

FCC TEST REPORT

Applicant : Robert Bosch GmbH
Address : Robert-Bosch-Platz 1, 70839 Gerlingen, Germany
Manufacturer : Robert Bosch GmbH
Address : Robert-Bosch-Platz 1, 70839 Gerlingen, Germany
Factory 1 : Robert Bosch Malaysia
Address : Phase 1 – Free Industrial Zone, 11900 Bayan Lepas, Penang, Malaysia
Factory 2 : Bosch Automotive Electronics India Pvt.Ltd.
Address : Hangar 703 Naganathapura, Electronic city PO, Bengaluru - 560100
Product Name: Multimedia device with Bluetooth and WLAN
Brand Name : BOSCH
Model No : 71U0
FCC ID:: 2AUXS-71U0
Measurement Standard: 47 CFR FCC Part 15, Subpart B, Class B
Receipt Date of Samples:February 18, 2025
Date of Tested February 18, 2025 to March 24, 2025

Date of Report..... : March 25, 2025

This report shows that above equipment is technically compliant with the requirements of the standards above. All test results in this report apply only to the tested sample(s). Without prior written approval of Dongguan Nore Testing Center Co., Ltd., this report shall not be reproduced accept in the

Prepared by

Jenny Liu / Project Engineer

Iori Fan / Authorized Signatory

Table of Contents

1. Summary of Test Result	4
2. General Description of EUT	5
3. Configuration of EUT	7
4. Description of Support Device	8
5. Test Facility	8
6. Test Conditions	9
7. Measurement Uncertainty	9
8. Measurement Bandwidths	9
9. Deviations and Abnormalities from Standard Conditions	9
10. Sample Calculations	10
11. Documentation Requirements	11
12. Conducted Emission Measurement	13
13. Radiated Emission Measurement	15
14. Measuring Devices and Test Equipment	26

Revision History

Report Number	Description	Issued Date
NTC2502405FV00	Initial Issue	2025-03-25

1. Summary of Test Result

EMISSION					
Standard	Test Clause	Test Item	Result	Remarks	
47 CFR FCC Part 15, Subpart B, Class B;	§15.107(a)	Conducted Emission	N/A		
ANSI C63.4-2014	§15.109(a)	Radiated Emission	PASS		

Note: The device is designed for vehicle environment using and cannot connect to the public low-voltage network.

2. General Description of EUT

Product Information	
Product Name:	Multimedia device with Bluetooth and WLAN
Main Model Name:	71U0
Additional Model Name:	N/A
Model Difference:	N/A
S/N:	60c50fde
Brand Name:	BOSCH
Hardware Version:	DA3-002
Software Version:	D3I_51.6(S3R-01-00 (2024-51-6))
Rating:	DC 10V to 16 V come from vehicle environment
Classification:	Class B
Operation Frequency:	Above 108MHz
Typical arrangement:	Table-top
I/O Port:	Refer to the user manual
Accessories Information	
Cable:	N/A
Other:	N/A
Additional Information	
Note:	1. The device has six variant versions, and all the versions have the same schematic, construction, PCB Layout, Bluetooth & WIFI RF module; the differences are software version and components populated in accordance with the function feature. Details refer to following the variant version description.
	2. According to the version differences and the manufacturer, all tests are performed on version GEX w/DAB, deviation test of Radiated Emission was performed on version IND.
Remark:	All the information above are provided by the manufacturer. More detailed feature of the EUT please refers to the user manual.

Variant Version Description:

	Versions					
Function	IND	GEX w/DAB	GEX with no 5GHz AP support	GEX w/o DAB	EU w/DAB	EU w/o DAB
AM	Yes	Yes	Yes	Yes	Yes	Yes
FM	Yes	Yes	Yes	Yes	Yes	Yes
DAB		Yes			Yes	
DRM	Yes					
ВТ	Yes	Yes	Yes	Yes	Yes	Yes
BLE	Yes	Yes	Yes	Yes	Yes	Yes
Wifi Station (2.4 GHz)	Yes	Yes	Yes	Yes	Yes	Yes
GNSS	Yes	Yes	Yes	Yes	Yes	Yes
Wifi AP 2.4GHz			Yes			
Wifi AP 5GHz	Yes	Yes		Yes	Yes	Yes
USB DCM	Yes	Yes		Yes	Yes	Yes
USB	Yes	Yes	Yes	Yes	Yes	Yes
QZSS	Yes	Yes	Yes	Yes	Yes	Yes
RVC	Yes	Yes	Yes	Yes	Yes	Yes
Int SVS	Yes	Yes	Yes	Yes		
Ext SVS						
Audio (8 CH)	Yes	Yes	Yes	Yes		
Audio (4 CH)					Yes	Yes

Note: For wireless functions Bluetooth and WIFI, the hardware design is exactly the same. The WIFI bands and features are locked by the software at the factory and cannot be modified by the user.

3. Configuration of EUT

Description of Test Modes

	Test Mode	Description
		Connect the EUT to DC Source and load box, turn on the EUT
1.	FM Rx (87.5MHz)	and set it working at FM 87.5MHz to search FM broadcast
		signal (1KHz sine wave signal)
		Connect the EUT to DC Source and load box, turn on the EUT
2.	FM Rx (98MHz)	and set it working at FM 98MHz to search FM broadcast signal
		(1KHz sine wave signal)
		Connect the EUT to DC Source and load box, turn on the EUT
3.	FM Rx (108MHz)	and set it working at FM 108MHz to search FM broadcast
		signal (1KHz sine wave signal)

Block Diagram of Configuration

Note:

- a. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- b. FM signal generator was placed outside the chamber during the test.

4. Description of Support Device

No.	Equipment	Brand	M/N	S/N	Specification	Remarks
1.	Load Box					Provided by the manufacturer.
2.	FM Signal Generator	Rohde & Schwar	SFU	101281		Provided by the Lab.
3.	DC Source	Maynuo	MY8811			Provided by the Lab.

5. Test Facility

Test Site:	Dongguan Nore Testing Center Co., Ltd. (Dongguan NTC Co., Ltd.)
Accreditations and	The Laboratory has been assessed and proved to be in compliance with
Authorizations:	CNAS/CL01
	Listed by CNAS, August 13, 2018
	The Certificate Registration Number is L5795.
	The Certificate is valid until August 13, 2030
	The Laboratory has been assessed and proved to be in compliance with
	ISO17025
	Listed by A2LA, November 01, 2017
	The Certificate Registration Number is 4429.01
	The Certificate is valid until December 31, 2025
	Listed by FCC, November 06, 2017
	Test Firm Registration Number: 907417
	Listed by Industry Canada, June 08, 2017
	The Certificate Registration Number. Is 46405-9743A
Test Site Location:	Building D, Gaosheng Science and Technology Park, Hongtu Road,
	Nancheng District, Dongguan City, Guangdong Province, China

6. Test Conditions

No.	Test Item	Test Mode	Test Voltage	Tested by	Remarks
1.	Conducted Emission				
2.	Radiated Emission	1-3	DC 13.5V	Sean	See note 1
Note:					

Note:

1. The testing climatic conditions for temperature, humidity, and atmospheric pressure are within: 15~35°C, 30~60% and 86~106KPa.

2. DC 13.5V comes from the external DC source.

3. The device is designed for vehicle environment using and cannot connect to the public low-voltage network.

7. Measurement Uncertainty

No.	Test Item	Frequency	Uncertainty	Remarks
1	Conducted Emission (AC Mains)	9KHz ~ 150KHz	± 3.01 dB	
1.	Conducted Emission (AC Mains)	150KHz ~ 30MHz	± 2.52 dB	
2	Dedicted Envirois Test	30MHz ~ 1GHz	± 5.60 dB	
Ζ.	Radiated Emission Test	Above 1GHz	± 5.22 dB	
Note:				

1. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2. The measurement uncertainly levels above are estimated and calculated according to CISPR 16-4-2.

8. Measurement Bandwidths

No.	Frequency Range (MHz)	Peak Level (kHz)	Quasi-Peak Level (kHz)	Average Level (kHz)		
1.	0.01 ~ 0.15	0.3	0.2	0.2		
2.	0.15 ~ 30.0	10.0	9.0	9.0		
3.	30 ~ 1000	100.0	120.0	120.0		
4.	Above 1000	1000.0	N/A	1000.0		
Note:						
Measurements were made using the bandwidths and detectors specified by the standard. No video filter was used.						

9. Deviations and Abnormalities from Standard Conditions

The EUT configurations are recommended and required by the manufacturer.

10. Sample Calculations

Conducted Emission								
Freq. (MHz)	Reading Level (dBuV)	Correct Factor (dB)	Measurement (dBuV)	Limit (dBuV)	Over (dB)	Detector		
0.1539	49.42	9.98	59.40	65.79	-6.39	QP		
Where,								
Freq.	= Emiss	sion frequency in MH	łz					
Reading Le	evel = Spect	rum Analyzer/Recei	ver Reading					
Corrector F	actor = Insert	ion loss of LISN + C	able Loss + RF Sv	vitching Unit	attenuati	on		
Measurem	ent = Readi	ing + Corrector Factor	or					
Limit	Limit = Limit stated in standard							
Margin	Margin = Measurement - Limit							
Detector	= Readi	ing for Quasi-Peak /	Average / Peak					

Radiated Emission								
Freq. (MHz)	Reading Level (dBuV)	Correct Factor (dB/m)	Measurement (dBuV/m)	Limit (dBuV/m)	Over (dB)	Detector		
285.1099	44.00	-5.80	38.20	46.00	-7.80	QP		
Where,								
Freq.	= Emiss	ion frequency in M	Н					
Reading Le	evel = Spect	rum Analyzer/Rece	eiver Reading					
Corrector F	actor = Anten	na Factor + Cable	Loss - Pre-amplifie	ər				
Measureme	ent = Readi	ng + Corrector Fac	ctor					
Limit = Limit stated in standard								
Over = Margin, which calculated by Measurement - Limit								
Detector	= Readi	ng for Quasi-Peak	/ Average / Peak					

11. Documentation Requirements

Label requirements:

a) In addition to the requirements in part 2 of this chapter, a device subject to certification, or Supplier's Declaration of Conformity shall be labeled as follows:

1) Receivers associated with the operation of a licensed radio service, e.g., FM broadcast under part 73 of this chapter, land mobile operation under part 90, etc., shall bear the following statement in a conspicuous location on the device:

This device complies with part 15 of the FCC Rules. Operation is subject to the condition that this device does not cause harmful interference.

(2) A stand-alone cable input selector switch, shall bear the following statement in a conspicuous location on the device:

This device complies with part 15 of the FCC Rules for use with cable television service.

(3) All other devices shall bear the following statement in a conspicuous location on the device:

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

(4) Where a device is constructed in two or more sections connected by wires and marketed together, the statement specified under paragraph (a) of this section is required to be affixed only to the main control unit.

(5) When the device is so small or for such use that it is impracticable to label it with the statement specified under paragraph (a) of this section in a font that is four-point or larger, and the device does not have a display that can show electronic labeling, then the information required by this paragraph shall be placed in the user manual and must also either be placed on the device packaging or on a removable label attached to the device.

User's Manual requirements (Information to user):

(a) For a Class A digital device or peripheral, the instructions furnished the user shall include the following or similar statement, placed in a prominent location in the text of the manual:

NOTE: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

(b) For a Class B digital device or peripheral, the instructions furnished the user shall include the following or similar statement, placed in a prominent location in the text of the manual:

NOTE: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

-Reorient or relocate the receiving antenna.

- -Increase the separation between the equipment and receiver.
- -Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- -Consult the dealer or an experienced radio/TV technician for help.

Notice: The changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

If the EUT was tested with special shielded cables the operator's manual for such product shall also contain the following statements or their equipment:

Shielded interface cables and/or AC power cord, if any, must be used in order to comply with the emission limits.

12. Conducted Emission Measurement

LIMIT

Limits for conducted disturbance for the AC mains power ports:

Frequency	Class	A (dBuV)	Class B	Class B (dBuV)	
(MHz)	Quasi-peak	Average	Quasi-peak	Average	
0.15 to 0.5	79	66	66 to 56	56 to 46	
0.5 to 5	73	60	56	46	
5 to 30	73	60	60	50	
Note: 1. If th limit 2. The term	e limits for the avera s for the measuremen higher value measu	ge detector are met nts with the average ured with and withou	when using the quasi-per detector are considered t ut the outer conductor se	eak detector, then the o be met. creen of the antenna	

- 3. Television receivers with teletext facilities should be tested in teletext mode with teletext Picture.
- 4. The lower limit shall apply at the transition frequencies.
- 5. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5MHz.

BLOCK DIAGRAM OF TEST SETUP

Conducted Disturbance at the Mains power Ports

TEST PROCEDURES

- a. The EUT was placed on a wooden table 0.8m height from the metal ground plan and 0.4m from the conducting wall of the shielding room and it was kept at 0.8m from any other grounded conducting surface.
- b. Configure the EUT and support devices as per section 3.
- c. All I/O cables and support devices were positioned as per ANSI C63.4-2014.
- d. Connect mains power port of the EUT to a line impedance stabilization network (LISN) and wired network port to Asymmetric Artificial Network (AAN).
- e. Connect all support devices to the other LISN and AAN, if needed.
- f. Turn on the EUT and all support devices, and make it run stably.
- g. Set the detector and measurement bandwidth of test-receiver system as per ANSI C63.4-2014.
- h. Scan the frequency range from 150KHz to 30MHz at both sides of AC line for conducted interference checking
- i. Repeat the above scans in each mode and record the test data.

TEST RESULTS

Not applicable.

13. Radiated Emission Measurement

LIMITS

Below 1GHz:

Frequency range	Field S	Class A trengths Limit	Class B Field Strengths Limit		
MHz	u)//m	dB(µV)/m	u)//m	dB(µV)/m	
	μν/Π	3m	μν/Π	3m	
30 ~ 88	90	49.0	100	40.0	
88 ~ 216	150	53.5	150	43.5	
216 ~ 960	210	56.4	200	46.0	
960 ~ 1000	300	59.5	500	54.0	

Note:

1. Emission level (dB) μ V = 20 log Emission level μ V/m

2. The smaller limit shall apply at the cross point between two frequency bands.

Above 1GHz:

	Measuring the distance at 3m					
Frequency (GHz)		lass A	Class B			
(0.12)	Peak dB(uV/m)	Average dB(uV/m)	Peak dB(uV/m)	Average dB(uV/m)		
1-40	79.5	60	74	54		
Note:		·				

1. The smaller limit shall apply at the cross point between two frequency bands.

Required frequency range of radiated measurement (§15.33)

Highest frequency generated or used in the device or on which the device operates or tunes (MHz)	Upper frequency of measurement range (MHz)
Below 1.705	30
1.705–108	1000
108–500	2000
500–1000	5000
Above 1000	5 th harmonic of the highest frequency or 40 GHz, Whichever is lower.

BLOCKDIAGRAM OF TEST SETUP

Below 1GHz:

Above 1GHz:

TEST PROCEDURES

- a. The EUT was placed on a rotatable wooden table top 0.8m above ground.
- b. The EUT was set 3m away from the receiving antenna which was mounted on the top of a variable height antenna tower.
- c. Configure the EUT and support devices as per section 3.
- d. All I/O cables and support devices were positioned as per ANSI C63.4-2014.
- e. Connect mains power port of the EUT to the outlet socket under the turntable and connect all other support devices to other outlet socket under the turntable.
- f. Turn on the EUT and all support devices, and make it run stably.
- g. Set the detector and measurement bandwidth of test-receiver system as per ANSI C63.4-2014.
- h. Scan the frequency range from 30MHz to 1000MHz for radiation emissions checking.
- Emissions were scanned and measured rotating the EUT from 0 to 360 degrees and positioning the antenna from 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level.
- j. Repeat the above scans in each mode and channel and record the test data.

TEST RESULTS

PASS

Please refer to the following pages of the worst case.

M/N: 71U0 (GEX w/DAB version)	Testing Voltage: DC 13.5V					
Polarization: Horizontal	Detector: QP					
Test Mode: 2	Distance: 3m					
Radiated Emission	Measurement					
86.9 dBuV/m						
77	FCC_Part 15_Class B_Up 16_3m_Peak					
67						
57	FCC Part 15 Class B. Harrison B. AN					
47 Z & 11						
37 1 A 3 5 10 10 12						
27						
17						
7						
-3						
1000.000 2700.00 4400.00 6100.00 7800.00 9500.0	0 11200.00 12900.00 14600.00 18000.00 MHz					
No. Mk. Freq. Reading Correct Measure- Level Factor ment	Over					
MHz dBuV dB dBuV/m dBuV/m	m dB Detector					
1 2088.000 38.14 -0.65 37.49 74.00	-36.51 peak					
2 2088.000 28.90 -0.65 28.25 54.00	-25.75 AVG					
3 2972.000 35.16 1.75 36.91 74.00	-37.09 peak					
4 2972.000 26.91 1.75 28.66 54.00	-25.34 AVG					
5 3533.000 35.87 2.81 38.68 74.00	-35.32 peak					
6 3533.000 26.84 2.81 29.65 54.00	-24.35 AVG					
7 4638.000 36.75 5.66 42.41 74.00	-31.59 peak					
8 4638.000 26.30 5.66 31.96 54.00	-22.04 AVG					
9 5250.000 37.85 6.82 44.67 74.00	-29.33 peak					
	-13.40 AVG					
12 * 6695.000 26.58 8.72 35.30 54.00	-18 70 AVG					
12 * 6695.000 26.58 8.72 35.30 54.00 -18.70 AVG Note 1: Other emissions are lower than 20dB below the allowable limit. Nate 2: *:Maximum data						

M/N: 71U0 (GEX w/DAB version)	Testing Voltage: DC 13.5V						
Polarization: Vertical	Detector: QP						
Test Mode: 2	Distance: 3m						
Radiated Er	Time: 16:05:05						
57 3	11 In a superseduction Automatical and a superseduction of the sup						
47 37 27 17 7 -3 -3 -3 -3 -3 -5 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7							
-13 1000.000 2700.00 4400.00 6100.00 780	0.00 9500.00 11200.00 12900.00 14600.00 18000.00 MHz						
No. Mk. Freq. Reading Correct Meas Level Factor me	ure- Limit Over nt						
MHz dBuV dB dBuV	m dBuV/m dB Detector						
1 2275.000 38.81 -0.22 38.5	j9 74.00 -35.41 peak						
2 2275.000 29.05 -0.22 28.8	3 54.00 -25.17 AVG						
3 3312.000 38.07 2.25 40.3	2 74.00 -33.68 peak						
4 3312.000 27.91 2.25 30.1	6 54.00 -23.84 AVG						
	17 54.00 -19.53 AV/C						
7 6287 000 36 78 7 39 44	7 74.00 -29.83 neak						
8 6287.000 27.15 7.39 34 5	i4 54.00 -19.46 AVG						
9 7256.000 37.05 10.51 47.5	i6 74.00 -26.44 peak						
10 7256.000 27.43 10.51 37.9	04 54.00 -16.06 AVG						
11 8310.000 36.74 11.51 48.2	25 74.00 -25.75 peak						
12 * 8310.000 27.50 11.51 39.0	11 54.00 -14.99 AVG						
12 * 8310.000 27.50 11.51 39.01 54.00 -14.99 AVG Note 1: Other emissions are lower than 20dB below the allowable limit. Note 2: *:Maximum data x:Over limit !:over margin							

M/N: 71U0 (IND version)				Testing Voltage: DC 13.5V						
Polarization: Vertical					Detector	: QP				
Test Mod	le: 2					Distance	: 3m			
Radiated Emission				sion	Measu	remen	t			
Da	te: 2025/3/22								Time: 14:57:09	
86	i.9 dBuV/m									
77						FI	CC_Part 15_Cl	ass 8_Up 16_3	n_Peak	
67										
57							ECC JRanuality	Water Up 16	and the second	
57			- ¥	and the second	11 water	and the second				
47		1 And Marin	an work	jo	12 *					
37	Array March 1966 (1 4	**	1							
27										
17										
7										
-3										
-13	1000.000 2700.0	0 4400.00	6100.00	7800.00	9500.00	11200.00	12900.00	14600.00	18000.00 MH	Iz
No. Mk	Freq.	Reading	Correct	Measure-	Limit	Over				
		Level	Factor	ment		010				
	MHz	Level dBuV	Factor dB	ment dBuV/m	dBuV/m	dB	Detector			
1	MHz 3482.000	Level dBuV 39.50	Factor dB 2.71	dBuV/m 42.21	dBuV/m 74.00	dB -31.79	Detector peak			
1	MHz 3482.000 3482.000	Level dBuV 39.50 29.74	Factor dB 2.71 2.71	ment dBuV/m 42.21 32.45	dBuV/m 74.00 54.00	dB -31.79 -21.55	Detector peak AVG			
1 2 3 4	MHz 3482.000 3482.000 4043.000 4043.000	Level dBuV 39.50 29.74 39.12 29.25	Factor dB 2.71 2.71 4.14 4.14	ment dBuV/m 42.21 32.45 43.26 33.39	dBuV/m 74.00 54.00 74.00 54.00	dB -31.79 -21.55 -30.74 -20.61	Detector peak AVG peak AVG			
1 2 3 4 5	MHz 3482.000 3482.000 4043.000 4043.000 4995.000	Level dBuV 39.50 29.74 39.12 29.25 38.71	Factor dB 2.71 2.71 4.14 4.14 7.02	ment dBuV/m 42.21 32.45 43.26 33.39 45.73	dBuV/m 74.00 54.00 74.00 54.00 74.00	dB -31.79 -21.55 -30.74 -20.61 -28.27	Detector peak AVG peak AVG peak			
1 2 3 4 5 6	MHz 3482.000 3482.000 4043.000 4043.000 4995.000 4995.000	Level dBuV 39.50 29.74 39.12 29.25 38.71 27.93	Factor dB 2.71 2.71 4.14 4.14 7.02 7.02	ment dBuV/m 42.21 32.45 43.26 33.39 45.73 34.95	dBuV/m 74.00 54.00 74.00 54.00 74.00 54.00	dB -31.79 -21.55 -30.74 -20.61 -28.27 -19.05	Detector peak AVG peak AVG peak AVG			
1 2 3 4 5 6 7	MHz 3482.000 3482.000 4043.000 4043.000 4095.000 4995.000 6287.000	Level dBuV 39.50 29.74 39.12 29.25 38.71 27.93 43.02	Factor dB 2.71 2.71 4.14 4.14 7.02 7.02 7.39	ment dBuV/m 42.21 32.45 43.26 33.39 45.73 34.95 50.41	dBuV/m 74.00 54.00 74.00 54.00 74.00 54.00 74.00	dB -31.79 -21.55 -30.74 -20.61 -28.27 -19.05 -23.59	Detector peak AVG peak AVG peak AVG peak			
1 2 3 4 5 6 7 8	MHz 3482.000 3482.000 4043.000 4043.000 4095.000 4995.000 6287.000 6287.000	Level dBuV 39.50 29.74 39.12 29.25 38.71 27.93 43.02 29.73	Factor dB 2.71 2.71 4.14 4.14 7.02 7.02 7.39 7.39	ment dBuV/m 42.21 32.45 43.26 33.39 45.73 34.95 50.41 37.12	dBuV/m 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00	dB -31.79 -21.55 -30.74 -20.61 -28.27 -19.05 -23.59 -16.88	Detector peak AVG peak AVG peak AVG AVG			
1 2 3 4 5 6 7 8 9	MHz 3482.000 4043.000 4043.000 4095.000 4995.000 6287.000 6287.000 7613.000	Level dBuV 39.50 29.74 39.12 29.25 38.71 27.93 43.02 29.73 39.38	Factor dB 2.71 2.71 4.14 4.14 7.02 7.02 7.39 7.39 10.85	ment dBuV/m 42.21 32.45 43.26 33.39 45.73 34.95 50.41 37.12 50.23	dBuV/m 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00	dB -31.79 -21.55 -30.74 -20.61 -28.27 -19.05 -23.59 -16.88 -23.77	Detector peak AVG peak AVG peak AVG peak AVG			
1 2 3 4 5 6 7 8 9 10	MHz 3482.000 4043.000 4043.000 4095.000 4995.000 6287.000 6287.000 7613.000 7613.000	Level dBuV 39.50 29.74 39.12 29.25 38.71 27.93 43.02 29.73 39.38 29.09 40.40	Factor dB 2.71 2.71 4.14 4.14 7.02 7.02 7.39 7.39 10.85 10.85 40.21	ment dBuV/m 42.21 32.45 43.26 33.39 45.73 34.95 50.41 37.12 50.23 39.94 50.47	dBuV/m 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00	dB -31.79 -21.55 -30.74 -20.61 -28.27 -19.05 -23.59 -16.88 -23.77 -14.06	Detector peak AVG peak AVG peak AVG peak AVG peak AVG			
1 2 3 4 5 6 7 8 9 10 11 12 *	MHz 3482.000 4043.000 4043.000 4095.000 4995.000 6287.000 6287.000 6287.000 7613.000 9177.000	Level dBuV 39.50 29.74 39.12 29.25 38.71 27.93 43.02 29.73 39.38 29.09 40.46 29.32	Factor dB 2.71 2.71 4.14 4.14 7.02 7.02 7.39 7.39 10.85 10.85 12.01 12.01	ment dBuV/m 42.21 32.45 43.26 33.39 45.73 34.95 50.41 37.12 50.23 39.94 52.47 41.33	dBuV/m 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00	dB -31.79 -21.55 -30.74 -20.61 -28.27 -19.05 -23.59 -16.88 -23.77 -14.06 -21.53 -12.67	Detector peak AVG peak AVG peak AVG peak AVG peak			
1 2 3 4 5 6 7 8 9 10 11 12 *	MHz 3482.000 4043.000 4043.000 4095.000 4995.000 6287.000 6287.000 7613.000 7613.000 9177.000 9177.000	Level dBuV 39.50 29.74 39.12 29.25 38.71 27.93 43.02 29.73 39.38 29.09 40.46 29.32 missions	Factor dB 2.71 2.71 4.14 4.14 7.02 7.02 7.39 10.85 10.85 12.01 12.01 are low	ment dBuV/m 42.21 32.45 43.26 33.39 45.73 34.95 50.41 37.12 50.23 39.94 52.47 41.33 /er than	dBuV/m 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00	dB -31.79 -21.55 -30.74 -20.61 -28.27 -19.05 -23.59 -16.88 -23.77 -14.06 -21.53 -12.67 Delow the	Detector peak AVG peak AVG peak AVG peak AVG peak AVG peak AVG peak AVG	able limit.		

14. Measuring Devices and Test Equipment

For Conducted Emission Measurement

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Test Receiver	Rohde & Schwarz	ESCI	101152	Mar. 12, 2024	1 Year
2.	L.I.S.N	Rohde & Schwarz	ENV 216	101317	Mar. 12, 2024	1 Year
3.	L.I.S.N	Rohde & Schwarz	ESH2-Z5	893606/014	Mar. 12, 2024	1 Year
4.	RF Switching Unit	Compliance Direction Systems Inc.	RSU-M2	38311	Mar. 12, 2024	1 Year
5.	Test Software	EZ	EZ_EMC, NTC-3A1.1	N/A	N/A	N/A

SFor Radiated Emission Measurement

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Test Receiver	Rohde & Schwarz	ESCI7	100837	Mar. 12, 2024	1 Year
2.	Spectrum Analyzer	Keysight	N9020A	MY54200831	Mar. 12, 2024	1 Year
3.	Antenna	Schwarzbeck	VULB9162	9162-010	Mar. 23, 2024	2 Year
4.	Loop Antenna	Schwarzbeck	FMZB 1513	1513-272	Mar. 23, 2024	2 Year
5.	Horn Antenna	COM-Power	AH-118	071078	Mar. 23, 2024	2 Year
6.	Pre-Amplifier	HP	HP 8447D	1145A00203	Mar. 12, 2024	1 Year
7.	Pre-Amplifier	HP	HP 8449B	3008A00964	Mar. 12, 2024	1 Year
8.	Chamber	SAEMC	9*7*7m	N/A	Apr. 21, 2023	2 Year
9.	Test Software	EZ	EZ_EMC, NTC-3A1.1	N/A	N/A	N/A