

RADIO TEST REPORT FCC ID: 2A3PH-XR-636DP-99

Product: TURNTABLE

Trade Mark: Axcel, DLTIME, dl Model No.: XR-636DP-99 XR-639P-X, XR-636DP-50, Family Model: XR-636DP-51, XR-636DP-53, XR-636DP-87, XR-636DP-88 Report No.: S22040802004001 Issue Date: Jun 30. 2022

Prepared for

Axcel (Huizhou) Technology Co., Ltd.

Xinsongyaoyu Industrial Park, Dongming Village,516269 Shatian Town, Huiyang District, Huizhou, Guangdong, China

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website: http://www.ntek.org.cn

I

TABLE OF CONTENTS

1 TH	EST RESULT CERTIFICATION	3		
2 SU	2 SUMMARY OF TEST RESULTS			
3 FA	ACILITIES AND ACCREDITATIONS	5		
3.1	FACILITIES			
3.2	LABORATORY ACCREDITATIONS AND LISTINGS			
3.3	MEASUREMENT UNCERTAINTY			
	ENERAL DESCRIPTION OF EUT			
5 DI	ESCRIPTION OF TEST MODES	8		
6 SE	ETUP OF EQUIPMENT UNDER TEST	9		
6.1	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM	9		
6.2	SUPPORT EQUIPMENT	10		
6.3	EQUIPMENTS LIST FOR ALL TEST ITEMS			
7 TI	EST REQUIREMENTS	13		
7.1	CONDUCTED EMISSIONS TEST			
7.2	RADIATED SPURIOUS EMISSION			
7.3	NUMBER OF HOPPING CHANNEL			
7.4	HOPPING CHANNEL SEPARATION MEASUREMENT			
7.5 7.6	AVERAGE TIME OF OCCUPANCY (DWELL TIME)			
7.6	PEAK OUTPUT POWER			
7.7	CONDUCTED BAND EDGE MEASUREMENT			
7.8	SPURIOUS RF CONDUCTED EMISSION			
7.10	ANTENNA APPLICATION			
	FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS			
	EST RESULTS			
8.1	DWELL TIME			
8.2	MAXIMUM CONDUCTED OUTPUT POWER			
8.3 8.4	Occupied Channel Bandwidth Carrier Frequencies Separation			
8.4 8.5	CARRIER FREQUENCIES SEPARATION NUMBER OF HOPPING CHANNEL			
8.3 8.6	NUMBER OF HOPPING CHANNEL			
8.0 8.7	CONDUCTED RF SPURIOUS EMISSION			
0.7				

1 TEST RESULT CERTIFICATION

Axcel (Huizhou) Technology Co., Ltd.
Xinsongyaoyu Industrial Park, Dongming Village,516269 Shatian Town, Huiyang District, Huizhou, Guangdong, China
Axcel (Huizhou) Technology Co., Ltd.
Xinsongyaoyu Industrial Park, Dongming Village,516269 Shatian Town, Huiyang District, Huizhou, Guangdong, China
TURNTABLE
XR-636DP-99
XR-639P-X, XR-636DP-50, XR-636DP-51, XR-636DP-53, XR-636DP-87, XR-636DP-88

Measurement Procedure Used:

APPLICABLE STANDARDS				
STANDARD/ TEST PROCEDURE		TEST RESULT		
FCC 47 CFR Part 2, Subpart J FCC 47 CFR Part 15, Subpart C ANSI C63.10-2013		Complied		
This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report. This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., and shall be noted in the revision of the document.				
The test results of this report relate	only to the tested s	ample identified in this report.		
Date of Test	:A	pr 11 . 2022 ~ Jun 29. 2022		
Testing Engineer	:	Allen Liu)		
Authorized Signatory	:	(Alex Li)		

2 SUMMARY OF TEST RESULTS				
FCC Part15 (15.247), Subpart C				
Standard Section	Test Item	Verdict	Remark	
15.207	Conducted Emission	PASS		
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS		
15.247(a)(1)	Hopping Channel Separation	PASS		
15.247(b)(1)	Peak Output Power	PASS		
15.247(a)(iii)	Number of Hopping Frequency	PASS		
15.247(a)(iii)	Dwell Time	PASS		
15.247(a)(1)	Bandwidth	PASS		
15.247 (d)	Band Edge Emission	PASS		
15.247 (d)	Spurious RF Conducted Emission	PASS		
15.203	Antenna Requirement	PASS		

Remark:

 "N/A" denotes test is not applicable in this Test Report.
 All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab.	: The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
	This laboratory is accredited in accordance with the recognized
	International Standard ISO/IEC 17025:2005 General requirements for
	the competence of testing and calibration laboratories.
	This accreditation demonstrates technical competence for a defined
	scope and the operation of a laboratory quality management system
	(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
	: Shenzhen NTEK Testing Technology Co., Ltd.
Site Location	: 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang
	Street, Bao'an District, Shenzhen 518126 P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%
9	All emissions, radiated(9KHz~30MHz)	±6dB

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification		
Equipment	TURNTABLE	
Trade Mark	Axcel, DLTIME, dl	
FCC ID	2A3PH-XR-636DP-99	
Model No.	XR-636DP-99	
Family Model	XR-639P-X, XR-636DP-50, XR-636DP-51, XR-636DP-53, XR-636DP-87, XR-636DP-88	
Model Difference	All models are the same circuit and RF module, except the appearance.	
Operating Frequency	2402MHz~2480MHz	
Modulation	GFSK, π/4-DQPSK, 8-DPSK	
Number of Channels	79 Channels	
Antenna Type	PCB Antenna	
Antenna Gain	2 dBi	
Adapter	Model: FJ-SW2120502000U Input: 100-240V~50/60Hz 0.4A Max Output: 5V2A	
Battery	N/A	
Power supply	DC 5V from Adapter.	
HW Version	XR-636DP-88	
SW Version	AXE636-88_6902A_DL-636DP-88_8A00	
L		

Note 1: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Certificate #4298.01			
Report No.	Version	Description	Issued Date
S22040802004001	Rev.01	Initial issue of report	Jun 30. 2022

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for GFSK modulation; 2Mbps for π /4-DQPSK modulation; 3Mbps for 8-DPSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement –X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

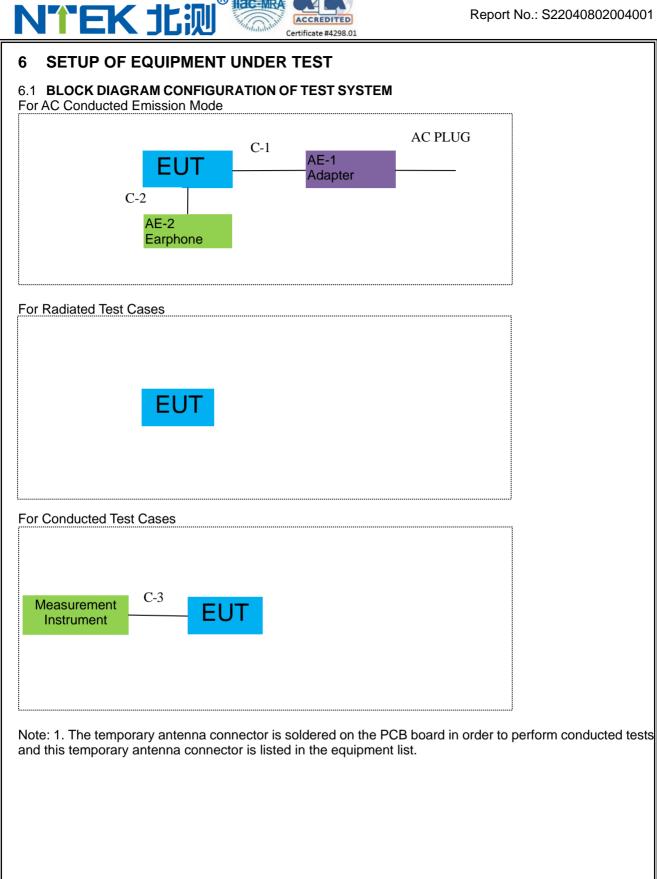
Carrier Frequency and Channel list:

Channel	Frequency(MHz)
0	2402
1	2403
39	2441
40	2442
77	2479
78	2480

Note: fc=2402MHz+k×1MHz k=0 to 78

The following summary table is showing all test modes to demonstrate in compliance with the standard.

For AC Conducted Emission			
Final Test Mode	Final Test Mode Description		
Mode 1 normal link mode			
Note AQ as a selfer Quert stat Exclusion and tested a degree for an estat second			


Note: AC power line Conducted Emission was tested under maximum output power.

For Radiated Test Cases		
Final Test Mode	Description	
Mode 1	normal link mode	
Mode 2	CH00(2402MHz)	
Mode 3	CH39(2441MHz)	
Mode 4	CH78(2480MHz)	

Note: For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

For Conducted Test Cases		
Final Test Mode	Description	
Mode 2	CH00(2402MHz)	
Mode 3	CH39(2441MHz)	
Mode 4	CH78(2480MHz)	
Mode 5	Hopping mode	

Note: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

R

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model/Type No.	Series No.	Note
AE-1	Adapter	FJ-SW2120502000U	N/A	Peripherals
AE-2	Earphone	N/A	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	DC Cable	YES	NO	1.2m
C-2	Earphone Cable	NO	NO	1.2m
C-3	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

		estequipment					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2022.04.06	2023.04.05	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2021.07.01	2022.06.30	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2021.07.01	2022.06.30	1 year
4	Test Receiver	R&S	ESPI7	101318	2022.04.06	2023.04.05	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2022.03.30	2023.03.29	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11	2023.05.10	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2022.03.31	2023.03.30	1 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2021.11.07	2022.11.06	1 year
9	Amplifier	EMC	EMC051835 SE	980246	2021.07.01	2022.06.30	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2021.11.07	2022.11.06	1 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2021.07.01	2022.06.30	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2019.08.06	2022.08.05	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2019.08.06	2022.08.05	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2019.08.06	2022.08.05	3 year
15	High Test Cable(1G-40G Hz)	N/A	R-04	N/A	2019.08.06	2022.08.05	3 year
16	Filter	TRILTHIC	2400MHz	29	2021.07.01	2022.06.30	1 year
17	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Conduction Test equipment							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2022.04.06	2023.04.05	1 year
2	LISN	R&S	ENV216	101313	2022.04.06	2023.04.05	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2022.04.06	2023.04.05	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2020.05.11	2023.05.10	3 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2020.05.11	2023.05.10	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2020.05.11	2023.05.10	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2020.05.11	2023.05.10	3 year

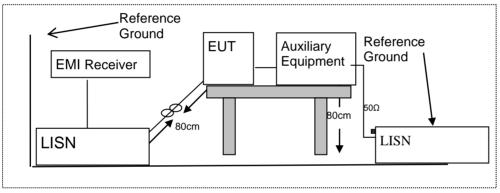
Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

7.1.1 Applicable Standard

According to FCC Part 15.207(a)


7.1.2 Conformance Limit

	Conducted Emission Limit		
Frequency(MHz)	Quasi-peak	Average	
0.15-0.5	66-56*	56-46*	
0.5-5.0	56	46	
5.0-30.0	60	50	

Note: 1. *Decreases with the logarithm of the frequency

- 2. The lower limit shall apply at the transition frequencies
 - 3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Test Configuration

7.1.4 Test Procedure

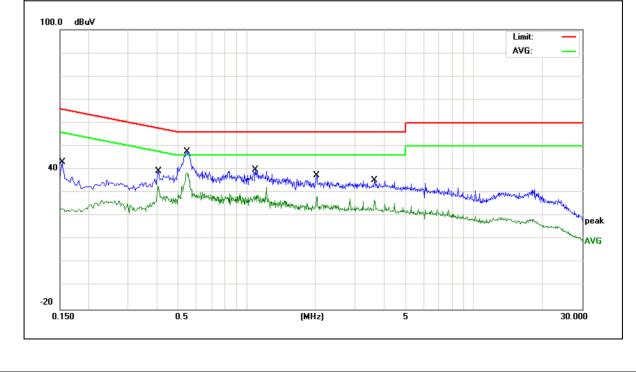
According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable
 may be terminated, if required, using the correct terminating impedance. The overall length shall not
 exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item -EUT Test Photos.

7.1.5 Test Results

Pass

7.1.6 Test Results

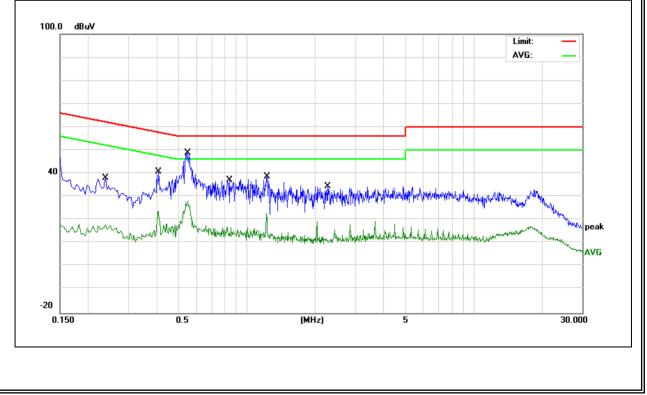

EUT:	TURNTABLE	Model Name :	XR-636DP-99
Temperature:	22 ℃	Relative Humidity:	57%
Pressure:	1010hPa	Phase :	L
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Domork
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1539	33.56	9.60	43.16	65.78	-22.62	QP
0.1539	23.13	9.60	32.73	55.78	-23.05	AVG
0.4100	29.73	9.65	39.38	57.65	-18.27	QP
0.4100	18.37	9.65	28.02	47.65	-19.63	AVG
0.5460	37.94	9.65	47.59	56.00	-8.41	QP
0.5460	28.79	9.65	38.44	46.00	-7.56	AVG
1.0900	30.33	9.67	40.00	56.00	-16.00	QP
1.0900	22.67	9.67	32.34	46.00	-13.66	AVG
2.0300	27.74	9.68	37.42	56.00	-18.58	QP
2.0300	18.79	9.68	28.47	46.00	-17.53	AVG
3.6580	25.47	9.74	35.21	56.00	-20.79	QP
3.6580	15.62	9.74	25.36	46.00	-20.64	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.


EUT:	TURNTABLE	Model Name :	XR-636DP-99
Temperature:	25 ℃	Relative Humidity:	62%
Pressure:	1010hPa	Phase :	Ν
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	
	-				-	Remark
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	
0.2380	28.40	9.61	38.01	62.16	-24.15	QP
0.2380	18.61	9.61	28.22	52.16	-23.94	AVG
0.4100	31.14	9.66	40.80	57.65	-16.85	QP
0.4100	20.70	9.66	30.36	47.65	-17.29	AVG
0.5500	39.26	9.65	48.91	56.00	-7.09	QP
0.5500	31.40	9.65	41.05	46.00	-4.95	AVG
0.8420	27.55	9.66	37.21	56.00	-18.79	QP
0.8420	18.46	9.66	28.12	46.00	-17.88	AVG
1.2300	28.94	9.66	38.60	56.00	-17.40	QP
1.2300	18.70	9.66	28.36	46.00	-17.64	AVG
2.2659	24.66	9.68	34.34	56.00	-21.66	QP
2.2659	15.68	9.68	25.36	46.00	-20.64	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

According to 1 CC 1 art13.203, restricted bands				
MHz	MHz	MHz	GHz	
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15	
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46	
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75	
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5	
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2	
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5	
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7	
6.26775-6.26825	123-138	2200-2300	14.47-14.5	
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2	
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4	
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12	
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0	
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8	
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5	
12.57675-12.57725	322-335.4	3600-4400	(2)	
13.36-13.41				

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

Froguopov(MHz)	Class B (dBuV/m) (at 3M)		
Frequency(MHz)	PEAK	AVERAGE	
Above 1000	74	54	

Remark :1. Emission level in dBuV/m=20 log (uV/m)

Measurement was performed at an antenna to the closed point of EUT distance of meters.
 For Frequency 9kHz~30MHz:

Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

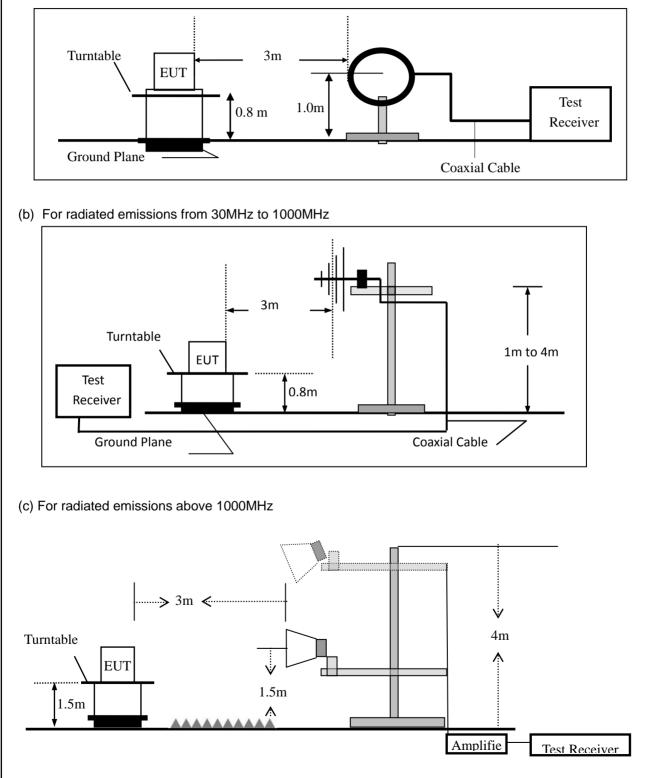
Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz:

Distance extrapolation factor =20log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.

NTEK 北测[®]


7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

ACCREDITED Certificate #4298.01

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1 MHz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item –EUT Test Photos.
 - Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission to	uring the radiated emission test, the Spectrum Analyzer was set with the following configurations:									
Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth							
30 to 1000	QP	120 kHz	300 kHz							
Ah awa 4000	Peak	1 MHz	1 MHz							
Above 1000	Average	1 MHz	1 MHz							

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

7.2.6 Test Results

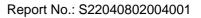
Spurious Emission below 30MHz (9KHz to 30MHz)

EUT:	TURNTABLE	Model No.:	XR-636DP-99
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

Freq.	Ant.Pol.	Emission L	.evel(dBuV/m)	Limit 3	m(dBuV/m)	Over(dB)		
(MHz)	H/V	PK	AV	PK	AV	PK	r(dB) AV	

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Spurious Emission below 1GHz (30MHz to 1GHz) All the modulation modes have been tested, and the way


	All the modulation modes have been tested, and the worst result was report as below:							
EUT:	TURNTABLE	Model Name :	XR-636DP-99					
Temperature:	25 ℃	Relative Humidity:	55%					
Pressure:	1010hPa	Test Mode:	Mode 1					
Test Voltage :	DC 5V							

Polar	Frequency	Meter Reading	Factor Emission Level		Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
V	33.5623	13.82	22.29	36.11	40.00	-3.89	QP
V	50.0566	22.48	14.59	37.07	40.00	-2.93	QP
V	96.4360	22.20	16.07	38.27	43.50	-5.23	QP
V	135.9822	20.72	18.11	38.83	43.50	-4.67	QP
V	192.4183	24.93	15.30	40.23	43.50	-3.27	QP
V	229.2931	25.33	17.02	42.35	46.00	-3.65	QP QP QP QP QP QP

Remark:

Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
Н	57.7961	22.75	11.84	34.59	40.00	-5.41	QP
Н	96.4360	21.29 16.07 37.36 43.50		43.50	-6.14	QP	
Н	194.4533	23.72	15.26	38.98	43.50	-4.52	QP
Н	261.9753	21.71	20.19	41.90	46.00	-4.10	QP
Н	282.9852	22.54	19.41	41.95	46.00	-4.05	QP
H Remarl	480.5276	16.66	24.59	41.25	46.00	-4.75	QP
72.0	dBuV/m					Limit: Margin:	
32	Muss met	2 X	had the stand of the	3 3 3 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4	6 X	and the second second	Anna
-	Muniter and Manual and						

■ Spurio												
EUT:	·	TURNTAE	BLE		Mod	del No.:		XR-	636DP-99	9		
Temperatu	ire:	20 ℃				Relative Humidity: 4			48%			
Test Mode	:	Mode2/Mo	ode3/Mode	4	Tes	st By:		Allen Liu				
All the mod	lulation n	nodes hav	e been tes	ted, a	nd th	ne worst res	ult was	s rep	ort as bel	ow:		
		-										
Frequency	Read Level	Cable loss	Antenna Factor	Prea Fact		Emission Level	Limit	ts	Margin	Remark	Comment	
(MHz)	(dBµV)	(dB)	dB/m	(dB	5)	(dBµV/m)	(dBµV	′/m)	(dB)			
			Low Char	nel (24	102 N	/Hz)(GFSK)	Above	1G			-	
4804	69.82	5.21	35.59	44.3	30	66.32	74.0	0	-7.68	Pk	Vertical	
4804	45.99	5.21	35.59	44.3	30	42.49	54.0	0	-11.51	AV	Vertical	
7206	68.77	6.48	36.27	44.6	50	66.92	74.0	0	-7.08	Pk	Vertical	
7206	47.05	6.48	36.27	44.6	30	45.20	54.0	0	-8.80	AV	Vertical	
4804	69.66	5.21	35.55	44.3	30	66.12	74.0	0	-7.88	Pk	Horizontal	
4804	49.35	5.21	35.55	44.3	30	45.81	54.00		-8.19	AV	Horizontal	
7206	68.56	6.48	36.27	44.5	52	66.79	74.0	0	-7.21	Pk	Horizontal	
7206	46.51	6.48	36.27	44.5	52	44.74	54.00		-9.26	AV	Horizontal	
			Mid Chan	nel (24	41 N	/Hz)(GFSK)-	-Above	1G				
4882	70.95	5.21	35.66	44.2	20	67.62	74.0	0	-6.38	Pk	Vertical	
4882	46.06	5.21	35.66	44.2	20	42.73	54.0	0	-11.27	AV	Vertical	
7323	70.98	7.10	36.50	44.4	13	70.15	74.0	0	-3.85	Pk	Vertical	
7323	46.82	7.10	36.50	44.4	13	45.99	54.0	0	-8.01	AV	Vertical	
4882	68.78	5.21	35.66	44.2	20	65.45	74.0	0	-8.55	Pk	Horizontal	
4882	48.61	5.21	35.66	44.2	20	45.28	54.0	0	-8.72	AV	Horizontal	
7323	70.28	7.10	36.50	44.4	13	69.45	74.0	0	-4.55	Pk	Horizontal	
7323	49.86	7.10	36.50	44.4	13	49.03	54.0	0	-4.97	AV	Horizontal	
			High Char	nel (24	180 N	//Hz)(GFSK)∙	Above	9 1 G				
4960	70.62	5.21	35.52	44.2	21	67.14	74.0	0	-6.86	Pk	Vertical	
4960	47.91	5.21	35.52	44.2	21	44.43	54.0	0	-9.57	AV	Vertical	
7440	70.54	7.10	36.53	44.6	30	69.57	74.0	0	-4.43	Pk	Vertical	
7440	46.25	7.10	36.53	44.6	30	45.28	54.0	0	-8.72	AV	Vertical	
4960	70.77	5.21	35.52	44.2	21	67.29	74.0	0	-6.71	Pk	Horizontal	
4960	45.99	5.21	35.52	44.2	21	42.51	54.0	0	-11.49	AV	Horizontal	
7440	68.96	7.10	36.53	44.6	30	67.99	74.0	0	-6.01	Pk	Horizontal	
7440	47.23	7.10	36.53	44.6	30	46.26	54.0	0	-7.74	AV	Horizontal	

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor (2)All other emissions more than 20dB below the limit.

- 0	Spurious Emission in Restricted Band 2310-2390MHz and 2483.5-2500MHz										
■ Spurious EUT:			cted Band		del No.:	2483.		36DP-99	`		
	_	DLL									
Temperature						ty:	48%				
Test Mode:		Mode2/ Mode4Test By:Allen Liuation modes have been tested, and the worst result was report as below:									
All the mod						sult wa	is rep	ort as be	low:		
Frequency	, Meter Reading	Cable Loss	Antenna Factor	Pream Factor		Lim	its	Margin	Detector	Comment	
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµ	V/m)	(dB)	Туре		
			1	Mbps(G	SK)-Non-hop	ping					
2310.00	69.16	2.97	27.80	43.80	56.13	74	4	-17.87	Pk	Horizontal	
2310.00	47.91	2.97	27.80	43.80	34.88	54	4	-19.12	AV	Horizontal	
2310.00	69.5	2.97	27.80	43.80	56.47	74	4	-17.53	Pk	Vertical	
2310.00	45	2.97	27.80	43.80	31.97	54	4	-22.03	AV	Vertical	
2390.00	70.03	3.14	27.21	43.80	56.58	74	4	-17.42	Pk	Vertical	
2390.00	49.92	3.14	27.21	43.80	36.47	54	4	-17.53	AV	Vertical	
2390.00	68.87	3.14	27.21	43.80	55.42	74	4	-18.58	Pk	Horizontal	
2390.00	46.07	3.14	27.21	43.80	32.62	54	4	-21.38	AV	Horizontal	
2483.50	68.05	3.58	27.70	44.00	55.33	74	4	-18.67	Pk	Vertical	
2483.50	47.15	3.58	27.70	44.00	34.43	54	4	-19.57	AV	Vertical	
2483.50	68.5	3.58	27.70	44.00	55.78	74	4	-18.22	Pk	Horizontal	
2483.50	49.47	3.58	27.70	44.00	36.75	54	4	-17.25	AV	Horizontal	
				1Mbps	GFSK)-hoppir	ng					
2310.00	70.71	2.97	27.80	43.80		74	4	-16.32	Pk	Horizontal	
2310.00	47.09	2.97	27.80	43.80	34.06	54	4	-19.94	AV	Horizontal	
2310.00	70.3	2.97	27.80	43.80	57.27	74	4	-16.73	Pk	Vertical	
2310.00	49.23	2.97	27.80	43.80	36.20	54	4	-17.80	AV	Vertical	
2390.00	68.31	3.14	27.21	43.80	54.86	74	4	-19.14	Pk	Vertical	
2390.00	46.22	3.14	27.21	43.80	32.77	54	4	-21.23	AV	Vertical	
2390.00	69.18	3.14	27.21	43.80	55.73	74	4	-18.27	Pk	Horizontal	
2390.00	48.85	3.14	27.21	43.80	35.40	54	4	-18.60	AV	Horizontal	
2483.50	70.52	3.58	27.70	44.00	57.80	74	4	-16.20	Pk	Vertical	
2483.50	49.86	3.58	27.70	44.00	37.14	54	4	-16.86	AV	Vertical	
2483.50	70.29	3.58	27.70	44.00	57.57	74	4	-16.43	Pk	Horizontal	
2483.50	49.71	3.58	27.70	44.00	36.99	54	4	-17.01	AV	Horizontal	

Note: (1) All other emissions more than 20dB below the limit.

UT:	TUR	NTABLE		Mod	Model No.:			XR-636DP-99		
emperature:	20 °C	1		Rela	tive Humidit	y:	48%			
est Mode:	Mode	Mode2/ Mode4			By:		Allen	Liu		
All the modula	ation mod	es have	been teste	ed, and th	ne worst res	ult wa	is rep	ort as be	low:	
Frequency	Reading Level	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Lin	nits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµ	ıV/m)	(dB)	Туре	
3260	68.43	4.04	29.57	44.70	57.34	7	'4	-16.66	Pk	Vertical
3260	49.7	4.04	29.57	44.70	38.61	5	54	-15.39	AV	Vertical
3260	68.16	4.04	29.57	44.70	57.07	7	'4	-16.93	Pk	Horizonta
3260	45.19	4.04	29.57	44.70	34.10	5	54	-19.90	AV	Horizonta
3332	68.8	4.26	29.87	44.40	58.53	7	'4	-15.47	Pk	Vertical
3332	49.55	4.26	29.87	44.40	39.28	5	54	-14.72	AV	Vertical
3332	68.33	4.26	29.87	44.40	58.06	7	'4	-15.94	Pk	Horizonta
3332	50.34	4.26	29.87	44.40	40.07	5	54	-13.93	AV	Horizonta
17797	56.33	10.99	43.95	43.50	67.77	7	'4	-6.23	Pk	Vertical
17797	36.62	10.99	43.95	43.50	48.06	5	54	-5.94	AV	Vertical
17788	57.47	11.81	43.69	44.60	68.37	7	'4	-5.63	Pk	Horizonta
17788	35	11.81	43.69	44.60	45.90	5	64	-8.10	AV	Horizonta

Note: (1) All other emissions more than 20dB below the limit.

7.3 NUMBER OF HOPPING CHANNEL

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(1) (iii)and ANSI C63.10-2013

7.3.2 Conformance Limit

Frequency hopping systems in the 2400-2483.5MHz band shall use at least 15 channels.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.3 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = the frequency band of operation RBW : To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller. VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.3.6 Test Results

EUT:	TURNTABLE	Model No.:	XR-636DP-99
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode 5(1Mbps)	Test By:	Allen Liu

7.4 HOPPING CHANNEL SEPARATION MEASUREMENT

7.4.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.4.2 Conformance Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5MHz band shall have hopping channel carrier frequencies that are separated by 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.2

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = Measurement Bandwidth or Channel Separation

RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.

VBW ≥ RBW Sweep = auto

Detector function = peak Trace = max hold

7.4.6 Test Results

EUT:	TURNTABLE	Model No.:	XR-636DP-99
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.5 AVERAGE TIME OF OCCUPANCY (DWELL TIME)

7.5.1 Applicable Standard

According to FCC Part 15.247(a)(1)(iii) and ANSI C63.10-2013

7.5.2 Conformance Limit

The average time of occupancy on any channel shall not be greater than 0.4s within a period of 0.4s multiplied by the number of hopping channels employed.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.4 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel RBW \geq 1MHz VBW \geq RBW Sweep = as necessary to capture the entire dwell time per hopping channel Detector function = peak Trace = max hold Measure the maximum time duration of one single pulse. Set the EUT for DH5, DH3 and DH1 packet transmitting. Measure the maximum time duration of one single pulse.

7.5.6 Test Results

EUT:	TURNTABLE	Model No.:	XR-636DP-99
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

Test data reference attachment.

Note:

A Period Time = (channel number)*0.4

DH1 Dwell time: Reading * (1600/2)*31.6/(channel number) DH3 Dwell time: Reading * (1600/4)*31.6/(channel number) DH5 Dwell time: Reading * (1600/6)*31.6/(channel number)

For Example:

- 1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4 x 79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.
- 2. In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4 x 20) (s), Hops Over Occupancy Time comes to $(800 / 6 / 20) \times (0.4 \times 20) = 53.33$ hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

7.6 20DB BANDWIDTH TEST

7.6.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.6.2 Conformance Limit

No limit requirement.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 6.9.2 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW \geq 1% of the 20 dB bandwidth VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.6.6 Test Results

EUT:	TURNTABLE	Model No.:	XR-636DP-99
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.7 **PEAK OUTPUT POWER**

7.7.1 Applicable Standard

According to FCC Part 15.247(b)(1) and ANSI C63.10-2013

7.7.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.5.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

 $RBW \ge$ the 20 dB bandwidth of the emission being measured

 $VBW \ge RBW$

Sweep = auto

Detector function = peak Trace = max hold

7.7.6 Test Results

EUT:	TURNTABLE	Model No.:	XR-636DP-99
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.8 CONDUCTED BAND EDGE MEASUREMENT

7.8.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013

7.8.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c)).

7.8.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.4 Test Setup

Please refer to Section 6.1 of this test report.

7.8.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.6.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

RBW = 100KHz

VBW = 300KHz

Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.8.6 Test Results

EUT:	TURNTABLE	Model No.:	XR-636DP-99
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	Mode2 /Mode4/ Mode 5	Test By:	Allen Liu

7.9 SPURIOUS RF CONDUCTED EMISSION

7.9.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013.

7.9.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.9.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.9.4 Test Setup

Please refer to Section 6.1 of this test report.

7.9.5 Test Procedure

Establish an emission level by using the following procedure:

a) Set the center frequency and span to encompass frequency range to be measured.

- b) Set the RBW = 100 kHz.
- c) Set the VBW \geq [3 × RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.

g) Allow trace to fully stabilize.

h) Use the peak marker function to determine the maximum amplitude level.

Then the limit shall be attenuated by at least 20 dB relative to the maximum amplitude level in 100 kHz.

7.9.6 Test Results

Remark: The measurement frequency range is from 30MHzHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

7.10 ANTENNA APPLICATION

7.10.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.10.2 Result

The EUT antenna is permanent attached PCB antenna (Gain: 2dBi). It comply with the standard requirement.

7.11 FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS 7.11.1 Standard Applicable

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. (g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section. (h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

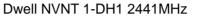
7.11.2 Frequency Hopping System

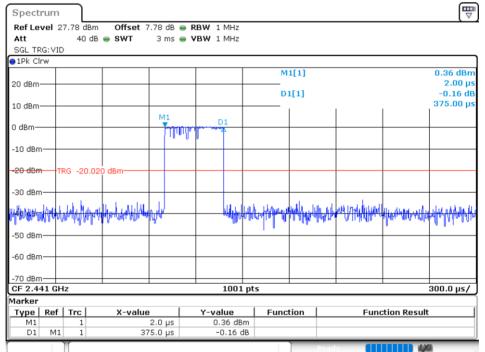
This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule. This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each; centred from 2402 to 2480 MHz) in the range 2,400-2,483.5 MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock. Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

This device was tested with an bluetooth system receiver to check that the device maintained hopping synchronization, and the device complied with these requirements for FCC Part 15.247 rule.

7.11.3 EUT Pseudorandom Frequency Hopping Sequence

Pseudorandom Frequency Hopping Sequence Table as below: Channel: 08, 24, 40, 56, 40, 56, 72, 09, 01, 09, 33, 41, 33, 41, 65, 73, 53, 69, 06, 22, 04, 20, 36, 52, 38, 46, 70, 78, 68, 76, 21, 29, 10, 26, 42, 58, 44, 60, 76, 13, 03, 11, 35, 43, 37, 45, 69, 77, 55, 71, 08, 24, 08, 24, 40, 56, 40, 48, 72, 01, 72, 01, 25, 33, 12, 28, 44, 60, 42, 58, 74, 11, 05, 13, 37, 45 etc.

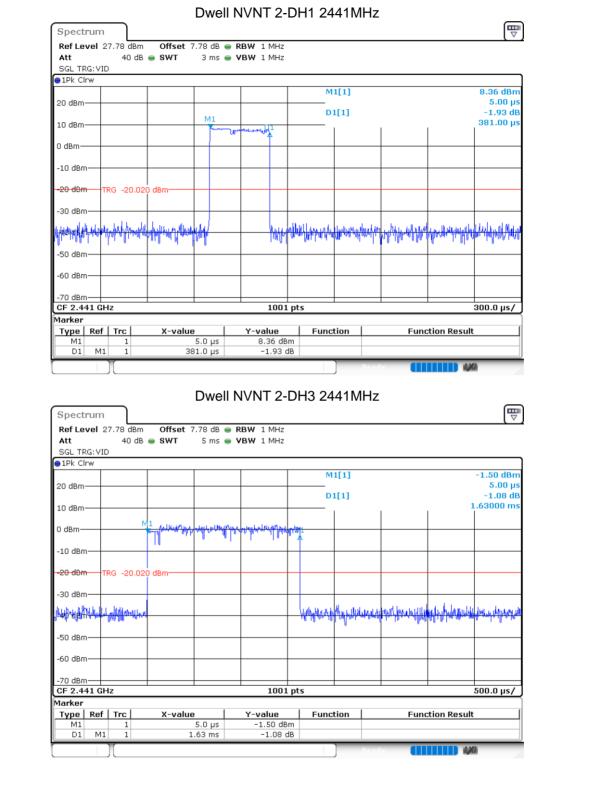

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.



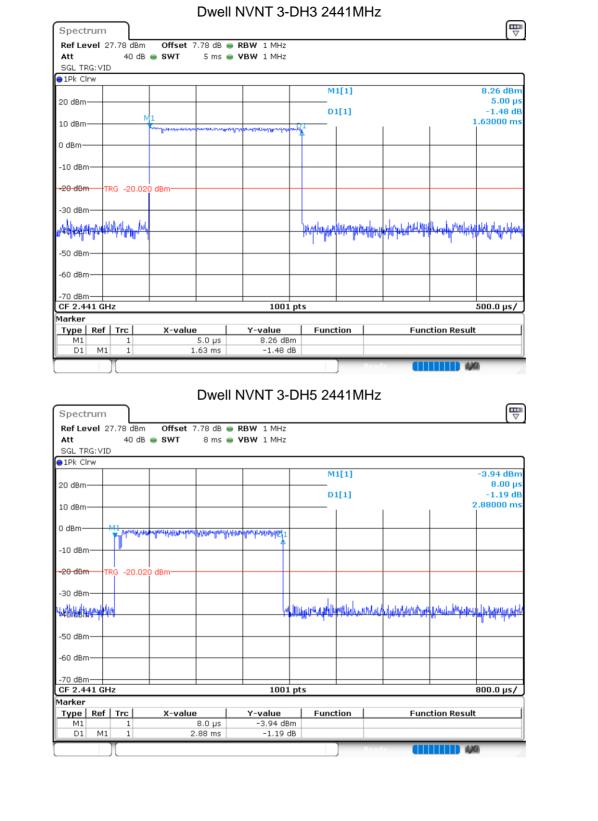
8 TEST RESULTS

8.1 **DWELL TIME**

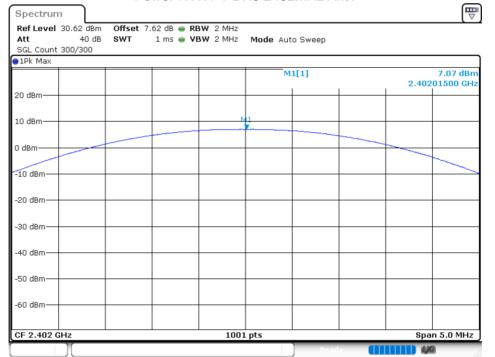
Condition	Mode	Frequency	Pulse	Total Dwell	Period	Limit	Verdict
Condition	woue	(MHz)	Time (ms)	Time (ms)	Time (ms)	(ms)	veruici
NVNT	1-DH1	2441	0.375	120	31600	400	Pass
NVNT	1-DH3	2441	1.63	260.8	31600	400	Pass
NVNT	1-DH5	2441	2.88	307.2	31600	400	Pass
NVNT	2-DH1	2441	0.381	121.92	31600	400	Pass
NVNT	2-DH3	2441	1.63	260.8	31600	400	Pass
NVNT	2-DH5	2441	2.872	306.347	31600	400	Pass
NVNT	3-DH1	2441	0.384	122.88	31600	400	Pass
NVNT	3-DH3	2441	1.63	260.8	31600	400	Pass
NVNT	3-DH5	2441	2.88	307.2	31600	400	Pass
INVINI	3-005	Z44 I	2.88	307.2	31600	400	Pass

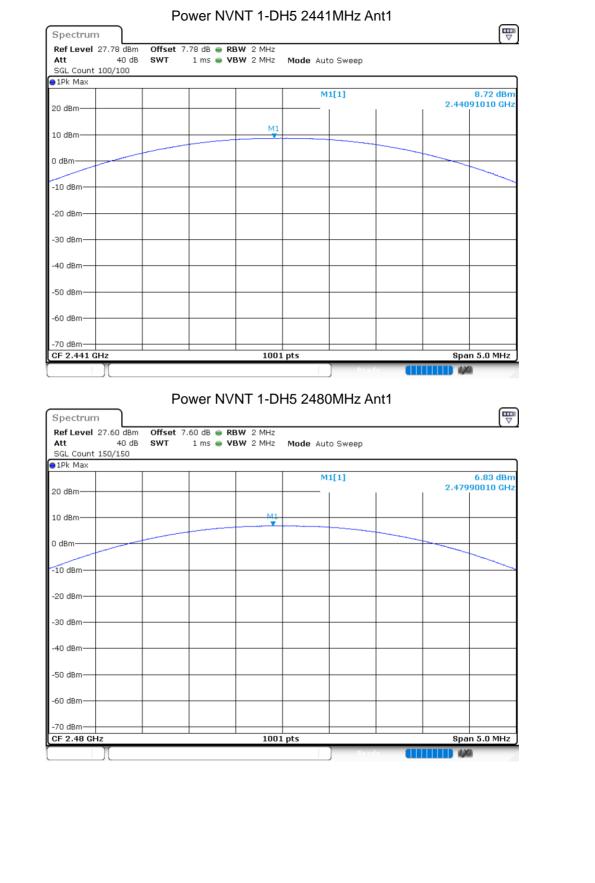


Spectrum Ref Level 27.78 dBm	Offset 7.78 dB 👄					
Att 40 dB e		VBW 1 MHz				
SGL TRG: VID						
●1Pk Clrw						0.00.40
20 dBm		_	M1[1]			8.89 dBm 5.00 μs
M1			D1[1]			-3.09 dB
10 dBm		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u>ի</u> 1 Փ			L.63000 ms
0 dBm						
-10 dBm						
-20 dBm TRG -20.020 d	Bm					
-30 dBm						
alle marine and a second and the second s			Warypromater	Phylippine and the phylippine of the phylippine	yhten <mark>y</mark> yyy ^{yyy} th	a daagaya dada ya ahaa
-50 dBm						
-60 dBm						
-70 dBm						
CF 2.441 GHz	· · · · · · · · · · · · · · · · · · ·	1001 pt	ts			500.0 μs/
Marker						
Type Ref Trc M1 1	5.0 µs	Y-value 8.89 dBm	Function	F	unction Result	<u> </u>
D1 M1 1	1.63 ms	-3.09 dB				
				Ready		7 A
Spectrum		NVNT 1-D	H5 2441M	Hz		
RefLevel 27.78 dBm Att 40 dB 👄	Offset 7.78 dB 🖷		H5 2441M	Hz		
Ref Level 27.78 dBm	Offset 7.78 dB 🖷	RBW 1 MHz	H5 2441M	Hz		
Ref Level 27.78 dBm Att 40 dB SGL TRG:VID	Offset 7.78 dB 🖷	RBW 1 MHz	H5 2441M	Hz		8.54 dBm
Ref Level 27.78 dBm Att 40 dB SGL TRG:VID	Offset 7.78 dB 🖷	RBW 1 MHz	M1[1]	Hz		8.54 dBm 8.00 µs
Ref Level 27.78 dBm Att 40 dB SGL TRG:VID 1Pk Cirw	Offset 7.78 dB 🖷	RBW 1 MHz VBW 1 MHz		Hz		8.54 dBm
Ref Level 27.78 dBm Att 40 dB SGL TRG: VID 1Pk Cirw 20 dBm M1	Offset 7.78 dB 🖷	RBW 1 MHz	M1[1]	Hz		8.54 dBm 8.00 μs -3.93 dB
Ref Level 27.78 dBm Att 40 dB SGL TRG: VID 1Pk Clrw 20 dBm 10 dBm	Offset 7.78 dB 🖷	RBW 1 MHz VBW 1 MHz	M1[1]	Hz		8.54 dBm 8.00 μs -3.93 dB
Ref Level 27.78 dBm Att 40 dB SGL TRG: VID 1Pk Clrw 20 dBm 10 dBm 0 dBm	Offset 7.78 dB • SWT 8 ms •	RBW 1 MHz VBW 1 MHz	M1[1]	Hz		8.54 dBm 8.00 μs -3.93 dB
Ref Level 27.78 dBm Att 40 dB SGL TRG: VID 1Pk Clrw 20 dBm 10 dBm 0 dBm -10 dBm	Offset 7.78 dB • SWT 8 ms •	RBW 1 MHz VBW 1 MHz	M1[1]	Hz		8.54 dBm 8.00 μs -3.93 dB
Ref Level 27.78 dBm Att 40 dB SGL TRG: VID • 1Pk Clrw 20 dBm 10 dBm -10 dBm -20 dBm TRG -20 dBm	Offset 7.78 dB • SWT 8 ms •	RBW 1 MHz VBW 1 MHz	M1[1]			8.54 dBm 8.00 µs -3.93 dB 2.88000 ms
Ref Level 27.78 dBm Att 40 dB SGL TRG: VID 1Pk Clrw 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	Offset 7.78 dB • SWT 8 ms •	RBW 1 MHz VBW 1 MHz	M1[1] D1[1]			8.54 dBm 8.00 µs -3.93 dB 2.88000 ms
Ref Level 27.78 dBm Att 40 dB SGL TRG: VID 1Pk Clrw 20 dBm 10 dBm -10 dBm -20 dBm TRG -20.020 d -30 dBm	Offset 7.78 dB • SWT 8 ms •	RBW 1 MHz VBW 1 MHz	M1[1] D1[1]			8.54 dBm 8.00 µs -3.93 dB 2.88000 ms
Ref Level 27.78 dBm Att 40 dB SGL TRG: VID 10 dBm 1Pk Clrw 20 dBm 20 dBm M1 0 dBm 0 dBm -10 dBm 70 dBm -20 dBm TRG -20 dBm -20.020 d -30 dBm -50 dBm -60 dBm -60 dBm	Offset 7.78 dB • SWT 8 ms •	RBW 1 MHz VBW 1 MHz	M1[1] D1[1]			8.54 dBm 8.00 µs -3.93 dB 2.88000 ms
Ref Level 27.78 dBm Att 40 dB SGL TRG: VID 10 dBm 10 dBm M1 0 dBm 0 dBm -10 dBm TRG -20 dBm TRG -20 dBm -20.020 d -30 dBm -60 dBm	Offset 7.78 dB • SWT 8 ms •	RBW 1 MHz VBW 1 MHz	M1[1] D1[1]			8.54 dBm 8.00 µs -3.93 dB 2.88000 ms
Ref Level 27.78 dBm Att 40 dB SGL TRG: VID IPk Clrw 20 dBm 20 dBm M1 10 dBm M1 0 dBm	Offset 7.78 dB • SWT 8 ms •	RBW 1 MHz VBW 1 MHz	M1[1] D1[1]			8.54 dBm 8.00 µs -3.93 dB 2.88000 ms
Ref Level 27.78 dBm Att 40 dB SGL TRG: VID 10 dBm 1Pk Clrw 20 dBm 20 dBm M1 10 dBm 0 dBm -10 dBm 70 dBm -20 dBm TRG -20 dBm -20.020 d -30 dBm -50 dBm -60 dBm -60 dBm -70 dBm CF 2.441 GHz Marker Trg	Offset 7.78 dB • SWT 8 ms •	RBW 1 MHz VBW 1 MHz	M1[1] D1[1]	iorldfillenserfallenge		8.54 dBm 8.00 µs -3.93 dB 2.88000 ms
Ref Level 27.78 dBm Att 40 dB SGL TRG: VID 10 dBm 1Pk Clrw 20 dBm 20 dBm M1 10 dBm M1 -10 dBm 70 dBm -20 dBm TRG -20 dBm -20.020 d -30 dBm -20.020 d -30 dBm -20.020 d -70 dBm -20.020 d	Offset 7.78 dB • SWT 8 ms • 	RBW 1 MHz VBW 1 MHz 	M1[1] D1[1] 	iorldfillenserfallenge	Byldulerton, rubit dyd	8.54 dBm 8.00 µs -3.93 dB 2.88000 ms
Ref Level 27.78 dBm Att 40 dB SGL TRG: VID 10 dBm 1Pk Clrw 20 dBm 20 dBm M1 10 dBm 0 dBm -10 dBm 70 dBm -20 dBm TRG -20 dBm -20.020 d -30 dBm -50 dBm -60 dBm -60 dBm -70 dBm CF 2.441 GHz Marker Trg	Offset 7.78 dB • SWT 8 ms •	RBW 1 MHz VBW 1 MHz	M1[1] D1[1] 		Byldulerton, rubit dyd	8.54 dBm 8.00 µs -3.93 dB 2.88000 ms

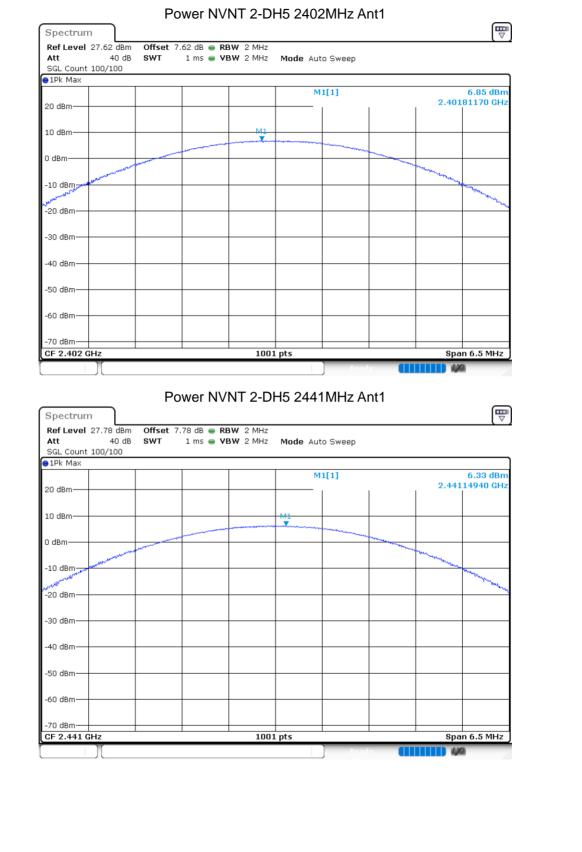


Ref Level 27.78 dBm Off Att 40 dB SW	i set 7.78 dB ⊜ RBW 1 M MT 8 ms ⊜ VBW 1 M			
SGL TRG: VID	. omb 🛶 fbm 16			
●1Pk Clrw		M1[1]		-3.24 dBm
20 dBm		MI[I]		-3.24 dBm 16.00 µs
		D1[1]		1.45 dB
10 dBm			1	2.87200 ms
0 dBm	wangan and a second second	D1		
	وبالاطرار وموجوع والالجار والالجار ومحاطر	·***		
-10 dBm				
-20 dBm TRG -20.020 dBm-				
-30 dBm				
		in the table was obtained		Information for the
14444.645mgladdfubild		<u>lingenting to the state of the</u>	and which which have a second	kodrophradkrond ^{er} rikordulie
-50 dBm				
-60 dBm			+ +	
-70 dBm				
CF 2.441 GHz	1	.001 pts		800.0 µs/
Marker		1		
Type Ref Trc X-1 M1 1 1 1 1	value Y-valu 16.0 μs -3.24	Je Function 4 dBm	Function F	Result
		45 dB		
D1 M1 1	2.872 ms 1.	.45 UD		
D1 M1 1	Dwell NVNT	3-DH1 2441MHz	đy (111111) <u>Z</u>	
D1 M1 1	Dwell NVNT	3-DH1 2441MHz	dy (11111)	
D1 M1 1 Spectrum Ref Level 27.78 dBm Off Att 40 dB SW	Dwell NVNT	3-DH1 2441MHz	dy (11111)	
D1 M1 1 Spectrum Ref Level 27.78 dBm Off Att 40 dB SW SGL TRG:VID 1Pk Clrw	Dwell NVNT	3-DH1 2441MHz	dy (11111)	8.32 dBm
D1 M1 1 Spectrum Ref Level 27.78 dBm Off Att 40 dB • SW SGL TRG:VID	Dwell NVNT set 7.78 dB • RBW 1 M T 3 ms • VBW 1 M	3-DH1 2441MHz	dv (11111)	8.32 dBm 2.00 µs -1.49 dB
D1 M1 1 Spectrum Ref Level 27.78 dBm Off Att 40 dB SW SGL TRG:VID 1Pk Clrw	Dwell NVNT set 7.78 dB • RBW 1 M T 3 ms • VBW 1 M	3-DH1 2441MHz MHz MHz D1[1]	dv (11111)	8.32 dBm 2.00 μs
D1 M1 1 Spectrum Ref Level 27.78 dBm Off Att 40 dB SW SGL TRG: VID 1Pk Clrw 20 dBm 10 dBm	Dwell NVNT set 7.78 dB • RBW 1 M T 3 ms • VBW 1 M	3-DH1 2441MHz MHz MHz D1[1]	dv (11111) <u>z</u>	8.32 dBm 2.00 µs -1.49 dB
D1 M1 1 Spectrum Ref Level 27.78 dBm Off Att 40 dB SW SGL TRG:VID 10 dBm 0 d	Dwell NVNT set 7.78 dB • RBW 1 M T 3 ms • VBW 1 M	3-DH1 2441MHz MHz MHz D1[1]	dv (11111) 2 	8.32 dBm 2.00 µs -1.49 dB
D1 M1 1 Spectrum Ref Level 27.78 dBm Off Att 40 dB SW SGL TRG:VID 1Pk Clrw 20 dBm 10 dBm	Dwell NVNT set 7.78 dB • RBW 1 M T 3 ms • VBW 1 M	3-DH1 2441MHz MHz MHz D1[1]	dv (11111) 2 	8.32 dBm 2.00 µs -1.49 dB
D1 M1 1 Spectrum Ref Level 27.78 dBm Off Att 40 dB SW SGL TRG:VID 10 dBm 0 d	Dwell NVNT set 7.78 dB • RBW 1 M T 3 ms • VBW 1 M	3-DH1 2441MHz MHz MHz D1[1]	dv (1) z (1) (1) (1) (1) (1)	8.32 dBm 2.00 µs -1.49 dB
D1 M1 1 Spectrum Ref Level 27.78 dBm Off Att 40 dB SW SGL TRG:VID IPk Clrw 20 dBm 10 dBm 10 dBm -10 dBm TRG -10.020 dBm -20 dBm	Dwell NVNT set 7.78 dB • RBW 1 M T 3 ms • VBW 1 M	3-DH1 2441MHz MHz MHz D1[1]		8.32 dBm 2.00 µs -1.49 dB
D1 M1 1 Spectrum Ref Level 27.78 dBm Off Att 40 dB SW SGL TRG:VID 1Pk Clrw 20 dBm 10 dBm -10 dBm -20 dBm -30	Dwell NVNT	3-DH1 2441MHz ИН2 ИН2 ИН2 ИН2 ИН2 ИН2 ИН2 ИН2 ИН2		8.32 dBm 2.00 µs -1.49 dB 384.00 µs
D1 M1 1 Spectrum Ref Level 27.78 dBm Off Att 40 dB SW SGL TRG:VID IPk Clrw 20 dBm 10 dBm 10 dBm -10 dBm TRG -10.020 dBm -20 dBm	Dwell NVNT	3-DH1 2441MHz ИН2 ИН2 ИН2 ИН2 ИН2 ИН2 ИН2 ИН2 ИН2		8.32 dBm 2.00 µs -1.49 dB 384.00 µs
D1 M1 1 Spectrum Ref Level 27.78 dBm Off Att 40 dB SW SGL TRG: VID 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 d	Dwell NVNT	3-DH1 2441MHz MHz MHz D1[1]		8.32 dBm 2.00 µs -1.49 dB 384.00 µs
D1 M1 1 Spectrum Ref Level 27.78 dBm Off Att 40 dB SW SGL TRG: VID 1Pk Clrw 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -3	Dwell NVNT	3-DH1 2441MHz ИН2 ИН2 ИН2 ИН2 ИН2 ИН2 ИН2 ИН2 ИН2		8.32 dBm 2.00 µs -1.49 dB 384.00 µs
D1 M1 1 Spectrum Ref Level 27.78 dBm Off Att 40 dB SW SGL TRG: VID 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 d	Dwell NVNT	3-DH1 2441MHz ИН2 ИН2 ИН2 ИН2 ИН2 ИН2 ИН2 ИН2 ИН2		8.32 dBm 2.00 µs -1.49 dB 384.00 µs
D1 M1 1 Ref Level 27.78 dBm Off Att 40 dB Sw SGL TRG: VID 1Pk Clrw 20 dBm 40 dB Sw 10 dBm 0 0 0 0 0 0 0 0 0 0 40 dB Sw 50 dBm -10.020 dBm -20 dBm -30 dBm -30 dBm -40 dBm	Dwell NVNT	3-DH1 2441MHz ИН2 ИН2 ИН2 ИН2 ИН2 ИН2 ИН2 ИН2 ИН2		8.32 dBm 2.00 µs -1.49 dB 384.00 µs
D1 M1 1 Spectrum Ref Level 27.78 dBm Off Att 40 dB SW SGL TRG: VID 1Pk Clrw 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -3	Dwell NVNT	3-DH1 2441MHz ИН2 ИН2 ИН2 ИН2 ИН2 ИН2 ИН2 ИН2 ИН2		8.32 dBm 2.00 µs -1.49 dB 384.00 µs
D1 M1 1 Spectrum Ref Level 27.78 dBm Off Att 40 dB • SW SGL TRG: VID • 10 dB • SW 1Pk Clrw • 10 dBm 20 dBm • 10 dBm -20 dBm • 10.020 dBm -30 dBm • 10.020 dBm -50 dBm • 10.020 dBm -60 dBm • 10.020 dBm -70 dBm • 10.020 dBm	Dwell NVNT	3-DH1 2441MHz ИН2 ИН2 ИН2 ИН2 ИН2 ИП[1] 01[8.32 dBm 2.00 µs -1.49 dB 384.00 µs
D1 M1 1 Ref Level 27.78 dBm Off Att 40 dB SW SGL TRG: VID 1Pk Clrw SW 20 dBm 40 dB SW 10 dBm 70 dBm 70 dBm 70 dBm -20 dBm -50 dBm -60 dBm -60 dBm -70 dBm -70 dBm CF 2.441 GHz Marker Trc X-*	Dwell NVNT	3-DH1 2441MHz ИН2 ИН2 ИН2 ИН2 ИН2 ИН2 ИП[1] 1 01[1] 1 001[1] 1 001 pts ие Function		8.32 dBm 2.00 µs -1.49 dB 384.00 µs
D1 M1 1 Spectrum Ref Level 27.78 dBm Off Att 40 dB • SW SGL TRG: VID • 10 dB • SW 1Pk Clrw • 10 dBm 20 dBm • 10 dBm -20 dBm • 10.020 dBm -30 dBm • 10.020 dBm -50 dBm • 10.020 dBm -60 dBm • 10.020 dBm -70 dBm • 10.020 dBm	Dwell NVNT	3-DH1 2441MHz ИН2 ИН2 ИН2 ИН2 ИН2 ИП[1] 01[8.32 dBm 2.00 µs -1.49 dB 384.00 µs



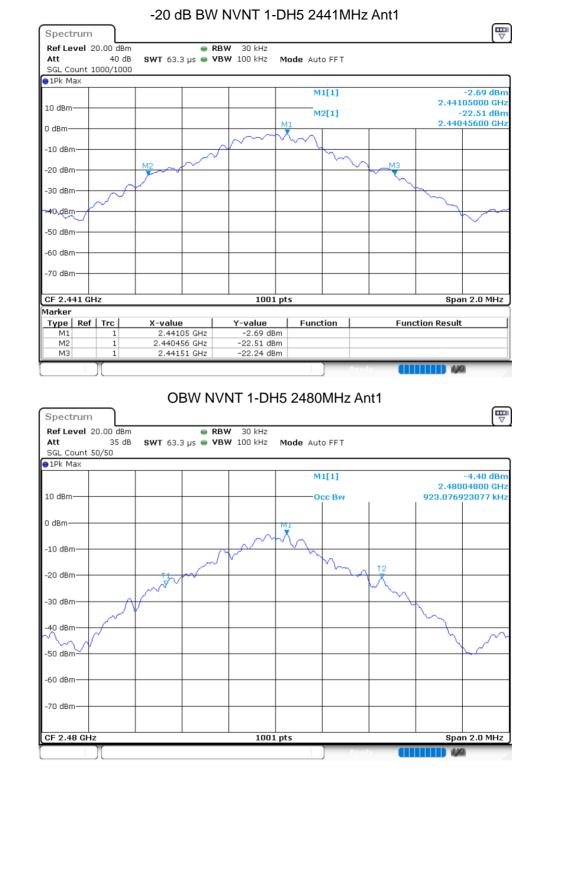

8.2 MAXIMUM CONDUCTED OUTPUT POWER

Condition	Mode	Frequency (MHz)	Antenna	Power (dBm)	Limit (dBm)	Verdict
NVNT	1-DH5	2402	Ant 1	7.07	30	Pass
NVNT	1-DH5	2441	Ant 1	8.718	30	Pass
NVNT	1-DH5	2480	Ant 1	6.829	30	Pass
NVNT	2-DH5	2402	Ant 1	6.851	21	Pass
NVNT	2-DH5	2441	Ant 1	6.326	21	Pass
NVNT	2-DH5	2480	Ant 1	6.625	21	Pass
NVNT	3-DH5	2402	Ant 1	6.923	21	Pass
NVNT	3-DH5	2441	Ant 1	5.888	21	Pass
NVNT	3-DH5	2480	Ant 1	6.663	21	Pass

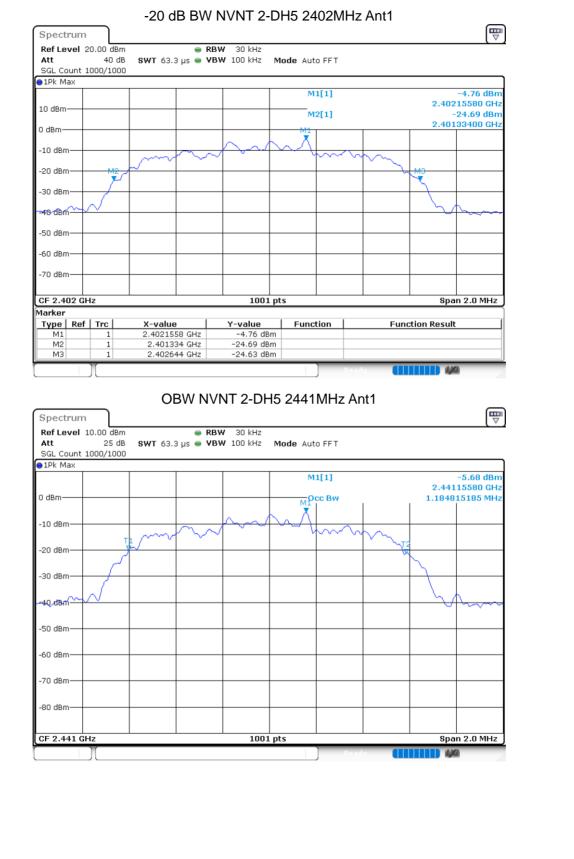

Power NVNT 1-DH5 2402MHz Ant1

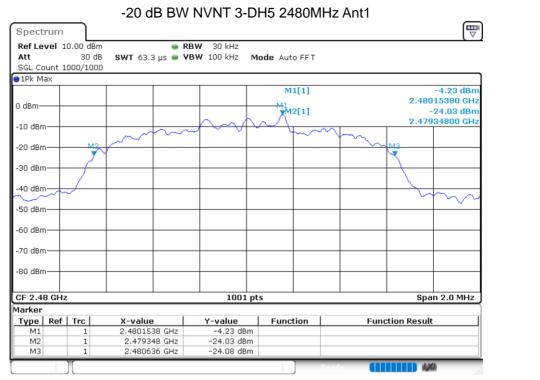
8.3 OCCUPIED CHANNEL BANDWIDTH

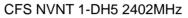
Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)	-20 dB Bandwidth (MHz)	Verdict
NVNT	1-DH5	2402	Ant 1	0.961	1.048	Pass
NVNT	1-DH5	2441	Ant 1	0.9431	1.054	Pass
NVNT	1-DH5	2480	Ant 1	0.9231	1.044	Pass
NVNT	2-DH5	2402	Ant 1	1.1808	1.31	Pass
NVNT	2-DH5	2441	Ant 1	1.1848	1.306	Pass
NVNT	2-DH5	2480	Ant 1	1.1728	1.296	Pass
NVNT	3-DH5	2402	Ant 1	1.1928	1.296	Pass
NVNT	3-DH5	2441	Ant 1	1.1948	1.298	Pass
NVNT	3-DH5	2480	Ant 1	1.1828	1.288	Pass

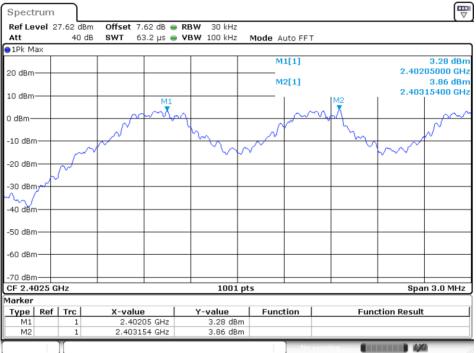


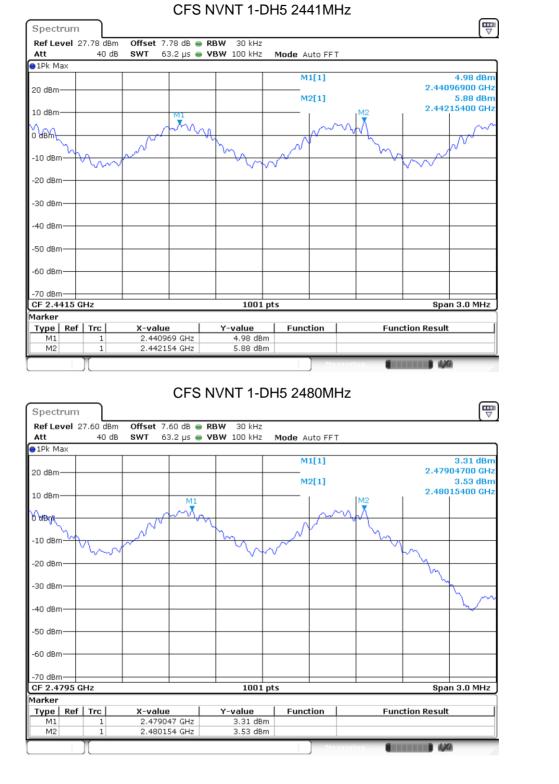
OBW NVNT 1-DH5 2402MHz Ant1



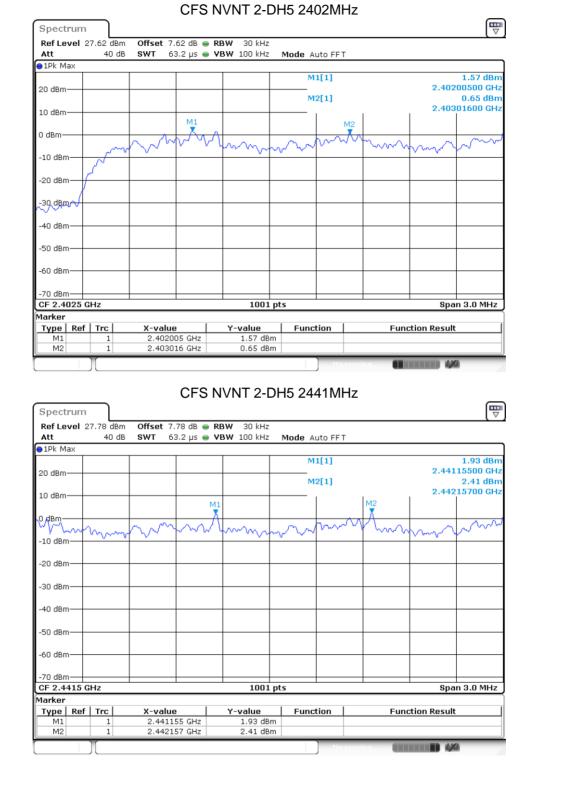


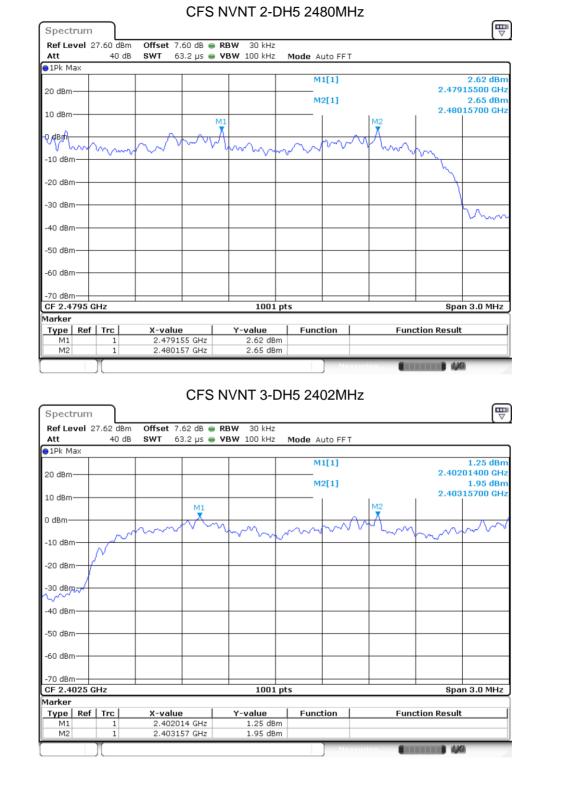


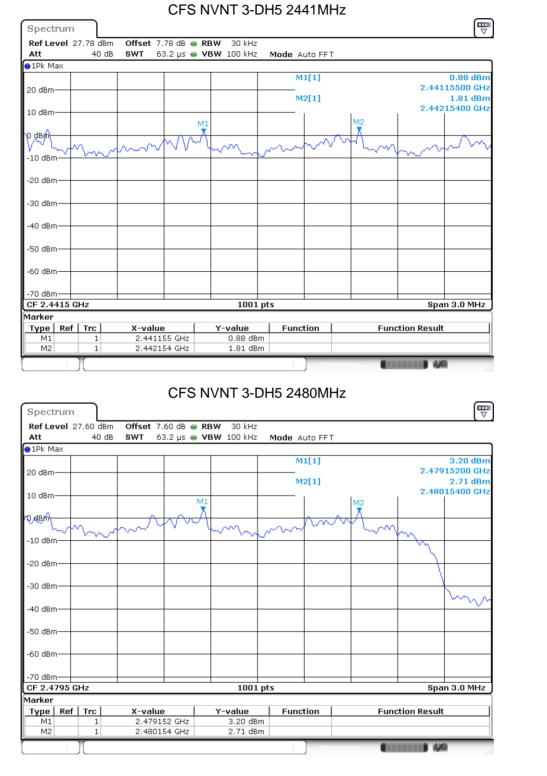



8.4 CARRIER FREQUENCIES SEPARATION

۰.							
	Condition	Mode	Hopping Freq1 (MHz)	Hopping Freq2 (MHz)	HFS (MHz)	Limit (MHz)	Verdict
	NVNT	1-DH5	2402.05	2403.154	1.104	1.048	Pass
	NVNT	1-DH5	2440.969	2442.154	1.185	1.054	Pass
	NVNT	1-DH5	2479.047	2480.154	1.107	1.044	Pass
	NVNT	2-DH5	2402.005	2403.016	1.011	0.873	Pass
	NVNT	2-DH5	2441.155	2442.157	1.002	0.871	Pass
	NVNT	2-DH5	2479.155	2480.157	1.002	0.864	Pass
	NVNT	3-DH5	2402.014	2403.157	1.143	0.864	Pass
	NVNT	3-DH5	2441.155	2442.154	0.999	0.865	Pass
	NVNT	3-DH5	2479.152	2480.154	1.002	0.859	Pass







8.5 NUMBER OF HOPPING CHANNEL

Condition	Mode	Hopping Number	Limit	Verdict
NVNT	1-DH5	79	15	Pass

Att SGL Co			n Offset 7.	62 dB 😑	RBW 10	0 kHz								
		40 dB		1 ms 😑	VBW 30	0 kHz	Mode A	uto Swee	эp					
1Pk M		00/700	U											
							М	1[1]					5.66 (lBm
20 dBm	_				_						:		8370	
							M	2[1]					5.12 c 2435	
101dBm						1484801	A A A A A	1404040	n n N M A A	() a a n		2.400	2439 _M	212
o dBmA	10040	AUAAA	<u>AnAAAAAAAA</u>	UTU A	I A HUND	111111111	WANAAL	NIATOOL	מומוח	MIAN	NYAAU	UUU (WW	
- MMM	NUNI	/11/15/0	NHANANA	INNIN	WWWW	INNAN	IIAAAAAA	NAUAUA	VVIVVV	YVYW	IVRUVI	WW	VIN	
-10 dBr		UYUU	VIII.antan	okahor	0,000,0				• • • • • •	0 0 1	01040	John	4940	
- <mark>2</mark> 0 dBn														
-BO dBn														
00 000	·													
40 dBn					_				_					hak
														(ma
-50 dBn)													
-60 dBn														
50 upii	'													
-70 dBn														
Start 2	.4 GHz					1001 pt	s				Sto	p 2.4	835 G	Hz
Marker														
Type M1	Ref	Trc 1	2.4018		Y-va	lue 66 dBm	Func	tion		Fund	tion Re	sult		
M2		1	2.480243			12 dBm								-