

JianYan Testing Group Shenzhen Co., Ltd.

Report No.: JYTSZ-R12-2400053

FCC RF Test Report

Report No.: JYTSZ-R12-2400053

Applicant: INFINIX MOBILITY LIMITED

Address of Applicant: FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE

19-25 SHAN MEI STREET FOTAN NT HONGKONG

Equipment Under Test (EUT)

Product Name: Mobile Phone

Model No.: X6851B

Trade Mark: Infinix

FCC ID: 2AIZN-X6851B

Applicable Standards: FCC CFR Title 47 Part 15E (§15.407)

Manager

Date of Sample Receipt: 11 Jan., 2024

Date of Test: 12 Jan., to 12 Mar., 2024

Date of Report Issued: 17 Mar., 2024

Test Result: PASS

Tested by: Date: 17 Mar., 2024

Reviewed by: Date: 17 Mar., 2024

Approved by: Date: 17 Mar., 2024

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in above the application standard version. Test results reported herein relate only to the item(s) tested.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

1 Version

Version No.	Date	Description
00	17 Mar., 2024	Original

2 Contents

			Page
С	over P	Page	1
1	Ver	rsion	2
2	Co	ontents	3
3	Ge	eneral Information	4
	3.1	Client Information	4
	3.2	General Description of E.U.T.	4
	3.3	Test Mode and Environment	5
	3.4	Description of Test Auxiliary Equipment	5
	3.5	Measurement Uncertainty	5
	3.6	Additions to, Deviations, or Exclusions from the Method	5
	3.7	Laboratory Facility	5
	3.8	Laboratory Location	6
	3.9	Test Instruments List	6
4	Ме	easurement Setup and Procedure	7
	4.1	Test Channel	7
	4.2	Test Setup	7
	4.3	Test Procedure	9
5	Tes	st Results	10
	5.1	Summary	10
	5.1	.1 Clause and Data Summary	10
	5.1	.2 Test Limit	11
	5.2	Conducted Peak Output Power Spot-check	13

3 General Information

3.1 Client Information

Applicant:	INFINIX MOBILITY LIMITED
Address:	FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG
Manufacturer:	INFINIX MOBILITY LIMITED
Address:	FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG
Factory:	SHENZHEN TECNO TECHNOLOGY CO., LTD.
Address:	101, Building 24, Waijing Industrial Park, Fumin Community, Fucheng Street, Longhua District, Shenzhen City, P.R.China

3.2 General Description of E.U.T.

CIZ Contoral Decorrip	
Product Name:	Mobile Phone
Model No.:	X6851B
Operation Frequency:	Band 1: 5150 MHz - 5250 MHz
	Band 4: 5725 MHz - 5850 MHz
Channel Numbers:	Band 1: 4, Band 4: 5 (802.11a, n-HT20, ac-VHT20)
	Band 1, 4: 2 (802.11n-HT40, ac-VHT40)
	Band 1, 4: 1 (802.11ac-VHT80)
Modulation Technology:	OFDM-BPSK, QPSK, 16QAM, 64QAM
(IEEE 802.11a/802.11n)	
Modulation Technology:	OFDM-BPSK, QPSK, 16QAM, 64QAM, 256QAM
(IEEE 802.11ac)	
Antenna Type:	Internal Antenna
Antenna Gain:	-1.54 dBi (declare by applicant)
Antenna Transmit Mode:	SISO (1TX, 1RX)
Power Supply:	Rechargeable Li-ion Polymer Battery DC3.91V, 4500mAh
AC Adapter:	Model: U1000XSA
	Input: AC100-240V, 50/60Hz, 2.3A
	Output: DC 5.0V, 3.0A 15.0W or DC 5.0V-11.0V, 9.1A or DC 4.0V-20.0V, 5.0A 100.0W MAX
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Report No.: JYTSZ-R12-2400053

3.3 Test Mode and Environment

Test Mode:				
Transmitting mode: Keep the EUT in continuous	transmitting with modulation			
Per-scan all kind of data rate, the follow list were	the worst case:			
Mode Data rate				
802.11a 6.0 Mbps				
802.11n-HT20	6.5 Mbps			
802.11n-HT40 13.5 Mbps				
802.11ac-VHT20 6.5 Mbps				
802.11ac-VHT40 13.5 Mbps				
802.11ac-VHT80	29.3 Mbps			

Remark: For AC power line conducted emission and radiated spurious emission (below 1GHz), pre-scan 802.11a, n, ac modulation mode, found 802.11a modulation mode was worse case mode. The report only reflects the test data of worst mode.

Operating Environment:	
Temperature:	15℃ ~ 35℃
Humidity:	20 % ~ 75 % RH
Atmospheric Pressure:	1008 mbar
Voltage:	Nominal: 3.91 Vdc, Extreme: Low 3.45 Vdc, High 4.50 Vdc
Test Engineer:	Logan Li(Conducted measurement)

3.4 Description of Test Auxiliary Equipment

The EUT has been tested as an independent unit.

3.5 Measurement Uncertainty

Please refer to FCC ID: 2AIZN-X6851, report No.: JYTSZ-R12-2301776.

3.6 Additions to, Deviations, or Exclusions from the Method

No

3.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber and 10m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L15527

JianYan Testing Group Shenzhen Co., Ltd. is accredited to ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L15527.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

JianYan Testing Group Shenzhen Co., Ltd. Report Template No.: JYTSZ4b-156-C1 Project No.: JYTSZR2401001 No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Tel: +86-755-23118282, Fax: +86-755-23116366

Report No.: JYTSZ-R12-2400053

3.8 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community,

Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Tel: +86-755-23118282, Fax: +86-755-23116366

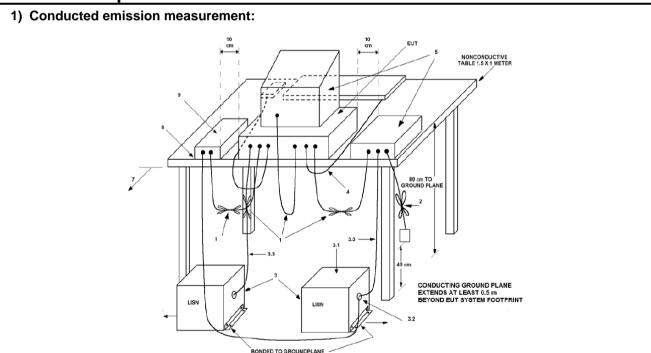
Email: info-JYTee@lets.com, Website: http://jyt.lets.com

3.9 Test Instruments List

Conducted Method:							
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
Spectrum Analyzer	Keysight	N9010B	WXJ004-3	11-01-2023	10-31-2024		
Temperature Humidity Chamber	ZHONG ZHI	CZ-A-80D	WXJ032-3	01-09-2023	01-08-2025		
Power Detector Box	MWRFTEST	MW100-PSB	WXJ007-4	09-25-2023	09-24-2024		
RF Control Unit	MWRFTEST	MWRFTEST MW100-RFCB WXG006		N/A			
RF Switch TOP PRECISION		RSU0301	WXG003	N	I/A		
DC Power Supply	Keysight	E3642A	WXJ025-2	WXJ025-2 N/A			
Test Software	MWRFTEST	MTS 8310	Version: 2.0.0.0				

4 Measurement Setup and Procedure

4.1 Test Channel

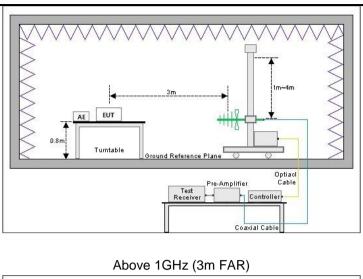

According to ANSI C63.10-2013 chapter 5.6.1 Table 4 requirement, select lowest channel, middle channel, and highest channel in the frequency range in which device operates for testing. The detailed frequency points are as follows:

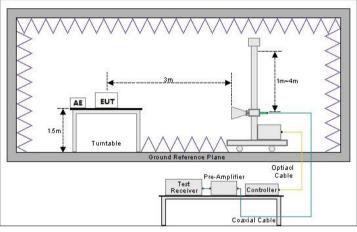
Operation frequency: 5150 MHz – 5250 MHz						
	Lowe	st channel	Middle channel Highest chan			st channel
Modulation mode	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
802.11a, n-HT20, ac-VHT20	36	5180	40	5200	48	5240
802.11n-HT40, ac-VHT40	38	5190	/	/	46	5230
802.11ac-VHT80	/	/	42	5210	/	/

Operation frequency: 5725 MHz - 5850 MHz

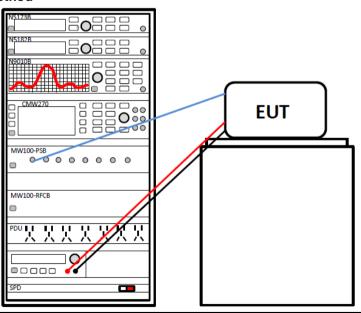
	Lowes	st channel	Middle channel Highest cha		st channel	
Modulation mode	Channel	Frequency	Channel	Frequency	Channel	Frequency
	No.	(MHz)	No.	(MHz)	No.	(MHz)
802.11a, n-HT20, ac-VHT20	149	5745	157	5785	165	5825
802.11n-HT40, ac-VHT40	151	5755	/	/	159	5795
802.11ac-VHT80	/	/	155	5775	/	/

4.2 Test Setup




Note: The detailed descriptions please refer to Figure 8 of ANSI C63.4:2014.

2) Radiated emission measurement:


Below 1GHz (3m SAC)

3) Conducted test method

4.3 Test Procedure

Test method	Test step			
Conducted emission	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement. 			
Radiated emission	For below 1GHz:			
	1. The EUT was placed on the tabletop of a rotating table 0.8 m the ground at a 3 m semi anechoic chamber. The measurement distance from the EUT to the receiving antenna is 3 m.			
	2. EUT works in each mode of operation that needs to be tested, and having			
	the EUT continuously working, respectively on 3 axis (X, Y & Z) and considered typical configuration to obtain worst position. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations. 3. Open the test software to control the test antenna and test turntable. Perform the test, save the test results, and export the test data.			
	the test, save the test results, and export the test data.			
	For above 1GHz:			
	1. The EUT was placed on the tabletop of a rotating table 1.5 m the ground at a 3 m fully anechoic room. The measurement distance from the EUT to the receiving antenna is 3 m.			
	2. EUT works in each mode of operation that needs to be tested, and having			
	the EUT continuously working, respectively on 3 axis (X, Y & Z) and considered typical configuration to obtain worst position. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations.			
	3. Open the test software to control the test antenna and test turntable. Perform the test, save the test results, and export the test data.			
Conducted test method	The Wi-Fi antenna port of EUT was connected to the test port of the test system through an RF cable.			
	The EUT is keeping in continuous transmission mode and tested in all modulation modes.			
	3. Open the test software, prepare a test plan, and control the system through the software. After the test is completed, the test report is exported through			
	the test software.			

Report No.: JYTSZ-R12-2400053

5 Test Results

5.1 Summary

5.1.1 Clause and Data Summary

This report is revised according to the JYTSZ-R12-2301776 report, FCC ID: 2AIZN-X6851 issued by JianYan Testing Group Shenzhen Co., Ltd. Differences: The X6851B has one more HL3179 fast charge chip and peripheral devices than the X6851. The X6851B and X6851 battery connectors are different. The X6851 charges 45W and the X6851B charges 100W. The appearance of the prototype is different in color. And model update, so need to spot-check WiFi Conducted Output Power.

Test items	Standard clause	Test data	Result
Antenna Requirement	15.203	Please refer to report No.: JYTSZ-R12-2301776.	Please refer to report No.: JYTSZ-R12-2301776.
AC Power Line Conducted Emission	15.207 15.407 (b)(9)	Please refer to report No.: JYTSZ-R12-2301776.	Please refer to report No.: JYTSZ-R12-2301776.
Duty Cycle	ANSI C63.10-2013	Please refer to report No.: JYTSZ-R12-2301776.	Please refer to report No.: JYTSZ-R12-2301776.
Conducted Peak Output Power Power Spectral Density	15.407 (a)(1)(iv) (a)(3)(i)	Please refer to report No.: JYTSZ-R12-2301776.	Please refer to report No.: JYTSZ-R12-2301776.
26dB Emission Bandwidth 99% Occupied Bandwidth	15.407 (a)(12)	Please refer to report No.: JYTSZ-R12-2301776.	Please refer to report No.: JYTSZ-R12-2301776.
6dB Emission Bandwidth	15.407 (e)	Please refer to report No.: JYTSZ-R12-2301776.	Please refer to report No.: JYTSZ-R12-2301776.
Unwanted Emissions	15.205 15.209 15.407 (b)(1), (4), (9), (10)	Please refer to report No.: JYTSZ-R12-2301776.	Please refer to report No.: JYTSZ-R12-2301776.
Frequency Stability	15.407 (g)	Please refer to report No.: JYTSZ-R12-2301776.	Please refer to report No.: JYTSZ-R12-2301776.
Dynamic frequency selection	15.407 (h)(2)	N/A	N/A

Remark:

Test Method:

ANSI C63.10-2013

KDB 789033 D02 General U-NII Test Procedures New Rules v02r01

JianYan Testing Group Shenzhen Co., Ltd. Report Template No.: JYTSZ4b-156-C1 No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366

^{1.} Please refer to FCC ID: 2AIZN-X6851, report No.: JYTSZ-R12-2301776 issue by JianYan Testing Group Shenzhen Co., Ltd.

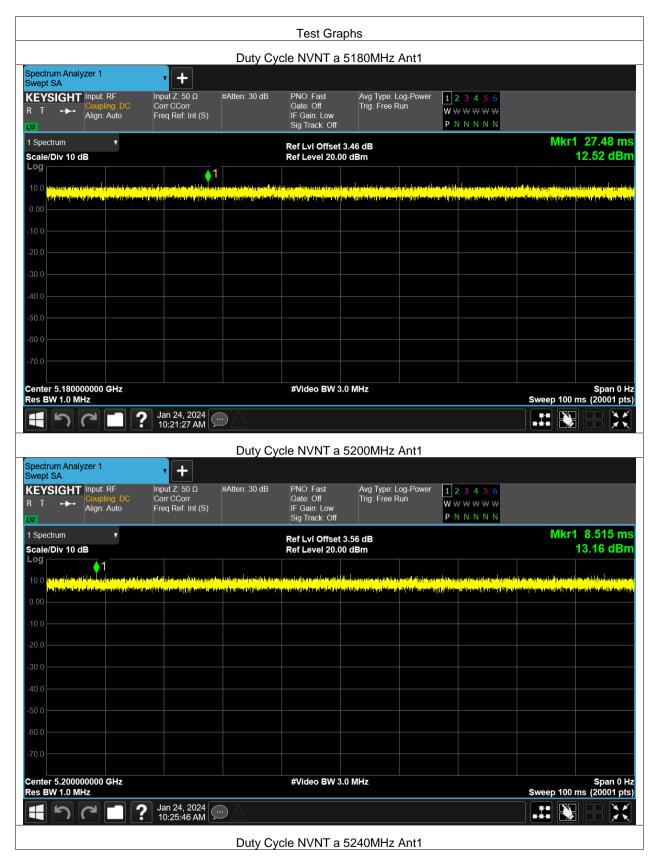
^{2.} The cable insertion loss used by "RF Output Power" and other conduction measurement items is 1.0dB (provided by the customer).

5.1.2 Test Limit

Test items	Limit		
	Frequency	iΒμV)	
	(MHz)	Quasi-Peak	Average
AC Power Line Conducted	0.15 – 0.5	66 to 56 Note 1	56 to 46 Note 1
Emission	0.5 – 5	56	46
LIIIISSIOII	5 – 30	60	50
	Note 1: The limit level in dBμV d Note 2: The more stringent limit	ecreases linearly with the logarith applies at transition frequencies.	m of frequency.
Conducted Peak Output Power Power Spectral Density	For the 5.15-5.25 GHz bare. For client devices in the 5. output power over the frequency provided the maximum addition, the maximum power any 1 megahertz band. If the first than 6 dBi are used, both the maximum power spectral of the directional gain of the assertion of the band 5.725-5.895. For the band 5.725-5.850 of the frequency band of opermaximum power spectral conducted band. If transmitting anteniused, both the maximum of spectral density shall be regain of the antenna exceed devices operating in this bardirectional gain greater that transmitter conducted power use of point-to-multipoints multiple collocated transmit operator of the U-NII devict the installer, is responsible directional antennas are us operations.	15-5.25 GHz band, the ruency band of operation antenna gain does not wer spectral density sharansmitting antennas of he maximum conducted density shall be reduced antenna exceeds 6 dBi. GHz: GHz: GHz, the maximum conducted on shall not exceed 1 density shall not	shall not exceed 250 exceed 6 dBi. In II not exceed 11 dBm in directional gain greater output power and the by the amount in dB that ducted output power over W. In addition, the 30 dBm in any 500-kHz reater than 6 dBi are and the maximum power dB that the directional dipoint-to-point U-NII itting antennas with esponding reduction in operations exclude the applications, and me information. The professionally installed, ins employing high gain
26dB Emission Bandwidth 99% Occupied Bandwidth	N/A		
6dB Emission Bandwidth	Within the 5.725-5.850 GH dB bandwidth of U-NII dev		

Unwanted Emissions	above or below the MHz above or below the band edge incre above or below the band edge increasin edge. (3) Unwanted emissions	perating solel mited to a level band edge incomparing linearly to a legislation of the band edge, and glinearly to a legislation of the band edge, and glinearly to a legislation of the band edge, and glinearly to a legislation of the band edge, and glinearly to a legislation of the band edge, and glinearly to a legislation of the band edge.	y in the 5.725- el of ?27 dBm/l reasing linearly je, and from 25 to a level of 15 d from 5 MHz level of 27 dBi must comply of The provision	eed an e.i.r.p. of ?27 -5.850 GHz band: All MHz at 75 MHz or more to 10 dBm/MHz at 25 MHz above or below .6 dBm/MHz at 5 MHz above or below the m/MHz at the band with the general field as of § 15.205 apply to				
	Frequency	Limit (dΒμV/m)		Detector				
	(MHz)	@ 3m	@ 10m	Detector				
	30 – 88	40.0	30.0	Quasi-peak				
	88 – 216	43.5	33.5	Quasi-peak				
	216 – 960	46.0	36.0	Quasi-peak				
	960 – 1000	54.0	44.0	Quasi-peak				
	Note: The more stringent limit applies at transition frequencies.							
	Frequency		Limit (dBµV/m) @ 3m					
	riequency	Average		Peake				
	Above 1 GHz	54	4.0	74.0				
	Note: The measurement bandwidth shall be 1 MHz or greater.							
Frequency Stability	Manufacturers of U-NII stability such that an en under all conditions of r	nission is main	itained within t	he band of operation				

JianYan Testing Group Shenzhen Co., Ltd. Report Template No.: JYTSZ4b-156-C1 No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366


5.2 Conducted Peak Output Power Spot-check

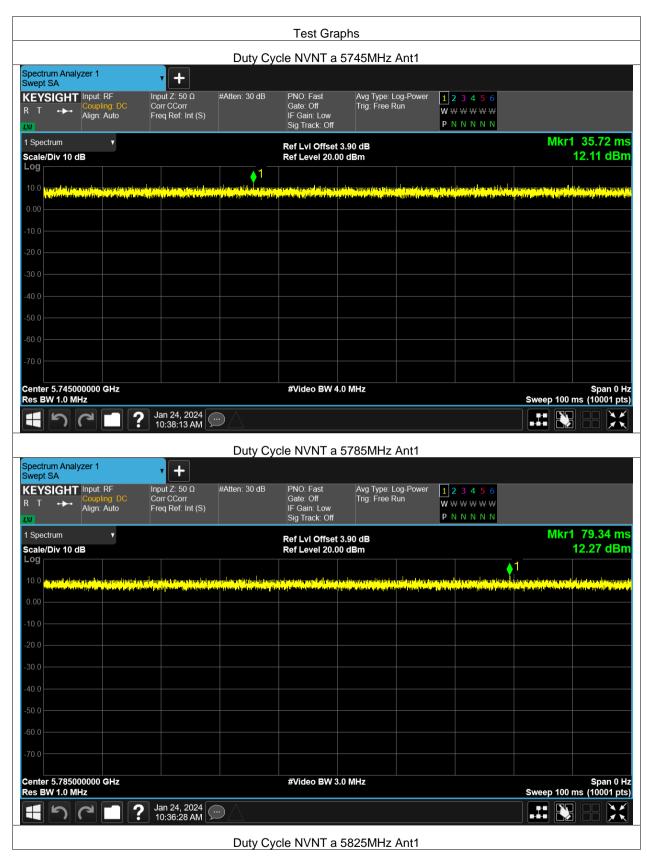
Appendix – 5.2G Wi-Fi Test Data


Duty Cycle

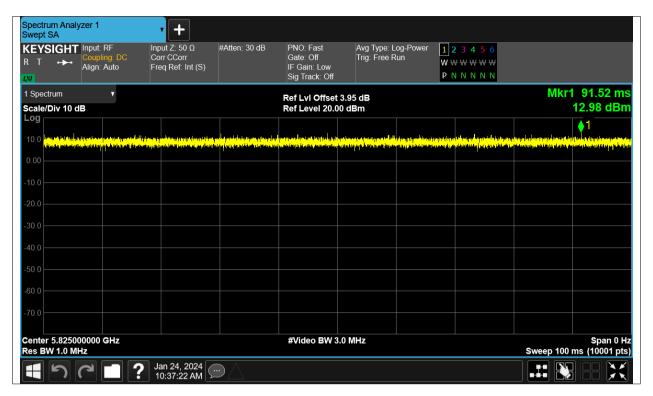
Condition	Mode	Frequency (MHz)	Antenna	Duty Cycle (%)	Correction Factor (dB)
NVNT	а	5180	Ant1	100	0
NVNT	а	5200	Ant1	100	0
NVNT	а	5240	Ant1	100	0

Maximum Conducted Output Power

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Duty Factor (dB)	Total Power (dBm)	Limit (dBm)	Verdict
NVNT	а	5180	Ant1	15.5	0	15.5	24	Pass
NVNT	а	5200	Ant1	15.3	0	15.3	24	Pass
NVNT	а	5240	Ant1	15.62	0	15.62	24	Pass



Appendix – 5.8G Wi-Fi Test Data


Duty Cycle

Condition	Mode	Frequency (MHz)	Antenna	Duty Cycle (%)	Correction Factor (dB)
NVNT	а	5745	Ant1	100	0
NVNT	а	5785	Ant1	100	0
NVNT	а	5825	Ant1	100	0

Maximum Conducted Output Power

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Duty Factor (dB)	Total Power (dBm)	Limit (dBm)	Verdict	
NVNT	а	5745	Ant1	14.21	0	14.21	30	Pass	
NVNT	а	5785	Ant1	15.32	0	15.32	30	Pass	
NVNT	а	5825	Ant1	15.41	0	15.41	30	Pass	

-----End of report-----