

DFS TEST REPORT

Applicant: INFINIX MOBILITY LIMITED.

Address: FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG

FCC ID: 2AIZN-X6725

Product Name: Mobile Phone

Standard(s): 47 CFR Part 15, Subpart E(15.407) FCC KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02

The above device has been tested and found compliant with the requirement of the relative standards by China Certification ICT Co., Ltd (Dongguan)

Report Number: 2503R23056E-RF-00G

Date Of Issue: 2025/4/11

Reviewed By: Calvin Chen

Calvin Ohen

Title: RF Engineer

Approved By: Sun Zhong

Sun 2hong

Title: Manager

Test Laboratory: China Certification ICT Co., Ltd (Dongguan) No. 113, Pingkang Road, Dalang Town, Dongguan, Guangdong, China

> Tel: +86-769-83085888 www.ccttt.com.cn

Test Facility

The Test site used by China Certification ICT Co., Ltd (Dongguan) to collect test data is located on the No. 113, Pingkang Road, Dalang Town, Dongguan, Guangdong, China.

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 442868, the FCC Designation No. : CN1314.

Declarations

China Certification ICT Co., Ltd (Dongguan) is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with a triangle symbol "▲". Customer model name, addresses, names, trademarks etc. are not considered data.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

This report cannot be reproduced except in full, without prior written approval of the Company.

This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

This report may contain data that are not covered by the accreditation scope and shall be marked with an asterisk " \star ".

Each test item follows the test standard(s) without deviation.

CONTENTS

DOCUMENT REVISION HISTORY	4
1. GENERAL INFORMATION	5
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	5
1.2 DESCRIPTION OF TEST CONFIGURATION	6
1.2.1 EUT Operation Condition:	6
1.2.2 Support Equipment List and Details	6
1.2.3 Support Cable List and Details	6
1.2.4 Block Diagram of Test Setup	
2. SUMMARY OF TEST RESULTS	7
3. REQUIREMENTS AND TEST PROCEDURES	8
3.1 DFS REQUIREMENT	8
3.2 TEST PROCEDURE	12
4. Test DATA AND RESULTS	13
4.1 RADAR WAVEFORM CALIBRATION	14
4.2 CHANNEL MOVE TIME AND CHANNEL CLOSING TRANSMISSION TIME	15
4.2.1 Test Procedure	15
4.2.2 Test Results	15
4.3 NON-OCCUPANCY PERIOD	17
4.3.1 Test Procedure	
4.3.2 Test Result	
5. EUT PHOTOGRAPHS	
6. TEST SETUP PHOTOGRAPHS	

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision
1.0	2503R23056E-RF-00G	Original Report	2025/4/11

1. GENERAL INFORMATION

1.1 Product Description for Equipment under Test (EUT)

EUT Name:	Mobile Phone
EUT Model:	X6725
Operation Frequency:	Band 2: 5260-5320 MHz (802.11a/n ht20/ac vht20) 5270-5310 MHz (ac vht40) 5290 MHz (802.11ac vht80) Band 3: 5500-5700 MHz (802.11a/n ht20/ac vht20) 5510-5670 MHz (ac vht40) 5530-5610 MHz (802.11ac vht80)
Maximum Average Output Power	8.21 dBm in 5250-5350 MHz Band
(Conducted):	9.43 dBm in 5470-5725 MHz Band
Modulation Type:	802.11a/n/ac: OFDM-BPSK, QPSK, 16QAM, 64QAM, 256QAM
Rated Input Voltage:	DC 3.85V from battery or DC 5.0V from adapter
Serial Number:	2Z6H-3
EUT Received Date:	2025/3/3
EUT Received Status:	Good

1.1.2 Antenna Information Detail **A** :

Antenna	input impedance (Ohm)	Frequency Range	Antenna Gain
FPC	50	5.15~5.85GHz	-2.31

1.1.3 Accessory Information:

Accessory Description	Manufacturer	Model
Adapter	Infinix	U100XSA
Earphone	Infinix	Unknown

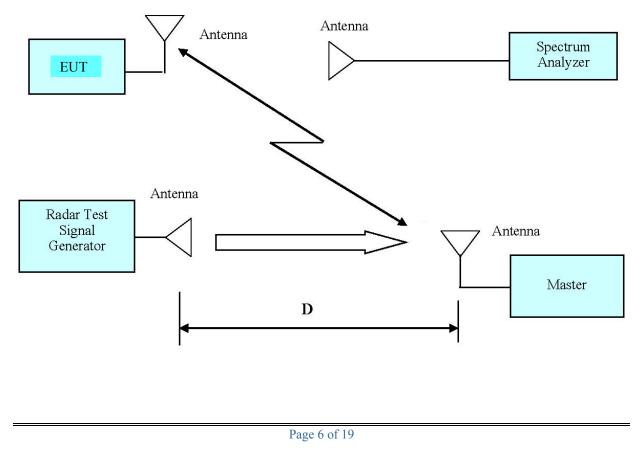
1.2 Description of Test Configuration

1.2.1 EUT Operation Condition:

EUT Operation Mode:	The system was configured for testing in Engineering Mode, which was provided by the manufacturer.	
Equipment Modifications:	No	
EUT Exercise Software:	Engineer Mode	
$\mathbf{W} \mathbf{I} \mathbf{A} \mathbf{N} \mathbf{I} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{I} \mathbf{I} \mathbf{D} \mathbf{I} \mathbf{I} \mathbf{D} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} I$		

WLAN traffic is generated by software "Engineer Mode", software is used by IP and Frame based systems for loading the test channel during the In-service compliance testing of the U-NII device. Data package streamed from the Access Point to the Client using the software "Engineer Mode".

1.2.2 Support Equipment List and Details


Manufacturer	Description	Model	Serial Number
Lenovo	Laptop	T430	AA887-03
Huawei	Wireless Router	HG8245Q2	HG8245-001

Note: The mater Wireless Router model: HG8245Q2, FCC ID: QISHG8245Q2

1.2.3 Support Cable List and Details

Cable Description	Shielding Type	Ferrite Core	Length (m)	From Port	То
/	/	/	/	/	/

1.2.4 Block Diagram of Test Setup

2. SUMMARY OF TEST RESULTS

The following result table represents the list of measurements required under the CFR §47 Part 15.407(h), KDB: 905462 D02 UNII DFS Compliance Procedures New Rules v02

Items	Description of Test	Result
Detection Bandwidth	UNII Detection Bandwidth	Not applicable
Derferenzen	Initial Channel Availability Check Time (CAC)	Not applicable
Performance Requirements Check	Radar Burst at the Beginning of the CAC	Not applicable
Check	Radar Burst at the End of the CAC	Not applicable
	Channel Move Time	Compliance
In-Service Monitoring	Channel Closing Transmission Time	Compliance
	Non-Occupancy Period	Compliance
Radar Detection	Statistical Performance Check	Not applicable

Note:

Not applicable: The EUT is a client unit without radar detection.

3. REQUIREMENTS AND TEST PROCEDURES

3.1 DFS Requirement

CFR §47 Part 15.407(h)

FCC KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02

Requirement	Operational Mode			
	Master	Client Without Radar Detection	Client With Radar Detection	
Non-Occupancy Period	Yes	Not required	Yes	
DFS Detection Threshold	Yes	Not required	Yes	
Channel Availability Check Time	Yes	Not required	Not required	
U-NII Detection Bandwidth	Yes	Not required	Yes	

Table 1: Applicability of DFS Requirements Prior to Use of a Channel

Table 2: Applicability of DFS requirements during normal operation

Requirement	Operational Mode		
	Master Device or Client with Radar Detection	Client Without Radar Detection	
DFS Detection Threshold	Yes	Not required	
Channel Closing Transmission Time	Yes	Yes	
Channel Move Time	Yes	Yes	
U-NII Detection Bandwidth	Yes	Not required	

Additional requirements for devices with multiple bandwidth modes	Master Device or Client with Radar Detection	Client Without Radar Detection		
U-NII Detection Bandwidth and	All BW modes must be	Not required		
Statistical Performance Check	tested			
Channel Move Time and Channel	Test using widest BW mode	Test using the widest		
Closing Transmission Time	available	BW mode available		
		for the link		
All other tests	Any single BW mode	Not required		
Note: Frequencies selected for statistical performance check (Section 7.8.4) should include				
several frequencies within the radar detection bandwidth and frequencies near the edge of				
the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in				
each of the bonded 20 MHz channels and the channel center frequency.				

Table 3: DFS Detection Thresholds for Master Devices and Client Devices With Radar Detection

Maximum Transmit Power	Value				
	(See Notes 1, 2, and 3)				
$EIRP \ge 200 \text{ milliwatt}$	-64 dBm				
EIRP < 200 milliwatt and	-62 dBm				
power spectral density < 10 dBm/MHz					
EIRP < 200 milliwatt that do not meet the power spectral	-64 dBm				
density requirement					
Note 1: This is the level at the input of the receiver assuming a 0 dBi					
Note 2: Throughout these test procedures an additional 1 dB has been	-				
transmission waveforms to account for variations in measurement equipment. This will ensure that the					
test signal is at or above the detection threshold level to trigger a DFS response.					
Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911					
D01.					

Table 4: DFS Response Requirement Values

Parameter	Value
Non-occupancy period	Minimum 30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds
	See Note 1.
Channel Closing Transmission Time	200 milliseconds + an
	aggregate of 60
	milliseconds over
	remaining 10 second
	period.
	See Notes 1 and 2.
U-NII Detection Bandwidth	Minimum 100% of the U-
	NII 99% transmission
	power bandwidth. See
	Note 3.

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The *Channel Closing Transmission Time* is comprised of 200 milliseconds starting at the beginning of the *Channel Move Time* plus any additional intermittent control signals required to facilitate a *Channel* move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the *U-NII Detection Bandwidth* detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

D 1	D 1		N 1 CD 1		M
Radar	Pulse	PRI	Number of Pulses	Minimum	Minimum
Type	Width	(µsec)		Percentage of	Number
	(µsec)			Successful	of
				Detection	Trials
0	1	1428	18	See Note 1	See Note
					1
1	1	Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a Test B: 15 unique PRI values randomly selected within the range of 518-3066 µsec, with a minimum increment of 1 µsec, excluding PRI values	$\operatorname{Roundup} \left\{ \begin{pmatrix} \frac{1}{360} \end{pmatrix} \cdot \\ \begin{pmatrix} \frac{19 \cdot 10^6}{\operatorname{PRI}_{\mu \operatorname{sec}}} \end{pmatrix} \right\}$	60%	30
	1.5	selected in Test A	22.20	609/	20
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
Aggregate	(Radar Types	1-4)		80%	120
Note 1: She	ort Pulse Rada	ar Type 0 should be u	sed for the detection ba	ndwidth test, ch	annel move

Table 5 – Short Pulse Radar Test Waveforms

Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests.

A minimum of 30 unique waveforms are required for each of the Short Pulse Radar Types 2 through 4. If more than 30 waveforms are used for Short Pulse Radar Types 2 through 4, then each additional waveform must also be unique and not repeated from the previous waveforms. If more than 30 waveforms are used for Short Pulse Radar Type 1, then each additional waveform is generated with Test B and must also be unique and not repeated from the previous waveforms in Tests A or B.

For example if in Short Pulse Radar Type 1 Test B a PRI of 3066 usec is selected, the number of pulses

would be Roundup $\left\{ \left(\frac{1}{360}\right) \cdot \left(\frac{19 \cdot 10^6}{3066}\right) \right\} = \text{Roundup}\{17.2\} = 18.$

Pulse Repetition Frequency Number	Pulse Repetition Frequency (Pulses Per Second)	Pulse Repetition Interval (Microseconds)	
1	1930.5	518	
2	1858.7	538	
3	1792.1	558	
4	1730.1	578	
5	1672.2	598	
б	1618.1	618	
7	1567.4	638	
8	1519.8	658	
9	1474.9	678	
10	1432.7	698	
11	1392.8	718	
12	1355	738	
13	1319.3	758	
14	1285.3	778	
15	1253.1	798	
16	1222.5	818	
17	1193.3	838	
18	1165.6	858	
19	1139	878	
20	1113.6	898	
21	1089.3	918	
22	1066.1	938	
23	326.2	3066	

Table 5a - Pulse Repetition Intervals Values for Test A

The aggregate is the average of the percentage of successful detections of Short Pulse Radar Types 1-4. For example, the following table indicates how to compute the aggregate of percentage of successful detections.

Radar Type	Number of Trials	Number of Successful	Minimum Percentage			
		Detections	of Successful			
			Detection			
1	35	29	82.9%			
2	30	18	60%			
3	30	27	90%			
4	50	44	88%			
Aggregate (82.9% + 60% + 90% + 88%)/4 = 80.2%						

Table 0 - Long Fulse Radar Test Waveform								
Radar	Pulse	Chirp	PRI	Number	Number	Minimum	Minimum	
Type	Width	Width	(µsec)	of Pulses	of Bursts	Percentage of	Number of	
	(µsec)	(MHz)		per Burst		Successful	Trials	
				_		Detection		
5	50-100	5-20	1000-	1-3	8-20	80%	30	
			2000					

Table 6 – Long Pulse Radar Test Waveform

Table 7 – Frequency Hopping Radar Test Waveform								
Radar	Pulse	PRI	Pulses	Hopping	Hopping	Minimum	Minimum	
Type	Width	(µsec)	per	Rate	Sequence	Percentage of	Number of	
	(µsec)		Hop	(kHz)	Length	Successful	Trials	
			_		(msec)	Detection		
6	1	333	9	0.333	300	70%	30	

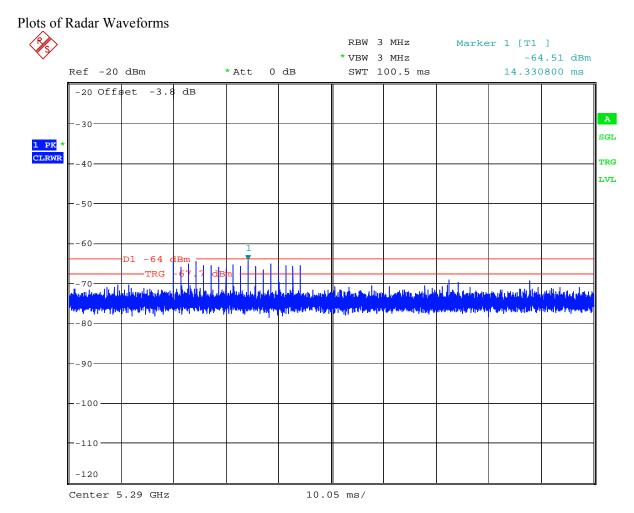
3.2 Test Procedure

A spectrum analyzer is used as a monitor verifies that the EUT status including Channel Closing Transmission Time and Channel Move Time, and does not transmit on a Channel during the Non-Occupancy Period after the diction and Channel move.

4. Test DATA AND RESULTS

Sample Number:	2Z6H-3	Test Date:	2025/3/29
Test Site:	966-1	Test Mode:	Transmitting
Tester:	Carl Xue	Test Result:	Pass

Environmental Conditions:


Temperature: (°C)	22.6	Relative Humidity: (%)	41	ATM Pressure: (kPa)	101.8

Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
National Instruments	NI PXI-1042 8- Slot chassis	PXI-1042	VOBX40FBD	N/A	N/A
National Instruments	Arbitrary Waveform Generator	PXI-5421	N/A	N/A	N/A
National Instruments	RF Upconverter	PXI-5610	N/A	N/A	N/A
ASCOR	Upconverter	AS-7202	N/A	N/A	N/A
R&S	Spectrum Analyzer	FSU26	100147	2024/4/1	2025/3/31
Ditorn	Splitter/Combiner	D3C4080	SN2244	N/A	N/A
АН	Double Ridge Guide Horn Antenna	SAS-571	1394	2023/2/22	2026/2/21
ETS-Lindgren	Horn Antenna	3115	9912-5985	2023/12/6	2026/12/5

* Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

4.1 Radar Waveform Calibration

Comment: ProjectNo.:2503R23056E-RF Tester:Carl Xue Date: 29.MAR.2025 16:37:03

Note:

1. The -3.8 dB is the Insertion loss of the RF cable and substituted antenna gain, which was offset into the Spectrum Analyzer.

2. DFS Detection threshold is -64 dBm which is the strictest limit.

4.2 Channel Move Time and Channel Closing Transmission Time

4.2.1 Test Procedure

Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

The aggregate channel closing transmission time is calculated as follows:

Aggregate Transmission Time = N*Dwell Time

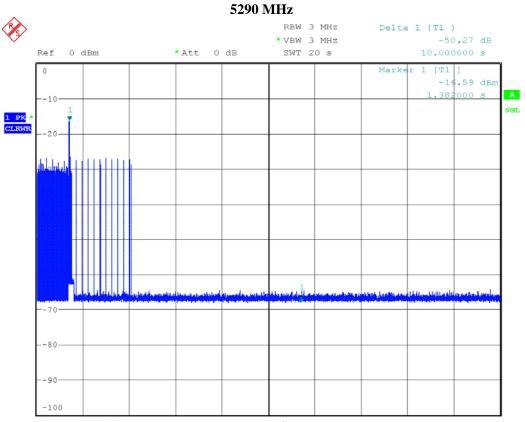
N is the number of spectrum analyzer bins showing a device transmission Dwell Time is the dwell time per bin (i.e. Dwell Time = S/B, S is the sweep time and B is the number of bin, i.e. 8192)

4.2.2 Test Results

Frequency (MHz)	Bandwidth (MHz)	Radar Type	Results
5290	80	Type 0	Compliant

Please refer to the following tables and plots.

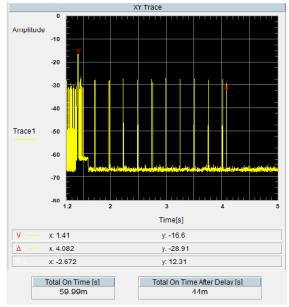
Channel Move Time


Test Channel	Test Result (s)	Limit (s)	Result
5290MHz	2.672	10	Pass

Channel Closing Transmission Time

Transmission After 200ms	Aggregate Transmission Time After 200ms Delay (ms)	Limit for Aggregate Transmission Time After 200ms Delay (ms)	Result
Yes	44	60	Pass

China Certification ICT Co., Ltd (Dongguan)


Report No.: 2503R23056E-RF-00G

Center 5.29 GHz

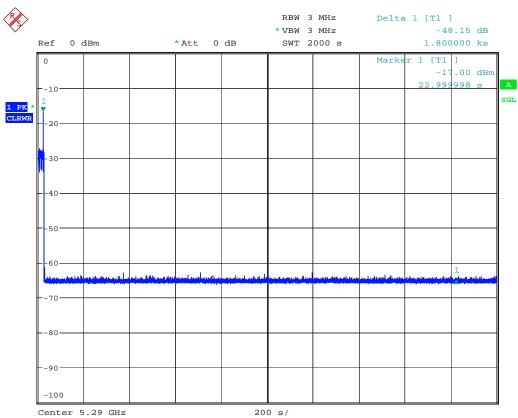
2 s/

Commment: ProjectNo.:2503R23056E-RF Tester:Carl Xue Date: 29.MAR.2025 20:39:46

Project No:2503R23056E-RF Tester:Carl Xue

Page 16 of 19

4.3 Non-occupancy Period


4.3.1 Test Procedure

Measure the EUT for more than 30 minutes following the channel close/move time to very that the EUT does not resume any transmissions on this channel. Provide one plot to demonstrate no transmission on the channel for the non-occupancy period (30 minutes observation time)

4.3.2 Test Result

Frequency (MHz)	Bandwidth (MHz)	Spectrum Analyzer Display
5290	80	No transmission within 30 minutes

Please refer to the following plots.

5290MHz

Comment: ProjectNo.:2503R23056E-RF Tester:Carl Xue Date: 29.MAR.2025 21:44:47 China Certification ICT Co., Ltd (Dongguan)

5. EUT PHOTOGRAPHS

Please refer to the attachment 2503R23056E-RF-EXP EUT EXTERNAL PHOTOGRAPHS and 2503R23056E-RF-INP EUT INTERNAL PHOTOGRAPHS

China Certification ICT Co., Ltd (Dongguan)

6. TEST SETUP PHOTOGRAPHS

Please refer to the attachment 2503R23056E-RF-00G-TSP TEST SETUP PHOTOGRAPHS.

***** END OF REPORT *****