

Report No.: EED32L00041001 Page 1 of 40

TEST REPORT

Product Infrared Ear/Forehead Thermometer

Trade mark N/A

Model/Type reference **DET-218**

Serial Number N/A

EED32L00041001 **Report Number**

FCC ID : 2AQVU0004 Date of Issue : Mar. 27, 2019

Test Standards 47 CFR Part 15Subpart C

Test result **PASS**

Prepared for:

JOYTECH HEALTHCARE CO., LTD. No. 365, Wuzhou Road, Yuhang Economic Development Zone, Hangzhou city, 311100 Zhejiang, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested By:

Kenny. Qiu

Compiled by:

Huang Xiao

Kenny Qiu

Huang xiaole

Reviewed by:

Mare XM Ware Xin

Kevin yang

ReJim

Date:

Mar. 27, 2019

Check No.: 3570197790

Report No.: EED32L00041001

Page 2 of 40

2 Version

Version No.	Date	(6	Description)	
00	Mar. 27, 2019		Original		
	200	A*S	793	75	
((c/2)	(6,7,2)	(6,7)	

Report No.: EED32L00041001 Page 3 of 40

3 Test Summary

rest Summary	211		
Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	N/A
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013. The tested sample(s) and the sample information are provided by the client. N/A:The device is only battery operated, the test related AC mains is not applicable.

4 Content

1 COVER PAG	E	•••••	•••••	•••••	••••••	••••••	I
2 VERSION	•••••	•••••		•••••	•••••		2
3 TEST SUMM	ARY			•••••	•••••		3
4 CONTENT		•••••	15				4
5 TEST REQUI	REMENT			•••••			5
5.1 TEST SETS 5.1.1 For 0 5.1.2 For 0 5.1.3 For 0 5.2 TEST ENV 5.3 TEST CON 6 GENERAL IN 6.1 CLIENT IN 6.2 GENERAL 6.3 PRODUCT 6.4 DESCRIPT 6.5 TEST LOC 6.6 DEVIATION 6.7 ABNORMA 6.8 OTHER IN	UP Conducted test Radiated Emiss Conducted Emi //IRONMENT	setupsions test setupsions	O THIS STANDA	NRD			
7 EQUIPMENT							
8 RADIO TECH							
Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix	A): 6dB Occup B): Conducted C): Band-edge D): RF Conduc E): Power Spe F): Antenna Re G): Restricted I H): Radiated S	Peak Output I for RF Condu ted Spurious ctral Density equirement bands around	Power Icted Emission Emissions fundamental	ns frequency (Ra	adiated)		
PHOTOGRAPH	, i						
PHOTOGRAPH	IS OF EUT CO	NSTRUCTIO	NAL DETAILS	S			33

Report No.: EED32L00041001 Page 5 of 40

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup Conducted Emissions setup

5.2 Test Environment

Operating Environment:			(9)
Temperature:	25.0 °C		
Humidity:	59 % RH	600	
Atmospheric Pressure:	1010mbar		

5.3 Test Condition

Test channel:

	Test Mode	Tx/Rx	RF Channel			
١	rest Mode	TX/RX	Low(L) Middle(M) High			
ŀ	05014	0.4001411 0.400.1411	Channel 1	Channel 20	Channel 40	
GFSK	2402MHz ~2480 MHz	2402MHz	2440MHz	2480MHz		
	Transmitting mode:	The EUT transmitted the continuous signal at the specific channel(s).				

Report No. : EED32L00041001 Page 7 of 40

6 General Information

6.1 Client Information

Applicant:	JOYTECH HEALTHCARE CO., LTD.			
Address of Applicant:	No. 365, Wuzhou Road, Yuhang Economic Development Zone, Hangzhou city, 311100 Zhejiang, China			
Manufacturer:	JOYTECH HEALTHCARE CO., LTD.			
Address of Manufacturer:	No. 365, Wuzhou Road, Yuhang Economic Development Zone, Hangzhou city, 311100 Zhejiang, China			
Factory:	JOYTECH HEALTHCARE CO., LTD.			
Address of Factory:	No. 365, Wuzhou Road, Yuhang Economic Development Zone, Hangzhou city, 311100 Zhejiang, China			

6.2 General Description of EUT

Product Name:	Infrared Ear/Forehead Thermometer	
Model No.(EUT):	DET-218	
Trade mark:	N/A	
EUT Supports Radios application:	BT 4.0 Single mode, 2402MHz-2480MHz	6.
Power Supply:	DC3V(2×AAA battery)	
Firmware version of the sample:	V1.0(manufacturer declare)	
Hardware version of the sample:	Z(manufacturer declare)	
Sample Received Date:	Mar. 04, 2019	
Sample tested Date:	Mar. 04, 2019 to Mar. 20, 2019	

6.3 Product Specification subjective to this standard

1363 /	196.3		
Operation Frequency:	2402MHz~2480MHz		
Bluetooth Version:	4.0		
Modulation Technique:	DSSS	N 2'N	
Modulation Type:	GFSK)
Number of Channel:	40		
Sample Type:	Portable production		
Test Power Grade:	N/A		
Test Software of EUT:	N/A		
Antenna Type and Gain:	Type: PIFA Antenna Gain: -13.6016dBi	0.)	6.
Test Voltage:	DC3V(2×AAA battery)		

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz

Report No. : EED32L00041001 Page 8 of 40

5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

6.4 Description of Support Units

The EUT has been tested independently.

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

6.8 Other Information Requested by the Customer

None

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty		
(1)	Radio Frequency	7.9 x 10 ⁻⁸		
2	RF power, conducted	0.46dB (30MHz-1GHz)		
2	Kr power, conducted	0.55dB (1GHz-18GHz)		
3	Padiated Spurious emission test	4.3dB (30MHz-1GHz)		
3	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)		
4	Conduction emission	3.5dB (9kHz to 150kHz)		
4	Conduction emission	3.1dB (150kHz to 30MHz)		
5	Temperature test	0.64°C		
6	Humidity test	3.8%		
7	DC power voltages	0.026%		

7 Equipment List

		RF test	system		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	03-01-2019	02-29-2020
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-01-2019	02-29-2020
Signal Generator	Keysight	N5182B	MY53051549	03-01-2019	02-29-2020
High-pass filter	Sinoscite	FL3CX03WG1 8NM12-0398- 002		01-09-2019	01-08-2020
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		01-09-2019	01-08-2020
DC Power	Keysight	E3642A	MY54426035	03-01-2019	02-29-2020
PC-1	Lenovo	R4960d		03-01-2019	02-29-2020
BT&WI-FI Automatic control	R&S	OSP120	101374	03-01-2019	02-29-2020
RF control unit	JS Tonscend	JS0806-2	15860006	03-01-2019	02-29-2020
RF control unit	JS Tonscend	JS0806-1	15860004	03-01-2019	02-29-2020
RF control unit	JS Tonscend	JS0806-4	158060007	03-01-2019	02-29-2020
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2		03-01-2019	02-29-2020
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	10-12-2018	10-11-2019

 $Hot line; 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$

Report No.: EED32L00041001

	3M S	Semi/full-anecho			
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		06-04-2016	06-03-2019
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-401	12-21-2018	12-20-2019
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	07-30-2018	07-29-2019
Microwave Preamplifier	Agilent	8449B	3008A024 25	08-21-2018	08-20-2019
Microwave Preamplifier	Tonscend	EMC051845 SE	980380	01-16-2019	01-15-2020
Horn Antenna	Schwarzbeck	BBHA 9120D	9120D- 1869	04-25-2018	04-23-2021
Horn Antenna	ETS- LINDGREN	3117	00057410	06-05-2018	06-03-2021
Double ridge horn antenna	A.H.SYSTEMS	SAS-574	374	06-05-2018	06-04-2021
Pre-amplifier	A.H.SYSTEMS	PAP-1840-60	6041.604 1	08-08-2018	08-07-2019
Loop Antenna	ETS	6502	00071730	06-22-2017	06-21-2019
Spectrum Analyzer	R&S	FSP40	100416	05-11-2018	05-10-2019
Receiver	R&S	ESCI	100435	05-25-2018	05-24-2019
Receiver	R&S	ESCI7	100938- 003	11-23-2018	11-22-2019
Multi device Controller	maturo	NCD/070/107 11112	(C)	01-09-2019	01-08-2020
LISN	schwarzbeck	NNBM8125	81251547	05-11-2018	05-10-2019
LISN	schwarzbeck	NNBM8125	81251548	05-11-2018	05-10-2019
Signal Generator	Agilent	E4438C	MY45095 744	03-01-2019	02-29-2020
Signal Generator	Keysight	E8257D	MY53401 106	03-01-2019	02-29-2020
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	10-12-2018	10-11-2019
Communication test set	Agilent	E5515C	GB47050 534	03-01-2019	02-29-2020
Cable line	Fulai(7M)	SF106	5219/6A	01-09-2019	01-08-2020
Cable line	Fulai(6M)	SF106	5220/6A	01-09-2019	01-08-2020
Cable line	Fulai(3M)	SF106	5216/6A	01-09-2019	01-08-2020
Cable line Communication test	Fulai(3M)	SF106	5217/6A	01-09-2019	01-08-2020
set	R&S	CMW500	104466	01-18-2019	01-17-2020
High-pass filter	Sinoscite	FL3CX03WG 18NM12- 0398-002		01-09-2019	01-08-2020
High-pass filter	MICRO- TRONICS	SPA-F- 63029-4		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX01CA0 9CL12-0395- 001		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX01CA0 8CL12-0393- 001	(C)	01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX02CA0 4CL12-0396- 002		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX02CA0 3CL12-0394- 001		01-09-2019	01-08-2020

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices
est R	esults List:	0

Test method	Test item	Verdict	Note
ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
ANSI C63.10	Power Spectral Density	PASS	Appendix E)
ANSI C63.10	Antenna Requirement	PASS	Appendix F)
ANSI C63.10	AC Power Line Conducted Emission	N/A	N/A
ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix G)
ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix H)
	ANSI C63.10 ANSI C63.10 ANSI C63.10 ANSI C63.10 ANSI C63.10 ANSI C63.10 ANSI C63.10	ANSI C63.10 GdB Occupied Bandwidth Conducted Peak Output Power ANSI C63.10 Band-edge for RF Conducted Emissions RF Conducted Spurious Emissions ANSI C63.10 Power Spectral Density ANSI C63.10 Antenna Requirement ANSI C63.10 AC Power Line Conducted Emission Restricted bands around fundamental frequency (Radiated Emission)	ANSI C63.10 Conducted Peak Output Power ANSI C63.10 Band-edge for RF Conducted Emissions ANSI C63.10 RF Conducted Spurious Emissions ANSI C63.10 Power Spectral Density ANSI C63.10 Antenna Requirement ANSI C63.10 AC Power Line Conducted Emission ANSI C63.10 Restricted bands around fundamental frequency (Radiated Emission) PASS

Report No.: EED32L00041001

Page 12 of 40

Appendix A): 6dB Occupied Bandwidth

Test Result

	Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict	Remark
	BLE	LCH	0.6712	1.0468	PASS	(33)
E	BLE	MCH	0.6801	1.0596	PASS	Peak
-	BLE	НСН	0.6615	1.0567	PASS	detector

Report No.: EED32L00041001 Page 13 of 40

Test Graphs

Report No.: EED32L00041001 Page 14 of 40

Appendix B): Conducted Peak Output Power

Test Result

Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	3.571	PASS
BLE	MCH	2.926	PASS
BLE	HCH	1.314	PASS

Test Graphs

Report No.: EED32L00041001

Report No.: EED32L00041001 Page 16 of 40

Appendix C): Band-edge for RF Conducted Emissions

Result Table

	Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
5	BLE	LCH	3.521	-54.486	-16.48	PASS
-	BLE	НСН	0.760	-48.524	-19.24	PASS

Report No.: EED32L00041001 Page 17 of 40

Test Graphs

Report No.: EED32L00041001 Page 18 of 40

Appendix D): RF Conducted Spurious Emissions

Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	3.433	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	2.652	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	нсн	0.478	<limit< td=""><td>PASS</td></limit<>	PASS

 $Hot line; 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$

Report No.: EED32L00041001 Page 19 of 40

Test Graphs

Report No.: EED32L00041001

Report No.: EED32L00041001 Page 21 of 40

Appendix E): Power Spectral Density

Result Table

Mode	Channel	PSD [dBm/3kHz]	Limit [dBm/3kHz]	Verdict
BLE	LCH	-8.877	8	PASS
BLE	MCH	-9.395	8	PASS
BLE	НСН	-11.619	8	PASS

Test Graphs

Report No.: EED32L00041001

Appendix F): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 13.6016dBi

Report No. : EED32L00041001 Page 24 of 40

Appendix G): Restricted bands around fundamental frequency (Radiated)

(Radiated)						
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
		Peak	1MHz	3MHz	Peak	-07
	Above 1GHz	Peak	1MHz	10Hz	Average	(3
Test Procedure:	a. The EUT was placed of at a 3 meter semi-aned determine the position. b. The EUT was set 3 meters was mounted on the total control of the antenna height is a determine the maximum polarizations of the antenna was turned was turned from 0 degree. The test-receiver systems and with the antenna was turned from 1 degree.	n the top of a rothoic camber. The highest raters away from p of a variable-haried from one m value of the fienna are set to hission, the EUT to heights from rees to 360 degm was set to Person to heights.	he table wand adiation. The interfer neight anter meter to found the make the name arrant and a meter to forces to find	ence-receinna tower. bur meters n. Both hor neasurement ged to its 4 meters the maxin	rs above the games to above the grantal and vent. worst case are and the rotate and meading.	to , whi ound ertica
	f. Place a marker at the e frequency to show com bands. Save the specti for lowest and highest	end of the restric pliance. Also m rum analyzer plo	easure any	emission:	s in the restric	
	f. Place a marker at the efrequency to show combands. Save the spectre for lowest and highest. Above 1GHz test procedute. g. Different between above to fully Anechoic Chamman 18GHz the distance is h. Test the EUT in the lowest in the radiation measure. Transmitting mode, and	end of the restrict of pliance. Also may be an analyzer place thannel of the second of	e, change fin table 0.8 le is 1.5 method in X, kis positioni	rom Semi- meter to 1 ter). t channel Y, Z axis ping which i	s in the restriction of the control	dulati amb ove
Limit:	f. Place a marker at the effrequency to show combands. Save the spectron for lowest and highest. Above 1GHz test procedute. g. Different between above to fully Anechoic Chaman 18GHz the distance is h. Test the EUT in the low. i. The radiation measures.	end of the restrict of pliance. Also may be an analyzer place thannel of the second of	e, change fin table 0.8 le is 1.5 me the Highest rmed in X, kis positioniuencies me	rom Semi- meter to 1 ter). t channel Y, Z axis ping which i	s in the restriction of the control	dulati amb ove
_imit:	f. Place a marker at the efrequency to show combands. Save the spectrosp	end of the restrict opliance. Also manalyzer place channel were as below: The restrict of the	e, change fin table 0.8 le is 1.5 methe Highest rmed in X, kis positioniuencies method.	rom Semi-meter to 1 ter). t channel Y, Z axis ping which is easured wa	Anechoic Ch .5 meter(Abo cositioning for t is worse cas as complete.	dulati amb ove
_imit:	f. Place a marker at the efrequency to show combands. Save the spectron for lowest and highest and highest and highest and highest and highest and highest and fully Anechoic Chamaland and the fully	end of the restrict pliance. Also must analyzer place thannel we as below: The rest site of the test site of	e, change fin table 0.8 le is 1.5 method in X, kis positioniuencies method () () () () () () () () () () () () ()	rom Semi- meter to 1 ter). t channel Y, Z axis ping which i easured wa	Anechoic Ch .5 meter(Abo cositioning for t is worse cas as complete.	dulati amb ove
Limit:	f. Place a marker at the efrequency to show combands. Save the spectre for lowest and highest. Above 1GHz test procedum g. Different between above to fully Anechoic Chamman 18GHz the distance is h. Test the EUT in the low i. The radiation measure Transmitting mode, and j. Repeat above procedum Frequency 30MHz-88MHz	end of the restrict of pliance. Also must analyzer plotchannel were as below: The as below: The is the test site of the stand table west channel, ments are performents are performents and the X axing axing and the X axing axin	e, change fin table 0.8 le is 1.5 me the Highest rmed in X, kis positioni uencies me /m @3m)	rom Semi- meter to 1 ter). t channel Y, Z axis ping which i easured wa Rei Quasi-pe	Anechoic Ch. 5 meter (About tis worse cases complete.	dulati amb ove
Limit:	f. Place a marker at the efrequency to show combands. Save the spectron for lowest and highest. Above 1GHz test procedumy. G. Different between above to fully Anechoic Chamman 18GHz the distance is how in the EUT in the low in the radiation measure. Transmitting mode, and in the requency and in the second second in the s	end of the restrict apliance. Also manalyzer place channel were as below: The end of the test site of the te	e, change fin table 0.8 le is 1.5 method in X, kis positioniuencies method () () () () () () () () () () () () ()	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa Rei Quasi-pe Quasi-pe	Anechoic Ch .5 meter(Abo cositioning for t is worse cas as complete. mark eak Value eak Value	dulati amb ove
Limit:	f. Place a marker at the efrequency to show combands. Save the spectre for lowest and highest of lowest and highest of lowest and highest of lowest and highest of fully Anechoic Chamalagh and the fu	end of the restrict pliance. Also must analyzer plothannel were as below: The interest site of the street of the s	e, change fin table 0.8 le is 1.5 mer the Highest rmed in X, kis positioni uencies mer med mercies mer med mercies mer	rom Semi- meter to 1 ter). t channel Y, Z axis ping which i easured wa Rei Quasi-pe Quasi-pe Quasi-pe	Anechoic Ch. 5 meter (Above Still St	dulati amb ove

Report No.: EED32L00041001 Page 25 of 40

Test plot as follows:

Mode:	GFSK Transmitting	Channel:	2402
Remark:	Peak	(0)	(0.)

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	45.67	48.85	74.00	25.15	Pass	Horizontal
2	2402.1464	32.26	13.31	-42.43	80.69	83.83	74.00	-9.83	Pass	Horizontal

Mode:		GFSK Transmitting	Channel:	2402
Remark:	100	(*)	/15	
	7 23	1 / 2 / 1	/ 43	/

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	46.14	49.32	74.00	24.68	Pass	Vertical
2	2401.7897	32.26	13.31	-42.43	77.39	80.53	74.00	-6.53	Pass	Vertical

Report No.: EED32L00041001

Page 26 of 40

N	0	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	1	2479.7309	32.37	13.39	-42.39	81.38	84.75	74.00	-10.75	Pass	Horizontal
2	2	2483.5000	32.38	13.38	-42.40	45.34	48.70	74.00	25.30	Pass	Horizontal

Mode:	GFSK Transmitting	Channel:	2480
Remark:	Peak		

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.2566	32.37	13.39	-42.40	77.59	80.95	74.00	-6.95	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	45.62	48.98	74.00	25.02	Pass	Vertical

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Appendix H): Radiated Spurious Emissions

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
1	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
/	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
(3)	Ab 2112 4 CU -	Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	

Test Procedure:

Limit:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.

Field strength Limit

Measurement

3

3

Repeat above procedures until all frequencies measured was complete.

960MHz-1GHz

Above 1GHz

Little	Fraguerov.	i icia su crigur	LIIIII	Domark	Mododiomoni
	Frequency	(microvolt/meter)	(dBµV/m)	Remark	distance (m)
	0.009MHz-0.490MHz	2400/F(kHz)	-		300
	0.490MHz-1.705MHz	24000/F(kHz)	-		30
/	1.705MHz-30MHz	30	-	0	30
	30MHz-88MHz	100	40.0	Quasi-peak	3
	88MHz-216MHz	150	43.5	Quasi-peak	3
	216MHz-960MHz	200	46.0	Quasi-peak	3

500

500

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

54.0

54.0

Quasi-peak

Average

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
4	1	37.9548	11.65	0.69	-32.12	32.74	12.96	40.00	27.04	Pass	Horizontal
9	2	140.0090	7.20	1.39	-31.99	36.73	13.33	43.50	30.17	Pass	Horizontal
	3	208.8859	11.13	1.71	-31.94	36.37	17.27	43.50	26.23	Pass	Horizontal
	4	625.0575	19.20	2.97	-31.98	31.87	22.06	46.00	23.94	Pass	Horizontal
	5	687.5318	19.70	3.14	-32.06	34.88	25.66	46.00	20.34	Pass	Horizontal
	6	930.8321	22.28	3.65	-31.34	29.35	23.94	46.00	22.06	Pass	Horizontal

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
1	55.7076	12.29	0.85	-32.08	39.39	20.45	40.00	19.55	Pass	Vertical
2	67.8338	9.56	0.94	-32.05	40.43	18.88	40.00	21.12	Pass	Vertical
3	120.0250	9.20	1.30	-32.07	42.34	20.77	43.50	22.73	Pass	Vertical
4	208.8859	11.13	1.71	-31.94	44.77	25.67	43.50	17.83	Pass	Vertical
5	625.0575	19.20	2.97	-31.98	35.69	25.88	46.00	20.12	Pass	Vertical
6	688.0168	19.70	3.14	-32.05	33.03	23.82	46.00	22.18	Pass	Vertical

Transmitter Emission above 1GHz

	Mode:	BLE GF	SK Trar	smitting		Chan	nel:		2402		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	1656.6657	29.43	3.15	-42.76	50.89	40.71	74.00	33.29	Pass	Н	PK
2	2114.3114	31.86	3.60	-42.56	50.34	43.24	74.00	30.76	Pass	Н	PK
3	3525.8851	33.42	4.46	-41.76	49.83	45.95	74.00	28.05	Pass	Н	PK
4	4804.0000	34.50	4.55	-40.66	74.19	72.58	74.00	1.42	Pass	Н	PK
5	4804.0000	34.50	4.55	-40.66	46.07	44.46	54.00	9.54	Pass	Н	AV
6	7206.0000	36.31	5.81	-41.02	53.06	54.16	74.00	19.84	Pass	Н	PK
7	7206.0000	36.31	5.82	-41.02	41.06	42.17	54.00	11.83	Pass	Н	AV
8	9608.0000	37.64	6.63	-40.76	47.19	50.70	74.00	23.30	Pass	Н	PK
9	1415.0415	28.32	2.92	-42.69	50.63	39.18	74.00	34.82	Pass	V	PK
10	2066.9067	31.79	3.57	-42.58	50.81	43.59	74.00	30.41	Pass	V	PK
11	3197.6132	33.28	4.65	-42.01	48.94	44.86	74.00	29.14	Pass	V	PK
12	4804.0000	34.50	4.55	-40.66	74.48	72.87	74.00	1.13	Pass	V	PK
13	4804.0000	34.50	4.55	-40.66	46.08	44.47	54.00	9.53	Pass	V	AV
14	7206.0000	36.31	5.81	-41.02	52.90	54.00	74.00	20.00	Pass	V	PK
15	7206.0000	36.31	5.82	-41.02	40.28	41.39	54.00	12.61	Pass	V	AV
16	9608.0000	37.64	6.63	-40.76	47.10	50.61	74.00	23.39	Pass	V	PK

I	Mode: BLE GFSK Transmitting					Chan	nel:		2440		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	1432.2432	28.33	2.93	-42.67	51.67	40.26	74.00	33.74	Pass	Н	PK
2	2141.9142	31.90	3.64	-42.55	51.95	44.94	74.00	29.06	Pass	Н	PK
3	3189.8127	33.28	4.63	-42.01	49.39	45.29	74.00	28.71	Pass	Н	PK
4	4880.0000	34.50	4.80	-40.60	72.40	71.10	74.00	2.90	Pass	Н	PK
5	4880.0000	34.50	4.80	-40.60	46.18	44.88	54.00	9.12	Pass	Н	AV
6	7320.0000	36.42	5.85	-40.92	54.20	55.55	74.00	18.45	Pass	Н	PK
7	7320.0000	36.42	5.85	-40.92	39.79	41.14	54.00	12.86	Pass	Н	AV
8	9760.0000	37.70	6.73	-40.62	46.46	50.27	74.00	23.73	Pass	Н	PK
9	1415.0415	28.32	2.92	-42.69	50.66	39.21	74.00	34.79	Pass	V	PK
10	1839.0839	30.64	3.37	-42.70	50.35	41.66	74.00	32.34	Pass	V	PK
11	3507.0338	33.41	4.48	-41.81	49.50	45.58	74.00	28.42	Pass	V	PK
12	4880.0000	34.50	4.80	-40.60	73.86	72.56	74.00	1.44	Pass	V	PK
13	4880.0000	34.50	4.80	-40.60	46.17	44.87	54.00	9.13	Pass	V	AV
14	7320.0000	36.42	5.85	-40.92	50.69	52.04	74.00	21.96	Pass	V	PK
15	7320.0000	36.42	5.85	-40.92	39.50	40.85	54.00	13.15	Pass	V	AV
16	9760.0000	37.70	6.73	-40.62	46.84	50.65	74.00	23.35	Pass	V	PK

<u>crii</u>

Report No.: EED32L00041001

	_1>_1>_1>					21%				200		
	Mode:	BLE GF	SK Trar	smitting		Chan	nel:			2480		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark	
1	1405.0405	28.31	2.91	-42.69	50.50	39.03	74.00	34.97	Pass	Н	PK	
2	1947.0947	31.35	3.42	-42.64	49.88	42.01	74.00	31.99	Pass	Н	PK	
3	4088.1725	33.92	4.32	-40.80	47.41	44.85	74.00	29.15	Pass	Н	PK	
4	4960.0000	34.50	4.82	-40.53	72.91	71.70	74.00	2.30	Pass	Н	PK	
5	4960.0000	34.50	4.82	-40.53	45.34	44.13	54.00	9.87	Pass	Н	AV	
6	7440.0000	36.54	5.85	-40.82	50.38	51.95	74.00	22.05	Pass	Н	PK	
7	7440.0000	36.54	5.85	-40.82	39.49	41.06	54.00	12.94	Pass	Н	AV	
8	9920.0000	37.77	6.79	-40.48	46.37	50.45	74.00	23.55	Pass	Н	PK	
9	1224.0224	28.12	2.67	-42.86	51.60	39.53	74.00	34.47	Pass	V	PK	
10	1798.4798	30.37	3.32	-42.71	50.60	41.58	74.00	32.42	Pass	V	PK	
11	3169.6613	33.27	4.60	-42.02	50.04	45.89	74.00	28.11	Pass	V	PK	
12	4960.0000	34.50	4.82	-40.53	73.66	72.45	74.00	1.55	Pass	V	PK	
13	4960.0000	34.50	4.82	-40.53	45.31	44.10	54.00	9.90	Pass	V	AV	
14	7440.0000	36.54	5.85	-40.82	52.28	53.85	74.00	20.15	Pass	V	PK	
15	7440.0000	36.54	5.85	-40.82	39.49	41.06	54.00	12.94	Pass	V	AV	
16	9920.0000	37.77	6.79	-40.48	45.43	49.51	74.00	24.49	Pass	V	PK	

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Report No.: EED32L00041001 Page 31 of 40

PHOTOGRAPHS OF TEST SETUP

Test model No.: DET-218

Radiated spurious emission Test Setup-1(Below 30GHz)

Radiated spurious emission Test Setup-2(30MHz-1GHz)

Report No.: EED32L00041001

Radiated spurious emission Test Setup-3(Above 1GHz)

Report No.: EED32L00041001 Page 33 of 40

PHOTOGRAPHS OF EUT Constructional Details

Test model No.: DET-218

View of Product-1

View of Product-2

Page 34 of 40 Report No.: EED32L00041001

View of Product-3

Report No.: EED32L00041001 Page 35 of 40

View of Product-5

Report No.: EED32L00041001 Page 36 of 40

View of Product-7

View of Product-8

Report No.: EED32L00041001

View of Product-9

View of Product-10

Report No.: EED32L00041001 Page 38 of 40

View of Product-11

View of Product-12

Report No.: EED32L00041001 Page 39 of 40

View of Product-13

View of Product-14

Report No.: EED32L00041001 Page 40 of 40

View of Product-15

View of Product-16

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.