

TEST REPORT

Report No.:	BCTC2503976661-1E
Applicant:	HALLIDAY HOLDINGS PTE. LTD.
Product Name:	Halliday Glasses
Test Model:	Halliday GP101
Tested Date:	2025-03-17 to 2025-03-26
Issued Date:	2025-04-16
Sh	enzhen BCTC Testing Co., Ltd.
No.: BCTC/RF-EMC-005	Page: 1 of 81

FCC ID:2BN47HALLIDAYGP101

Product Name:	Halliday Glasses
Trademark:	N/A
Model/Type Reference:	Halliday GP101,Halliday GP102
Prepared For:	HALLIDAY HOLDINGS PTE. LTD.
Address:	8 KAKI BUKIT AVENUE 4,#08-32,PREMIER @ KAKI BUKIT SINGAPORE 415875
Manufacturer:	Cosonic Intelligent Technologies Co., Ltd
Address:	No. 3 Ke Yuan Road, Songshan Lake, Dongguan City,Guangdong Province, China 523808
Prepared By:	Shenzhen BCTC Testing Co., Ltd
Address:	1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road,Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China
Sample Received Date:	2025-03-17
Sample Tested Date:	2025-03-17 to 2025-03-26
Report No.:	BCTC2503976661-1E
Test Standards	FCC Part15.247 ANSI C63.10-2013
Test Results	PASS
Remark:	This is Bluetooth Classic radio test report.

Tested by:

Brave Zeng/ Project Handler

Approved by:

Zero Zhou/Reviewer

The test report is effective only with both signature and specialized stamp. This result(s) shown in this report refer only to the sample(s) tested. Without written approval of Shenzhen BCTC Testing Co., Ltd, this report can't be reproduced except in full. The tested sample(s) and the sample information are provided by the client.

Page: 2 of 81

Table of Content

Test	Report Declaration	Page
1.	Version	5
2.	Test Summary	6
3.	Measurement Uncertainty	
4.	Product Information and Test Setup	
4.1	Product Information	
4.2	Test Setup Configuration	
4.3	Support Equipment	
4.4	Channel List	
4.5	Test Mode	
4.6	Table Of Parameters Of Text Software Setting	-
 5.	Test Facility And Test Instrument Used	
5.1	Test Facility	
5.2	Test Instrument Used	
5.z 6.	Conducted Emissions	
6.1	Block Diagram Of Test Setup	
6.2	Limit	
6.3	Test procedure	
6.4	· · · · · · · · · · · · · · · · · · ·	
-	EUT operating Conditions	
6.5	Test Result	
7.	Radiated emissions	
7.1	Block Diagram Of Test Setup	
7.2	Limit	
7.3	Test procedure	
7.4	EUT operating Conditions	
7.5	Test Result	
8.	Radiated Band Emission Measurement and Restricted Bands of Operation	
8.1	Block Diagram Of Test Setup	
8.2	Limit	
8.3	Test procedure	
8.4	EUT operating Conditions	
8.5	Test Result	
9.	Spurious RF Conducted Emissions	27
9.1	Block Diagram Of Test Setup	
9.2	Limit	27
9.3	Test procedure	27
9.4	Test Result	28
10.	20 dB Bandwidth	49
10.1	Block Diagram Of Test Setup	49
10.2	Limit	49
10.3	Test Procedure Test Result	49
10.4	Test Result	50
11.	Maximum Peak Output Power	56
11.1	Test Result Maximum Peak Output Power Block Diagram Of Test Setup Limit	
11.2	Limit	56
11.3	Test procedure	56

JC JC JC

еро

11.4 Test Result	
12. Hopping Channel Separation	
12.1 Block Diagram Of Test Setup	
12.2 Limit	
12.3 Test procedure	
12.4 Test Result	
13. Number of Hopping Frequency	68
13.1 Block Diagram Of Test Setup	68
13.2 Limit	68
13.3 Test procedure	68
13.4 Test Result	68
14. Dwell Time	71
14.1 Block Diagram Of Test Setup	71
14.2 Limit	
14.3 Test procedure	71
14.4 Test Result	71
15. Antenna Requirement	
15.1 Limit	
15.2 Test Result	
16. EUT Test Setup Photographs	79

t Sea

Page: 4 of 81

1. Version

Report No.	Issue Date	Description	Approved
BCTC2503976661-1E	2025-04-16	Original	Valid

Page: 5 of 81

Test Summary 2.

The Product has been tested according to the following specifications:

No.	Test Parameter	Clause No.	Results
1	Conducted emission AC power port	§15.207	PASS
2	Conducted peak output power for FHSS	§15.247(b)(1)	PASS
3	20dB Occupied bandwidth	§15.247(a)(1)	PASS
4	Number of hopping frequencies	§15.247(a)(1)(iii)	PASS
5	Dwell Time	§15.247(a)(1)(iii)	PASS
6	Spurious RF conducted emissions	§15.247(d)	PASS
7	Band edge	§15.247(d)	PASS
8	Spurious radiated emissions for transmitter	§15.247(d) & §15.209 & §15.205	PASS
9	Antenna Requirement	15.203	PASS
	N/A (Not Applicable)		

NOTE1: N/A (Not Applicable) NOTE2: According to FCC OET KDB 558074, the report use radiated measurements in the restricted frequency bands. In addition, the radiated test is also performed to ensure the emissions emanating from the device cabinet also comply with the applicable limits.

Page: 6 of 81

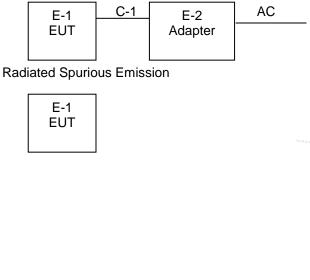
3. Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

No.	Item	Uncertainty
1	3m chamber Radiated spurious emission(30MHz-1GHz)	U=4.3dB
2	3m chamber Radiated spurious emission(9KHz-30MHz)	U=3.7dB
3	3m chamber Radiated spurious emission(1GHz-18GHz)	U=4.5dB
4	3m chamber Radiated spurious emission(18GHz-40GHz)	U=3.34dB
5	Conducted Emission (150kHz-30MHz)	U=3.20dB
6	Conducted Adjacent channel power	U=1.38dB
7	Conducted output power uncertainty Above 1G	U=1.576dB
8	Conducted output power uncertainty below 1G	U=1.28dB
9	humidity uncertainty	U=5.3%
10	Temperature uncertainty	U=0.59℃

Page: 7 of 81

4. Product Information and Test Setup


4.1 Product Information

Model/Type reference:	Halliday GP101,Halliday GP102
Model differences: The primary tested model and the additional models differ only in naming,te painting process, and product structure. All other aspects-including materia manufacturing processes, circuit design, and manufacturer-are identical. W finalized Halliday GP101 as the test model.	
Hardware Version:	N/A
Software Version:	N/A
Operation Frequency:	Bluetooth: 2402-2480MHz
Type of Modulation:	Bluetooth: GFSK, π/ 4 DQPSK,8DPSK
Number Of Channel	79CH
Antenna installation:	Internal antenna
Antenna Gain:	0.92dBi
Remark:	The antenna gain of the product comes from the antenna report provided by the customer, and the test data is affected by the customer information.
power supply:	DC 5V
Battery:	DC 3.89V, 150mAh

4.2 Test Setup Configuration

See test photographs attached in eut test setup photographs for the actual connections between product and support equipment.

Conducted Emission:

Page: 8 of 81

Edition: B.2

E

4.3 Support Equipment

No.	Device Type	Brand	Model	Series No.	Note	
E-1	Halliday Glasses	N/A	Halliday GP101	N/A	EUT	
E-2	Adapter	N/A	N/A	N/A	Auxiliary	

ltem	Shielded Type	Ferrite Core	Length	Note
C-1	N/A	N/A	N/A	N/A

Notes:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

4.4 Channel List

СН	Frequency (MHz)	СН	Frequency (MHz)	СН	Frequency (MHz)	СН	Frequency (MHz)
0	2402	1	2403	2	2404	3	2405
4	2406	5	2407	6	2408	7	2409
8	2410	9	2411	10	2412	11	2413
12	2414	13	2415	14	2416	15	2417
16	2418	17	2419	18	2420	19	2421
20	2422	21	2423	22	2424	23	2425
24	2426	25	2427	26	2428	27	2429
28	2430	29	2431	30	2432	31	2433
32	2434	33	2435	34	2436	35	2437
36	2438	37	2439	38	2440	39	2441
40	2442	41	2443	42	2444	43	2445
44	2446	45	2447	46	2448	47	2449
48	2450	49	2451	50	2452	51	2453
52	2454	53	2455	54	2456	55	2457
56	2458	57	2459	58	2460	59	2461
60	2462	61	2463	62	2464	63	2465
64	2466	65	2467	66	2468	67	2469
68	2470	69	2471	70	2472	71	2473
72	2474	73	2475	74	2476	75	2477
76	2478	77	2479	78	2480	79	

,TC 3C PR

4.5 Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Test Mode	Test mode	Low channel	Middle channel	High channel		
1	Transmitting(GFSK)	2402MHz	2441MHz	2480MHz		
2	Transmitting(π/ 4 DQPSK)	2402MHz	2441MHz	2480MHz		
3	Transmitting(8DPSK)	2402MHz	2441MHz	2480MHz		
4	Transmitting (Conducted emission & Radiated emission)					

Note:

(1) The measurements are performed at the highest, middle, lowest available channels.

(2) Fully-charged battery is used during the test

4.6 Table Of Parameters Of Text Software Setting

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters

Test software Version	FCC_assist 1.0.1.2		
Frequency	2402 MHz	2441 MHz	2480 MHz
Parameters	DEF	DEF	DEF

Page: 10 of 81

5. Test Facility And Test Instrument Used

5.1 Test Facility

All measurement facilities used to collect the measurement data are located at Shenzhen BCTC Testing Co., Ltd. Address: 1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Tangwei, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China. The site and apparatus are constructed in conformance with the requirements of ANSI C63.4 and CISPR 16-1-1 other equivalent standards. FCC Test Firm Registration Number: 712850 IC Registered No.: 23583

5.2 Test Instrument Used

	Conducted Emissions Test					
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.	
Receiver	R&S	ESR3	102075	May 16, 2024	May 15, 2025	
LISN	R&S	ENV216	101375	May 16, 2024	May 15, 2025	
Software	Frad	EZ-EMC	EMC-CON 3A1	\	\	
Pulse limiter	Schwarzbeck	VTSD 9561-F	01323	May 16, 2024	May 15, 2025	

	Continuous RF Electromagnetic Field Disturbances Test						
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.		
Power meter	Keysight	E4419	A00065	May 16, 2024	May 15, 2025		
Power sensor	Keysight	E9300A	US39211659	May 16, 2024	May 15, 2025		
Power sensor	Keysight	E9300A	US39211305	May 16, 2024	May 15, 2025		
Amplifier	SKET	HAP_801000 -250W	21201805013	May 16, 2024	May 15, 2025		
Amplifier	SKET	HAP_0103-7 5W	21201805014	May 16, 2024	May 15, 2025		
Amplifier	SKET	HAP_0306-5 0W	21201805015	May 16, 2024	May 15, 2025		
Stacked double LogPer. Antenna	Schwarzbeck	STLP 9129	00077				
Field Probe	Narda	EP-601	611WX80256	May 25, 2024	May 24, 2025		
Signal Generator	Agilent	N5181A	MY50143748	May 16, 2024	May 15, 2025		
Software	SKET	EMC-S	1.2.0.18	1	\		

Radiated Emissions Test (966 Chamber01)					
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.
966 chamber	ChengYu	966 Room	966	May 15, 2023	May 14, 2026
Receiver	R&S	ESR3	102075	May 16, 2024	May 15, 2025
Receiver	R&S	ESRP	101154	May 16, 2024	May 15, 2025
Amplifier	Schwarzbeck	BBV9744	9744-0037	May 16, 2024	May 15, 2025
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	942	May 21, 2024	May 20, 2025
Loop Antenna(9KHz -30MHz)	Schwarzbeck	FMZB1519B	00014	May 21, 2024	May 20, 2025
Amplifier	SKET	LAPA_01G1 8G-45dB	SK202104090 1	May 16, 2024	May 15, 2025
Horn Antenna	Schwarzbeck	BBHA9120D	1541	May 21, 2024	May 20, 2025
Amplifier(18G Hz-40GHz)	MITEQ	TTA1840-35- HG	2034381	May 16, 2024	May 15, 2025
Horn Antenn(18GH z-40GHz)	Schwarzbeck	BBHA9170	00822	May 21, 2024	May 20, 2025
Spectrum Analyzer9kHz- 40GHz	R&S	FSP40	100363	May 16, 2024	May 15, 2025
Software	Frad	EZ-EMC	FA-03A2 RE	١	\

c. 00.,LTA

No.: BCTC/RF-EMC-005

Page: 12 of 81

6. Conducted Emissions

6.1 Block Diagram Of Test Setup

6.2 Limit

	Limit (dBuV)		
Frequency (MHz)	Quas-peak	Average	
0.15 -0.5	66 - 56 *	56 - 46 *	
0.50 -5.0	56.00	46.00	
5.0 -30.0	60.00	50.00	

Notes:

1. *Decreasing linearly with logarithm of frequency.

2. The lower limit shall apply at the transition frequencies.

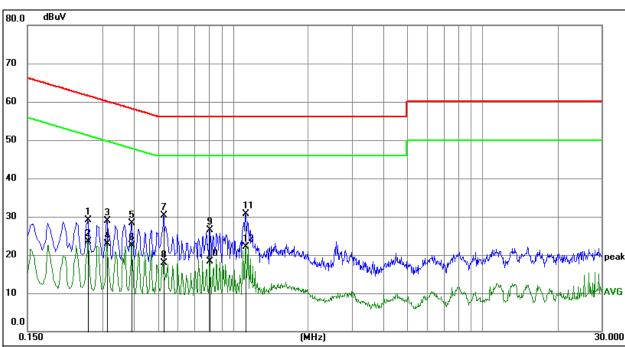
6.3 Test procedure

Receiver Parameters	Setting	
Attenuation	10 dB	
Start Frequency	0.15 MHz	
Stop Frequency	30 MHz	
IF Bandwidth	9 kHz	

a. The Product was placed on a nonconductive table 0.8 m above the horizontal ground reference plane, and 0.4 m from the vertical ground reference plane, and connected to the main through Line Impedance Stability Network (L.I.S.N).

b. The RBW of the receiver was set at 9 kHz in 150 kHz ~ 30MHz with Peak and AVG detector in Max Hold mode. Run the receiver's pre-scan to record the maximum disturbance generated from Product in all power lines in the full band.

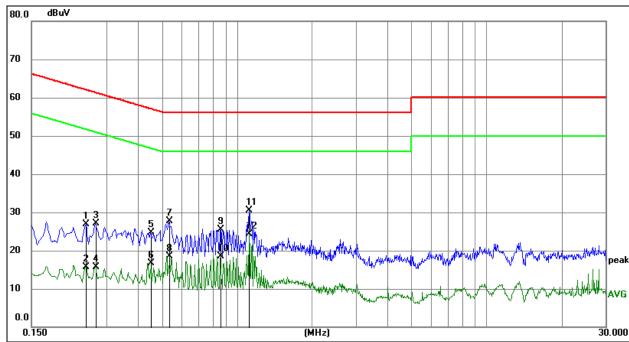
c. For each frequency whose maximum record was higher or close to limit, measure its QP and AVG values and record.


6.4 EUT operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

6.5 Test Result

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	L
Test Mode:	Mode 4	Test Voltage :	AC120V/60Hz


Remark:

All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.
 Measurement = Reading Level + Correct Factor
 Over = Measurement - Limit

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector
1	0.2625	18.47	10.60	29.07	61.35	-32.28	QP
2	0.2625	12.81	10.60	23.41	51.35	-27.94	AVG
3	0.3120	18.32	10.60	28.92	59.92	-31.00	QP
4	0.3120	12.30	10.60	22.90	49.92	-27.02	AVG
5	0.3930	17.67	10.61	28.28	58.00	-29.72	QP
6	0.3930	11.96	10.61	22.57	48.00	-25.43	AVG
7	0.5280	19.75	10.64	30.39	56.00	-25.61	QP
8	0.5280	7.27	10.64	17.91	46.00	-28.09	AVG
9	0.8070	15.91	10.64	26.55	56.00	-29.45	QP
10	0.8070	7.66	10.64	18.30	46.00	-27.70	AVG
11	1.1220	20.08	10.60	30.68	56.00	-25.32	QP
12 *	1.1220	11.45	10.60	22.05	46.00	-23.95	AVG

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	N
Test Mode:	Mode 4	Test Voltage :	AC120V/60Hz

Remark:

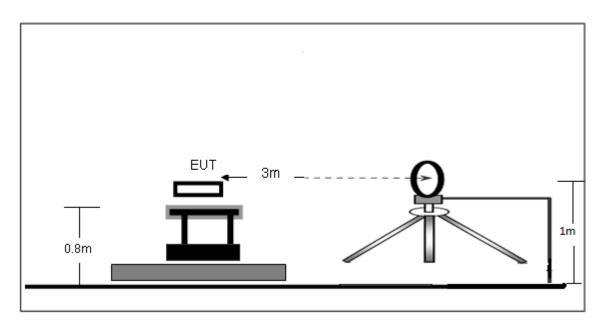
All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.
 Measurement = Reading Level + Correct Factor
 Over = Measurement - Limit

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector
1	0.2481	16.23	10.59	26.82	61.82	-35.00	QP
2	0.2481	5.16	10.59	15.75	51.82	-36.07	AVG
3	0.2701	16.56	10.60	27.16	61.11	-33.95	QP
4	0.2701	5.03	10.60	15.63	51.11	-35.48	AVG
5	0.4492	14.15	10.62	24.77	56.89	-32.12	QP
6	0.4492	6.07	10.62	16.69	46.89	-30.20	AVG
7	0.5322	17.07	10.64	27.71	56.00	-28.29	QP
8	0.5322	7.78	10.64	18.42	46.00	-27.58	AVG
9	0.8573	14.84	10.62	25.46	56.00	-30.54	QP
10	0.8573	7.85	10.62	18.47	46.00	-27.53	AVG
11	1.1173	19.93	10.60	30.53	56.00	-25.47	QP
12 *	1.1173	13.70	10.60	24.30	46.00	-21.70	AVG

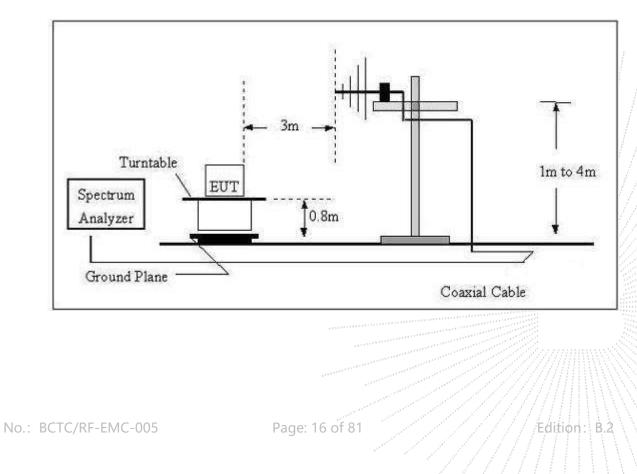
JC JC JC

ероі

TE,

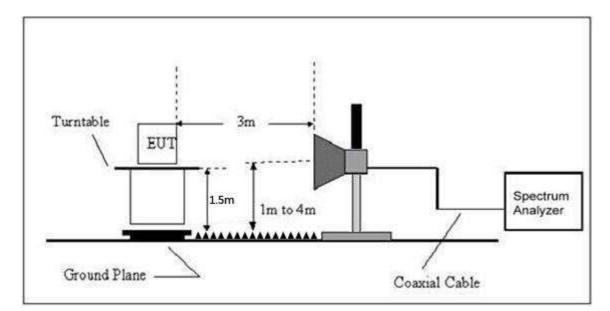

T(

t Sea


7. Radiated emissions

7.1 Block Diagram Of Test Setup

(A) Radiated Emission Test-Up Frequency Below 30MHz



(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

7.2 Limit

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequency	Field Strength	Distance	Field Strength Limit at 3m Distance		
(MHz)	uV/m	(m)	uV/m	dBuV/m	
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80	
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40	
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40	
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾	
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾	
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾	
Above 960	500	3	500 20log ⁽⁵⁰⁰⁾		

Limits Of Radiated Emission Measurement (Above 1000MHz)

Eroquopov (MHz)	Limit (dBuV/m) (at 3M)
Frequency (MHz)	Peak Average
Above 1000	74 54

Notes:

(1)The limit for radiated test was performed according to FCC PART 15C.

(2)The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

FD

Frequency Range Of Radiated Measurement

(a) For an intentional radiator the spectrum shall be investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to at least the frequency shown in this paragraph:

(1) If the intentional radiator operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

(2) If the intentional radiator operates at or above 10 GHz and below 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 100 GHz, whichever is lower.

(3) If the intentional radiator operates at or above 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 200 GHz, whichever is lower, unless specified otherwise elsewhere in the rules.

(4) If the intentional radiator operates at or above 95 GHz: To the third harmonic of the highest fundamental frequency or to 750 GHz, whichever is lower, unless specified otherwise elsewhere in the rules.

(5) If the intentional radiator contains a digital device, regardless of whether this digital device controls the functions of the intentional radiator or the digital device is used for additional control or function purposes other than to enable the operation of the intentional radiator, the frequency range shall be investigated up to the range specified in paragraphs (a) (1)through (4) of this section or the range applicable to the digital device, as shown in paragraph (b)(1) of this section, whichever is the higher frequency range of investigation.

7.3 Test procedure

Receiver Parameter	Setting
Attenuation	Auto
9kHz~150kHz	RBW 200Hz for QP
150kHz~30MHz	RBW 9kHz for QP
30MHz~1000MHz	RBW 120kHz for QP

Spectrum Parameter	Setting
1-25GHz	RBW 1 MHz /VBW 1 MHz for Peak,
1-25GHZ	RBW 1 MHz / VBW 10Hz for Average

Below 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c.The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d.For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.

e.The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

g. Test the EUT in the lowest channel, the middlest channel, the Highest channel.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

7.4 EUT operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

Page: 19 of 81

7.5 Test Result

Below 30MHz

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Test Voltage :	DC 3.89V
Test Mode:	Mode 4	Test voltage.	DC 3.09V

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m) (dB)		P/F
				PASS
				PASS

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the

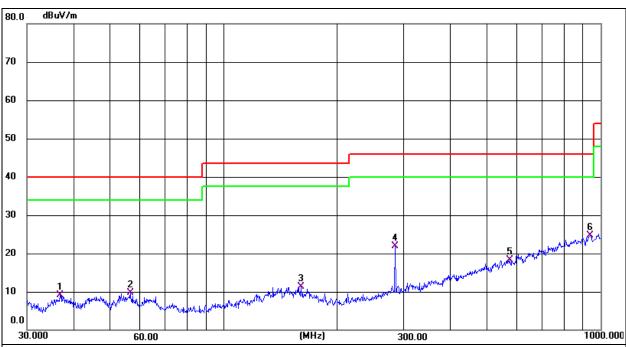
permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuv) + distance extrapolation factor.

No.: BCTC/RF-EMC-005

Page: 20 of 81


Edition: B.2

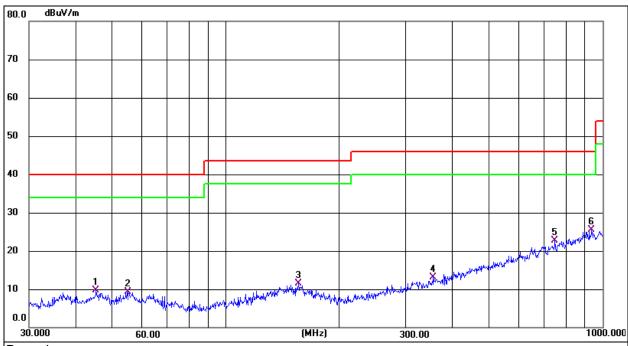
E

Between 30MHz - 1GHz

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	Horizontal
Test Mode:	Mode 4	Test Voltage :	DC 3.89V

Remark:

Factor = Antenna Factor + Cable Loss – Pre-amplifier.
 Measurement = Reading Level + Correct Factor
 Over = Measurement - Limit


1					N N N	5 5 5	1 + 1 + 1
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	36.7662	26.96	-17.78	9.18	40.00	-30.82	QP
2	56.3948	27.41	-17.61	9.80	40.00	-30.20	QP
3	160.3456	27.34	-15.95	11.39	43.50	-32.11	QP
4	284.9767	37.62	-15.81	21.81	46.00	-24.19	QP
5	574.6258	26.00	-7.74	18.26	46.00	-27.74	QP
6 *	938.8326	25.87	-1.09	24.78	46.00	-21.22	QP

JC JC JC

ероі

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	Vertical
Test Mode:	Mode 4	Test Voltage :	DC 3.89V

Remark:

.

Factor = Antenna Factor + Cable Loss – Pre-amplifier.
 Measurement = Reading Level + Correct Factor
 Over = Measurement - Limit

1							
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	45.2166	27.01	-17.37	9.64	40.00	-30.36	QP
2	55.0274	26.77	-17.55	9.22	40.00	-30.78	QP
3	155.9101	27.14	-15.65	11.49	43.50	-32.01	QP
4	355.4273	26.82	-13.68	13.14	46.00	-32.86	QP
5	747.4825	26.82	-4.07	22.75	46.00	-23.25	QP
6 *	935.5463	26.60	-1.14	25.46	46.00	-20.54	QP
			-		The second second	25425	

Page: 22 of 81

Reading Correct Measure-Limits Frequency Over Polar Level Factor ment Detector (H/V) Type (dBuV/ (dBuV/m) (MHz) (dBuV/m) (dB) (dB) m) **GFSK Low channel** 4804.00 -19.99 74.00 -22.22 ΡK V 71.77 51.78 V 4804.00 61.92 -19.99 41.93 54.00 -12.07 AV V 7206.00 63.39 -14.22 49.17 74.00 -24.83 ΡK V 7206.00 -14.22 38.53 54.00 -15.47 52.75 AV Н 4804.00 69.79 -19.99 49.80 74.00 -24.20 ΡK Н 4804.00 60.25 -19.99 40.26 54.00 -13.74 AV ΡK Н 7206.00 60.80 -14.22 46.58 74.00 -27.42 Н 7206.00 52.32 -14.22 38.10 54.00 -15.90 AV **GFSK Middle channel** ΡK V 4882.00 70.55 -19.84 50.71 74.00 -23.29 -9.73 V 4882.00 44.27 54.00 AV 64.11 -19.84 V 7323.00 62.42 -13.90 48.52 74.00 -25.48 PK V 7323.00 53.52 -13.90 39.62 54.00 -14.38 AV 4882.00 47.53 -26.47 Н 67.37 -19.84 74.00 PK Н 4882.00 58.17 -19.84 38.33 54.00 -15.67 AV Н 7323.00 59.92 -13.90 46.02 74.00 -27.98 ΡK Н 7323.00 52.02 -13.90 38.12 54.00 -15.88 AV **GFSK High channel** V 4960.00 73.30 -19.68 74.00 -20.38 ΡK 53.62 V 4960.00 64.65 -19.68 44.97 54.00 -9.03 AV PK V 7440.00 65.50 -13.57 51.93 74.00 -22.07 V 7440.00 56.23 -13.57 42.66 54.00 -11.34 AV Н 4960.00 70.79 51.11 74.00 -22.89 ΡK -19.68 Н 4960.00 59.92 -19.68 40.24 54.00 -13.76 AV ΡK Н 7440.00 -13.57 49.77 74.00 -24.23 63.34 Н 7440.00 54.76 -13.57 41.19 54.00 -12.81 AV

Between 1GHz – 25GHz

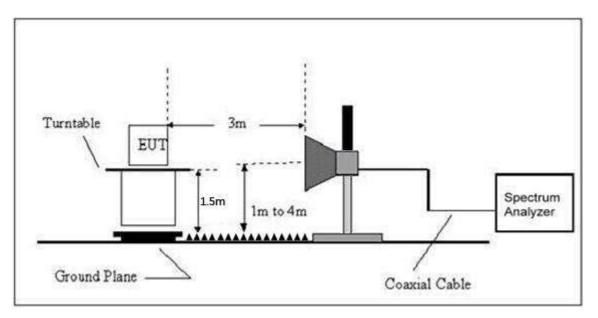
Remark:

1.Emission Level = Meter Reading + Factor, Factor = Antenna Factor + Cable Loss – Pre-amplifier. Over= Emission Level - Limit

2.If peak below the average limit, the average emission was no test.

3. In restricted bands of operation, The spurious emissions below the permissible value more than 20dB

4. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.


5.All the Modulation are test, the worst mode is GFSK, the data recording in the report.

8. Radiated Band Emission Measurement and Restricted Bands of Operation

8.1 Block Diagram Of Test Setup

Radiated Emission Test-Up Frequency Above 1GHz

8.2 Limit

FCC Part15 C Section 15.209 and 15.205

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

Limits Of Radiated Emission Measurement (Above 1000MHz)

Frequency (MHz)	Limit (dBuV/m) (at 3M)				
Frequency (MHz)	Peak Average				
Above 1000	74	54			

Notes:

(1)The limit for radiated test was performed according to FCC PART 15C.

(2) The tighter limit applies at the band edges.

(3)Emission level (dBuV/m)=20log Emission level (uV/m).

8.3 Test procedure

Receiver Parameter	Setting
Attenuation	Auto
Start Frequency	2300MHz
Stop Frequency	2520
RB / VB (Emission In Restricted Band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average

Above 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.

b.The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c.The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d.For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.

e.The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

g. Test the EUT in the lowest channel, the middlest channel, the Highest channel.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

8.4 EUT operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

8.5 Test Result

Test mode	Polar (H/V)	Frequency (MHz)	Correct r Factor (dB	Measure- ment (dBuV/m)	Lim (dBu		Result	
		()	(dBuV/m)	(dB)	PK	PK	AV	
			Lov	v Channel	2402MHz			
	Н	2390.00	72.50	-25.43	47.07	74.00	54.00	PASS
	Н	2400.00	75.00	-25.40	49.60	74.00	54.00	PASS
	V	2390.00	71.90	-25.43	46.47	74.00	54.00	PASS
GFSK	V	2400.00	72.61	-25.40	47.21	74.00	54.00	PASS
Gran			Hig	h Channel	2480MHz			
	Н	2483.50	71.99	-25.15	46.84	74.00	54.00	PASS
	Н	2500.00	68.37	-25.10	43.27	74.00	54.00	PASS
	V	2483.50	71.51	-25.15	46.36	74.00	54.00	PASS
	V	2500.00	67.97	-25.10	42.87	74.00	54.00	PASS
	Low Channel 2402MHz							
	Н	2390.00	72.51	-25.43	47.08	74.00	54.00	PASS
	Н	2400.00	75.33	-25.40	49.93	74.00	54.00	PASS
	V	2390.00	73.43	-25.43	48.00	74.00	54.00	PASS
π/4DQPSK	V	2400.00	73.18	-25.40	47.78	74.00	54.00	PASS
II/4DQF SK				h Channel	2480MHz			
	Н	2483.50	70.96	-25.15	45.81	74.00	54.00	PASS
	Н	2500.00	67.62	-25.10	42.52	74.00	54.00	PASS
	V	2483.50	73.22	-25.15	48.07	74.00	54.00	PASS
	V	2500.00	68.45	-25.10	43.35	74.00	54.00	PASS
				v Channel	2402MHz			
	Н	2390.00	73.28	-25.43	47.85	74.00	54.00	PASS
	Н	2400.00	76.10	-25.40	50.70	74.00	54.00	PASS
	V	2390.00	74.06	-25.43	48.63	74.00	54.00	PASS
8DPSK	V	2400.00	73.84	-25.40	48.44	74.00	54.00	PASS
ODESK				h Channel	2480MHz			
	Н	2483.50	72.61	-25.15	47.46	74.00	54.00	PASS
	Н	2500.00	69.41	-25.10	44.31	74.00	54.00	PASS
	V	2483.50	72.88	-25.15	47.73	74.00	54.00	PASS
	V	2500.00	68.08	-25.10	42.98	74.00	54.00	PASS

Remark:

1. Emission Level = Meter Reading + Factor, Factor = Antenna Factor + Cable Loss – Pre-amplifier. Over= Emission Level - Limit

2. If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit.

3 In restricted bands of operation, The spurious emissions below the permissible value more than 20dB

4. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

E

9. Spurious RF Conducted Emissions

9.1 Block Diagram Of Test Setup

9.2 Limit

Regulation 15.247 (d),In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c))

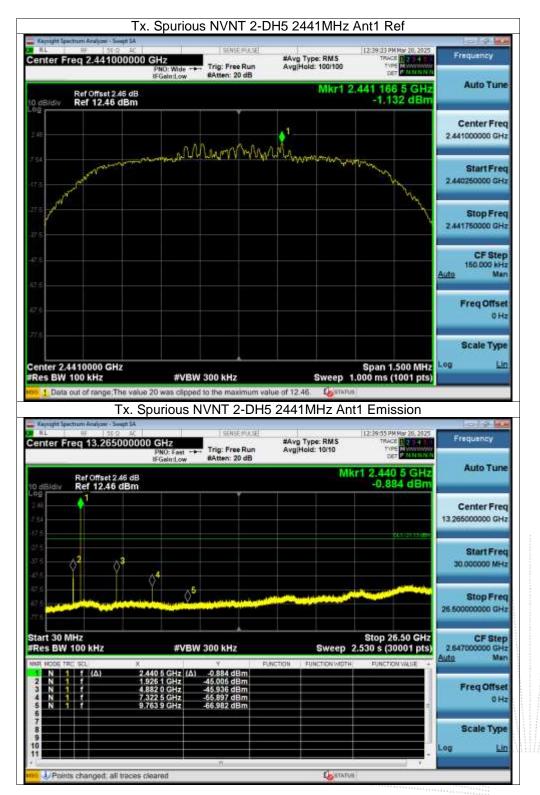
9.3 Test procedure


1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

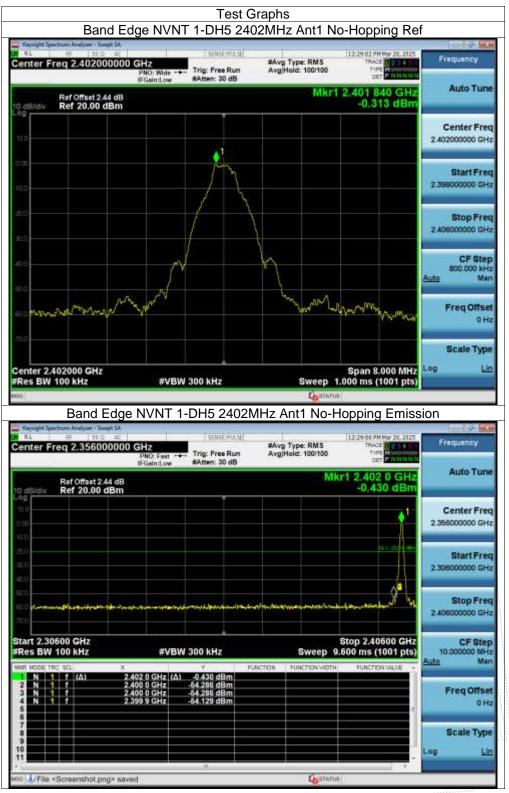
2. Set the spectrum analyzer: Below 30MHz: RBW = 100kHz, VBW = 300kHz, Sweep = auto Detector function = peak, Trace = max hold Above 30MHz: RBW = 100KHz, VBW = 300KHz, Sweep = auto Detector function = peak, Trace = max hold еро

Page: 27 of 81

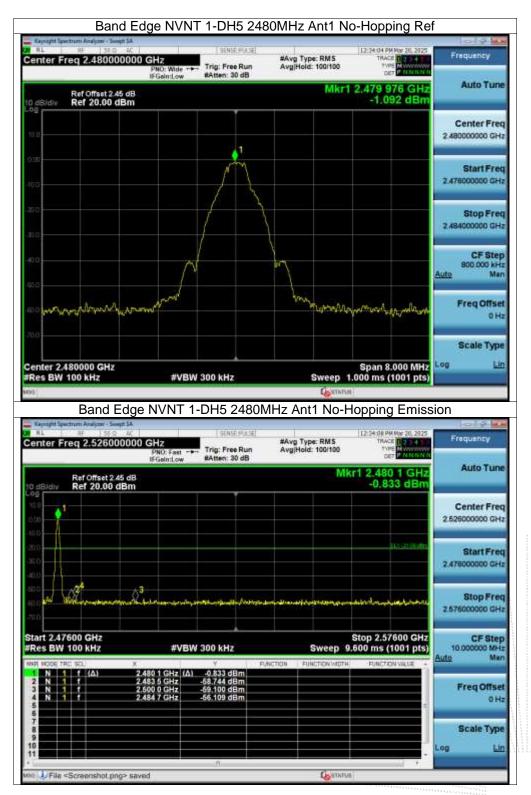
9.4 Test Result


C 00.,LTA

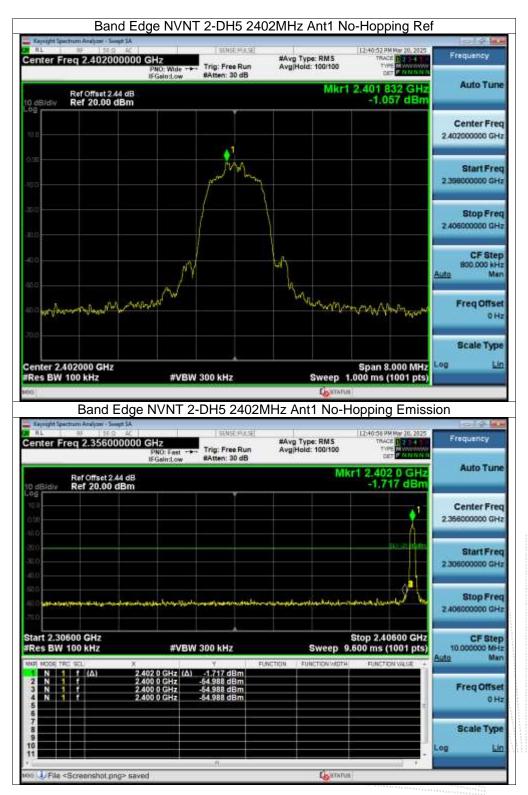
'epoi

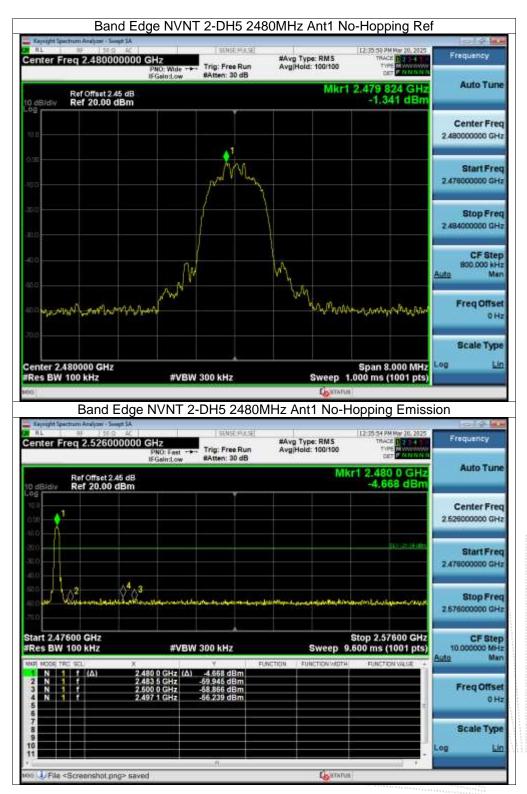


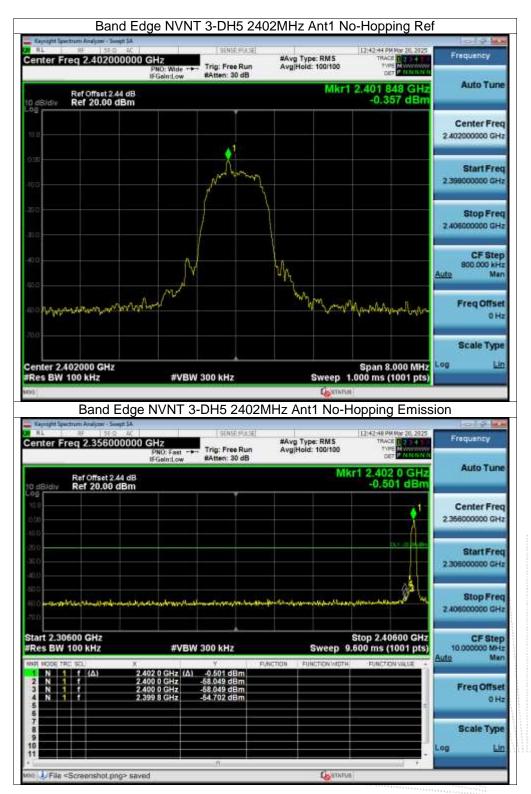
C CO., LTA

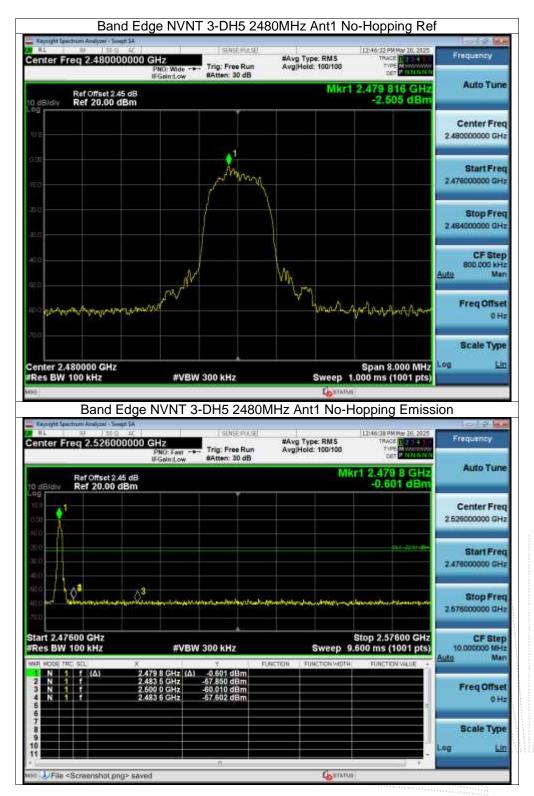


CHENZHE


No.: BCTC/RF-EMC-005




epoi



CHENZHE

JC JC PPR

еро

10. 20 dB Bandwidth

10.1 Block Diagram Of Test Setup

10.2 Limit

N/A

10.3 Test procedure

- 1. Set RBW = 30kHz.
- 2. Set the video bandwidth (VBW) \ge 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.

7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

No.: BCTC/RF-EMC-005

Page: 49 of 81


10.4 Test Result

Condition	Mode	Frequency (MHz)	-20 dB Bandwidth (MHz)	Verdict
NVNT	1-DH5	2402	0.957	Pass
NVNT	1-DH5	2441	0.941	Pass
NVNT	1-DH5	2480	0.951	Pass
NVNT	2-DH5	2402	1.283	Pass
NVNT	2-DH5	2441	1.233	Pass
NVNT	2-DH5	2480	1.276	Pass
NVNT	3-DH5	2402	1.262	Pass
NVNT	3-DH5	2441	1.201	Pass
NVNT	3-DH5	2480	1.267	Pass

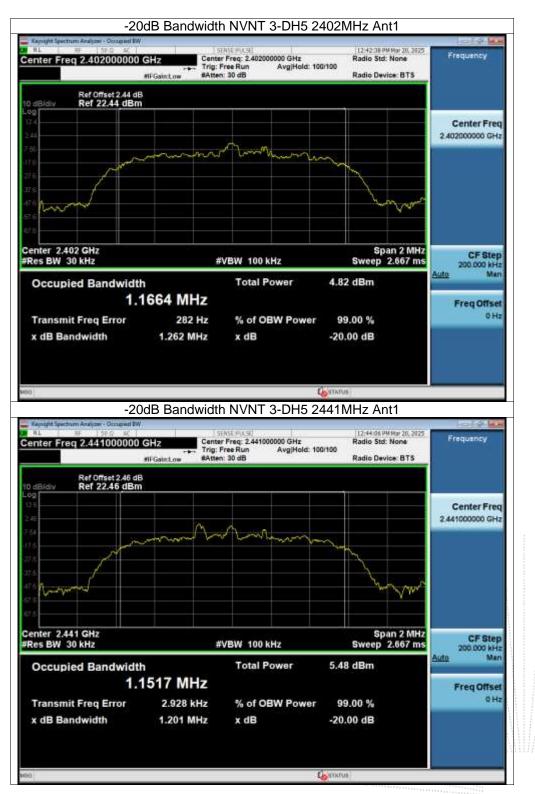
No.: BCTC/RF-EMC-005

Page: 50 of 81

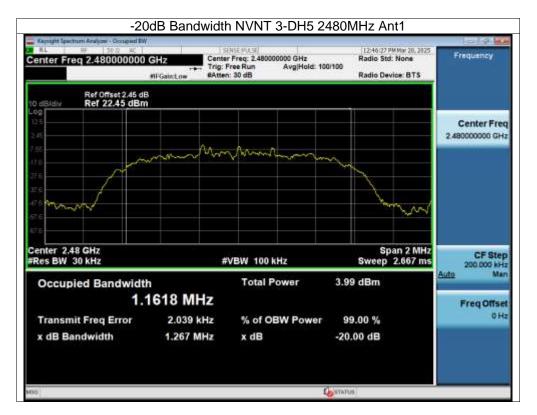
epoi

Page: 51 of 81

Page: 52 of 81



) ≡D/


Page: 53 of 81

Page: 54 of 81

No.: BCTC/RF-EMC-005

Page: 55 of 81

11. Maximum Peak Output Power

11.1 Block Diagram Of Test Setup

11.2 Limit

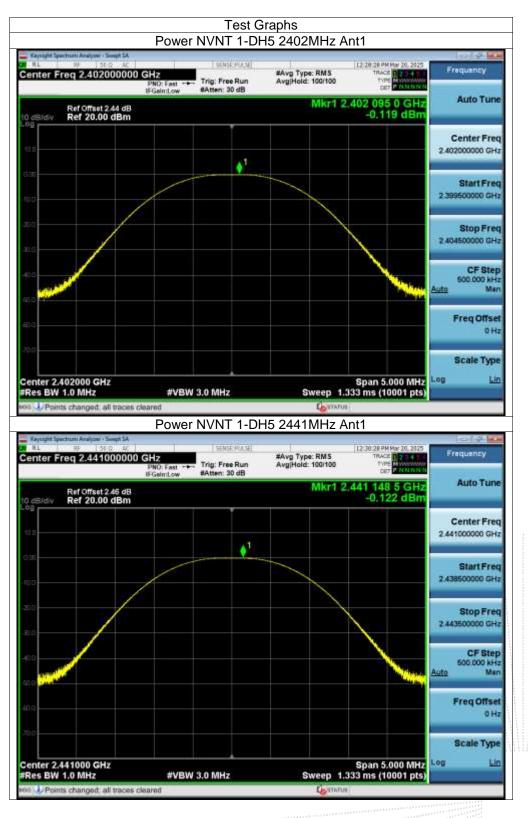
		FCC Part15 (15.247) ,	Subpart C	
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(b)(1)	Peak Output Power	0.125 watt or 21dBm	2400-2483.5	PASS

11.3 Test procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

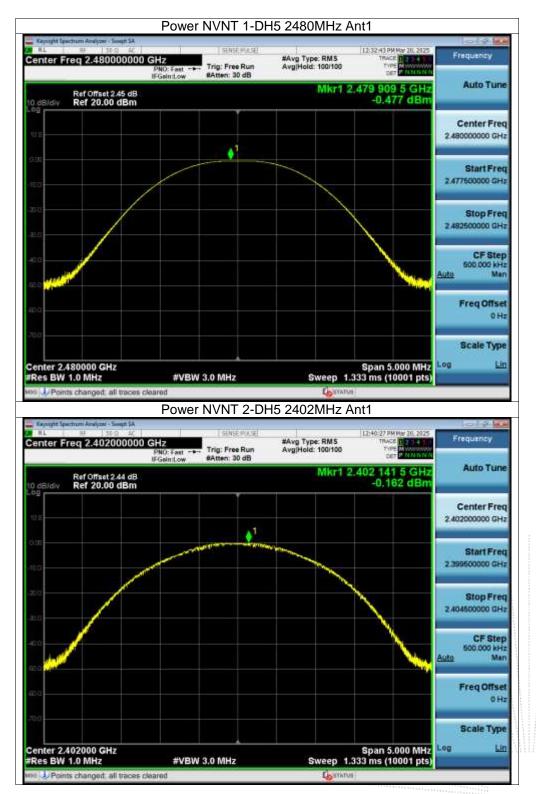
2. Set the spectrum analyzer: RBW = 2MHz. VBW = 6MHz. Sweep = auto; Detector Function = Peak.

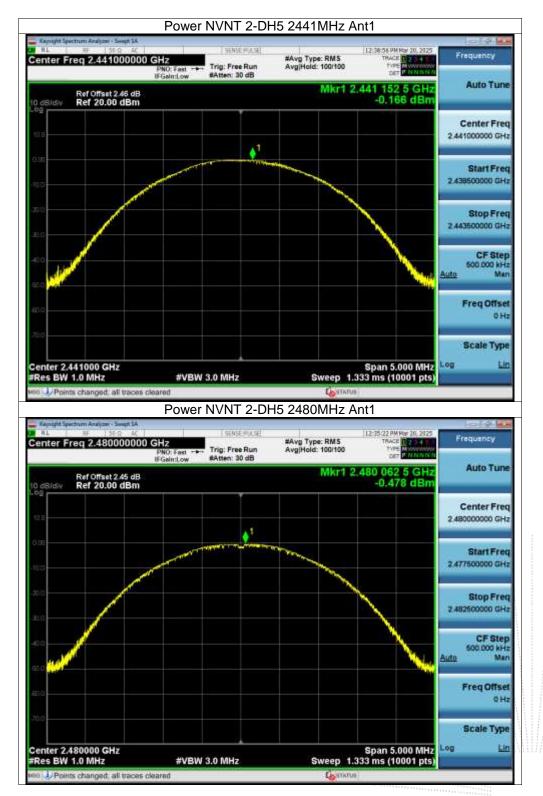
3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

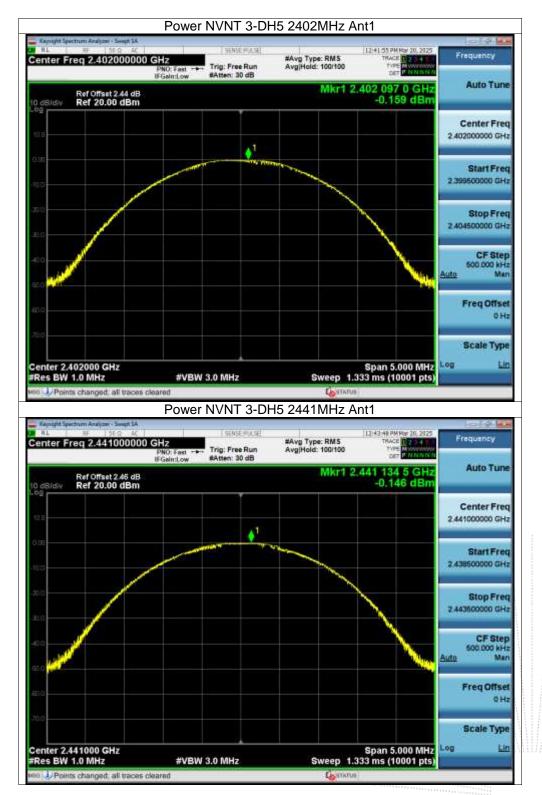

11.4 Test Result

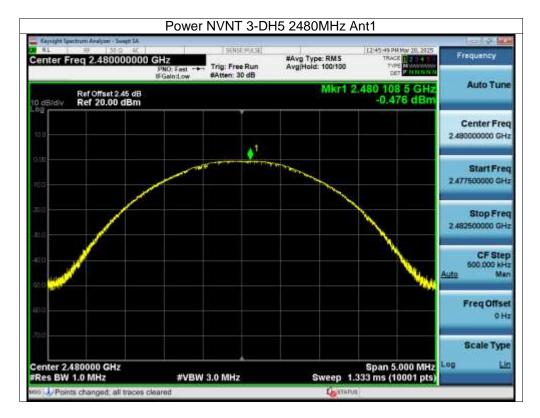
Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	1-DH5	2402	-0.12	21	Pass
NVNT	1-DH5	2441	-0.12	21	Pass
NVNT	1-DH5	2480	-0.48	21	Pass
NVNT	2-DH5	2402	-0.16	21	Pass
NVNT	2-DH5	2441	-0.17	21	Pass
NVNT	2-DH5	2480	**************************************	21	Pass
NVNT	3-DH5	2402	-0.16	21	Pass
NVNT	3-DH5	2441	-0.15	21	Pass
NVNT	3-DH5	2480	-0.48	21	Pass

Page: 56 of 81


E


еро





Page: 60 of 81

No.: BCTC/RF-EMC-005

Page: 61 of 81

12. Hopping Channel Separation

12.1 Block Diagram Of Test Setup

12.2 Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 0.125W.

12.3 Test procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set the spectrum analyzer: RBW = 30kHz. VBW = 100kHz , Span = 2.0MHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.

3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

Mode	Hopping Freq1 (MHz)	Hopping Freq2 (MHz)	HFS (MHz)	Limit (MHz)	Verdict
1-DH5	2401.844	2402.99	1.146	0.638	Pass
1-DH5	2440.824	2441.972	1.148	0.627	Pass
1-DH5	2478.972	2479.996	1.024	0.634	Pass
2-DH5	2401.84	2402.828	0.988	0.855	Pass
2-DH5	2440.83	2442	1.170	0.822	Pass
2-DH5	2478.98	2479.988	1.008	0.851	Pass
3-DH5	2401.922	2402.822	0.900	0.841	Pass
3-DH5	2441	2441.836	0.836	0.801	Pass
3-DH5	2478.998	2480.18	1.182	0.845	Pass
	1-DH5 1-DH5 2-DH5 2-DH5 3-DH5 3-DH5	Mode(MHz)1-DH52401.8441-DH52440.8241-DH52478.9722-DH52401.842-DH52440.832-DH52478.983-DH52401.9223-DH52441	Mode (MHz) (MHz) 1-DH5 2401.844 2402.99 1-DH5 2440.824 2441.972 1-DH5 2478.972 2479.996 2-DH5 2401.84 2402.828 2-DH5 2440.83 2442 2-DH5 2478.98 2479.988 3-DH5 2401.922 2402.822 3-DH5 2441 2441.836	Mode(MHz)(MHz)(MHz)1-DH52401.8442402.991.1461-DH52440.8242441.9721.1481-DH52478.9722479.9961.0242-DH52401.842402.8280.9882-DH52440.8324421.1702-DH52478.982479.9881.0083-DH52401.9222402.8220.9003-DH524412441.8360.836	Mode(MHz)(MHz)(MHz)1-DH52401.8442402.991.1460.6381-DH52440.8242441.9721.1480.6271-DH52478.9722479.9961.0240.6342-DH52401.842402.8280.9880.8552-DH52440.8324421.1700.8222-DH52478.982479.9881.0080.8513-DH52401.9222402.8220.9000.8413-DH524412441.8360.8360.801

12.4 Test Result

E

'epoi

C 00.,LTA

CFS	NVNT 3-DI	H5 248	0MHz Ar	nt1			
Kapinghi Spectrum Analyzer - Swept SA H.L. HF SEQ AC	T SENSE PLASE			01:02:29 8	M Plar 20, 2125		
Center Freq 2.479500000 GHz PNC: Wide C Feder.Low	Trig: Free Run #Atten: 30 dB		Type: RM5 fold:>100/100	TRA		F	requency
Ref Offset 2.45 dB 10 dB/div Ref 20.00 dBm			Mkr1		98 GHz 70 dBm		Auto Tun
			-	x2		a second for	Center Fre 9500000 GH
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	h florty areas a			~~~~~~	2.47	Start Fre
ехо про лио						2.45	Stop Fre
Center 2.479500 GHz #Res BW 30 kHz #VBW	/ 100 kHz		Sweep 2		2.000 MHz (1001 pts)	200	CF Ste 200.000 kH
NKR MODE THE SEL X		PUNCTION	FUNCTION WOTH	FUNCT	ON WALLE +	Auto	Ma
1 N 1 f 2.478 998 GHz 2 N 1 f 2.480 180 GHz 3 4 5	-4.870 dBm -6.493 dBm						Freq Offse 0 H
6 7 8 9							Scale Typ
					-	Log	<u>L1</u>
60			(STATU	0			



Page: 67 of 81



### 13. Number of Hopping Frequency

#### 13.1 Block Diagram Of Test Setup



#### 13.2 Limit

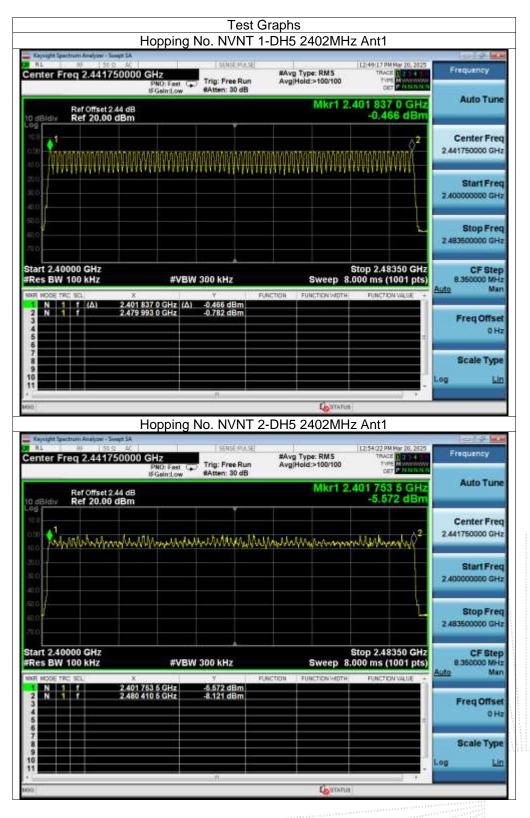
Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

#### 13.3 Test procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set the spectrum analyzer: RBW = 100kHz. VBW = 300kHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.

3. Allow the trace to stabilize. It may prove necessary to break the span up to sections. in order to clearly show all of the hopping frequencies. The limit is specified in one of the subparagraphs of this Section.


4. Set the spectrum analyzer: Start Frequency = 2.4GHz, Stop Frequency = 2.4835GHz. Sweep=auto;

#### 13.4 Test Result

Condition	Mode	Hopping Number	Limit	Verdict
NVNT	1-DH5	79	15	Pass
NVNT	2-DH5	- <b>79</b>	15	Pass
NVNT	3-DH5	<b>79</b>	15	Pass

E





epoi



Rended Section Andre RL III enter Freq 2.44	56.2 46	Transe Pucsel	#Avg Type: RMS Avg[Hold:>100/100	12:59-08 PM PM 20, 2025 TRACE 0.2 0.4 PM TYPE 0.2 0.4 PM COT 0.4 PM	Frequency
dBidiv Ref 20	et 2.44 dB .00 dBm		Mkr1 2	.401 837 0 GHz -0.274 dBm	Auto Tune
1 Jennowwww.	MMUMMuntro	w Wahan waha	undhandhanan.	hill mark 2	Center Fre 2.441750000 GH
10					Start Fre 2.400000000 GH
10 10 10				<u> </u>	Stop Fre 2.483500000 GH
art 2.40000 GHz Res BW 100 kHz		BW 300 kHz	Sweep 8	Stop 2.48350 GHz .000 ms (1001 pts)	CF Ste 8.350000 MH
N 1 T	2.401 837 0 GHz 2.480 076 5 GHz	40.274 dBm -6.546 dBm	AUCTION FUNCTION WEDTH	FUNCTION VALUE +	Auto Ma Freq Offse 0 H
6 7 8 9 0					Scale Typ
		n.	(Lando		

No.: BCTC/RF-EMC-005

Page: 70 of 81



#### 14. Dwell Time

#### 14.1 Block Diagram Of Test Setup



#### 14.2 Limit

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

#### 14.3 Test procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set spectrum analyzer span = 0. Centred on a hopping channel;

3. Set RBW = 1MHz and VBW = 3MHz.Sweep = as necessary to capture the entire dwell time per hopping channel. Set the EUT for DH5, DH3 and DH1 packet transmitting.

4. Use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).

### 14.4 Test Result

DH5 Packet permit maximum 1600 / 79 / 6 hops per second in each channel (5 time slots RX, 1 time slot TX).

DH3 Packet permit maximum 1600 / 79 / 4 hops per second in each channel (3 time slots RX, 1 time slot TX).

DH1 Packet permit maximum 1600 / 79 /2 hops per second in each channel (1 time slot RX, 1 time slot TX). So, the Dwell Time can be calculated as follows:

DH5:1600/79/6*0.4*79*(MkrDelta)/1000 DH3:1600/79/4*0.4*79*(MkrDelta)/1000 DH1:1600/79/2*0.4*79*(MkrDelta)/1000 Remark: Mkr Delta is once pulse time.

Page: 71 of 81

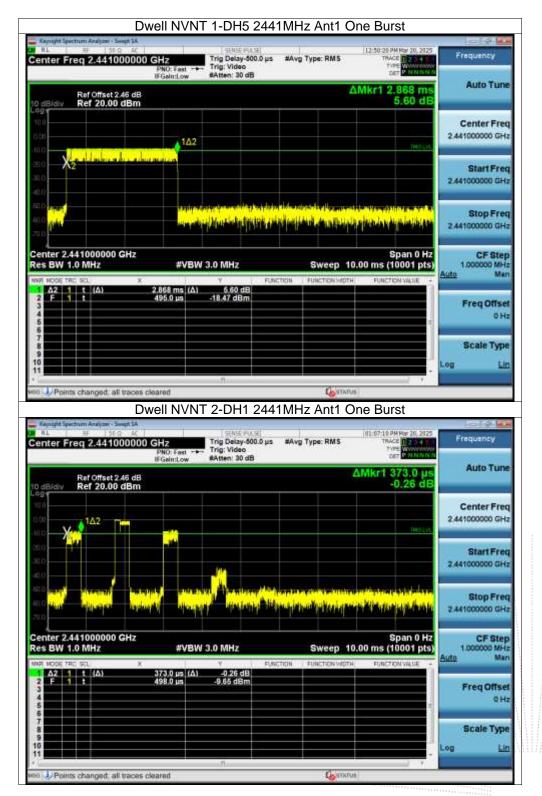


Condition	Mode	Frequency (MHz)	Pulse Time (ms)	Total Dwell Time (ms)	Limit (ms)	Verdict
NVNT	1-DH1	2441	0.365	116.435	400	Pass
NVNT	1-DH3	2441	1.620	259.2	400	Pass
NVNT	1-DH5	2441	2.868	304.008	400	Pass
NVNT	2-DH1	2441	0.373	119.36	400	Pass
NVNT	2-DH3	2441	1.632	261.12	400	Pass
NVNT	2-DH5	2441	2.881	308.267	400	Pass
NVNT	3-DH1	2441	0.370	118.03	400	Pass
NVNT	3-DH3	2441	1.628	258.852	400	Pass
NVNT	3-DH5	2441	2.879	305.174	400	Pass

c. 00.,LTA

No.: BCTC/RF-EMC-005

Page: 72 of 81




		Test G			
		IT 1-DH1 244	1MHz Ant1 C	One Burst	
And Annual Sector Andrew Sector NL 95 Annual Sector enter Freq 2.4410000	00 GHz PNO: Fast	Trig Delay-500.0 µs	#Avg Type: RMS	01:04:56 PM PM 20, 2025 TRACE 112:04:4 TVRE 112:04:4 COT 2:04:000	Frequency
Ref Offset 2.46 di		#Atten: 30 dB		ΔMkr1 365.0 μs 0.65 dB	Auto Tune
				THOSAY1.	Center Free 2.441000000 GH
					Start Free 2.441000000 GH
	<mark>MAY</mark> NP	an a		<mark>ditter of the state of the sta</mark>	Stop Fred 2.441000000 GH
enter 2.441000000 GHz es BW 1.0 MHz R NOCE TRC ISL		N 3.0 MHz Y FJ	Sweep 1	Span 0 Hz 0.00 ms (10001 pts)	CF Step 1.000000 MH Auto Mar
$\begin{array}{c c} \Delta 2 & 1 & t & (\Delta) \\ \hline 2 & F & 1 & t \\ \hline 5 \\ 6 \\ \hline \end{array}$	365.0 µs (Δ) 498.0 µs	0.65 dB -10.03 dBm			Freq Offse 0 H
9 8 9 9					Scale Type
		ñ		· ·	Log <u>Li</u>
9 Deixts changed, all trace	es cleared		LASTAT	100	
			-0		
	Dwell NVN	IT 1-DH3 244			
Kayught Spectrum Analyzer - Scoutt SA		24046040		One Burst	- 2 - 2
Keysight Spectrum Analyzer - Seept SA R.L. BF 56 Q. AC		Trig Delay-500.0 µs F Trig: Video #Atten: 30 dB			Frequency
Ref Offset 2.46 di Ref 2.00 dBn	00 GHz PNC: Fast ++ IFGeIn:Low	Trig Delay-500.0 µs	1MHz Ant1 C	One Burst	
Ref Offset 2.46 df	00 GHz PNC: Fast ++ IFGeIn:Low	Trig Delay-500.0 µs	1MHz Ant1 C		Auto Tun Center Fre
Ref Offset 2.46 dl	00 GHz PNC Fast IFGeIn:Low B n	I SEUSE PLUSE Trig Delay-500.0 µs Trig: Video @Atten: 30 dB	1MHz Ant1 C	One Burst	Auto Tun Center Fre 2.44100000 GH Start Free
Ref Offset 2.46 di Ref 20.00 dBn	00 GHz PNO: Fast IFGeIniLow B n	I SEUSE PLUSE Trig Delay-500.0 µs Trig: Video @Atten: 30 dB	1MHz Ant1 C	One Burst	Auto Tun Center Fre 2.441000000 GH Start Fre 2.441000000 GH Stop Fre
Ref Offset 2.46 di Ref 20.00 dBn	A2	SENSE PALSE Trig Delay-300.0 µs Trig: Video #Atten: 30 dB	1MHz Ant1 C	Dne Burst	Auto Tun Center Fre 2.44100000 GH Start Fre 2.44100000 GH Stop Fre 2.44100000 GH CF Ste 1.00000 MH
Ref Offset 2.46 df           Bill         Bill           Ref Offset 2.46 df           Ref Offset 2.46 df	00 GHz PNC: Fast IFGeIn:Low A2	SENSE PALSE Trig Delay-300.0 µs Trig: Video #Atten: 30 dB	1MHz Ant1 C	Dne Burst	Auto Tun Center Fre 2.441000000 GH Start Fre 2.441000000 GH Stop Fre 2.441000000 GH CF Step 1.00000 MH Auto Mai
Ref Offset 2.46 di           Ref Offset 2.46 di	00 GHz PNC: Fast IFGeIn:Low B Δ2 (94495) (14) #VEW * 1.620 ms (Δ)	SHUSE PLANE Trig Delay-500.0 µs Trig: Video @Atten: 30 dB V 3.0 MHz V 3.0 MHz V 5.0 GB	1MHz Ant1 C	Dne Burst	Auto Tuni Center Frei 2.441000000 GH Start Frei 2.441000000 GH Stop Frei 2.441000000 GH <u>Stop Frei</u> 1.000000 MH <u>Auto</u> Frei Offsei 0 H Scale Type
Ref Offset 2.46 di Ref 20.00 dBn	00 GHz PNO: Fast IFGeIn:Low B n Δ2 	SHUSE PLANE Trig Delay-500.0 µs Trig: Video @Atten: 30 dB V 3.0 MHz V 3.0 MHz V 5.0 GB	1MHz Ant1 C	Dne Burst	Auto Tuni Center Frei 2.441000000 GH Start Frei 2.441000000 GH Stop Frei 2.441000000 GH CF Step 1.000000 MH Auto Frei Offse 0 H Scale Type

C N Z C

No.: BCTC/RF-EMC-005








RL RF 561	R #	SENSE PLLSE	us #Avg Type: RMS	01:08:09 PM PM 20, 20	Frequency
enter Freq 2.4410	PNO: IFGain	Fast Trig: Video	ups #Avg type: RMS	TRACE 1 2 5 4 TYPE WAR	No. 1
Ref Offset 2 dBidiv Ref 20.00	2.46 dB	104		ΔMkr1 1.632 m 1.67 d	
5g 011					Center Fred
X2	142			TROST	2.441000000 GH
					Start Free 2.441000000 GH:
αο πό <mark>1111</mark>	<b>han</b> t the	ellen the sold population		<mark>este presidente de la composition de la Composition de la composition de la comp</mark>	Stop Fred 2.441000000 GH
enter 2.441000000 es BW 1.0 MHz	GHz	#VBW 3.0 MHz	Sweep 1	Span 0 H 10.00 ms (10001 pt	S) 1.000000 MH
A MODE THE BEL	×	γ ms(Δ) 1.67 dB	FUNCTION FUNCTION MOT	H FUNCTION WALLE	Auto Mir
	498.0				Freq Offse 0 H
7 <b>201</b> 201 201 201 201 201 201 201 201 201 201					Scale Type
					- Log Lir
Points changed, all	I traces cleared	1	(Lastat	vi l	
	Dwell I	NVNT 2-DH5 24			
Kayught Spectrum Analyses - So R.L. RF 561	Dwell N	SHSEPLIS Trig Delay-500.0 Fast +++ Trig: Video	441MHz Ant1 (	One Burst	Frequency
Ref Offset 2 200	Dwell N R M D00000 GHz PMO: IFGen 246 dB	SHSEPLIS Trig Delay-500.0 Fast +++ Trig: Video	441MHz Ant1 (	One Burst	Auto Tune
Ref Offset 2 Ref Offset 2 dBidly Ref 20.00	Dwell N R M D00000 GHz PMO: IFGen 246 dB	SHSEPLIS Trig Delay-500.0 Fast +++ Trig: Video	441MHz Ant1 (	Dne Burst	Auto Tune
Ref Offset 2 Ref Offset 2 Bidu Ref Offset 2 Ref 20.00	Dwell N 2 A5 dB 2 A6 dB 4 dBm	SHSEPLIS Trig Delay-500.0 Fast +++ Trig: Video	441MHz Ant1 (	One Burst	Auto Tuni B Center Free 2.44100000 GH
Ref Offset 2 Ref Offset 2 Bidu Ref Offset 2 Ref 20.00	Dwell N 2 A5 dB 2 A6 dB 4 dBm	SHSEPLIS Trig Delay-500.0 Fast +++ Trig: Video	441MHz Ant1 (	One Burst	Auto Tune B Center Free 2.44100000 GH Start Free 2.44100000 GH
Reput Leston Anno 25 enter Freq 2.4410 Ref Offset 2 de Anno 20 20 20 20 20 20 20 20 20 20 20 20 20 2	Dwell N R AC D000000 GHz BRGat 245 dB dBm 142	SHSEPLIS Trig Delay-500.0 Fast +++ Trig: Video	441MHz Ant1 (	One Burst	Auto Tune     Auto Tune     Center Free     2.441000000 GH     Start Free     2.441000000 GH     Stop Free     2.441000000 GH     CF Step     1.000000 MH
Ref Offset 2 enter Freq 2.4410 Ref Offset 2 efficience Ref 20.00 20 20 20 20 20 20 20 20 20 20 20 20 2	Dwell N Second Second	Trig Delay-50.0 Trig Delay-50.0 Trig: Video tiow #Atten: 30 dB #Atten: 30 dB #VBW 3.0 MHz #VBW 3.0 MHz	441MHz Ant1 (	Dne Burst	Auto Tune     Auto Tune     Center Free     2.441000000 GH     Start Free     2.441000000 GH     Stop Free     2.441000000 GH     CF Step     1.000000 MH
Ref Offset 2 a Bidly Ref 20.00 Ref Offset 2 Ref Offset 2 Ref Offset 2 Ref Offset 2 Ref Offset 2 Ref Offset 2 Ref 20.00 Ref	Dwell N R AC D000000 GHz JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC: JMC:	Trig Delay-50.0 Trig Delay-50.0 Trig: Video tiow #Atten: 30 dB #Atten: 30 dB #VBW 3.0 MHz #VBW 3.0 MHz	441MHz Ant1 ( ^{µs} #Avg Type: RMS	Dne Burst	Auto Tuni Auto Tuni Center Free 2.441000000 GH Start Free 2.441000000 GH Stop Free 2.441000000 GH CF Step 1.000000 MH Auto Mar Freq Offse
enter Freq 2.4410 Ref Offset 2 Ref Offset 2 Ref 20.00 Re	Dwell N Second Second	Trig Delay-50.0 Trig Delay-50.0 Trig: Video tiow #Atten: 30 dB #Atten: 30 dB #VBW 3.0 MHz #VBW 3.0 MHz	441MHz Ant1 ( ^{µs} #Avg Type: RMS	Dne Burst	Auto Tune     Auto Tune     Center Frec     2.441000000 GH:     3     Start Frec     2.441000000 GH:     2.441000000 GH:     2.441000000 GH:     2.441000000 GH:     3     CF Step     1.000000 MH:





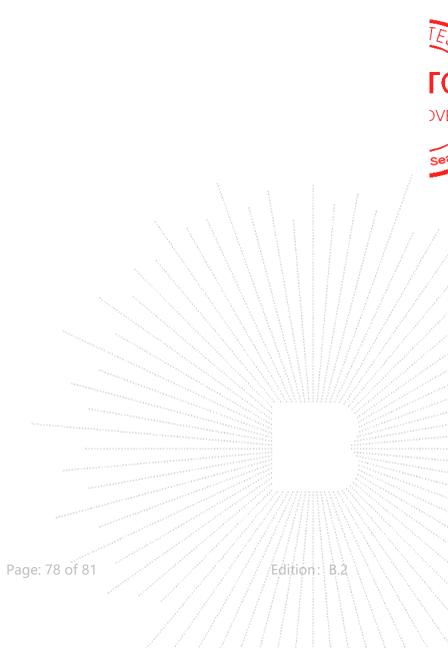
ер



August Spectrum Analyse - Senar SA NL RF SEC AC Center Freq 2.441000000	GH2 PNO: Fast ++- FGeint.ow #Atten: 30 d	100.0 µs #Avg Type:	RMS 01:01	TRACE D C. 2025	Frequency
Ref Offset 2.46 dB	POBILION PROPERTY OF		∆Mkr1	2.879 ms 1.47 dB	Auto Tun
-091 1011 000 100	162			TROUGS.	Center Fre 2.441000000 GH
210 Xidahalihidilihada 210	Wike A				Start Fre 2.441000000 GH
40.0					
410 52.0	the second se		and the second se	and the second second	and the second state of th
sid <mark>alla a</mark>	the second se	n hite in the first of the line of the lin	and the second se	Span 0 Hz	Stop Fre 2.44100000 GH CF Ste 1.00000 MH
STO TILO Center 2.441000000 GHz Res BW 1.0 MHz	n hadir de li juni de	RANCTION FUNCT	eep 10.00 m:	Span 0 Hz	2.441000000 GH
50 0 000 10 0 000 Center 2.44 1000000 GHz Res BW 1.0 MHz WR NODE TRC 101 2 4	#VBW 3.0 MHz	RANCTION FUNCT	eep 10.00 m:	Span 0 Hz (10001 pts)	2.441000000 GH CF Ste 1.000000 MH Auto Mil Freq Offse

Page: 77 of 81




# 15. Antenna Requirement

#### 15.1 Limit

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

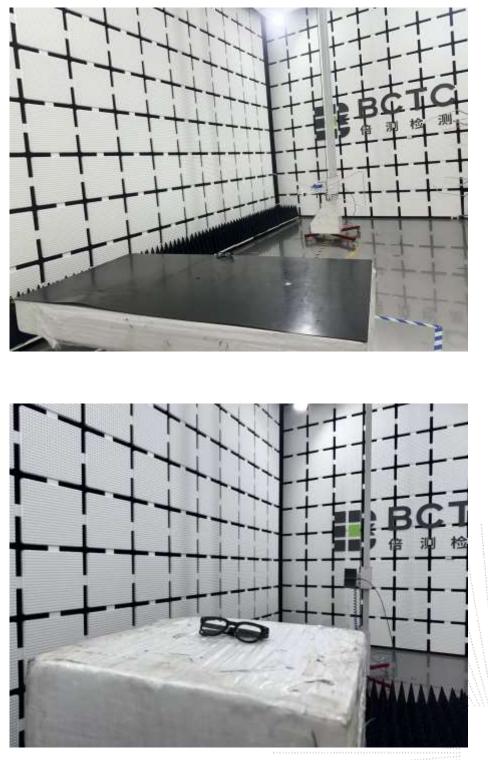
### 15.2 Test Result

The EUT antenna is internal antenna, fulfill the requirement of this section.





# 16. EUT Test Setup Photographs


Conducted Emission Measurement Photos



Page: 79 of 81



Radiated Measurement Photos



Page: 80 of 81



# **STATEMENT**

1. The equipment lists are traceable to the national reference standards.

2. The test report can not be partially copied unless prior written approval is issued from our lab.

3. The test report is invalid without stamp of laboratory.

4. The test report is invalid without signature of person(s) testing and authorizing.

5. The test process and test result is only related to the Unit Under Test.

6.The quality system of our laboratory is in accordance with ISO/IEC17025.

7.If there is any objection to report, the client should inform issuing laboratory within 15 days from the date of receiving test report.

Address:

1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China

TEL: 400-788-9558

P.C.: 518103

FAX: 0755-33229357

Website: http://www.chnbctc.com

Consultation E-mail: bctc@bctc-lab.com.cn

Complaint/Advice E-mail: advice@bctc-lab.com.cn

***** END *****

Page: 81 of 81