational modes.

Table 5: Applicability of DFS requirements prior to use a channel

Operational Mode			
Master	Client without radar detection	Client with radar detection	
~	Not required	~	
\checkmark	Not required	\checkmark	
\checkmark	Not required	Not required	
\checkmark	Not required	Not required	
~	Not required	~	
	✓ ✓ ✓ ✓ ✓	Master Client without radar detection ✓ Not required ✓ Not required ✓ Not required ✓ Not required ✓ Not required	

Table 6: Applicability of DFS requirements during normal operation.

	Operational Mode			
Requirement	Master	Client without radar detection	Client with radar detection	
DFS Detection Threshold	~	Not required	✓	
Channel Closing Transmission Time	~	~	~	
Channel Move Time	\checkmark	\checkmark	✓	
U-NII Detection Bandwidth	~	Not required	✓	

3.2 TEST LIMITS AND RADAR SIGNAL PARAMETERS

DETECTION THRESHOLD VALUES

Table 7: DFS Detection Thresholds for Master Devices and Client Devices With Radar Detection.

Maximum Transmit Power	Value (See Notes 1 and 2)
EIRP≥ 200 mil iwatt	-64 dBm
EIRP < 200 milliwatt and power spectral density < 10 dBm/MHz	-62 dBm
EIRP < 200 milliwatt that do not meet the power spectral density requirement	-64 dBm

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.

Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01.

Parameter	Value
Non-occupancy period	Minimum 30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds See Note 1.
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period. See Notes 1 and 2.
U-NII Detection Bandwidth	Minimum 100% of the UNII 99% transmission power bandwidth. See Note 3.

Table 8: DFS Response Requirement Values

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

PARAMETERS OF DFS TEST SIGNALS

Step intervals of 0.1 microsecond for Pulse Width, 1 microsecond for PRI, 1 MHz for chirp width and 1 for the number of pulses will be utilized for the random determination of specific test waveforms.

Radar	Pulse	PRI	Number of Pulses	Minimum	Minimum
Туре	Width	(µsec)		Percentage of	Number
	(µsec)			Successful	of
				Detection	Trials
0	1	1428	18	See Note 1	See Note
					1
1	1	Test A: 15 unique	$\left(\left(1 \right) \right)$	60%	30
		PRI values	$\left(\frac{1}{360}\right)$		
		randomly selected	Roundun		
		from the list of 23	19·10°		
		PRI values in	$\left(\left(\overline{\mathrm{PRI}}_{\mu \mathrm{sec}} \right) \right)$		
		Table 5a	$\left(\left(\mu \sec \right)\right)$		
		Test B: 15 unique			
		PRI values			
		randomly selected			
		within the range			
		of 518-3066 µsec,			
		with a minimum			
		increment of 1			
		µsec, excluding			
		PRI values			
		selected in Test A			
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
Aggregate	(Radar Types	1-4)		80%	120

Table 9.	Short Pul	se Radar	Test Way	veforms
Tuble 0.		00 1 10001	1001 110	

Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests.

A minimum of 30 unique waveforms are required for each of the Short Pulse Radar Types 2 through 4. If more than 30 waveforms are used for Short Pulse Radar Types 2 through 4, then each additional waveform must also be unique and not repeated from the previous waveforms. If more than 30 waveforms are used for Short Pulse Radar Type 1, then each additional waveform is generated with Test B and must also be unique and not repeated from the previous waveforms in Tests A or B.

Table 10: Long Pulse Radar Test Waveform									
Radar Type	Pulse Width (μsec)	Chirp Width (MHz)	PRI (µsec)	Numberof Pulsesper Burst	Numberof Bursts	Minimum Percentage of Successful Detection	Minimum Number ofTrials		
5	50-100	5-20	1000-2000	1-3	8-20	80%	30		

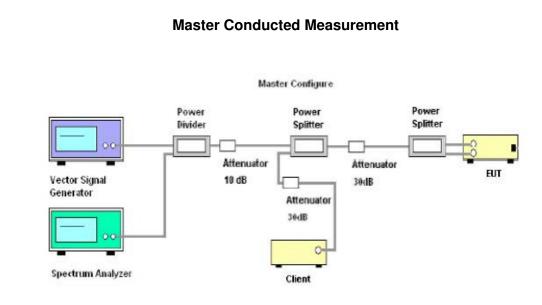
The parameters for this waveform are randomly chosen (The center frequency for each of the 30 trials of the Bin 5 radar shall be randomly selected within 80% of the Occupied Bandwidth.) Thirty unique waveforms are required for the Long Pulse Radar Type waveforms. If more than 30 waveforms are used for the Long Pulse Radar Type waveforms, then each additional waveform must also be unique and not repeated from the previous waveforms.

Table 11: Frequency Hopping Radar Test Waveform

Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Numberof Pulsesper Burst	Numberof Bursts	Minimum Percentage of Successful Detection	Minimum Number ofTrials
6	1	333	9	0.333	300	70%	30

4. TEST INSTRUMENTS

DESCRIPTION	MANUFACTURER	MODEL NO.	Serial No	Calibration Until
MXG Vector Signal Generator	Agilent	N5182B	MY51350711	May 18, 2016
Spectrum Analyzer	Agilent	N9010A	MY54200240	Aug. 25, 2016
10dB Attenuators	Mini-Cicuits	VAT-10+	N/A	May 17, 2016
10dB Attenuators	Mini-Cicuits	VAT-10+	N/A	May 17, 2016
30dB Attenuators	Mini-Cicuits	VAT-30+	N/A	May 17, 2016
30dB Attenuators	Mini-Cicuits	VAT-30+	N/A	May 17, 2016
POWER SPLITTER	Mini-Cicuits	ZFRSC-123-S+	N/A	May 17, 2016
POWER SPLITTER	Mini-Cicuits	ZFRSC-123-S+	N/A	May 17, 2016


Note: Calibration interval of instruments listed above is one year.

5.EMC EMISSION TEST

5.1DFS MEASUREMENT SYSTEM

CONDUCTED METHOD SYSTEM BLOCK DIAGRAM

SYSTEM OVERVIEW

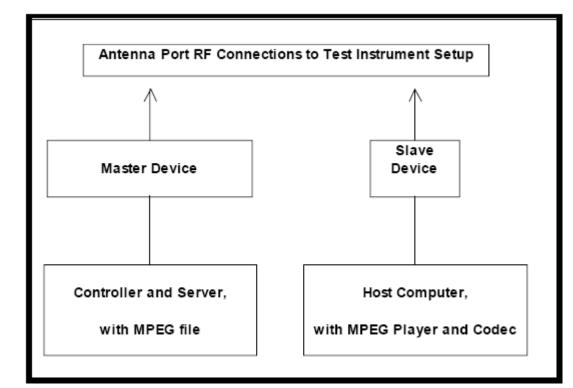
The short pulse and long pulse signal generating system utilizes the NTIA software. The Vector Signal Generator has been validated by the NTIA. The hopping signal generating system utilizes the CCS simulated hopping method and system, which has been validated by the DoD, FCC and NTIA. The software selects waveform parameters from within the bounds of the signal type on a random basis using uniform distribution.

The short pulse types 2, 3 and 4, and the long pulse type 5 parameters are randomized at run-time.

The hopping type 6 pulse parameters are fixed while the hopping sequence is based on the August 2005 NTIA Hopping Frequency List. The initial starting point randomized at run-time and each subsequent starting point is incremented by 475. Each frequency in the 100-length segment is compared to the boundaries of the EUT Detection Bandwidth and the software creates a hopping burst pattern in accordance with Section 7.4.1.3 Method #2 Simulated Frequency Hopping Radar Waveform Generating Subsystem of FCC 06-96. The frequency of the signal generator is incremented in 1 MHz steps from FL to FH for each successive trial. This incremental sequence is repeated as required to generate a minimum of 30 total trials and to maintain a uniform frequency distribution over the entire Detection Bandwidth.

The signal monitoring equipment consists of a spectrum analyzer set to display 8001 bins on the horizontal axis. The time-domain resolution is 2 msec / bin with a 16 second sweep time, meeting the 10 second short pulse reporting criteria. The aggregate ON time is calculated by multiplying the number of bins above a threshold during a particular observation period by the dwell time per bin, with the analyzer set to peak detection and max hold.

Should multiple RF ports be utilized for the Master and/or Slave devices (for example, for diversity or MIMO implementations), additional combiner/dividers are inserted between the Master Combiner/Divider and the pad connected to the Master Device (and/or between the Slave Combiner/Divider and the pad connected to the Slave Device). Additional pads are utilized such that there is one pad at each RF port on each EUT.


5.2 CALIBRATION OF DFS DETECTION THRESHOLD LEVEL

A 50 ohm load is connected in place of the spectrum analyzer, and the spectrum analyzer is connected in place of the master device and the signal generator is set to CW mode. The amplitude of the signal generator is adjusted to yield a level of -62 dBm as measured on the spectrum analyzer.

Without changing any of the instrument settings, the spectrum analyer is reconnected to the Common port of the Spectrum Analyzer Combiner/Divider. Measure the amplitude and calculate the difference from –62 dBm. Adjust the Reference Level Offset of the spectrum analyzer to this difference.

The spectrum analyzer displays the level of the signal generator as received at the antenna ports of the Master Device. The interference detection threshold may be varied from the calibrated value of –62 dBm and the spectrum analyzer will still indicate the level as received by the Master Device.

Set the signal generator to produce a radar waveform, trigger a burst manually and measure the level on the spectrum analyzer. Readjust the amplitude of the signal generator as required so that the peak level of the waveform is at a displayed level equal to the required or desired interference detection threshold. Separate signal generator amplitude settings are determined as required for each radar type.

5.3 DEVIATION FROM TEST STANDARD

No deviation.

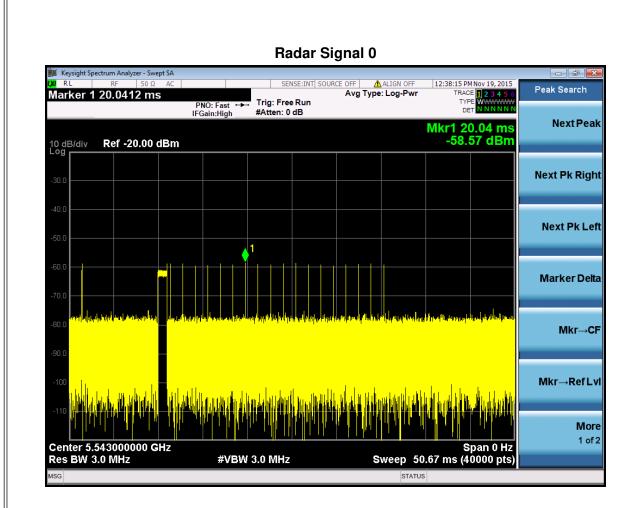
6. TEST RESULTS

6.1 SUMMARY OF TEST RESULT

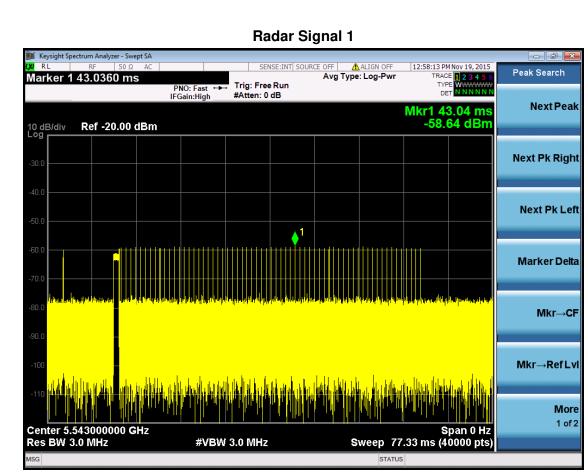
Clause	Test Parameter	Remarks	Pass/Fail
15.407	DFS Detection Threshold	Applicable	Pass
15.407	Channel Availability Check Time	Applicable	Pass
15.407	Channel Move Time	Applicable	Pass
15.407	Channel Closing Transmission Time	Applicable	Pass
15.407	Non- Occupancy Period	Applicable	Pass
15.407	Uniform Spreading	Applicable	Pass
15.407	U-NII Detection Bandwidth	Applicable	Pass

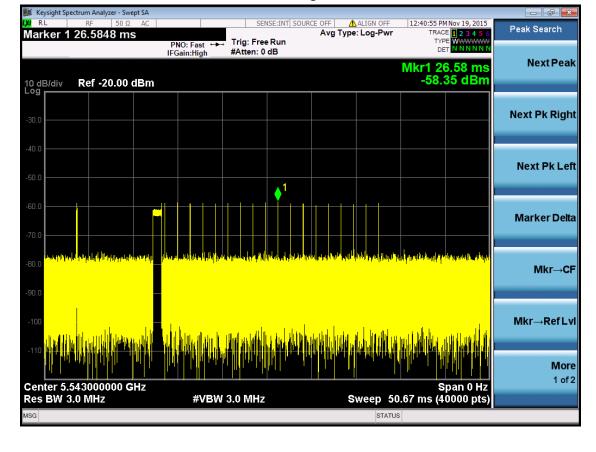
6.2 TEST MODE: DEVICE OPERATING IN MASTER MODE

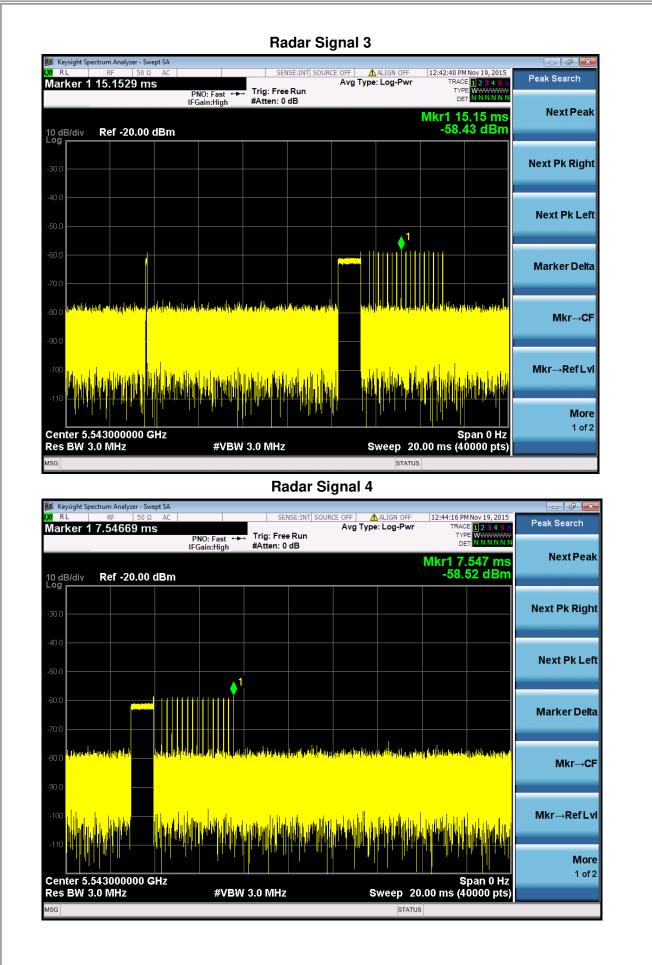
Master with injection at the Master. (Radar Test Waveforms are injected into the Master)

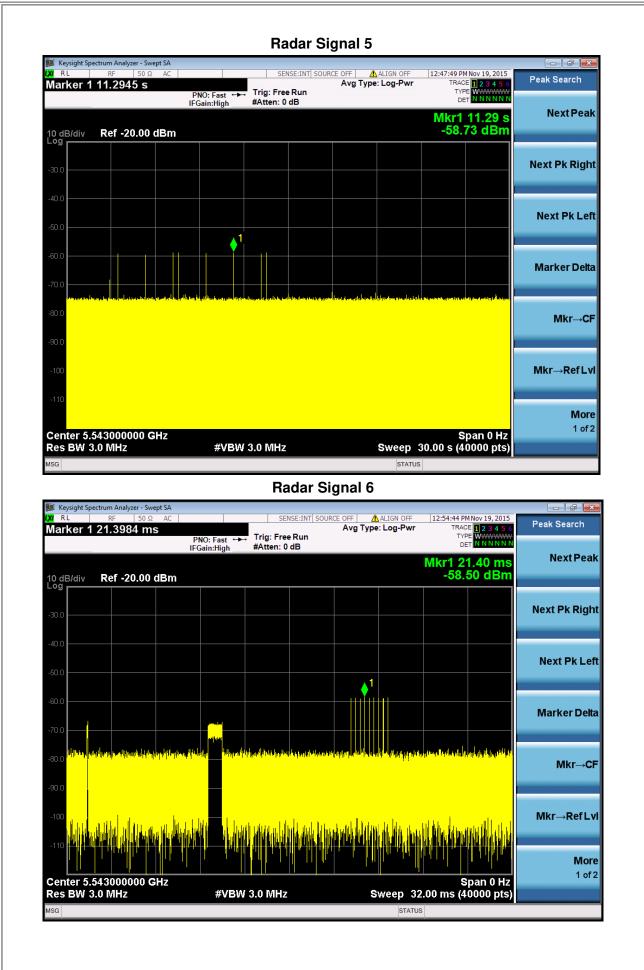

6.3 DFS DETECTION THRESHOLD

Calibration:


For a detection threshold level of -64dBmand the Master antenna gain is 5.89dBi, required detection threshold is -58.11 dBm (= -64+1.86).


Note: Maximum Transmit Power is more than 200 milliwatt in this report, so detection threshold level is -64dBm (please refer to Table 7 [page 10]).





Report No.: BTL-FCCP-1-1410101C

Trual ID	Radar Typo	Pulse Width (us)	PRI (us)	Number of Pulses	Wavefirm Length (us)
0	Туре 0	1	1428	18	25704
1	Туре 0	1	1428	18	25704
2	Туре 0	1	1428	18	25704
3	Туре 0	1	1428	18	25704
4	Type 0	1	1428	18	25704
5	Туре 0	1	1428	18	25704
6	Туре 0	1	1428	18	25704
7	Туре 0	1	1428	18	25704
8	Туре 0	1	1428	18	25704
9	Туре 0	1	1428	18	25704
10	Туре 0	1	1428	18	25704
11	Туре 0	1	1428	18	25704
12	Туре 0	1	1428	18	25704
13	Туре 0	1	1428	18	25704
14	Туре 0	1	1428	18	25704
15	Туре 0	1	1428	18	25704
16	Туре 0	1	1428	18	25704
17	Туре 0	1	1428	18	25704
18	Туре 0	1	1428	18	25704
19	Туре 0	1	1428	18	25704
20	Туре 0	1	1428	18	25704
21	Туре 0	1	1428	18	25704
22	Туре 0	1	1428	18	25704
23	Туре 0	1	1428	18	25704
24	Туре 0	1	1428	18	25704
25	Туре 0	1	1428	18	25704
26	Туре 0	1	1428	18	25704
27	Туре 0	1	1428	18	25704
28	Туре 0	1	1428	18	25704
29	Type 0	1	1428	18	25704

Trual ID	Radar Typo	Pulse Width (us)	PRI (us)	Number of Pulses	Wavefirm Length (us)
0	Type 1	1	938	57	53466
1	Type 1	1	698	76	53048
2	Type 1	1	618	86	53148
3	Type 1	1	538	99	53262
4	Type 1	1	878	61	53558
5	Type 1	1	3066	18	55188
6	Type 1	1	638	83	52954
7	Type 1	1	918	58	53244
8	Type 1	1	838	63	52794
9	Type 1	1	858	62	53196
10	Type 1	1	798	67	53466
11	Type 1	1	718	74	53132
12	Type 1	1	578	92	53176
13	Type 1	1	598	89	53222
14	Type 1	1	558	95	53010
15	Type 1	1	2536	21	53256
16	Type 1	1	966	55	53130
17	Type 1	1	827	64	52928
18	Type 1	1	2501	22	55022
19	Type 1	1	2595	21	54495
20	Type 1	1	1114	48	53472
21	Type 1	1	1302	41	53382
22	Type 1	1	3045	18	54810
23	Type 1	1	1624	33	53592
24	Type 1	1	2878	19	54682
25	Type 1	1	1027	52	53404
26	Type 1	1	2485	22	54670
27	Type 1	1	1600	33	52800
28	Type 1	1	1172	46	53912
29	Type 1	1	1177	45	52965

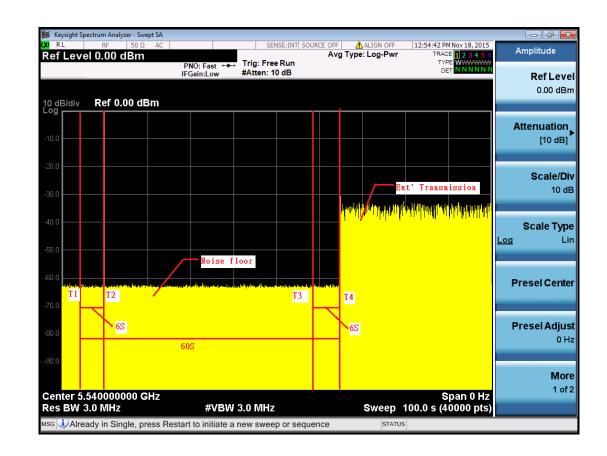
Trual ID	Radar Typo	Pulse Width (us)	PRI (us)	Number of Pulses	Wavefirm Length (us)
0	Type 2	3.2	179	26	4654
1	Type 2	1.1	207	23	4761
2	Type 2	2.1	230	24	5520
3	Type 2	4.8	200	29	5800
4	Type 2	3.9	214	28	5992
5	Type 2	2.9	222	26	5772
6	Type 2	3.2	204	26	5304
7	Type 2	2.5	192	25	4800
8	Type 2	3.1	164	26	4264
9	Type 2	1.2	156	23	3588
10	Type 2	3.9	210	27	5670
11	Type 2	4.6	201	29	5829
12	Type 2	3.2	162	26	4212
13	Type 2	2.2	197	25	4925
14	Type 2	4.5	163	29	4727
15	Type 2	3	203	26	5278
16	Type 2	5	168	29	4872
17	Type 2	2.4	217	25	5425
18	Type 2	2.9	191	26	4966
19	Type 2	2.3	166	25	4150
20	Type 2	3.7	150	27	4050
21	Type 2	2.2	176	25	4400
22	Type 2	4.9	195	29	5655
23	Type 2	2.9	202	26	5252
24	Type 2	2.5	178	25	4450
25	Type 2	1.1	206	23	4738
26	Type 2	3.8	155	27	4185
27	Type 2	4.7	157	29	4553
28	Type 2	2.4	224	25	5600
29	Type 2	4.2	159	28	4452

Trual ID	Radar Typo	Pulse Width (us)	PRI (us)	Number of Pulses	Wavefirm Length (us)
0	Туре 3	8.2	355	17	6035
1	Туре 3	6.1	487	16	7792
2	Туре 3	7.1	344	16	5504
3	Туре 3	9.8	288	18	5184
4	Туре 3	8.9	230	18	4140
5	Туре 3	7.9	432	17	7344
6	Туре 3	8.2	207	17	3519
7	Туре 3	7.5	443	17	7531
8	Туре 3	8.1	439	17	7463
9	Туре 3	6.2	223	16	3568
10	Туре 3	8.9	208	18	3744
11	Туре 3	9.6	463	18	8334
12	Туре 3	8.2	441	17	7497
13	Туре 3	7.2	323	16	5168
14	Туре 3	9.5	297	18	5346
15	Туре 3	8	412	17	7004
16	Туре 3	10	324	18	5832
17	Туре 3	7.4	271	17	4607
18	Туре 3	7.9	349	17	5933
19	Туре 3	7.3	409	16	6544
20	Туре 3	8.7	373	18	6714
21	Туре 3	7.2	254	16	4064
22	Туре 3	9.9	274	18	4932
23	Туре 3	7.9	278	17	4726
24	Туре 3	7.5	317	17	5389
25	Туре 3	6.1	260	16	4160
26	Туре 3	8.8	211	18	3798
27	Туре 3	9.7	272	18	4896
28	Туре 3	7.4	264	17	4488
29	Туре 3	9.2	284	18	5112

Trual ID	Radar Typo	Pulse Width (us)	PRI (us)	Number of Pulses	Wavefirm Length (us)
0	Type 4	16	355	14	4970
1	Type 4	11.3	487	12	5844
2	Type 4	13.5	344	13	4472
3	Type 4	19.4	288	16	4608
4	Type 4	17.5	230	15	3450
5	Type 4	15.3	432	14	6048
6	Type 4	15.9	207	14	2898
7	Type 4	14.3	443	13	5759
8	Type 4	15.8	439	14	6146
9	Type 4	11.5	223	12	2676
10	Type 4	17.4	208	15	3120
11	Type 4	19	463	16	7408
12	Type 4	16	441	14	6174
13	Type 4	13.8	323	13	4199
14	Type 4	18.9	297	16	4752
15	Type 4	15.5	412	14	5768
16	Type 4	19.9	324	16	5184
17	Type 4	14.1	271	13	3523
18	Type 4	15.2	349	14	4886
19	Type 4	13.8	409	13	5317
20	Type 4	17.1	373	15	5595
21	Type 4	13.8	254	13	3302
22	Type 4	19.8	274	16	4384
23	Type 4	15.3	278	14	3892
24	Type 4	14.5	317	13	4121
25	Type 4	11.3	260	12	3120
26	Type 4	17.3	211	15	3165
27	Type 4	19.2	272	16	4352
28	Type 4	14.2	264	13	3432
29	Type 4	18.2	284	15	4260

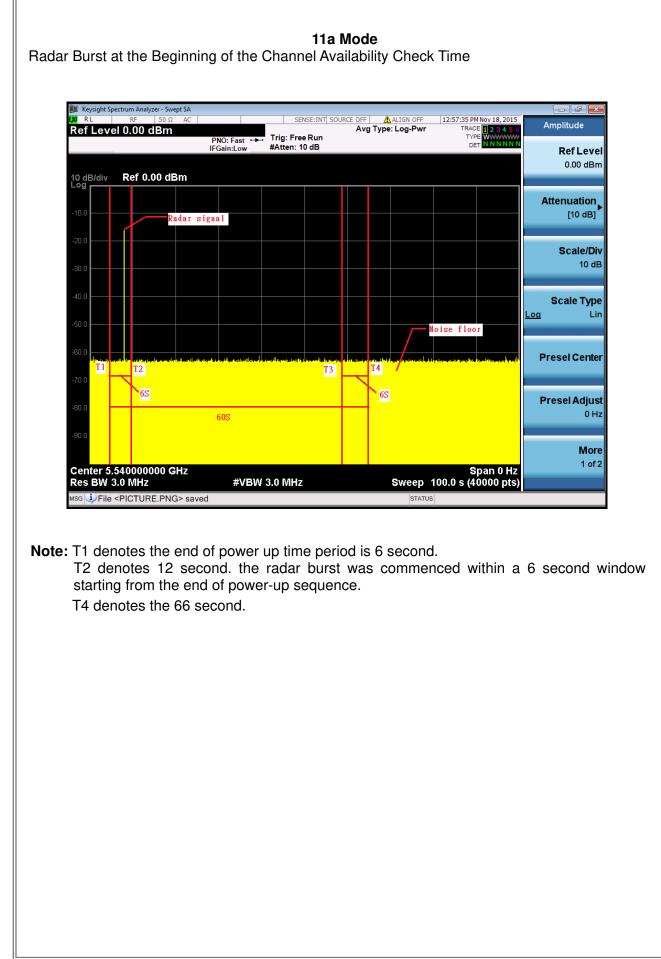
Trual ID	Radar Typo	Pulse Width (us)	PRI (us)	Number of Pulses	Center Frequency(GHz)	
0	Type 5	15	0.8	12	5.5525	
1	Type 5	8	1.5	12	5.5325	
2	Type 5	11	1.0909091	12	5.5415	
3	Type 5	20	0.6	12	5.5665	
4	Type 5	17	0.7058824	12	5.5585	
5	Type 5	14	0.8571429	12	5.5495	
6	Type 5	15	0.8	12	5.5515	
7	Type 5	12	1	12	5.5445	
8	Type 5	14	0.8571429	12	5.5515	
9	Type 5	8	1.5	12	5.5335	
10	Type 5	17	0.7058824	12	5.5585	
11	Type 5	19	0.6315789	12	5.5645	
12	Type 5	15	0.8	12	5.5515	
13	Type 5	12	1	12	5.5425	
14	Type 5	19	0.6315789	12	5.5645	
15	Type 5	14	0.8571429	12	5.5495	
16	Type 5	20	0.6	12	5.5685	
17	Type 5	12	1	12	5.5445	
18	Type 5	14	0.8571429	12	5.5485	
19	Type 5	12	1	12	5.5435	
20	Type 5	16	0.75	12	5.5565	
21	Type 5	12	1	12	5.5425	
22	Type 5	20	0.6	12	5.5675	
23	Type 5	14	0.8571429	12	5.5495	
24	Type 5	13	0.9230769	12	5.5455	
25	Type 5	8	1.5	12	5.5325	
26	Type 5	17	0.7058824	12	5.5575	
27	Type 5	Type 5 19 0.6315789 12		12	5.5655	
28	Type 5	be 5 12 1 12		12	5.5445	
29	Type 5	18	0.6666667	12	5.5615	

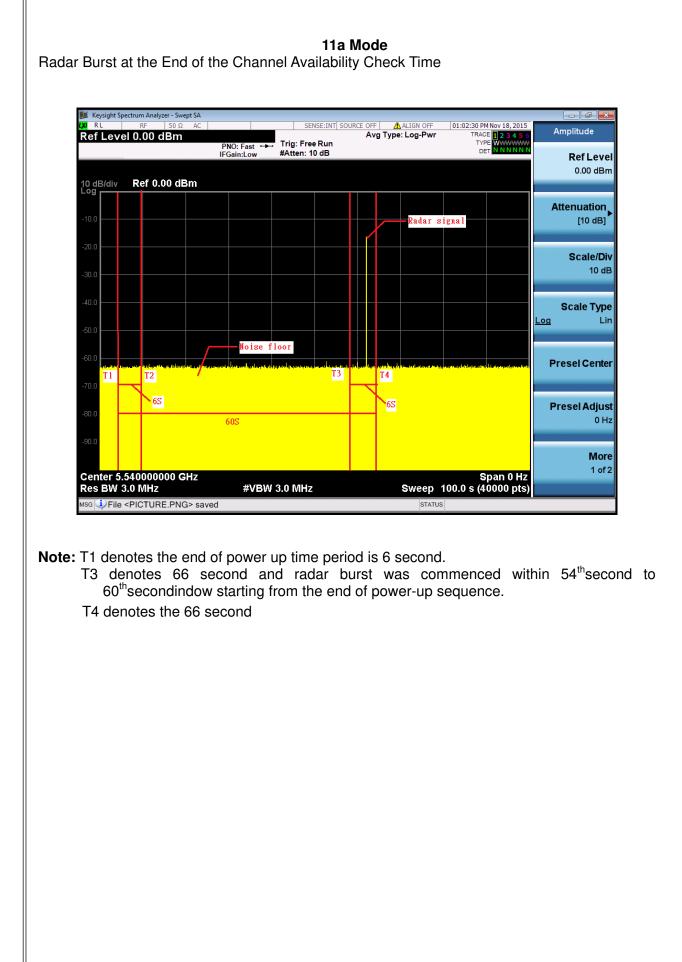
Trual ID	Radar Typo	Pulse Width (μs)	PRI (μs)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (ms)	Number of Pulses
0	Type 6	1	333.3	9	0.3333	300	16
1	Type 6	1	333.3	9	0.3333	300	10
2	Type 6	1	333.3	9	0.3333	300	14
3	Type 6	1	333.3	9	0.3333	300	19
4	Type 6	1	333.3	9	0.3333	300	15
5	Type 6	1	333.3	9	0.3333	300	18
6	Type 6	1	333.3	9	0.3333	300	14
7	Type 6	1	333.3	9	0.3333	300	14
8	Type 6	1	333.3	9	0.3333	300	21
9	Type 6	1	333.3	9	0.3333	300	15
10	Type 6	1	333.3	9	0.3333	300	16
11	Type 6	1	333.3	9	0.3333	300	24
12	Type 6	1	333.3	9	0.3333	300	13
13	Type 6	1	333.3	9	0.3333	300	20
14	Type 6	1	333.3	9	0.3333	300	17
15	Type 6	1	333.3	9	0.3333	300	20
16	Type 6	1	333.3	9	0.3333	300	16
17	Type 6	1	333.3	9	0.3333	300	18
18	Type 6	1	333.3	9	0.3333	300	14
19	Type 6	1	333.3	9	0.3333	300	16
20	Type 6	1	333.3	9	0.3333	300	20
21	Type 6	1	333.3	9	0.3333	300	19
22	Type 6	1	333.3	9	0.3333	300	23
23	Type 6	1	333.3	9	0.3333	300	17
24	Type 6	1	333.3	9	0.3333	300	16
25	Type 6	1	333.3	9	0.3333	300	13
26	Type 6	1	333.3	9	0.3333	300	13
27	Type 6	1	333.3	9	0.3333	300	18
28	Type 6	1	I 333.3 9 0.3333 300		19		
29	Type 6	1	333.3	9	0.3333	300	20



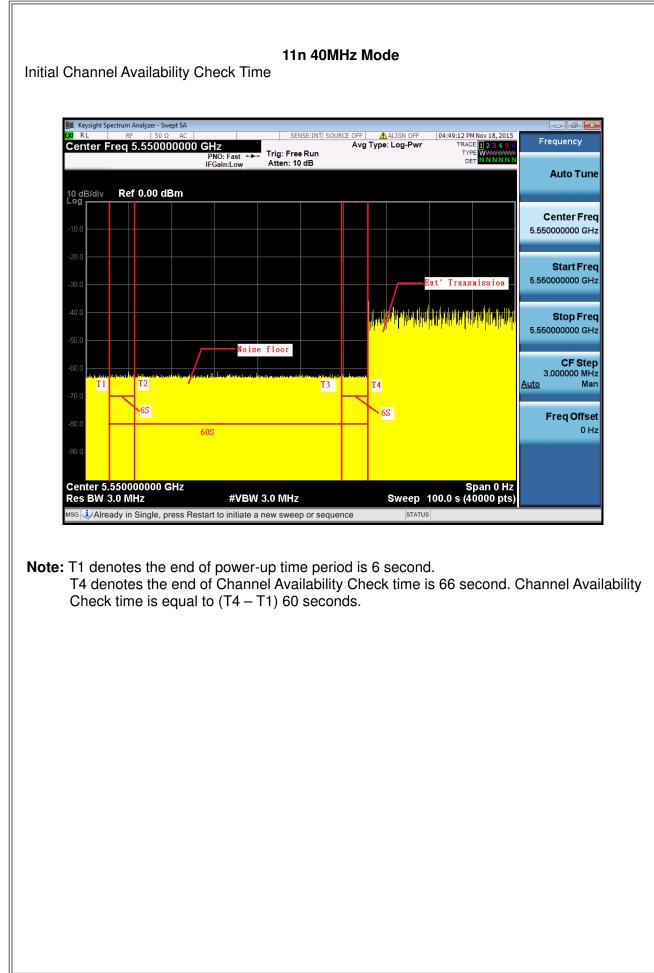
6.4 CHANNEL AVAILABILITY CHECK TIME

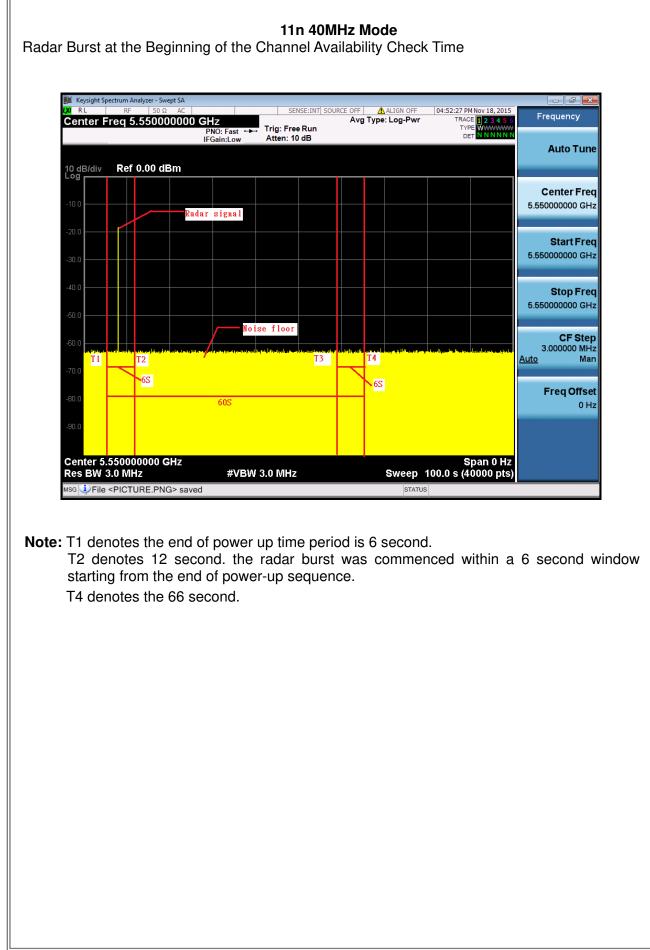
If the UUT successfully detected the radar burst, it should be observed as the UUT has no transmissions occurred until the UUT starts transmitting on another channel.

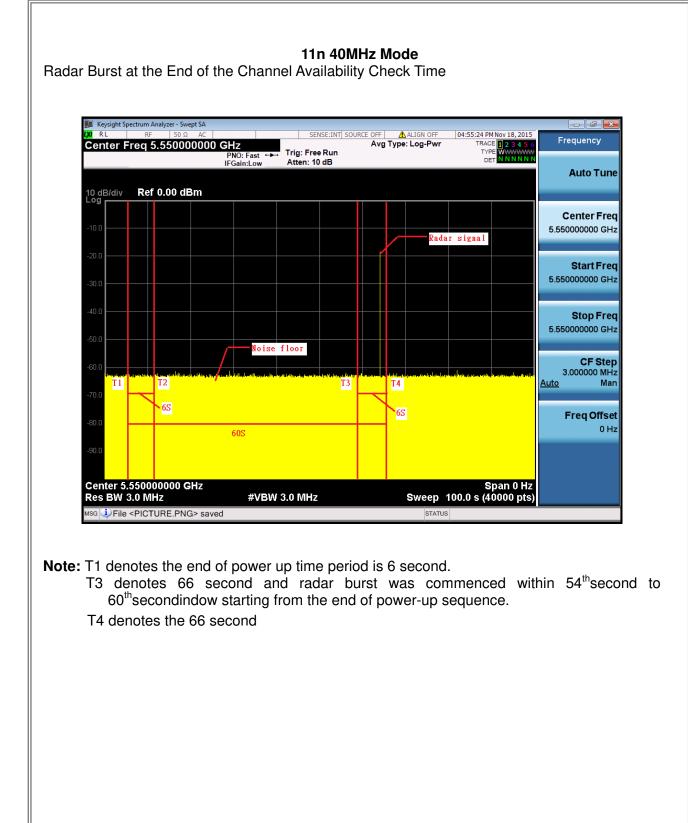

Initial Channel Availability Check Time

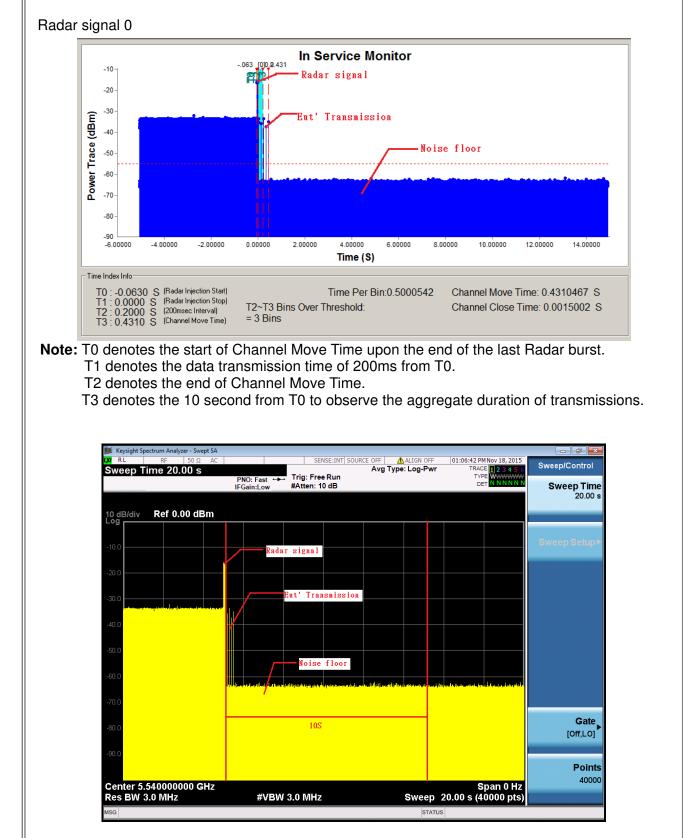

Note:T1 denotes the end of power-up time period is 6 second.

T4 denotes the end of Channel Availability Check time is 66 second. Channel Availability Check time is equal to (T4 - T1) 60 seconds.

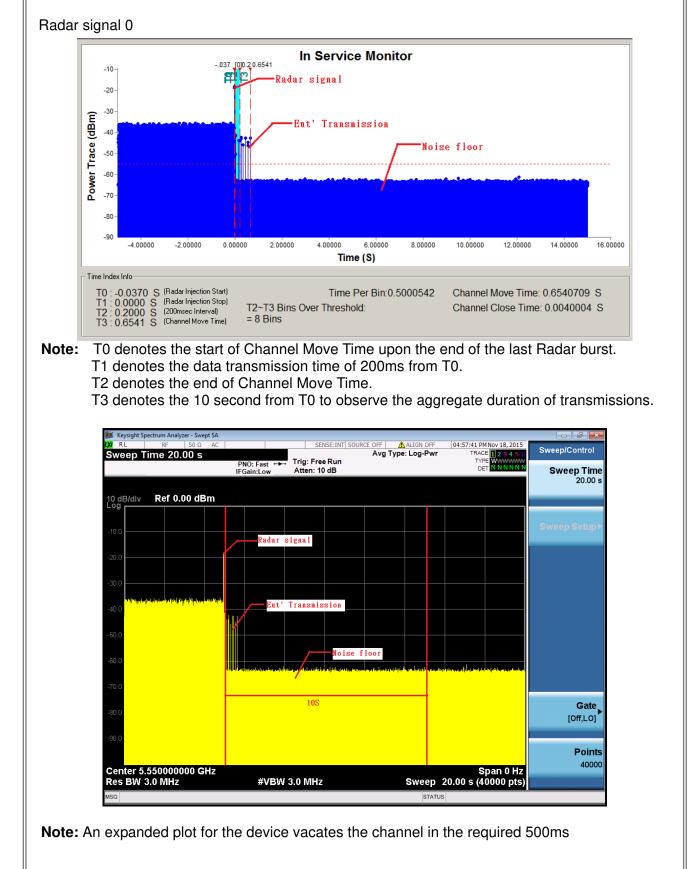








6.5 CHANNEL CLOSING TRANSMISSION AND CHANNEL MOVE TIME WLAN TRAFFIC


TX (11a Mode)

Note: An expanded plot for the device vacates the channel in the required 500ms

TX (11n 40MHz Mode)

6.6 STATISTICAL PERFORMANCE CHECK

TX (11a Mode)

Table 1: Short Pulse Radar Test Waveforms.

Radar Type	Pulse Width (µsec)	PRI (µsec)	Number of Pulses	Pass times	Fail times	Percentage ofSuccessful Detection (%)
1	1 1		Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a Test B: 15 unique PRI values randomly selected within the range of 518-3066 µsec, with a minimum increment of 1 µsec, excluding PRI values selected in Test A		3	90
2	1-5	150-230	23-29	20	10	67
3	6-10	200-500	16-18	25	5	83
4 11-20		200-500	12-16	27	3	90
Aggreg	ate (Radar Type	es 1-4)	_	99	21	83

Table 2: Long Pulse Radar Test Waveform

Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Numberof Pulses PerBurst	Numbe rof Bursts	Pass times	Fail times	Percentage of Successful Detection (%)
5	50-100	5-20	1000-2000	1-3	8-20	28	2	93

Table 3: Frequency Hopping Radar Test Waveform

Radar Type	Pulse Width (μsec)	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Pass times	Fail times	Percentage of Successful Detection (%)
6	1	333	9	0.333	300	28	2	93

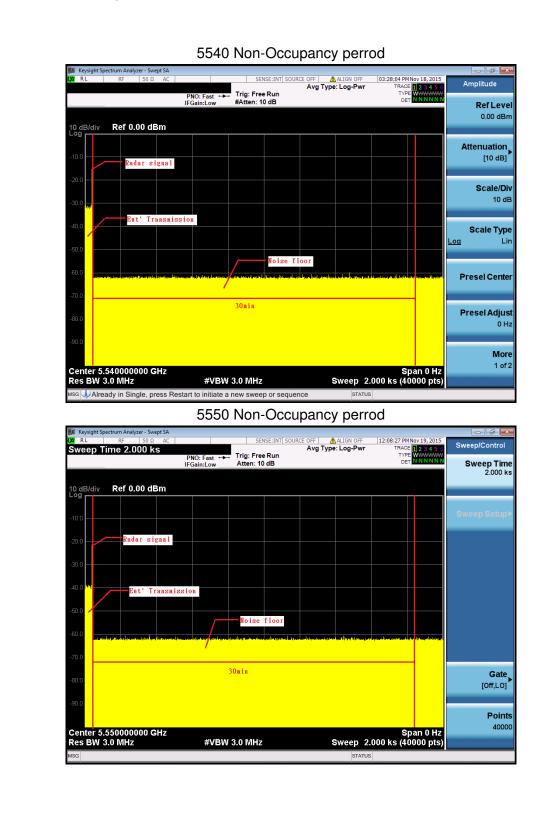
TX (11n 40MHz Mode)

Table 1: Short Pulse Radar Test Waveforms.

Radar Type	Pulse Width (µsec)	PRI (µsec)	Number of Pulses	Pass times	Fail times	Percentage of Successful Detection (%)
1	1	Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a Test B: 15 unique PRI values randomly selected within the range of 518-3066 µsec, with a minimum increment of 1 µsec, excluding PRI values selected in Test A	$-\frac{\text{Roundup}}{\left(\frac{1}{360}\right)} \left(\frac{19 \cdot 10^6}{\text{PRI}_{\mu use}}\right)$	29	2	93
2	1-5	150-230	23-29	28	3	90
3	6-10	200-500	16-18	27	4	87
4	11-20	200-500 12-16		28	8	73
Aggreg	ate (Radar Type	s 1-4)	-	112	17	86

Table 2: Long Pulse Radar Test Waveform

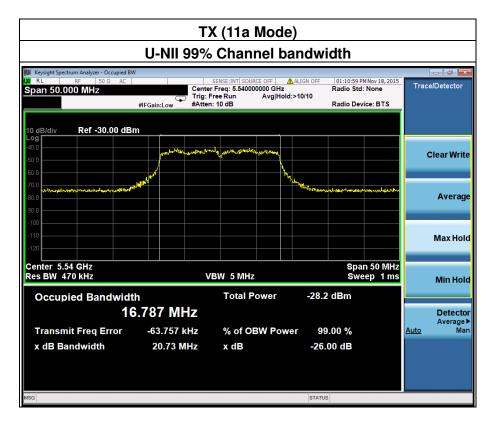
Rada Type	Width	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Pass times	Fail times	Percentage of Successful Detection (%)
5	50-100	5-20	1000-2000	1-3	8-20	30	0	100

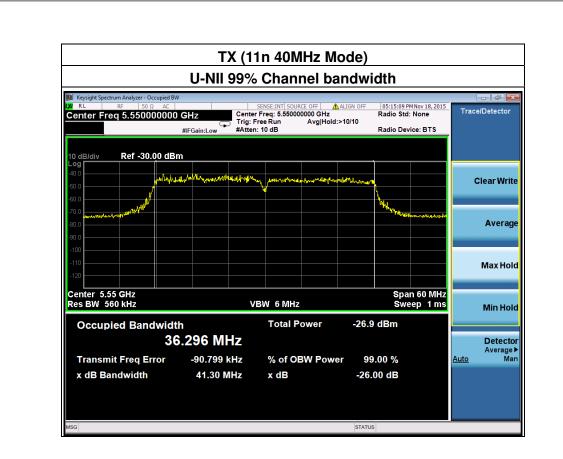

Table 3: Frequency Hopping Radar Test Waveform

Radar Type	Pulse Width (μsec)	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Pass times	Fail times	Percentage of Successful Detection (%)
6	1	333	9	0.333	300	30	0	100

6.7 NON- OCCUPANCY PERIOD

During the 30 minutes observation time, UUT did not make any transmissions on a channel after a radar signal was detected on that channel by either the Channel Availability Check or the In-Service Monitoring.



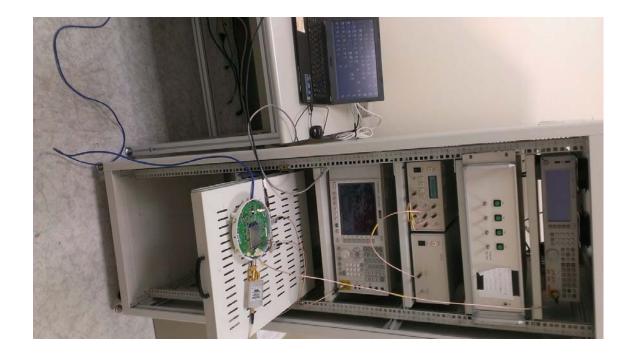

6.8 UNIFORM SPREADING

The intention of the uniform spreading is to provide, on aggregate, a uniform loading of the spectrum. The UUT using the bands 5250 to 5350MHz and 5470 to 5600 MHz channels so that the probability of selecting a given channel shall be the same for channels. The UUT will select channel by random mode and remember this channel when detect radar signal, so that will select unused channel by random mode.

6.9 U-NII DETECTION BANDWIDTH

11a Mode

			D	etection E	Bandwith	test trann	nission 20	M				
EUT FREQUENCY		5540M										
EUT power bandwit	th	17										
Detection Bandwith	limit(100	%of EUT	99% Pow	er bandw	16.787							
Detection Bandwith	5548(FH	5532(FL)									
Test Result	PASS											
	DFS Detection Trials (1=Detection, 0= No Detection)											
Radar Freq (MHz)	1	2	3	4	5	6	7	8	9	10	Detection Rate (%)	
5529	1	1	0	1	0	0	1	1	0	1	60	
5530	1	1	1	1	1	1	1	1	1	1	100	
5531	1	1	1	1	1	1	1	1	1	1	100	
5532(FL)	1	1	1	1	1	1	1	1	1	1	100	
5533	1	1	1	1	1	1	1	1	1	1	100	
5534	1	1	1	1	1	1	1	1	1	1	100	
5535	1	1	1	1	1	1	1	1	1	1	100	
5536	1	1	1	1	1	1	1	1	1	1	100	
5537	1	1	1	1	1	1	1	1	1	1	100	
5538	1	1	1	1	1	1	1	1	1	1	100	
5539	1	1	1	1	1	1	1	1	1	1	100	
5540	1	1	1	1	1	1	1	1	1	1	100	
5541	1	1	1	1	1	1	1	1	1	1	100	
5542	1	1	1	1	1	1	1	1	1	1	100	
5543	1	1	1	1	1	1	1	1	1	1	100	
5544	1	1	1	1	1	1	1	1	1	1	100	
5545	1	1	1	1	1	1	1	1	1	1	100	
5546	1	1	1	1	1	1	1	1	1	1	100	
5547	1	1	1	1	1	1	1	1	1	1	100	
5548(FH)	1	1	1	1	1	1	1	1	1	1	100	
5549	1	1	1	1	1	1	1	1	1	1	100	



11n 40MHz Mode

11n 40MHz M												
Detection Bandwith test tranmis												
EUT FREQUENCY		5550M										
EUT power bandwi	36MHz											
Detection Bandwith				er bandw	ith)	36.29						
Detection Bandwith		H)-5531(F	L))	39								
Test Result	PASS											
			DFS De	etection T	rials (1=D	etection,	0= No De	tection)				
Radar Freq (MHz)	1	2	3	4	5	6	7	8	9	10	Detection Rate (%)	
5529	1	1	1	1	1	1	0	0	1	1	80	
5530	1	1	1	1	1	0	1	1	1	1	90	
5531(FL)	1	1	1	1	1	1	1	1	1	1	100	
5532	1	1	1	1	1	1	1	1	1	1	100	
5533	1	1	1	1	1	1	1	1	1	1	100	
5534	1	1	1	1	1	1	1	1	1	1	100	
5535	1	1	1	1	1	1	1	1	1	1	100	
5536	1	1	1	1	1	1	1	1	1	1	100	
5537	1	1	1	1	1	1	1	1	1	1	100	
5538	1	1	1	1	1	1	1	1	1	1	100	
5539	1	1	1	1	1	1	1	1	1	1	100	
5540	1	1	1	1	1	1	1	1	1	1	100	
5541	1	1	1	1	1	1	1	1	1	1	100	
5542	1	1	1	1	1	1	1	1	1	1	100	
5543	1	1	1	1	1	1	1	1	1	1	100	
5544	1	1	1	1	1	1	1	1	1	1	100	
5545	1	1	1	1	1	1	1	1	1	1	100	
5546	1	1	1	1	1	1	1	1	1	1	100	
5547	1	1	1	1	1	1	1	1	1	1	100	
5548	1	1	1	1	1	1	1	1	1	1	100	
5549	1	1	1	1	1	1	1	1	1	1	100	
5550	1	1	1	1	1	1	1	1	1	1	100	
5551	1	1	1	1	1	1	1	1	1	1	100	
5552	1	1	1	1	1	1	1	1	1	1	100	
5553	1	1	1	1	1	1	1	1	1	1	100	
5554	1	1	1	1	1	1	1	1	1	1	100	
5555	1	1	1	1	1	1	1	1	1	1	100	
5556	1	1	1	1	1	1	1	1	1	1	100	
5557	1	1	1	1	1	1	1	1	1	1	100	
5558	1	1	1	1	1	1	1	1	1	1	100	
5559	1	1	1	1	1	1	1	1	1	1	100	
5560	1	1	1	1	1	1	1	1	1	1	100	
5561	1	1	1	1	1	1	1	1	1	1	100	
5562	1	1	1	1	1	1	1	1	1	1	100	
5563	1	1	1	1	1	1	1	1	1	1	100	
5564	1	1	1	1	1	1	1	1	1	1	100	
5565	1	1	1	1	1	1	1	1	1	1	100	
5566	1	1	1	1	1	1	1	1	1	1	100	
5567	1	1	1	1	1	1	1	1	1	1	100	
5568	1	1	1	1	1	1	1	1	1	1	100	
5569(FL)	1	1	1	1	1	1	1	1	1	1	100	
5570	1	1	1	1	1	1	1	1	1	1	100	
5571	0	0	1	1	0	0	0	0	0	0	20	

7. EUT TEST PHOTO

