

RF Test Report

For

Applicant Name:

Address:

EUT Name:

Brand Name:

Model Number:

Midmark RTLS Solutions, Inc 600 E FRONT ST STE 106 TRAVERSE CITY MI 49686, United States BLE Dual band plug-in sensor Midmark **VER5810** Series Model Number: N/A

Issued By

Company Name:

BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Report Number: Test Standards:

Address:

BTF240426R00403 47 CFR Part 15E

Test Conclusion: FCC ID: Test Date: Date of Issue:

Pass OGUVER5810 2024-04-27 to 2024-05-22 2024-06-17

Prepared By:

Date:

Approved By:

Date:

hris c (Shenzh Chris Liu / Proj CI 2024-06-17

Ryan.CJ / EMC Manager 2024-06-17

Note: All the test results in this report only related to the testing samples. Which can be duplicated completely for the legal use with approval of applicant; it shall not be reproduced except in full without the written approval of BTF Testing Lab (Shenzhen) Co., Ltd., All the objections should be raised within thirty days from the date of issue. To validate the report, you can contact us.

51

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

Page 1 of 147

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Revision History		
Version	Issue Date	Revisions Content
R_V0	2024-06-17	Original

Note: Once the revision has been made, then previous versions reports are invalid.

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 2 of 147BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Table of Contents

1	INTR	RODUCTION	5
	1.1	Identification of Testing Laboratory	
	1.2	Identification of the Responsible Testing Location	
	1.3	Announcement	
2		DUCT INFORMATION	
	2.1 2.2	Application Information Manufacturer Information	
	2.2 2.3	Factory Information	
	2.4	General Description of Equipment under Test (EUT)	
	2.5	Technical Information	6
3	SUM	MARY OF TEST RESULTS	7
	3.1	Test Standards	
	3.2	Uncertainty of Test	
	3.3	Summary of Test Result	
4		T CONFIGURATION	
	4.1 4.2	Test Equipment List	
	4.2 4.3	Test Auxiliary Equipment Test Modes	
5		LUATION RESULTS (EVALUATION)	
5	5.1	Antenna requirement	
6	••••	IO SPECTRUM MATTER TEST RESULTS (RF)	
0	6.1	Conducted Emission at AC power line	
	6.1	6.1.1 E.U.T. Operation:	
		6.1.2 Test Setup Diagram:	
		6.1.3 Test Data:	
	6.2	Duty Cycle	18
		6.2.1 E.U.T. Operation:	
		6.2.2 Test Data:	
	6.3	Maximum conducted output power	
		6.3.1 E.U.T. Operation: 6.3.2 Test Data:	
	6.4	Power spectral density	
	0.4	6.4.1 E.U.T. Operation:	
		6.4.2 Test Data:	
	6.5	Emission bandwidth and occupied bandwidth	
		6.5.1 E.U.T. Operation:	
		6.5.2 Test Data:	
	6.6	Band edge emissions (Radiated)	
		6.6.1 E.U.T. Operation:	
		6.6.2 Test Setup Diagram:6.6.3 Test Data:	
	6.7	Undesirable emission limits (below 1GHz)	
		6.7.1 E.U.T. Operation:	
		6.7.2 Test Setup Diagram:	32
		6.7.3 Test Data:	
	6.8	Undesirable emission limits (above 1GHz)	
		6.8.1 E.U.T. Operation:	

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 3 of 147BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Test Report Number: BTF240426R00403

	6.8.2 Test Data:	37
7	TEST SETUP PHOTOS	41
8	EUT CONSTRUCTIONAL DETAILS (EUT PHOTOS)	43
APP	PENDIX	44

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 4 of 147BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

1 Introduction

1.1 Identification of Testing Laboratory

Company Name:	BTF Testing Lab (Shenzhen) Co., Ltd.
Address:	F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China
Phone Number:	+86-0755-23146130
Fax Number:	+86-0755-23146130

1.2 Identification of the Responsible Testing Location

Company Name:	BTF Testing Lab (Shenzhen) Co., Ltd.
Address:	F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China
Phone Number:	+86-0755-23146130
Fax Number:	+86-0755-23146130
FCC Registration Number:	518915
Designation Number:	CN1330

1.3 Announcement

(1) The test report reference to the report template version v0.

(2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.

(3) The test report is invalid if there is any evidence and/or falsification.

(4) This document may not be altered or revised in any way unless done so by BTF and all revisions are duly noted in the revisions section.

(5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.

(6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

2 **Product Information**

Application Information 2.1

Company Name:	Midmark RTLS Solutions, Inc	
Address:	600 E FRONT ST STE 106 TRAVERSE CITY MI 49686, United States	
2.2 Manufacturer Information		
Company Name: Midmark RTLS Solutions, Inc		
Address: 600 E FRONT ST STE 106 TRAVERSE CITY MI 49686, United States		
2.3 Factory Information		

Company Name:	Moko technology Ltd
Address:	Factory 201, 107 Pinshun Rd Guixiang community, Guanlan Street, Longhua, Shenzhen, China 518110

2.4 General Description of Equipment under Test (EUT)

EUT Name:	BLE Dual band plug-in sensor
Test Model Number:	VER5810
Hardware Version:	N/A
Software Version:	N/A

Technical Information 2.5

Dowor Supply:	AC 120V 60Hz 15A
Power Supply:	
Power Adaptor:	N/A
	U-NII Band 1: 5.18~5.24 GHz
Operation Frequency	U-NII Band 2A: 5.26~5.32 GHz
Range	U-NII Band 2C: 5.50~5.70 GHz
, C	U-NII Band 3: 5.745~5.825 GHz
	U-NII Band 1: 5.15~5.25 GHz
Fragueney Block	U-NII Band 2A: 5.25~5.35 GHz
Frequency Block	U-NII Band 2C: 5.47~5.725 GHz
	U-NII Band 3: 5.725~5.85 GHz
	802.11a: 20 MHz
Channel Bandwidth	802.11n: 20 MHz
	802.11ac: 20 MHz
Antenna Type:	PCB Antenna
Antenna Gain:	2.75dBi
Note:	

#: The antenna gain provided by the applicant, and the laboratory will not be responsible for the accumulated calculation results which covers the information provided by the applicant.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

3 Summary of Test Results

3.1 Test Standards

The tests were performed according to following standards:

47 CFR Part 15E: Unlicensed National Information Infrastructure Devices

3.2 Uncertainty of Test

Item	Measurement Uncertainty
Conducted Emission (150 kHz-30 MHz)	±2.64dB
Occupied Bandwidth	±69kHz
Transmitter Power, Conducted	±0.87dB
Power Spectral Density	±0.69dB
Conducted Spurious Emissions	±0.95dB
Radiated Spurious Emissions (above 1GHz)	1-6GHz: ±3.94dB
	6-18GHz: ±4.16dB
Radiated Spurious Emissions (30M - 1GHz)	±4.12dB

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.3 Summary of Test Result

Item	Standard	Requirement	Result
Antenna requirement	47 CFR Part 15E	Part 15.203	Pass
Conducted Emission at AC power line	47 CFR Part 15E	47 CFR Part 15.207(a)	Pass
Maximum conducted output power	47 CFR Part 15E	47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(2) 47 CFR Part 15.407(a)(3)(i)	Pass
Power spectral density	47 CFR Part 15E	47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(2) 47 CFR Part 15.407(a)(3)(i)	Pass
Emission bandwidth and occupied bandwidth	47 CFR Part 15E	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use. 47 CFR Part 15.407(e)	Pass
Channel Availability Check Time	47 CFR Part 15E	47 CFR Part 15.407(h)(2)(ii)	Pass
U-NII Detection Bandwidth	47 CFR Part 15E	47 CFR Part 15.407(h)(2)	Pass
Statistical Performance Check	47 CFR Part 15E	KDB 935210 D02, Clause 5.1 Table 2	Pass
Channel Move Time, Channel Closing Transmission Time	47 CFR Part 15E	47 CFR Part 15.407(h)(2)(iii)	Pass
Non-Occupancy Period Test	47 CFR Part 15E	47 CFR Part 15.407(h)(2)(iv)	Pass
DFS Detection Thresholds	47 CFR Part 15E	KDB 905462 D02, Clause 5.2 Table 3	Pass
Band edge emissions (Radiated)	47 CFR Part 15E	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(2) 47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)	Pass

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

Page 7 of 147

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Test Report Number: BTF240426R00403

Undesirable emission limits (below 1GHz)	47 CFR Part 15E	47 CFR Part 15.407(b)(9)	Pass
Undesirable emission limits (above 1GHz)	47 CFR Part 15E	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(2) 47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)	Pass

Test Configuration 4

Test Equipment List 4.1

Conducted Emission at AC power line									
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date				
Pulse Limiter	SCHWARZBECK	VTSD 9561-F	00953	2023-11-16	2024-11-15				
Coaxial Switcher	SCHWARZBECK	CX210	CX210	2023-11-16	2024-11-15				
V-LISN	SCHWARZBECK	NSLK 8127	01073	2023-11-16	2024-11-15				
LISN	AFJ	LS16/110VAC	16010020076	2023-11-16	2024-11-15				
EMI Receiver	ROHDE&SCHWA RZ	ESCI3	101422	2023-11-16	2024-11-15				

Duty Cycle								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
RFTest software	/	V1.00	/	/	/			
RF Control Unit	Techy	TR1029-1	/	2023-11-16	2024-11-15			
RF Sensor Unit	Techy	TR1029-2	/	2023-11-16	2024-11-15			
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2023-11-16	2024-11-15			
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2023-11-16	2024-11-15			
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2023-11-16	2024-11-15			
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2023-11-16	2024-11-15			

Maximum conducted output power								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
RFTest software	/	V1.00	/	/	/			
RF Control Unit	Techy	TR1029-1	/	2023-11-16	2024-11-15			
RF Sensor Unit	F Sensor Unit Techy TR1029-2 rogrammable		/	2023-11-16	2024-11-15			
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2023-11-16	2024-11-15			
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2023-11-16	2024-11-15			
WIDEBAND RADIO COMMNUNICATION	Rohde & Schwarz	CMW500	161997	2023-11-16	2024-11-15			

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 8 of 14BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 8 of 147

TESTER			10 March 10		
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2023-11-16	2024-11-15

Power spectral density								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
RFTest software	/	V1.00	/	/	/			
RF Control Unit	Techy	TR1029-1	/	2023-11-16	2024-11-15			
RF Sensor Unit	Techy	TR1029-2	/	2023-11-16	2024-11-15			
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2023-11-16	2024-11-15			
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2023-11-16	2024-11-15			
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2023-11-16	2024-11-15			
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2023-11-16	2024-11-15			

Emission bandwidth and occupied bandwidth								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
RFTest software	/	V1.00	/	/	/			
RF Control Unit	Techy	TR1029-1	/	2023-11-16	2024-11-15			
RF Sensor Unit	Techy	TR1029-2	/	2023-11-16	2024-11-15			
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2023-11-16	2024-11-15			
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2023-11-16	2024-11-15			
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2023-11-16	2024-11-15			
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2023-11-16	2024-11-15			

Channel Availability Check Time									
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date				
RFTest software	/	V1.00	/	/	/				
RF Control Unit	Techy	TR1029-1	/	2023-11-16	2024-11-15				
RF Sensor Unit	Techy	TR1029-2	/	2023-11-16	2024-11-15				
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2023-11-16	2024-11-15				
Adjustable Direct	Dongguan	etm-6050c	20211026123	2023-11-16	2024-11-15				

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 9 of 14BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 9 of 147

Test Report Number: BTF240426R00403

Current Regulated Power Supply	Tongmen Electronic Technology Co., LTD	8			
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2023-11-16	2024-11-15
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2023-11-16	2024-11-15

U-NII Detection Bandwidth								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
RFTest software	/	V1.00	/	/	/			
RF Control Unit	Techy	TR1029-1	/	2023-11-16	2024-11-15			
RF Sensor Unit	Techy	TR1029-2	1	2023-11-16	2024-11-15			
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2023-11-16	2024-11-15			
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2023-11-16	2024-11-15			
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2023-11-16	2024-11-15			
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2023-11-16	2024-11-15			

Statistical Performance Check								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
RFTest software	/	V1.00	/	/	/			
RF Control Unit	Techy	TR1029-1	/	2023-11-16	2024-11-15			
RF Sensor Unit	Techy	TR1029-2	/	2023-11-16	2024-11-15			
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2023-11-16	2024-11-15			
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2023-11-16	2024-11-15			
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2023-11-16	2024-11-15			
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2023-11-16	2024-11-15			

Channel Move Time, Channel Closing Transmission Time									
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date				
RFTest software	/	V1.00	/	/	/				
RF Control Unit	Techy	TR1029-1	/	2023-11-16	2024-11-15				
RF Sensor Unit	Techy	TR1029-2	/	2023-11-16	2024-11-15				
Programmable constant temperature	ZZCKONG	ZZ-K02A	20210928007	2023-11-16	2024-11-15				

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 10 of 14BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 10 of 147

and humidity box					
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2023-11-16	2024-11-15
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2023-11-16	2024-11-15
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2023-11-16	2024-11-15

Non-Occupancy Period Test							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
RFTest software	/	V1.00	/	/	/		
RF Control Unit	Techy	TR1029-1	/	2023-11-16	2024-11-15		
RF Sensor Unit	Techy	TR1029-2	/	2023-11-16	2024-11-15		
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2023-11-16	2024-11-15		
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic etm-6050c 2 Technology Co., LTD		20211026123	2023-11-16	2024-11-15		
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2023-11-16	2024-11-15		
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2023-11-16	2024-11-15		

DFS Detection Thresholds							
Equipment	Manufacturer	Manufacturer Model No		Cal Date	Cal Due Date		
RFTest software	/	V1.00	/	/	/		
RF Control Unit	Techy	TR1029-1	/	2023-11-16	2024-11-15		
RF Sensor Unit	Techy	TR1029-2	/	2023-11-16	2024-11-15		
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2023-11-16	2024-11-15		
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	ectronic etm-6050c 20211026123 hology Co.,		2023-11-16	2024-11-15		
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2023-11-16	2024-11-15		
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2023-11-16	2024-11-15		

Band edge emissions (Radiated)								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	/	/			
Preamplifier	SCHWARZBECK	BBV9744	00246	2023-11-16	2023-11-23			

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 11 of 14BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 11 of 147

RE Cable	REBES Talent	REBES Talent UF1-SMASMAM-1 0m		2023-11-16	2024-11-15
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2023-11-16	2024-11-15
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2023-11-16	2024-11-15
RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2023-11-16	2024-11-15
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2023-11-16	2024-11-15
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	/	2024-11-15
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2023-11-16	2024-11-15
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2023-11-16	2024-11-15
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2023-11-16	2024-11-15
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	00008	2023-11-16	2024-11-15
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2023-11-16	2024-11-15
EZ_EMC	Frad	FA-03A2 RE+	/	/	/
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	1	1
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2023-11-16	2024-11-15

Undesirable emission limits (below 1GHz)							
Equipment	Manufacturer	Model No Inventory No		Cal Date	Cal Due Date		
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	/	1		
Preamplifier	SCHWARZBECK	BBV9744	00246	2023-11-16	2024-11-15		
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2023-11-16	2024-11-15		
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2023-11-16	2024-11-15		
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2023-11-16	2024-11-15		
RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2023-11-16	2024-11-15		
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2023-11-16	2024-11-15		
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	/	/		
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2023-11-16	2024-11-15		
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2023-11-16	2024-11-15		
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2023-11-16	2024-11-15		
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	/	/		
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	00008	2023-11-16	2024-11-15		
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2023-11-16	2024-11-15		
EZ_EMC	Frad	FA-03A2 RE+	/	/	/		
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	1	1		

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 12 of 14BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Log periodic antenna SCHWARZBECK VULB 9168 01328	2021-11-28	2024-11-15	I
--	------------	------------	---

Undesirable emission limits (above 1GHz)							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	/	1		
Preamplifier	SCHWARZBECK	BBV9744	00246	2023-11-16	2024-11-15		
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2023-11-16	2024-11-15		
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2023-11-16	2024-11-15		
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2023-11-16	2024-11-15		
RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2023-11-16	2024-11-15		
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2023-11-16	2024-11-15		
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	/	1		
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2023-11-16	2024-11-15		
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2023-11-16	2024-11-15		
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2023-11-16	2024-11-15		
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	/	1		
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	00008	2023-11-16	2024-11-15		
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2023-11-16	2024-11-15		
EZ_EMC	Frad	FA-03A2 RE+	/	/	/		
POSITIONAL CONTROLLER	POSITIONAL SKET		/	1	1		
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2023-11-16	2024-11-15		

4.2 Test Auxiliary Equipment

The EUT was tested as an independent device.

4.3 Test Modes

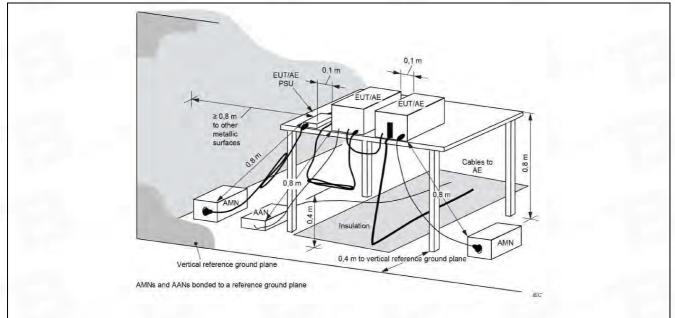
No.	Test Modes	Description
TM1	802.11a mode	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.
TM2	802.11n mode	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
TM3	802.11ac mode	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. Only the data of worst case is recorded in the report.
TM4	Normal Operating	Keep the EUT works in normal operating mode and connect to companion device

5 Evaluation Results (Evaluation)

5.1 Antenna requirement

	An intentional radiator shall be designed to ensure that no antenna other than that
	furnished by the responsible party shall be used with the device. The use of a
Test Requirement:	permanently attached antenna or of an antenna that uses a unique coupling to the
	intentional radiator shall be considered sufficient to comply with the provisions of
	this section.

6 Radio Spectrum Matter Test Results (RF)

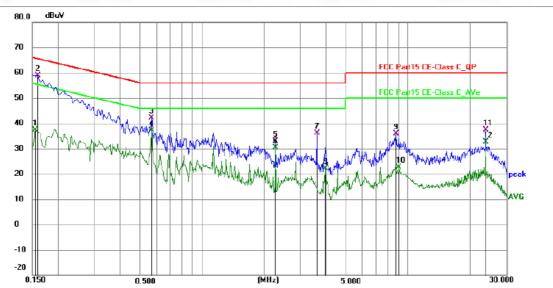

6.1 Conducted Emission at AC power line

Test Requirement:	47 CFR Part 15.207(a)					
Test Method:	Refer to ANSI C63.10-2013 section 6.2, standard test method for ac power-line conducted emissions from unlicensed wireless devices					
Test Limit:	Frequency of emission (MHz)	Conducted limit (dl	BμV)			
		Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	*Decreases with the logarithm of the frequency.					

6.1.1 E.U.T. Operation:

Operating Environment:			
Temperature:	25.5 °C		100 C
Humidity:	50.6 %		1.000
Atmospheric Pressure:	1010 mbar		

6.1.2 Test Setup Diagram:


Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. Page 15 of 147

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

6.1.3 Test Data:

TM1 / Line: Line / Band: U-NII 1 / BW: 20 / CH: L

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark
1	0.1544	26.81	10.46	37.27	55.76	-18.49	AVG	Ρ	
2 *	0.1590	48.33	10.47	58.80	65.52	-6.72	QP	Р	
3	0.5685	31.49	10.61	42.10	56.00	-13.90	QP	Р	
4	0.5685	26.63	10.61	37.24	46.00	-8.76	AVG	Р	
5	2.2785	22.11	10.67	32.78	56.00	-23.22	QP	Р	
6	2.2785	19.75	10.67	30.42	46.00	-15.58	AVG	Р	
7	3.6150	25.44	10.64	36.08	56.00	-19.92	QP	Р	
8	3.9840	11.44	10.68	22.12	46.00	-23.88	AVG	Р	
9	8.7360	25.04	10.83	35.87	60.00	-24.13	QP	Р	
10	9.0330	11.86	10.83	22.69	50.00	-27.31	AVG	Р	
11	23.8290	26.24	11.17	37.41	60.00	-22.59	QP	Р	
12	23.8290	21.43	11.17	32.60	50.00	-17.40	AVG	Р	

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 16 of 14BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

dBu¥ 80.0 70 FCI 60 50 40 12 30 ሰማ MANAMMAN b ţ1 20 NW AV6 10 0 -10 -20 30.000 0.150 0.500 (MHz) 5.000

TN 4.4	/ 1 1			
1 1 1 1 1		/ Band: U-NII 1	/ BWV · 20	/('H'I
	/ LINE. NEULIAI		/ DVV. ZU /	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark
1 *	0.1635	46.76	10.48	57.24	65.28	-8.04	QP	Р	
2	0.1844	25.71	10.53	36.24	54.29	-18.05	AVG	Р	
3	0.3165	37.14	10.57	47.71	59.80	-12.09	QP	Р	
4	0.3165	23.37	10.57	33.94	49.80	-15.86	AVG	Р	
5	0.5685	32.22	10.61	42.83	56.00	-13.17	QP	Р	
6	0.5685	27.06	10.61	37.67	46.00	-8.33	AVG	Р	
7	1.1400	29.83	10.66	40.49	56.00	-15.51	QP	Р	
8	1.1400	22.15	10.66	32.81	46.00	-13.19	AVG	Р	
9	2.2740	27.41	10.67	38.08	56.00	-17.92	QP	Р	
10	2.2740	17.16	10.67	27.83	46.00	-18.17	AVG	Р	
11	8.4660	11.74	10.82	22.56	50.00	-27.44	AVG	Р	
12	8.5020	23.97	10.82	34.79	60.00	-25.21	QP	Ρ	

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 17 of 14BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

6.2 Duty Cycle

Test Requirement:	All measurements are to be performed with the EUT transmitting at 100% duty cycle at its maximum power control level; however, if 100% duty cycle cannot be achieved, measurements of duty cycle, x, and maximum-power transmission duration, T, are required for each tested mode of operation.
Test Method:	ANSI C63.10-2013 section 12.2 (b)
Test Limit:	No limits, only for report use.
Procedure:	 i) Set the center frequency of the instrument to the center frequency of the transmission. ii) Set RBW >= EBW if possible; otherwise, set RBW to the largest available value. iii) Set VBW >= RBW. iv) Set detector = peak. v) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T, where T is defined in item a1) of 12.2, and the number of sweep points across duration T exceeds 100.

6.2.1 E.U.T. Operation:

Operating Environment:		
Temperature:	25.5 °C	
Humidity:	50.6 %	
Atmospheric Pressure:	1010 mbar	

6.2.2 Test Data:

Please Refer to Appendix for Details.

6.3 Maximum conducted output power

47 CFR Part 15.407(a)(1)(i)
47 CFR Part 15.407(a)(1)(ii)
47 CFR Part 15.407(a)(1)(iii)
47 CFR Part 15.407(a)(1)(iv)
47 CFR Part 15.407(a)(2)
47 CFR Part 15.407(a)(3)(i)
ANSI C63.10-2013, section 12.3
For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 405 mJW (04 dBm)
125 mW (21 dBm). For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power.
For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 19 of 14BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

	For the band 5 705 5 050 Olds, the maximum conducted autout start start
	For the band 5.725-5.850 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.
	If transmitting antennas of directional gain greater than 6 dBi are used, the
	maximum conducted output power shall be reduced by the amount in dB that the
	directional gain of the antenna exceeds 6 dBi.
	However, fixed point-to-point U-NII devices operating in this band may employ
	transmitting antennas with directional gain greater than 6 dBi without any
	corresponding reduction in transmitter conducted power. Fixed, point-to-point
	operations exclude the use of point-to-multipoint systems, omnidirectional
	applications, and multiple collocated transmitters transmitting the same
	information. The operator of the U-NII device, or if the equipment is professionally
	installed, the installer, is responsible for ensuring that systems employing high gain
	directional antennas are used exclusively for fixed, point-to-point operations.
	Method SA-1
	a) Set span to encompass the entire 26 dB EBW or 99% OBW of the signal. b) Set RBW = 1 MHz.
	c) Set VBW \geq 3 MHz.
	d) Number of points in sweep >= [2 × span / RBW]. (This gives bin-to-bin spacing
	<= RBW / 2, so
	that narrowband signals are not lost between frequency bins.)
	e) Sweep time = auto.
	f) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample
	detector mode.
	g) If transmit duty cycle < 98%, use a video trigger with the trigger level set to
	enable triggering only on full power pulses. The transmitter shall operate at maximum power control
	level for the
Procedure:	entire duration of every sweep. If the EUT transmits continuously (i.e., with no OFF
	intervals) or
	at duty cycle >= 98%, and if each transmission is entirely at the maximum power
	control level,
	then the trigger shall be set to "free run."
	h) Trace average at least 100 traces in power averaging (rms) mode.
	i) Compute power by integrating the spectrum across the 26 dB EBW or 99% OBW
	of the signal
	using the instrument's band power measurement function, with band limits set
	equal to the EBW or OBW band edges. If the instrument does not have a band power function,
	then sum the
	spectrum levels (in power units) at 1 MHz intervals extending across the 26 dB
	EBW or 99%
	OBW of the spectrum.
631 EUT Operation:	

6.3.1 E.U.T. Operation:

Operating Environment:		
Temperature:	25.5 °C	
Humidity:	50.6 %	
Atmospheric Pressure:	1010 mbar	

6.3.2 Test Data:

Please Refer to Appendix for Details.

6.4 Power spectral density

•	
	47 CFR Part 15.407(a)(1)(i)
	47 CFR Part 15.407(a)(1)(ii)
Test Requirement:	47 CFR Part 15.407(a)(1)(iii)
	47 CFR Part 15.407(a)(1)(iv)
	47 CFR Part 15.407(a)(2)
	47 CFR Part 15.407(a)(3)(i)
Test Method:	ANSI C63.10-2013, section 12.5
	For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For an indoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band.
	Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems,
Test Limit:	omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
	For client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band.
	If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For the band 5.725-5.850 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, the
	maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 21 of 14BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 21 of 147

	conducted power.
	Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
	a) Create an average power spectrum for the EUT operating mode being tested by
	following the instructions in 12.3.2 for measuring maximum conducted output power using a spectrum
	analyzer or EMI receiver; that is, select the appropriate test method (SA-1, SA-2, SA-3, or their
	respective alternatives) and apply it up to, but not including, the step labeled, "Compute
	power" (This procedure is required even if the maximum conducted output power
	measurement was performed using the power meter method PM.) b) Use the peak search function on the instrument to find the peak of the spectrum. c) Make the following adjustments to the peak value of the spectrum, if applicable: 1) If method SA-2 or SA-2A was used, then add [10 log (1 / D)], where D is the duty
	cycle, to the peak of the spectrum. 2) If method SA-3A was used and the linear mode was used in step h) of 12.3.2.7, add
Procedure:	1 dB to the final result to compensate for the difference between linear averaging and
	power averaging.
	 d) The result is the PPSD. e) The procedure in item a) through item c) requires the use of 1 MHz resolution bandwidth to
	satisfy the 1 MHz measurement bandwidth specified by some regulatory authorities.This
	requirement also permits use of resolution bandwidths less than 1 MHz "provided that the
	measured power is integrated to show the total power over the measurement bandwidth" (i.e.,
	1 MHz). If measurements are performed using a reduced resolution bandwidth and integrated
	over 1 MHz bandwidth, the following adjustments to the procedures apply: 1) Set RBW $\geq 1 / T$, where T is defined in 12.2 a).
	 2) Set VBW >= [3 × RBW]. 3) Care shall be taken such that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.

6.4.1 E.U.T. Operation:

Operating Environment:		
Temperature: 25.5 °C		
Humidity:	50.6 %	
Atmospheric Pressure:	1010 mbar	

6.4.2 Test Data:

Please Refer to Appendix for Details.

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 22 of 14BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 22 of 147

6.5 Emission bandwidth and occupied bandwidth

Test Requirement:	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use. U-NII 3, U-NII 4: 47 CFR Part 15.407(e)
Test Method:	ANSI C63.10-2013, section 6.9.3 & 12.4
	KDB 789033 D02, Clause C.2
Test Limit:	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use. U-NII 3, U-NII 4: Within the 5.725-5.850 GHz and 5.850-5.895 GHz bands, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.
	 Emission bandwidth: a) Set RBW = approximately 1% of the emission bandwidth. b) Set the VBW > RBW. c) Detector = peak. d) Trace mode = max hold. e) Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the instrument. Readjust RBW and repeat measurement
	as needed until the RBW/EBW ratio is approximately 1%.
	Occupied bandwidth: a) The instrument center frequency is set to the nominal EUT channel center frequency. The
	frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.
	b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW,
	and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.
	 c) Set the reference level of the instrument as required, keeping the signal from exceeding the
Procedure:	maximum input mixer level for linear operation. In general, the peak of the spectra envelope
	shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.
	d) Step a) through step c) might require iteration to adjust within the specified range.
	e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode
	shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
	 f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.
	g) If the instrument does not have a 99% power bandwidth function, then the trace data points are
	recovered and directly summed in linear power terms. The recovered amplitude data points,
	beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until
	99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99%
	f this document without permission of the Laboratory is not allowed Page 23 of 14

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 23 of 147BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

power bandwidth is
the difference between these two frequencies.
h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument
display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may
be reported in addition to the plot(s).
6 dB emission bandwidth:
a) Set RBW = 100 kHz.
b) Set the video bandwidth (VBW) \geq 3 >= RBW.
c) Detector = Peak.
d) Trace mode = max hold.
e) Sweep = auto couple.
f) Allow the trace to stabilize.
g) Measure the maximum width of the emission that is constrained by the
frequencies associated with the two outermost amplitude points (upper and lower
frequencies) that are attenuated by 6 dB relative to the maximum level measured
in the fundamental emission.

6.5.1 E.U.T. Operation:

Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

6.5.2 Test Data:

Please Refer to Appendix for Details.

6.6 Band edge emissions (Radiated)

	47 CFR Part 15.407(b)									
Test Requirement:	47 CFR Part 15.407(b)									
lest Requirement.	47 CFR Part 15.407(b)	(4)								
	47 CFR Part 15.407(b)	(10)								
Test Method:	ANSI C63.10-2013, section 12.7.4, 12.7.5, 12.7.6									
	For transmitters operat			ssions outside of the						
	5.15-5.35 GHz band sh									
	For transmitters operat 5.15-5.35 GHz band sh									
	For transmitters operat	ing solely in the 5.725-	5.850 GHz band	l:						
	All emissions shall be I									
	or below the band edge	e increasing linearly to	10 dBm/MHz at	25 MHz above or						
	below the band edge, a									
	linearly to a level of 15.									
	from 5 MHz above or b									
	dBm/MHz at the band									
	MHz	MHz	MHz	GHz						
	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15						
	¹ 0.495-0.505	16.69475-16.69525		5.35-5.46						
	2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75						
	4.125-4.128	25.5-25.67	1300-1427							
	4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2						
	4.20725-4.20775	73-74.6	1645.5-1646. 5	9.3-9.5						
	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7						
	6.26775-6.26825	108-121.94	1718.8-1722.	13.25-13.4						
Test Limit:			2							
Test Elitit.	6.31175-6.31225	123-138	2200-2300	14.47-14.5						
	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2						
	8.362-8.366	156.52475-156.525 25	2483.5-2500	17.7-21.4						
	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12						
	8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0						
	12.29-12.293	167.72-173.2	3332-3339	31.2-31.8						
	12.51975-12.52025									
		240-285	3345.8-3358	36.43-36.5						
	12.57675-12.57725 13.36-13.41	322-335.4	3600-4400	(²)						
	¹ Until February 1, 1999), this restricted band sl	hall be 0.490-0.5	510 MHz.						
	² Above 38.6									
	The field strength of en									
	exceed the limits show									
	MHz, compliance with									
	measurement instrume									
	1000 MHz, compliance									
	based on the average	value of the measured	emissions. The	provisions in §						
	15.35apply to these me									
	Except as provided els	ewhere in this subpart,	the emissions fi	rom an intentional						

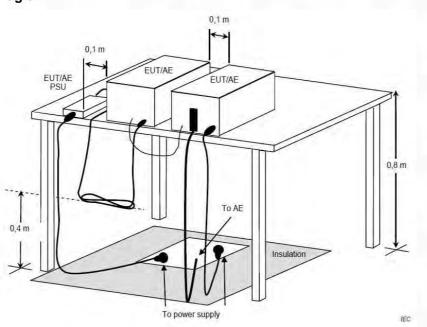
Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 25 of 14BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China Page 25 of 147

Test Report Number: BTF240426R00403

	radiator shall not excee	d the field strength levels spea	cified in the following table:
	Frequency (MHz)	Field strength	Measurement
		(microvolts/meter)	distance
			(meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	
	88-216	150 **	3
			3
	216-960	200 **	3
	Above 960	500	3
	Above 1GHz:		
	above the ground at a 3 degrees to determine the b. The EUT was set 3 m was mounted on the top c. The antenna height is determine the maximum polarizations of the anten d. For each suspected of the antenna was tuned of below 30MHz, the an was turned from 0 degre e. The test-receiver syst Bandwidth with Maximu f. If the emission level o specified, then testing c reported. Otherwise the	ees to 360 degrees to find the tem was set to Peak Detect Fi m Hold Mode. f the EUT in peak mode was ² ould be stopped and the peak emissions that did not have 1	r. The table was rotated 360 tion. nce-receiving antenna, which tower. r meters above the ground to oth horizontal and vertical surement. ed to its worst case and then neters (for the test frequency meter) and the rotatable table maximum reading. unction and Specified 10dB lower than the limit values of the EUT would be 0dB margin would be
Procedure:	in a data sheet.	ing peak or average method a west channel, the middle cha	is specified and then reported nnel, the Highest channel.
	h. The radiation measur	ements are performed in X, Y	, Z axis positioning for
		found the X axis positioning v ures until all frequencies meas	
	2. Scan from 18GHz to points marked on above testing, so only above p	Cable Loss+ Antenna Factor- 40GHz, the disturbance above e plots are the highest emission oints had been displayed. The ator which are attenuated more	e 18GHz was very low. The ons could be found when e amplitude of spurious
	3. As shown in this sect are based on average li	ion, for frequencies above 1G mits. However, the peak field s n permitted average limits spe	strength of any emission shall

6.6.1 E.U.T. Operation:

Operating Environment:						
Temperature:	25.5 °C					
Humidity:	50.6 %					


Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 26 of 14BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 26 of 147

Atmospheric Pressure: 1010 mbar

6.6.2 Test Setup Diagram:

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 27 of 147BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

6.6.3 Test Data:

Note: All the mode have been tested, and only the worst mode 802.11n(20) are in the report

			UNII-1&2A 2	OM_5180N	Hz_Horizo	ntal			
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	
1	5126.638	45.00	5.28	50.28	68.20	-17.92	peak	Р	
2	5150.000	45.94	5.33	51.27	68.20	-16.93	peak	P	
			UNII-1&2A	20M 5180	MHz Verti	cal	-		<u> </u>
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	
1	5101.638	43.75	5.35	49.10	68.20	-19.10	peak	P	
2	5150.000	46.42	5.33	51.75	68.20	-16.45	peak	P.	
			UNII-1&2A 2			ntal			
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	1
1	5350.000	44.62	5.45	50.07	68.20	-18.13	peak	Р	
2	5460.000	45.98	5.52	51.50	68.20	-16.70	peak	Р	
			UNII-1&2A	20M 5320	MHz Verti	cal			
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	
1	5350.000	45.07	5.45	50.52	68.20	-17.68	peak	Р	
2	5460.000	47.10	5.52	52.62	68.20	-15.58	peak	P	
		1	UNII-2C 20	M 5500MH	lz Horizon	tal			
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	
1	5350.000	45.40	5.49	50.89	68.20	-17.31	peak	Р	
2	5460.000	46.76	5.56	52.32	68.20	-15.88	peak	Р	
			UNII-2C	20M_5500	MHz_Vertic	al			
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	
1	5350.000	45.52	5.49	51.01	68.20	-17.19	peak	Р	

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 28 of 14BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

	-			UNII-2C 20	DM_5700M	Hz_Horizor	ntal			
	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	
	1	5725.000	45.24	5.53	50.77	68.20	-17.43	peak	Р	
	2	5730.000	46.60	5.59	52.19	68.20	-16.01	peak	Р	
	-			UNII-2C 20	DM_5700M	Hz_Horizor	ntal	·		
10	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	
	1	5350.000	45.36	5.53	50.89	68.20	-17.31	peak	Р	
	2	5460.000	47.39	5.59	52.98	68.20	-15.22	peak	Р	
				UNII-3 20	/_5745MH	z_Horizont	al			
	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	
	1	5650.000	45.16	5.63	50.79	68.20	-17.41	peak	Р	
	2	5700.000	45.62	5.70	51.32	105.20	-53.88	peak	Р	
	3	5720.000	46.36	5.66	52.02	110.80	-58.78	peak	Р	1
				UNII-3 20)M_5745M	Hz_Vertical				
	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	
	1	5350.000	44.42	5.63	50.05	68.20	-18.15	peak	Р	1
	2	5460.000	45.68	5.70	51.38	105.20	-53.82	peak	Р	1
	3	5460.000	46.28	5.66	51,94	110.80	-58,86	peak	Р	1

UNII-3 20M_5825MHz_Horizontal													
 No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F					
NO.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Delector	P/F					
1	5855.000	47.00	5.73	52.73	110.80	-58.07	peak	Р					
2	5875.000	46.24	5.74	51.98	105.20	-53.22	peak	Р					
3	5925.000	45.69	5.66	51.35	68.20	-16.85	peak	Р					
			UNII-3 20M	1_5825MHz	z_Horizont	al			F				
No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F					
NO.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Delector	EN					
1	5725.000	47.28	5.73	53.01	110.80	-57.79	peak	Р					
2	5730.000	47.13	5.74	52.87	105.20	-52.33	peak	Р					
3	5730.000	46.20	5.66	51.86	68.20	-16.34	peak	Р					

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 29 of 14BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

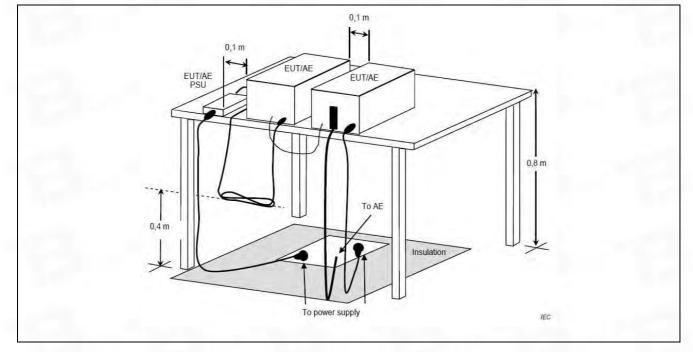
Undesirable emission limits (below 1GHz) 6.7

Test Requirement:	47 CFR Part 15.407(b)(9)							
Test Method:	ANSI C63.10-2013, section	n 12.7.4, 12.7.5, 12.7.6						
	Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in § 15.209.							
	Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table: Frequency (MHz) Field strength Measurement							
		(microvolts/meter)	distance					
Test Limit:	the second se	((meters)					
	0.009-0.490	2400/F(kHz)	300					
	0.490-1.705	24000/F(kHz)	30					
	1.705-30.0	30	30					
	30-88	100 **	3					
	88-216	150 **	3					
	216-960	200 **	3					
	Above 960	500	3					
Procedure:	above the ground at a 3 m degrees to determine the p b. The EUT was set 3 or 10 which was mounted on the c. The antenna height is va determine the maximum va polarizations of the antenn d. For each suspected emit the antenna was tuned to 1 of below 30MHz, the anter was turned from 0 degrees e. The test-receiver system Bandwidth with Maximum f. If the emission level of th specified, then testing coul reported. Otherwise the em re-tested one by one using data sheet. g. Test the EUT in the lowe h. The radiation measurem Transmitting mode, and for i. Repeat above procedure Remark: 1. Level= Read Level+ Cal 2. Scan from 9kHz to 30MI points marked on above point emissions from the radiaton need not be reported. 3. The disturbance below	eter semi-anechoic chamber position of the highest radiat of meters away from the inter- top of a variable-height and aried from one meter to four alue of the field strength. Bo a are set to make the meass ssion, the EUT was arrange heights from 1 meter to 4 m ina was tuned to heights 1 r to 360 degrees to find the mwas set to Peak Detect Fu Hold Mode. We EUT in peak mode was 1 d be stopped and the peak hissions that did not have 10 quasi-peak method as spec- est channel, the middle char nents are performed in X, Y, and the X axis positioning w is until all frequencies meass of a signal for the highest emission ts had been displayed. The r which are attenuated more	erference-receiving antenna, tenna tower. meters above the ground to oth horizontal and vertical surement. ed to its worst case and then eters (for the test frequency meter) and the rotatable table maximum reading. unction and Specified 0dB lower than the limit values of the EUT would be 0dB margin would be ecified and then reported in a nnel, the Highest channel. Z axis positioning for which it is the worst case. sured was complete. Preamp Factor 60MHz was very low. The ns could be found when e amplitude of spurious e than 20dB below the limit harmonics were the highest					

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 30 of 14BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

BLAB

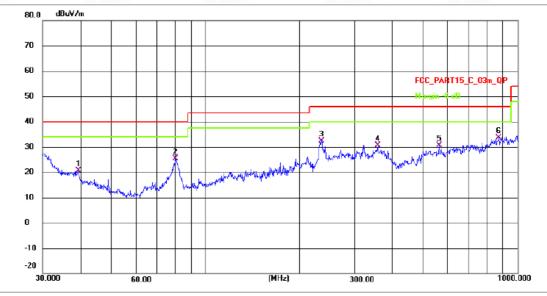
a For above 10Hz, the FLIT was placed on the	
a. For above 1GHz, the EUT was placed on the above the ground at a 3 meter fully-anechoic cha	
degrees to determine the position of the highest	
b. The EUT was set 3 meters away from the inte was mounted on the top of a variable-height ante	erference-receiving antenna, which
c. The antenna height is varied from one meter t	to four meters above the ground to
determine the maximum value of the field streng polarizations of the antenna are set to make the	
d. For each suspected emission, the EUT was a	
the antenna was tuned to heights from 1 meter to of below 30MHz, the antenna was tuned to height was turned from 0 degrees to 360 degrees to fin	to 4 meters (for the test frequency hts 1 meter) and the rotatable table
e. The test-receiver system was set to Peak Dete Bandwidth with Maximum Hold Mode.	
f. If the emission level of the EUT in peak mode	was 10dB lower than the limit
specified, then testing could be stopped and the reported. Otherwise the emissions that did not have been been been been been been been be	
re-tested one by one using peak or average meth in a data sheet.	
g. Test the EUT in the lowest channel, the middle h. The radiation measurements are performed in Transmitting mode, and found the X axis position i. Repeat above procedures until all frequencies	n X, Y, Z axis positioning for ning which it is the worst case.
Remark:	eter Dreamp Faster
1. Level= Read Level+ Cable Loss+ Antenna Fa2. Scan from 18GHz to 40GHz, the disturbance	
points marked on above plots are the highest en	
testing, so only above points had been displayed	
emissions from the radiator which are attenuated	
need not be reported.	
3. As shown in this section, for frequencies abov	
are based on average limits. However, the peak	
not exceed the maximum permitted average limit dB under any condition of modulation. For the er	
than the average limit, only the peak measureme	
4. The disturbance above 18GHz were very low	
highest point could be found when testing, so on	
displayed.	-


6.7.1 E.U.T. Operation:

Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

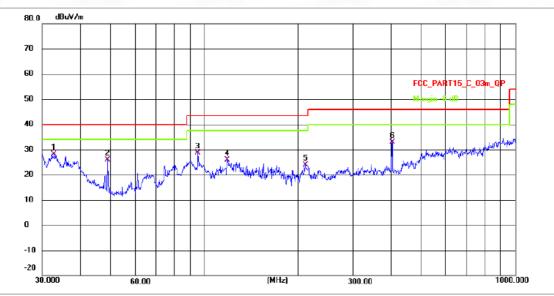
Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 31 of 14BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

6.7.2 Test Setup Diagram:



Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 32 of 147BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

6.7.3 Test Data:


Note: All the mode have been tested, and only the worst mode are in the report TM1 / Polarization: Horizontal / Band: U-NII 1 / BW: 20 / CH: L

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	39.0930	25.00	-4.30	20.70	40.00	-19.30	QP	Р
2	80.3617	29.62	-4.26	25.36	40.00	-14.64	QP	Р
3	234.9910	53.49	-21.19	32.30	46.00	-13.70	QP	Р
4	357.3016	50.74	-20.17	30.57	46.00	-15.43	QP	Р
5	561.6766	49.19	-18.59	30.60	46.00	-15.40	QP	Р
6 *	872.1832	50.26	-16.67	33.59	46.00	-12.41	QP	Р

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

TM1 / Polarization: Vertical / Band: U-NII 1 / BW: 20 / CH: L

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	32.7486	32.36	-4.30	28.06	40.00	-11.94	QP	Р
2	48.7573	30.09	-4.30	25.79	40.00	-14.21	QP	Р
3	95.2596	51.28	-22.54	28.74	43.50	-14.76	QP	Р
4	118.3936	48.26	-22.30	25.96	43.50	-17.54	QP	Р
5	211.1560	45.31	-21.42	23.89	43.50	-19.61	QP	Р
6	402.5436	52.73	-19.81	32.92	46.00	-13.08	QP	Р

6.8 Undesirable emission limits (above 1GHz)

		•	and the second se			
	47 CFR Part 15.407(b)	(1)				
Toot Poquiromont:	47 CFR Part 15.407(b)	47 CFR Part 15.407(b)(2)				
Test Requirement:	47 CFR Part 15.407(b)	47 CFR Part 15.407(b)(4)				
	47 CFR Part 15.407(b)					
Test Method:	ANSI C63.10-2013, section 12.7.4, 12.7.5, 12.7.6					
	For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the					
		5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz. For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the				
	5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz. For transmitters operating solely in the 5.725-5.850 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above					
	or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or					
	below the band edge, and from 25 MHz above or below the band edge increasing					
	linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and					
	from 5 MHz above or below the band edge increasing linearly to a level of 27					
	dBm/MHz at the band edge.					
	MHz	MHz	MHz	GHz		
	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15		
	¹ 0.495-0.505	16.69475-16.69525		5.35-5.46		
	2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75		
	4.125-4.128	25.5-25.67	1300-1427	8.025-8.5		
	4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2		
	4.20725-4.20775	73-74.6	1645.5-1646.	9.3-9.5		
			5			
	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7		
	6.26775-6.26825	108-121.94	1718.8-1722.	13.25-13.4		
			2			
To add the ide	6.31175-6.31225	123-138	2200-2300	14.47-14.5		
Test Limit:	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2		
	8.362-8.366	156.52475-156.525	2483.5-2500	17.7-21.4		
		25				
	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12		
	8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0		
	12.29-12.293	167.72-173.2	3332-3339	31.2-31.8		
	12.51975-12.52025		3345.8-3358	36.43-36.5		
	12.57675-12.57725	322-335.4	3600-4400	(²)		
	13.36-13.41	022 000.4	0000 4400			
	10.00 10.41					
	¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.					
	² Above 38.6					
	Above 50.0					
	The field strength of er	nissions appearing with	in these frequer	ncy hands shall not		
	exceed the limits show					
		the limits in § 15.209sh				
		entation employing a CI				
	1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated based on the average value of the measured emissions. The provisions in §					
	15.35apply to these me	easurements.				
		ewhere in this subpart,				
		ed the field strength lev				
	Frequency (MHz)	Field strength		Measurement		

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Test Report Number: BTF240426R00403

		(microvolts/meter)	distance
			(meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
	Above 1GHz:	500	5
Procedure:	 above the ground at a degrees to determine to b. The EUT was set 3 was mounted on the to c. The antenna height determine the maximul polarizations of the and d. For each suspected the antenna was turned from 0 degree. The test-receiver sy Bandwidth with Maxim f. If the emission level specified, then testing reported. Otherwise the re-tested one by one u in a data sheet. g. Test the EUT in the h. The radiation measures transmitting mode, and i. Repeat above proce Remark: 1. Level= Read Level+ 2. Scan from 18GHz to points marked on above testing, so only above emissions from the radiation the average limit, 4. The disturbance above limit, 4. The disturbance ab	e EUT was placed on the top of 3 meter fully-anechoic chamber, the position of the highest radiati meters away from the interferen- op of a variable-height antenna to is varied from one meter to four m value of the field strength. Boilt tenna are set to make the measures emission, the EUT was arranged to heights from 1 meter to 4 means ntenna was tuned to heights 1 m rees to 360 degrees to find the r stem was set to Peak Detect Fur- um Hold Mode. of the EUT in peak mode was 10 could be stopped and the peak we e emissions that did not have 10 sing peak or average method as lowest channel, the middle chan- urements are performed in X, Y, d found the X axis positioning we dures until all frequencies measure to Cable Loss+ Antenna Factor- For 0 40GHz, the disturbance above we plots are the highest emission points had been displayed. The diator which are attenuated more ction, for frequencies above 1GH limits. However, the peak field strumpermitted average limits speed n of modulation. For the emission only the peak measurement is spore only the peak measurement is spore only the peak measurement is spore to a field average limits speed n of modulation. For the emission only the peak measurement is spore only the peak measurement is spore the found when testing, so only the	. The table was rotated 360 ion. ce-receiving antenna, which ower. meters above the ground to th horizontal and vertical urement. d to its worst case and then eters (for the test frequency neter) and the rotatable table maximum reading. nction and Specified OdB lower than the limit values of the EUT would be OdB margin would be a specified and then reported anel, the Highest channel. Z axis positioning for hich it is the worst case. ured was complete. Preamp Factor 18GHz was very low. The as could be found when amplitude of spurious a than 20dB below the limit tz, the field strength limits trength of any emission shall cified above by more than 20 ns whose peak level is lower shown in the report. te harmonics were the

6.8.1 E.U.T. Operation:

Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 36 of 14BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

6.8.2 Test Data:

Not:All of the mode had be tested, only the worse mode of 802.11a are show in the report:

						Horizoptal				_
		_		_	0M_5180MHz_			1		-
	No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F	
		(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)			
	1	10360.000	79.27	-45.12	34.15	74.00	-39.85	peak	P	
	2	15540.000	80.72	-42.88	37.84	74.00	-36.16	peak	Р	
			U	NII-1_20	M_5180MHz	_Vertical				
		Frequency	Reading	Factor	Level	Limit	Margin		D/F	
	No.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	Detector P/F	
	1	10360.000	81.06	-45.18	35.88	74.00	-38.12	peak	Р	1
	2	15540.000	81.07	-42.94	38.13	74.00	-35.87	peak	Р	
			<u>ا</u>	JNII-1_20I	M_5200MHz_H	lorizontal				1
		Frequency	Reading	Factor	Level	Limit	Margin		D / F	
	No.		(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	P/F	
	1	10400.000	79.67	-45.18	34.49	74.00	-39.51	peak	Р	
	2	15600.000	81.12	-42.94	38.18	74.00	-35.82	peak	Р	
,			ļ	UNII-1_2	0M_5200MHz_	Vertical				
		Frequency	Reading	Factor	Level	Limit	Margin		0/5	
	No.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	P/F	
	1	10400.000	81.56	-45.18	36.38	74.00	-37.62	peak	Р	
	2	15600.000	81.57	-42.94	38.63	74.00	-35.37	peak	Р	
-			l	JNII-1_20I	M_5240MHz_H	lorizontal				1
	N	Frequency	Reading	Factor	Level	Limit	Margin			
	No.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	P/F	
	1	10460.000	80.06	-45.07	34.99	74.00	-39.01	peak	Р	
	2	15690.000	81.51	-42.83	38.68	74.00	-35.32	peak	Р	
				UNII-1_2	0M_5240MHz_	Vertical		1		
	No	Frequency	Reading	Factor	Level	Limit	Margin	Dotostor	P/F	
	No.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	F/F	
	1	10460.000	81.89	-45.07	36.82	74.00	-37.18	peak	Ρ	
	2	15690.000	81.90	-42.83	39.07	74.00	-34.93	peak	Р	
				UNII-2A_2	0M_5260MHz_	Horizontal		_	-	
	Ne	Frequency	Reading	Factor	Level	Limit	Margin	Detector	D/F	1
	No.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	P/F	
	1	10520.000	78.61	-45.02	33.59	74.00	-40.41	peak	Р	1
	2	15780.000	79.97	-42.68	37.29	74.00	-36.71	peak	Р	1
			·		20M 5260MH	, 7 Vertical		•		-

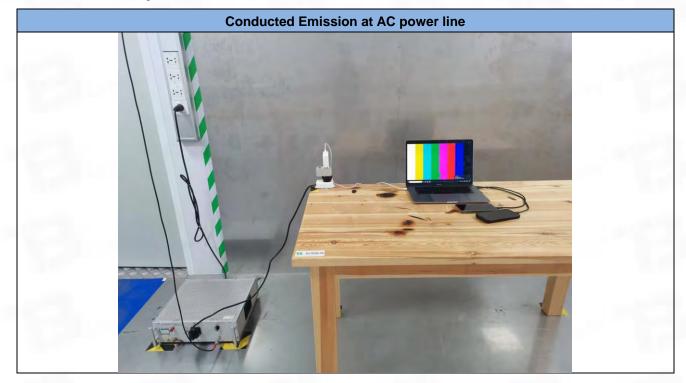
Total or partial reproduction of this document without permission of the Laboratory is not allowed.

BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

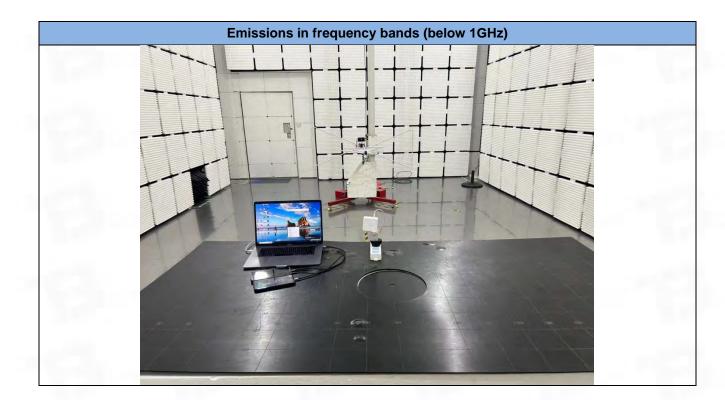
		F	Destin	E. t.	L av al	1 : :4				
	No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F	
		(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)			
	1	10520.000	81.48	-45.08	36.40	74.00	-37.60	peak	P	
	2	15780.000	80.61	-42.74	37.87	74.00	-36.13	peak	Р	
			U	NII-2A_20)M_5280MHz_I	Horizontal	-			
	No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F	
		(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)			
	1	10560.000	79.01	-45.08	33.93	74.00	-40.07	peak	Р	
	2	15840.000	80.37	-42.74	37.63	74.00	-36.37	peak	Р	
				UNII-2A_2	20M_5280MHz	Vertical				•
	No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F	
	NO.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Delector	E/F	
	1	10560.000	81.98	-45.08	36.90	74.00	-37.10	peak	Р	
	2	15840.000	81.11	-42.74	38.37	74.00	-35.63	peak	Р	
	·		U	NII-2A_20)M_5320MHz_I	Horizontal	1	-		
	N	Frequency	Reading	Factor	Level	Limit	Margin	Datasta	DIE	1
	No.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	P/F	
	1	10640.000	79.40	-44.97	34.43	74.00	-39.57	peak	Р	
	2	15960.000	80.76	-42.63	38.13	74.00	-35.87	peak	Р	
			ĺ	UNII-2A_2	20M_5320MHz	Vertical	1			,
		Frequency	Reading	Factor	Level	Limit	Margin			
	No.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	P/F	
	1	10640.000	82.31	-44.97	37.34	74.00	-36.66	peak	Р	
	2	15960.000	81.44	-42.63	38.81	74.00	-35.19	peak	Р	
	<u> </u>		۔۔۔۔۔۔ ر	JNII-C 20	M_5500MHz H	lorizontal	•			
		Frequency	Reading	Factor	Level	Limit	Margin			
	No.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	P/F	
	1	11000.000	77.82	-44.77	33.05	74.00	-40.95	peak	Р	
	2	16500.000	80.38	-41.49	38.89	74.00	-35.11	peak	Р	
_					20M 5500MHz		1		1]
		Frequency	Reading	Factor	Level	Limit	Margin			
	No.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	P/F	
	1	11000.000	78.89	-44.77	34.12	74.00	-39.88	peak	Р	
	2	16500.000	79.82	-41.49	38.33	74.00	-35.67	peak	P	
_	~	10000.000			00.00 0M 5580MHz I		00.01	Peak		

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 38 of 14BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

									1
No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F	
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)			
1	11160.000	78.22	-44.71	33.51	74.00	-40.49	peak	P	
2	16740.000	80.78	-41.43	39.35	74.00	-34.65	peak	P	
			UNII-2A_2	20M_5580MHz	Vertical				
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	
1	11160.000	80.31	-44.71	35.60	74.00	-38.40	peak	Р	
2	16740.000	81.24	-41.43	39.81	74.00	-34.19	peak	P	
 2	10740.000		-41.45 NII-2A 20			-34.13	реак		
	Francis				Horizontal	Margin			1
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	
1	11400.000	78.81	-44.66	34.15	74.00	-39.85	peak	Р	
2	17100.000	81.37	-41.38	39.99	74.00	-34.01	peak	Р	
<u> </u>			UNII-2A 2	20M 5700MHz	Vertical	<u> </u>		1	
No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	D/E	
NO.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Delector	Р	
1	11400.000	80.79	-44.66	36.13	74.00	-37.87	peak	Р	
2	17100.000	81.72	-41.38	40.34	74.00	-33.66	peak	Р	
			UNII-3_2)M_5745MHz_	Horizontal				_
No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F	
INO.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	F/F	
1	11490.000	80.91	-44.70	36.21	74.00	-37.79	peak	Р	
2	17235.000	80.47	-40.61	39.86	74.00	-34.14	peak	Ρ	
			UNII-3_2	20M_5745MHz	Vertical				
	Frequency	Reading	Factor	Level	Limit	Margin			
No.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	P/F	
1	11490.000	80.35	-44.70	35.65	74.00	-38.35	peak	Р	
2	17235.000	78.88	-40.61	38.27	74.00	-35.73	peak	Р	
 		l	JNII-3 201	M 5785MHz H	lorizontal	l			1
	Frequency	Reading	Factor	Level	Limit	Margin			
No.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	P/F	
1	11570.000	81.31	-44.64	36.67	74.00	-37.33	peak	Р	
2	17355.000	80.87	-40.55	40.32	74.00	-33.68	peak	Р	
		ļ		0M 5785MHz		ļ		•	1


Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 39 of 14BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

	No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F	-
		(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)			
	1	11570.000	81.77	-44.64	37.13	74.00	-36.87	peak	Ρ	
	2	17355.000	80.30	-40.55	39.75	74.00	-34.25	peak	Р	2.488
	UNII-3_20M_5825MHz_Horizontal									
	No	Frequency	Reading	Factor	Level	Limit	Margin	Detector	D/F	
	No.	(MHz)	(MHz) (dBuV) (dB/m	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	P/F	
	1	11650.000	81.90	-44.59	37.31	74.00	-36.69	peak	Р	
	2	17475.000	81.46	-40.50	40.96	74.00	-33.04	peak	Р	
				UNII-3_2	0M_5825MHz_	Vertical				
	No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F	
1000	INO.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Delector	F/F	
	1	11650.000	82.25	-44.59	37.66	74.00	-36.34	peak	Р	
	2	17475.000	80.78	-40.50	40.28	74.00	-33.72	peak	Р	


7 Test Setup Photos

Band edge emissions (Radiated) Emissions in frequency bands (above 1GHz)

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 41 of 147BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 42 of 147BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

8 EUT Constructional Details (EUT Photos)

Please refer to the test report No. BTF240426R00401

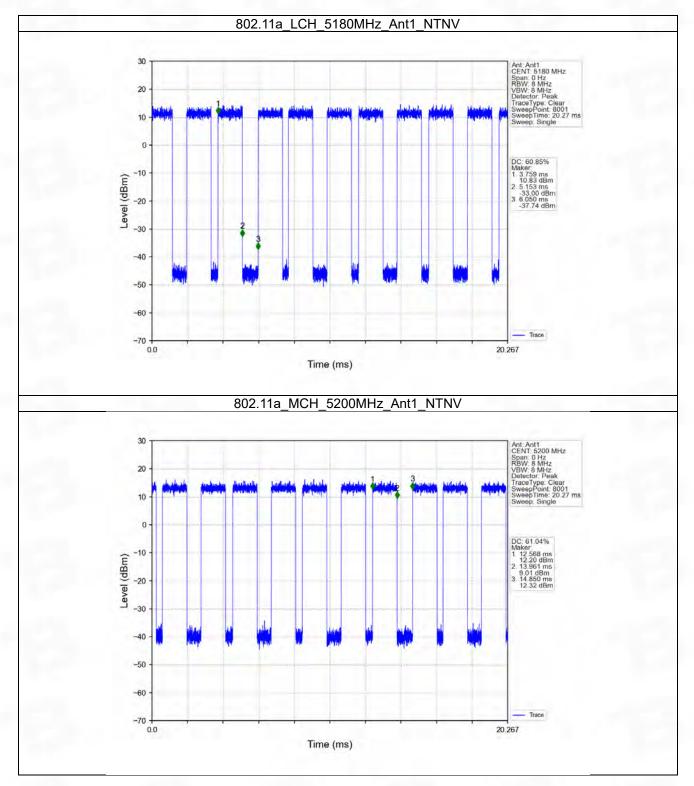
Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 43 of 147BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Appendix

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 44 of 147BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

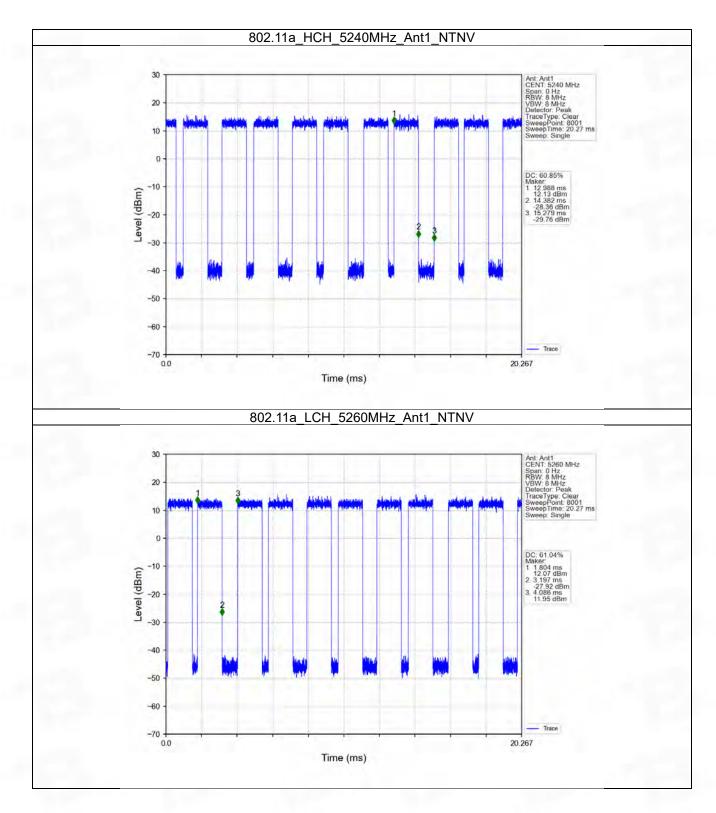
1. Duty Cycle

1.1 Ant1


1.1.1 Test Result

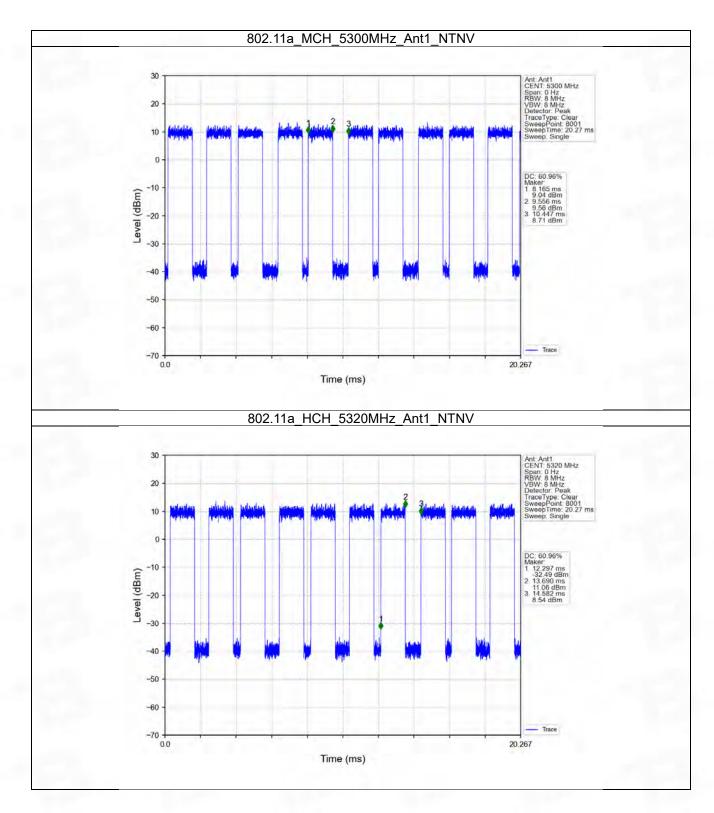
				1	Ant1		
Mode	ΤX	Frequency	T_on	Period	Duty Cycle	Duty Cycle	Max. DC
Mode	Туре	(MHz)	(ms)	(ms)	(%)	Correction Factor (dB)	Variation (%)
		5180	1.394	2.291	60.85	2.16	20.11
		5200	1.393	2.282	61.04	2.14	19.40
		5240	1.394	2.291	60.85	2.16	20.92
		5260	1.393	2.282	61.04	2.14	21.08
		5300	1.391	2.282	60.96	2.15	20.32
802.11a	SISO	5320	1.393	2.285	60.96	2.15	18.97
002.11a	3130	5500	1.396	2.283	61.15	2.14	18.62
		5580	1.394	2.283	61.06	2.14	20.72
		5700	1.390	2.290	60.70	2.17	20.55
		5745	1.395	2.292	60.86	2.16	20.39
		5785	1.394	1.606	86.80	0.61	5.77
1.00		5825	1.394	1.624	85.84	0.66	4.12
	-	5180	1.301	1.540	84.48	0.73	7.64
		5200	1.299	1.541	84.30	0.74	4.83
		5240	1.301	1.533	84.87	0.71	7.21
		5260	1.301	1.541	84.43	0.74	7.64
		5300	1.299	1.521	85.40	0.69	4.35
802.11n	SISO	5320	1.301	1.531	84.98	0.71	5.86
(HT20)		5500	1.302	1.541	84.49	0.73	7.64
		5580	1.301	1.531	84.98	0.71	6.48
		5700	1.299	1.531	84.85	0.71	6.48
		5745	1.301	1.541	84.43	0.74	7.65
		5785	1.303	1.515	86.01	0.65	6.17
		5825	1.303	1.515	86.01	0.65	6.17
		5180	0.183	0.927	19.74	7.05	17.47
		5200	0.182	0.944	19.28	7.15	17.95
		5240	0.182	0.927	19.63	7.07	17.39
		5260	0.182	0.926	19.65	7.07	17.47
		5300	0.183	0.936	19.55	7.09	17.66
802.11ac	0100	5320	0.182	0.926	19.65	7.07	17.66
(VHT20)	SISO	5500	0.183	0.926	19.76	7.04	17.56
. ,		5580	0.183	0.926	19.76	7.04	17.58
		5700	0.183	0.926	19.76	7.04	17.45
		5745	0.182	0.926	19.65	7.07	17.39
		5785	0.184	0.927	19.85	7.02	17.55
		5825	0.182	0.925	19.68	7.06	17.56

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 45 of 14BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China



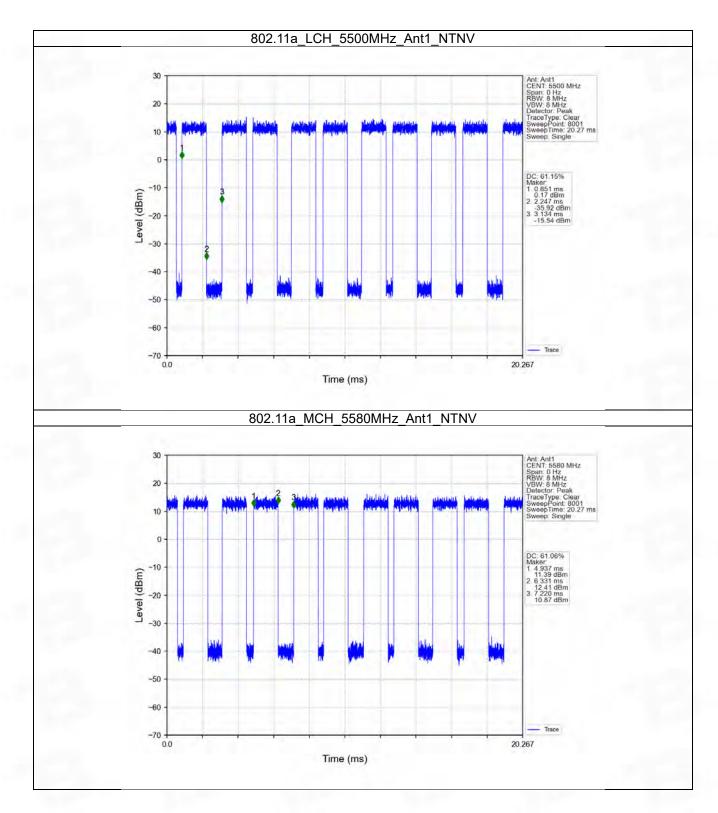
1.1.2 Test Graph

Total or partial reproduction of this document without permission of the Laboratory is not allowed. Pa BTF Testing Lab (Shenzhen) Co., Ltd.



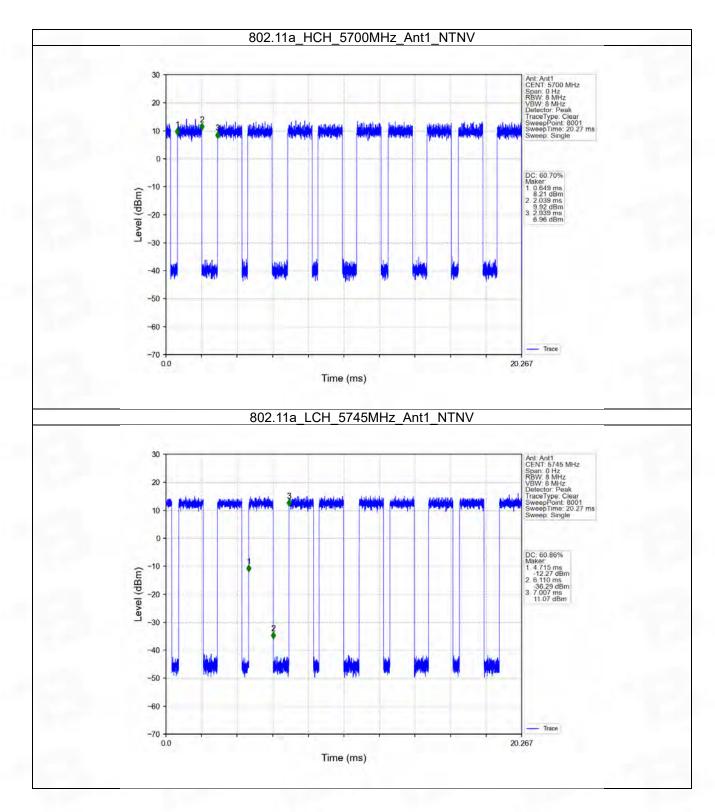
Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 47 of 14BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 47 of 147



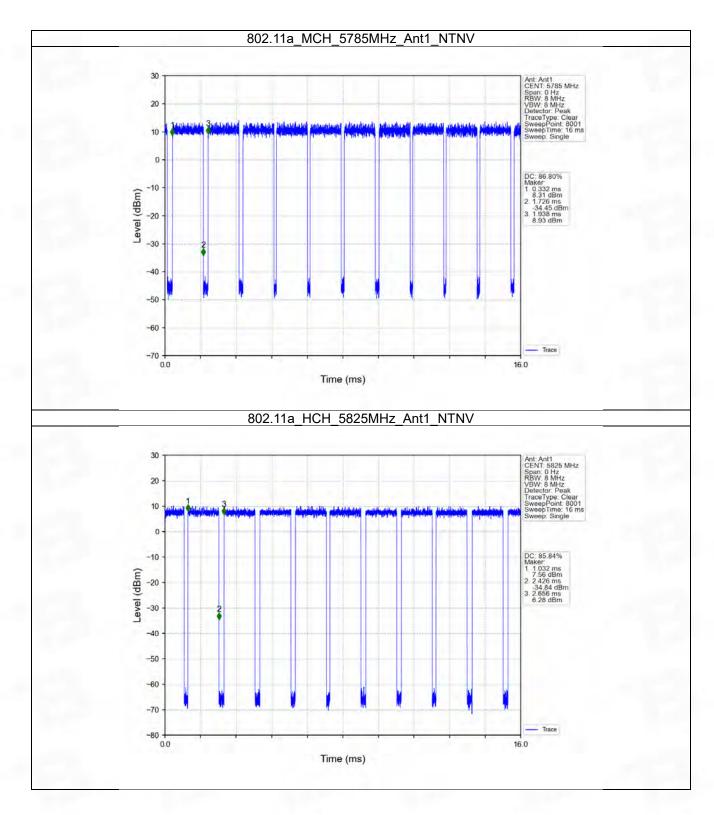
Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 48 of 14BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 48 of 147



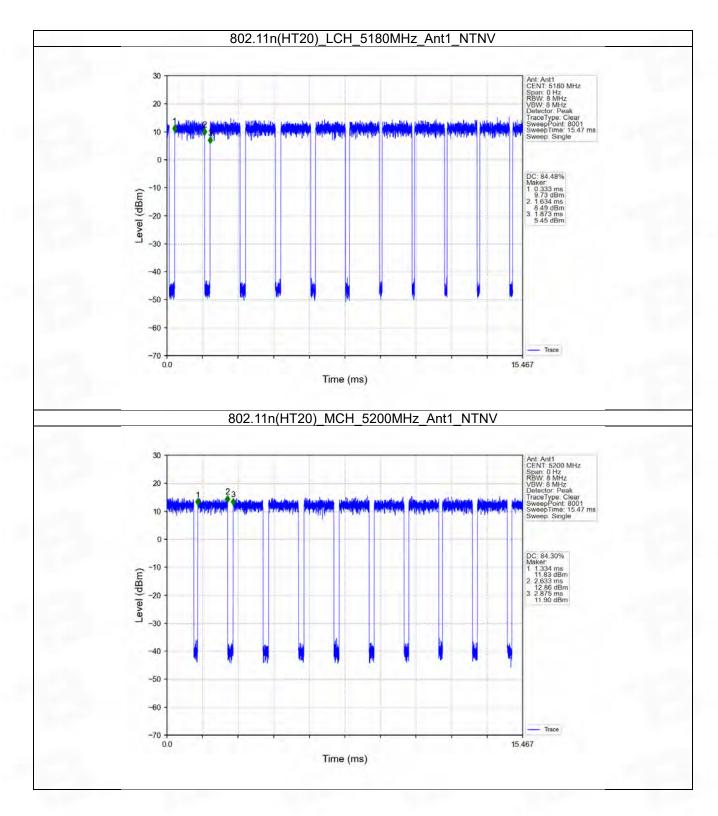
Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 49 of 14BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 49 of 147

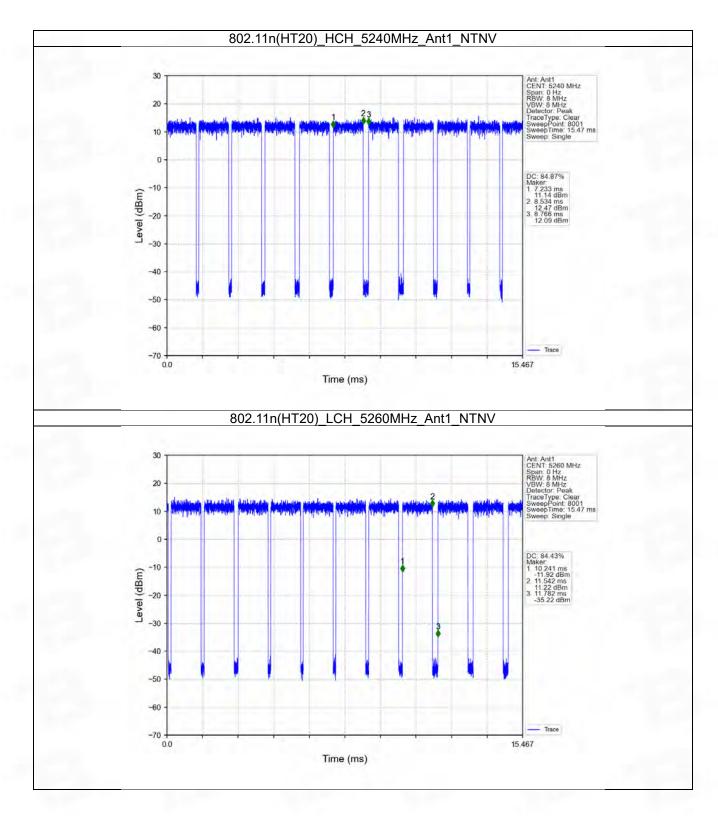


Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 50 of 14BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

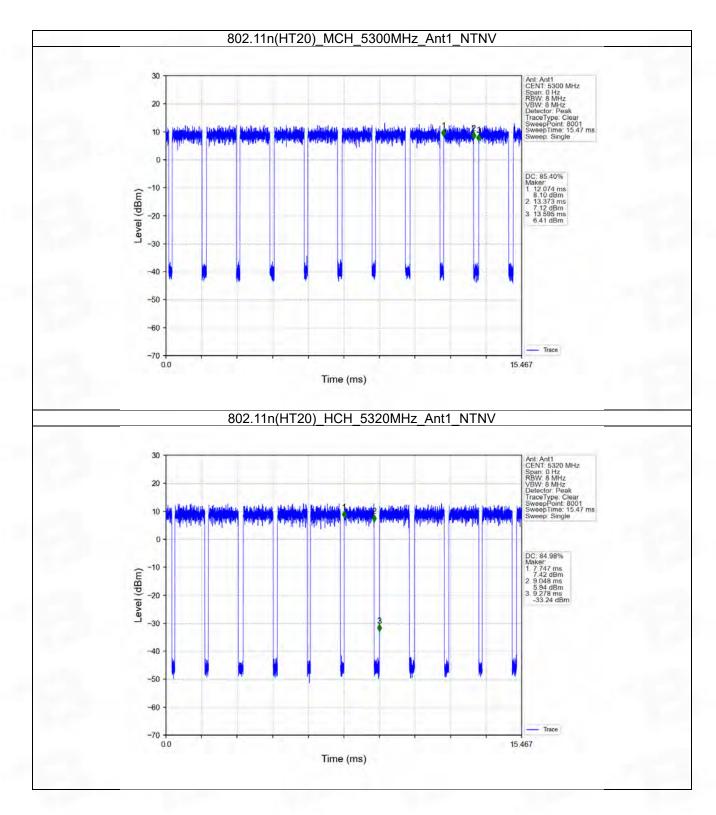
Page 50 of 147



Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 51 of 14BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

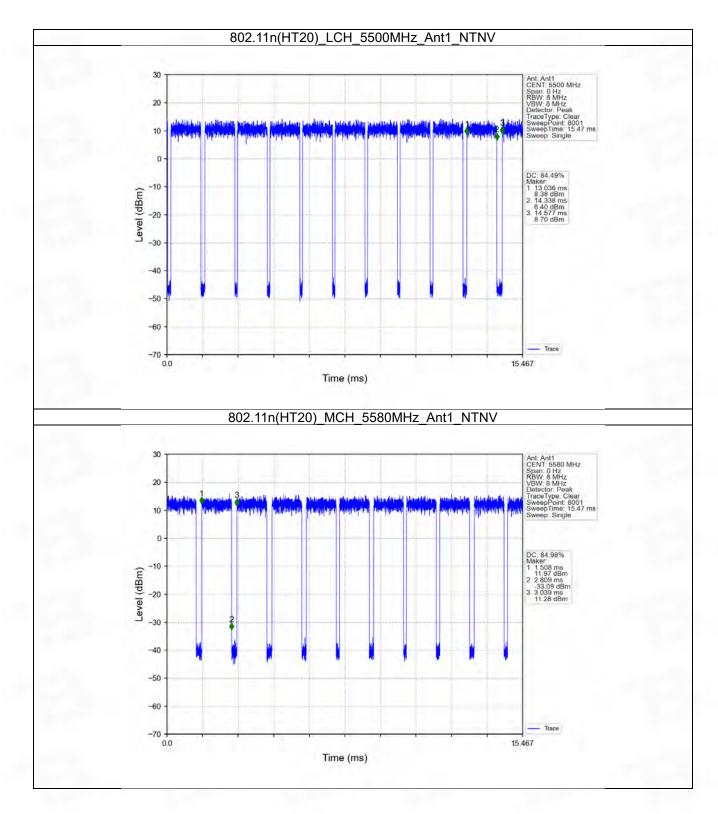

Page 51 of 147

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 52 of 14BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China



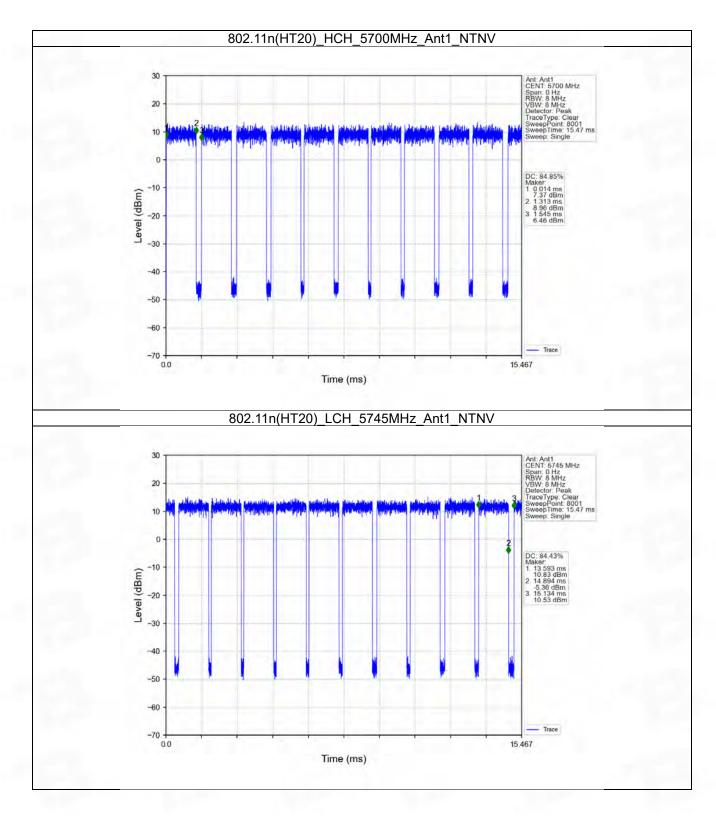
Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 53 of 14BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 53 of 147



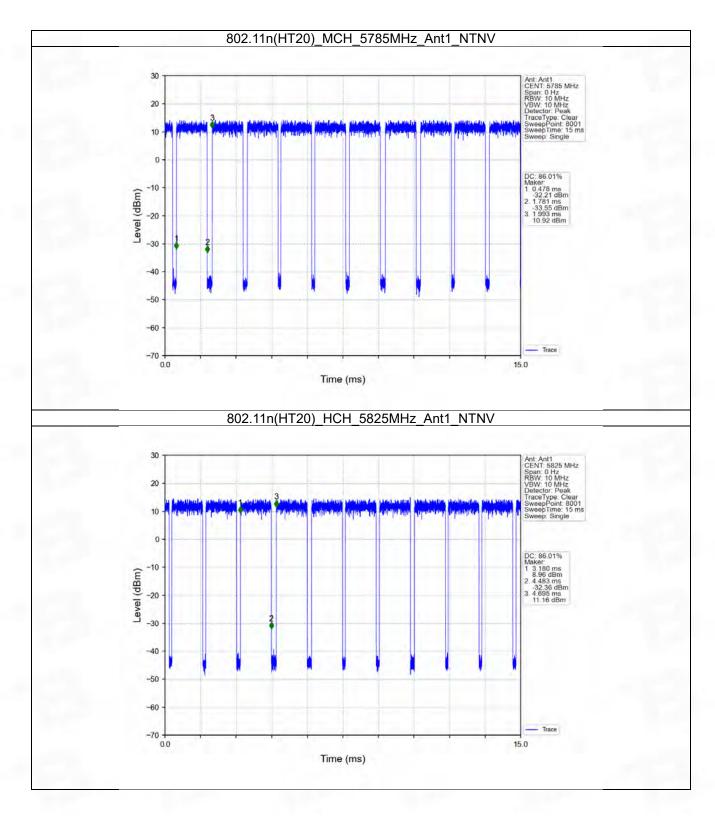
Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 54 of 147



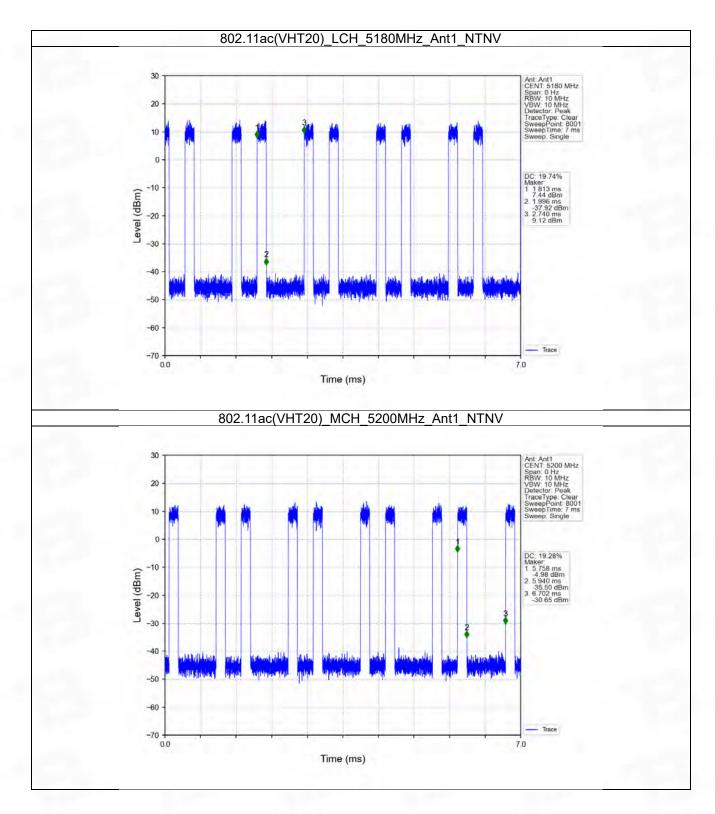
Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 55 of 14BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 55 of 147



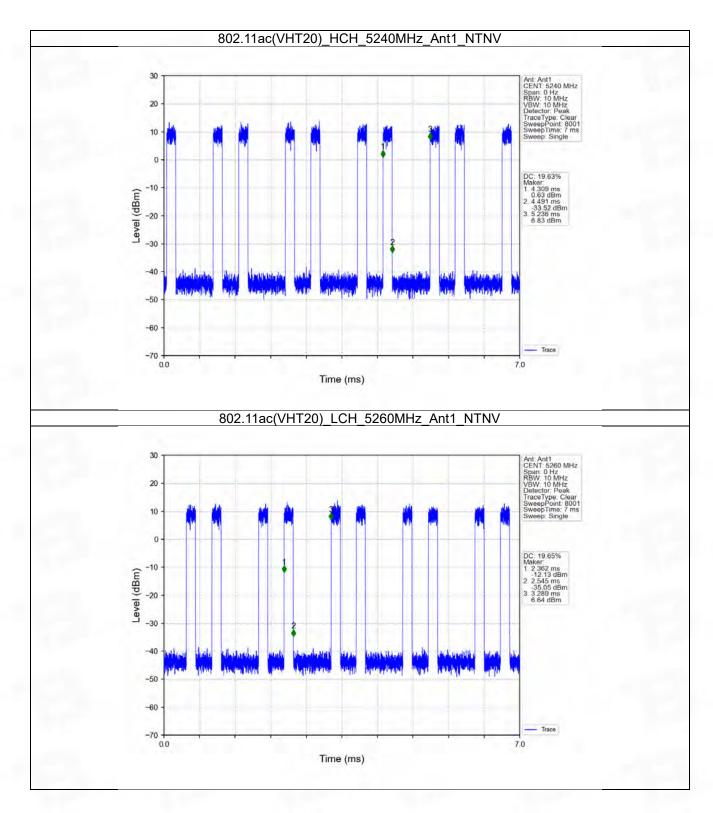
Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 56 of 14BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

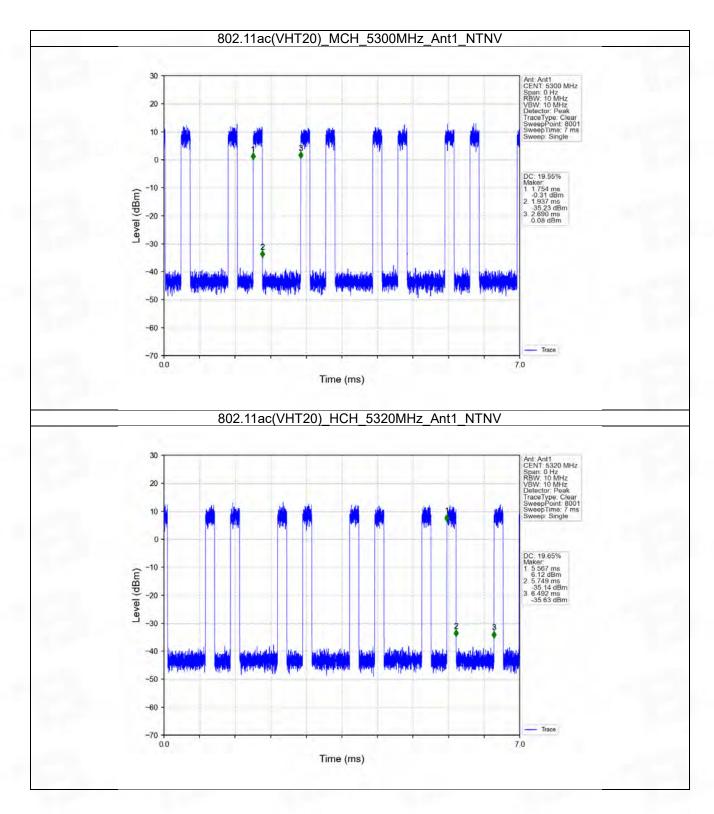
Page 56 of 147



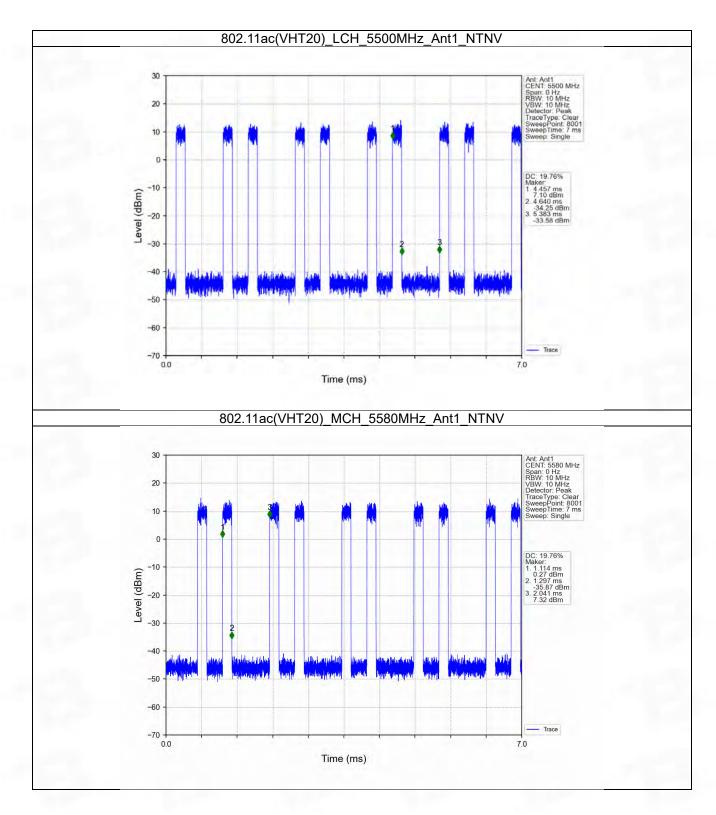
Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 57 of 14BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

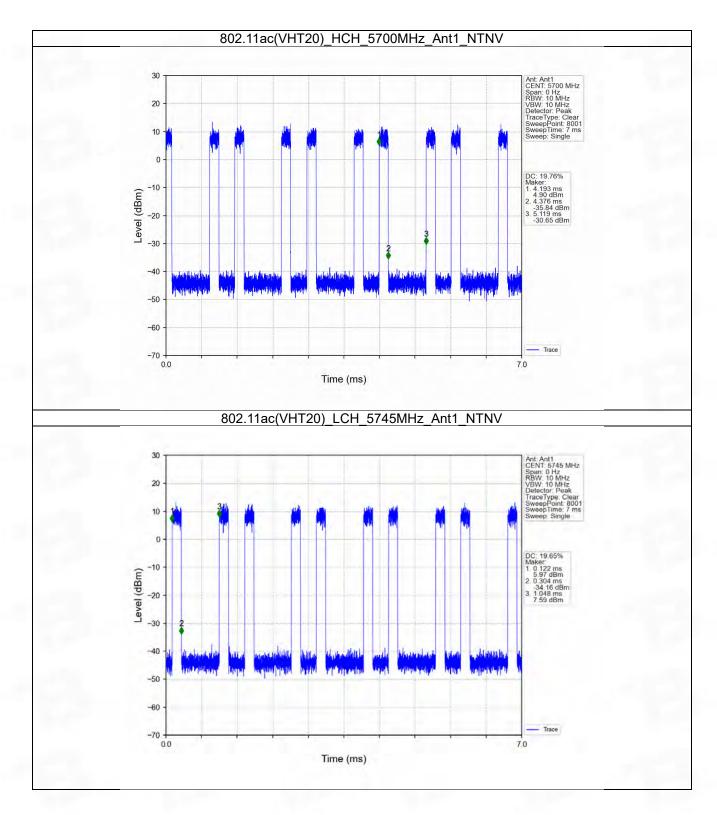
Page 57 of 147



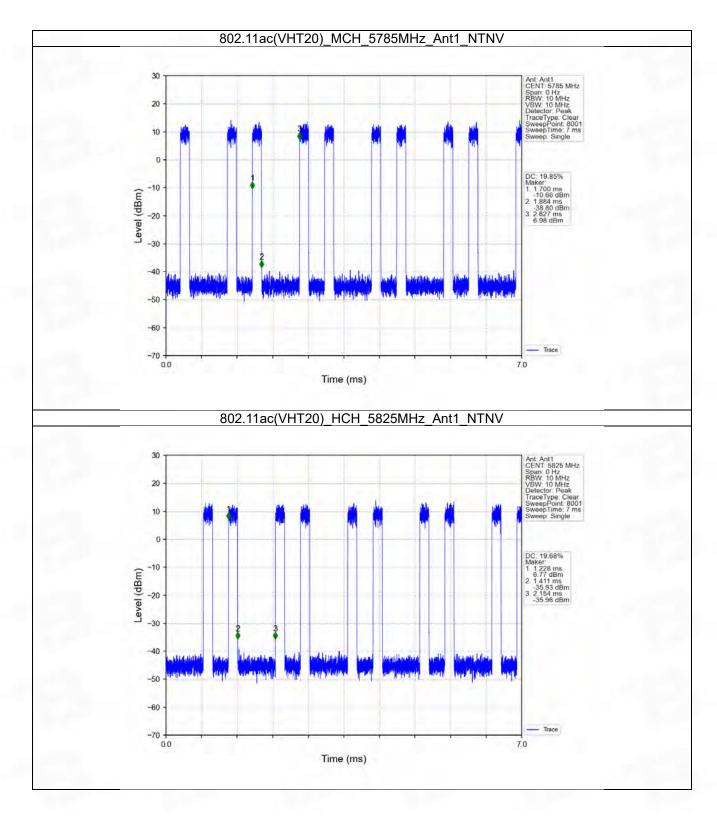

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 58 of 14BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 58 of 147




Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

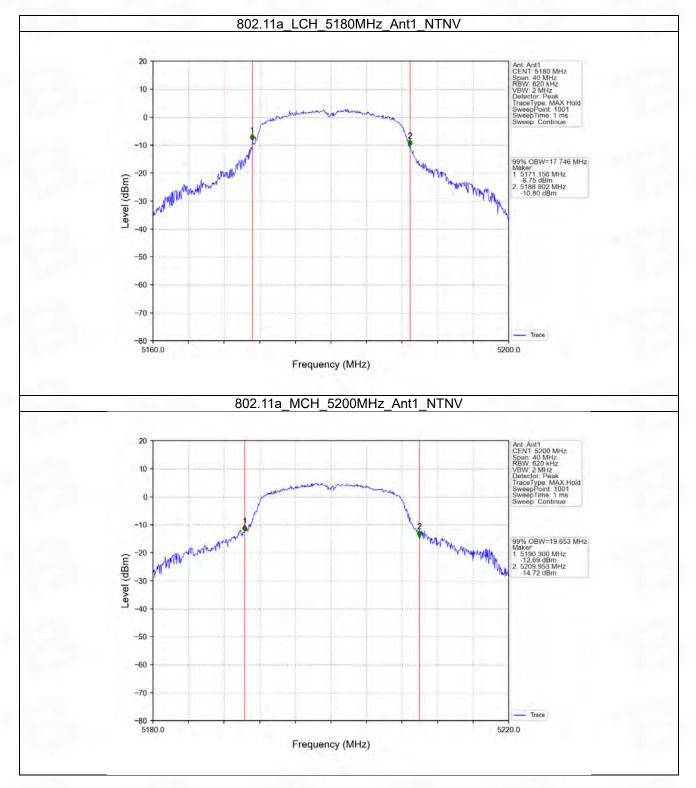
Page 60 of 147



Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

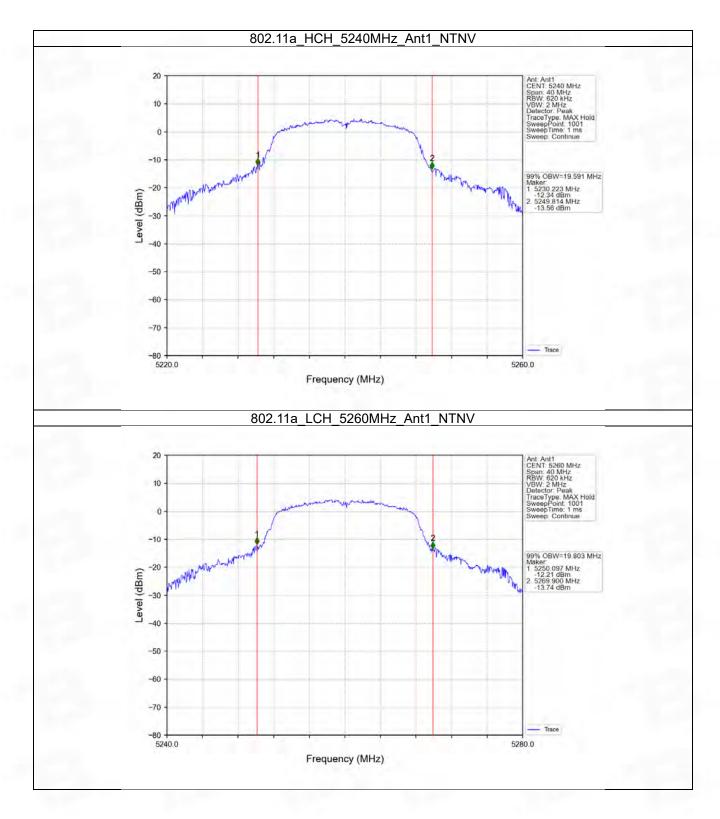
2. Bandwidth

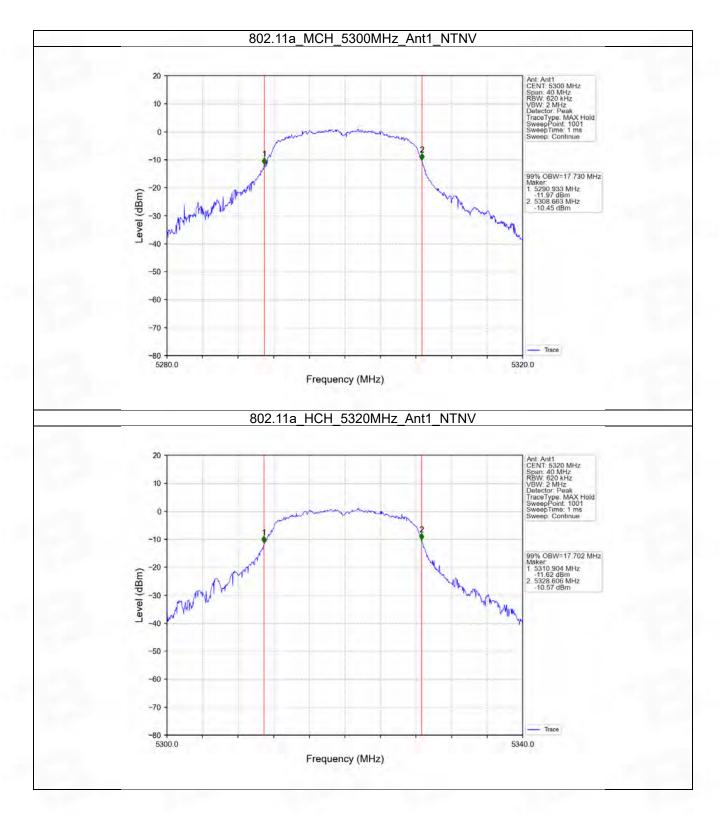
2.1 OBW


2.1.1 Test Result

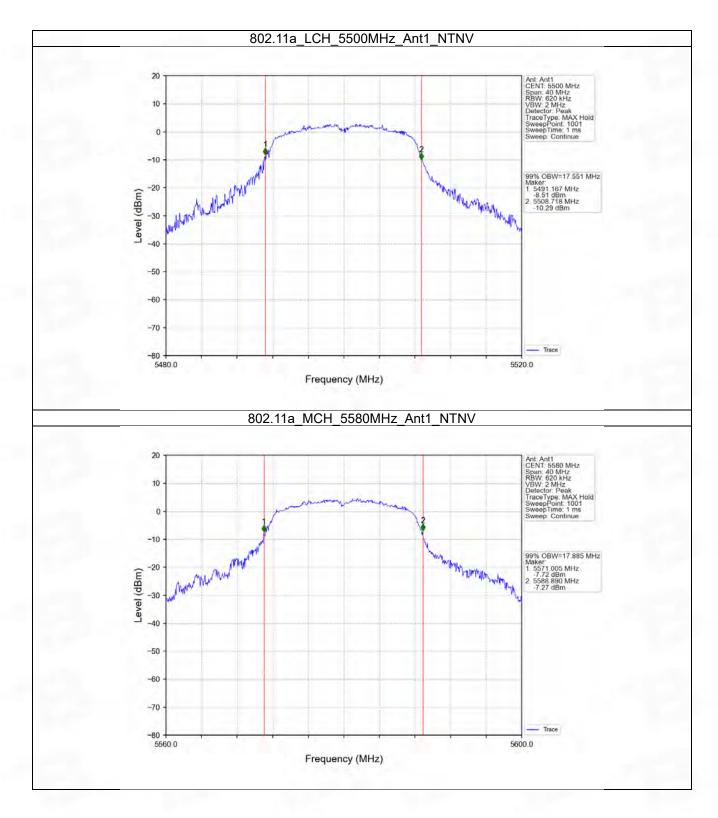
Mada	TX	Frequency	ANT	99% Occupied B	Verdiet	
Mode	Туре	(MHz)	ANT	Result Limit		Verdict
		5180	1	17.746	1	Pass
		5200	1	19.653	/	Pass
		5240	1	19.591	1	Pass
		5260	1	19.803	/	Pass
		5300	1	17.730	1	Pass
000 11-		5320	1	17.702	1	Pass
802.11a	SISO	5500	1	17.551	/	Pass
1.000		5580	1	17.885	1	Pass
		5700	1	17.537	1	Pass
		5745	1	19.215	/	Pass
		5785	1	17.943	/	Pass
		5825	1	17.912	/	Pass
		5180	1	18.890	/	Pass
		5200	1	20.347	/	Pass
100		5240	1	20.186	/	Pass
		5260	1	20.224	/	Pass
		5300	1	18.649	/	Pass
802.11n	SISO	5320	1	18.650	/	Pass
(HT20)		5500	1	18.675	/	Pass
· /		5580	1	18.806	/	Pass
		5700	1	18.597	/	Pass
		5745	1	19.627	1	Pass
		5785	1	19.813	1	Pass
		5825	1	19.815	1	Pass
		5180	1	20.150	/	Pass
100		5200	1	20.092	/	Pass
		5240	1	20.020	1	Pass
		5260	1	20.136	1	Pass
		5300	1	20.065	/	Pass
802.11ac	0100	5320	1	19.978	/	Pass
(VHT20)	SISO	5500	1	20.091	/	Pass
		5580	1	20.130		Pass
		5700	1	20.043	1	Pass
		5745	1	20.113		Pass
		5785	1	20.112	1	Pass
		5825	1	20.188		Pass

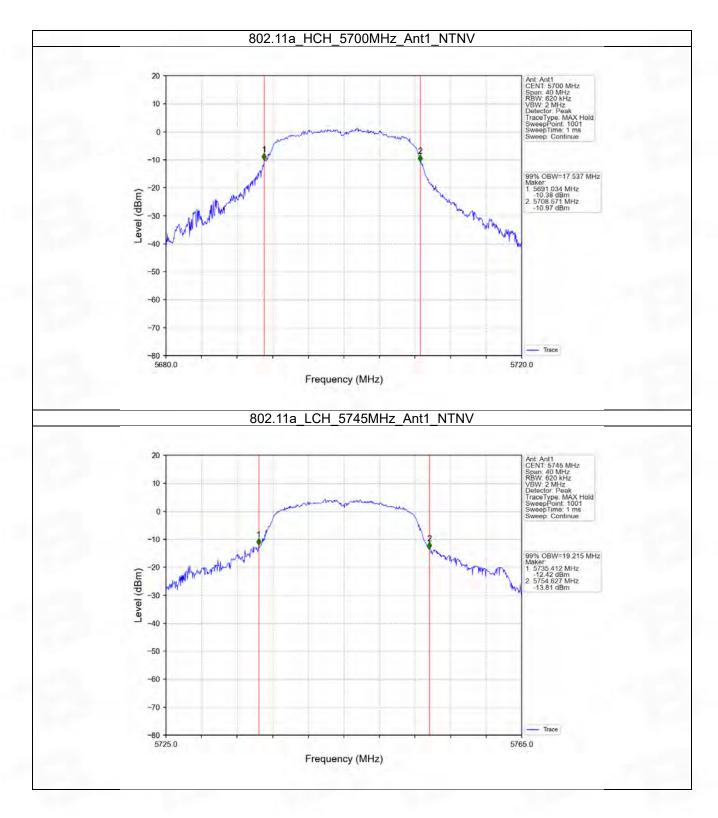
Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 64 of 14BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

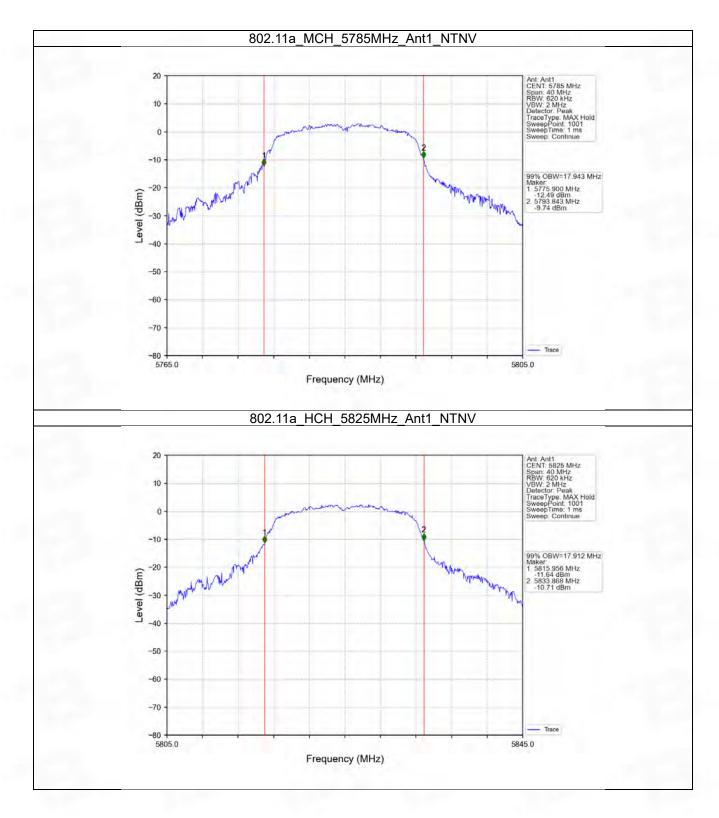

2.1.2 Test Graph


Total or partial reproduction of this document without permission of the Laboratory is not allowed. Page BTF Testing Lab (Shenzhen) Co., Ltd.

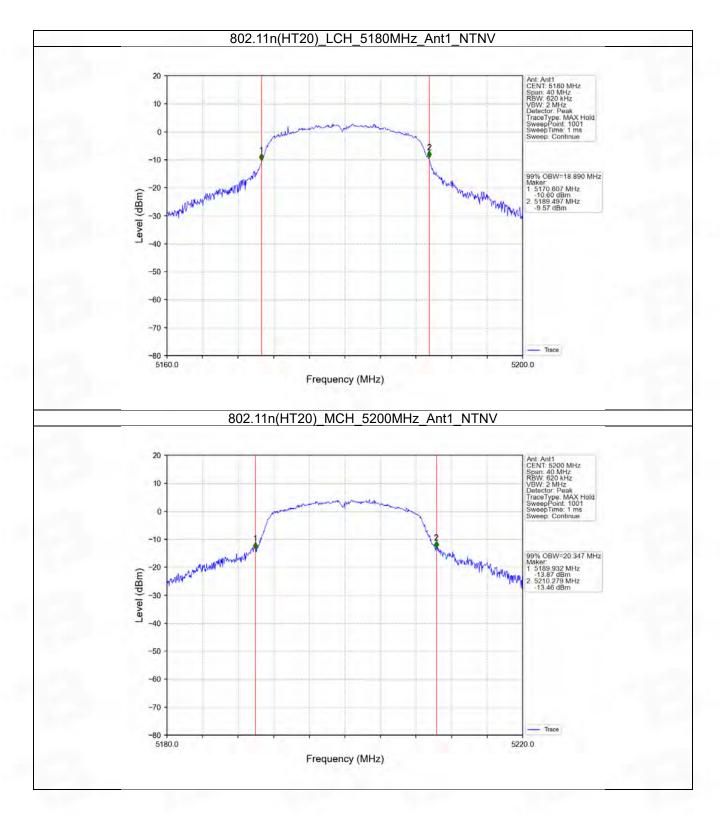
Page 65 of 147

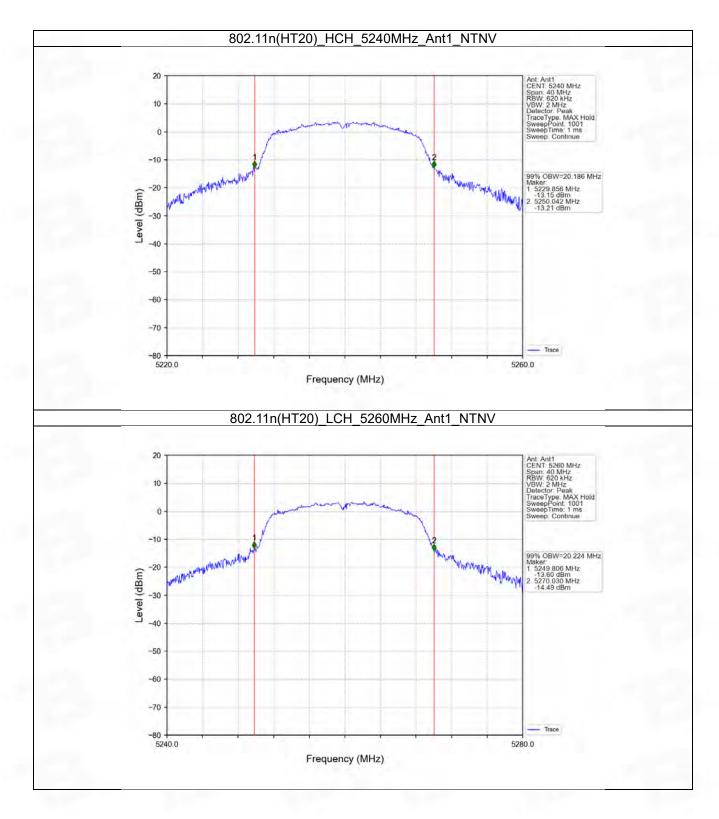




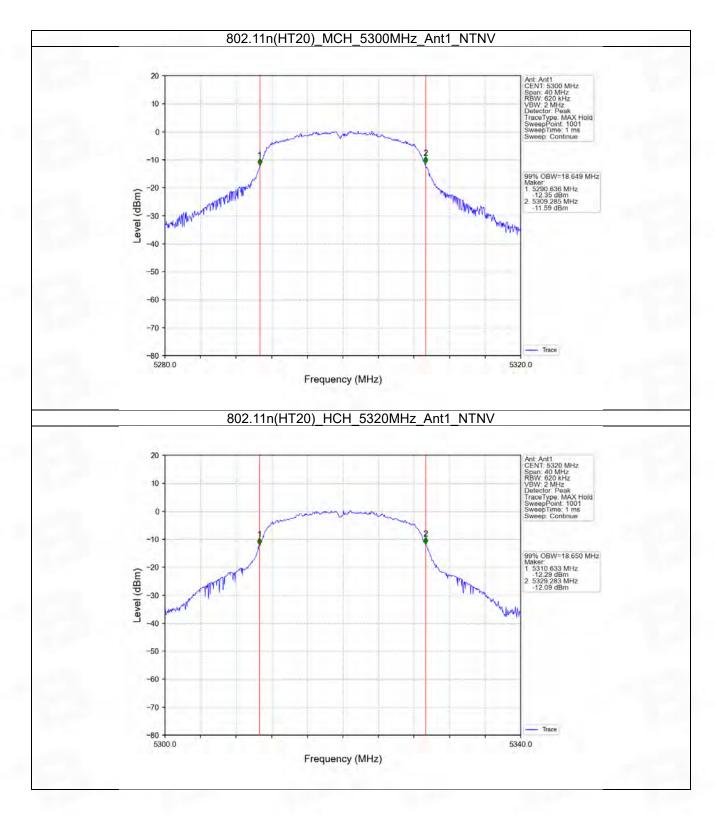


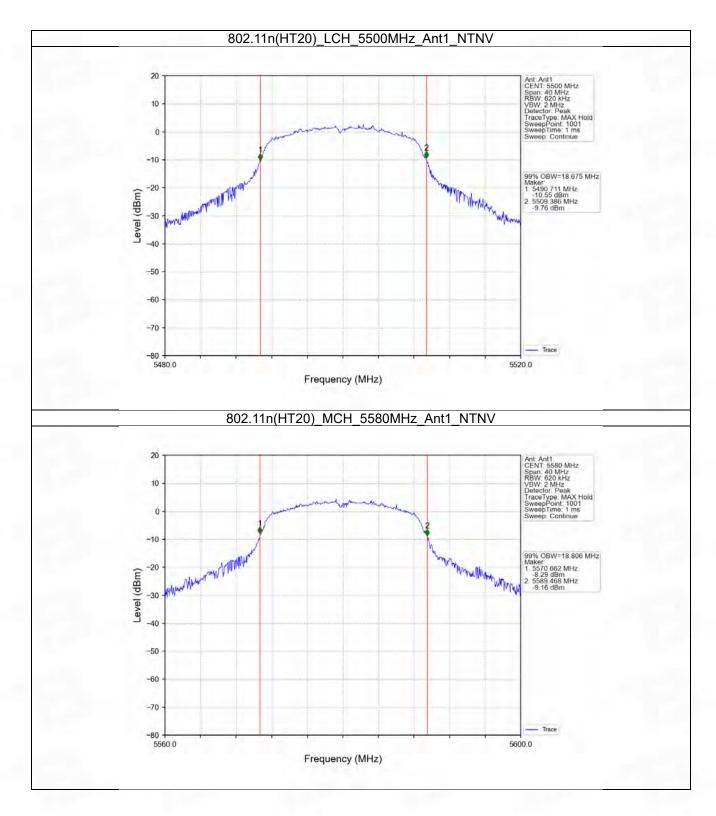
Page 68 of 147

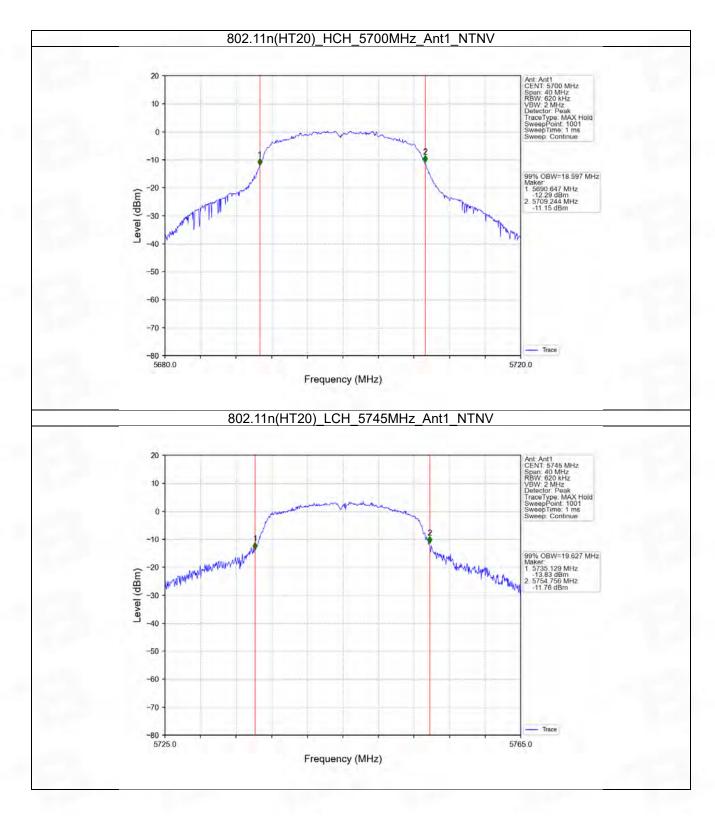




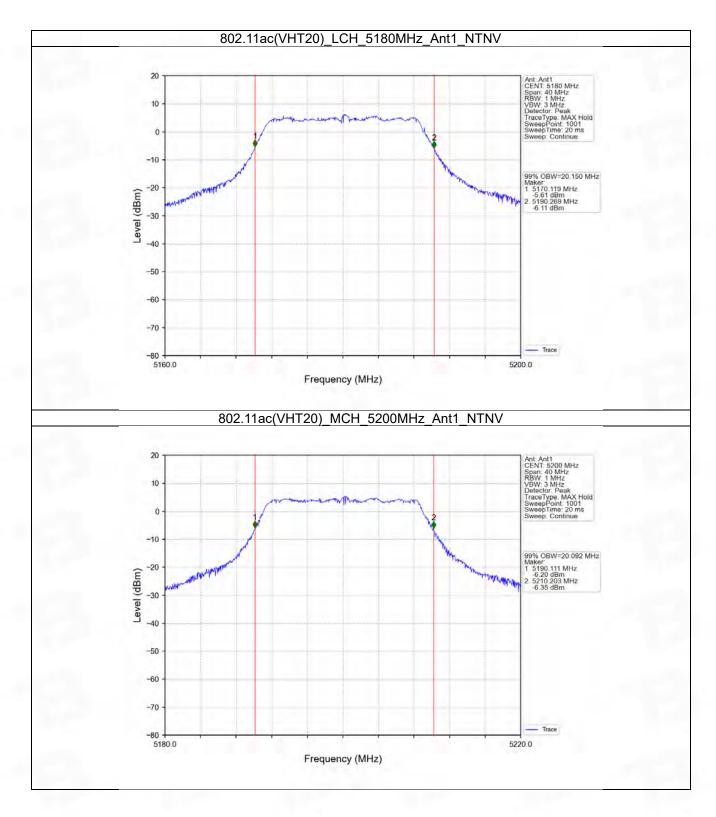
Page 70 of 147





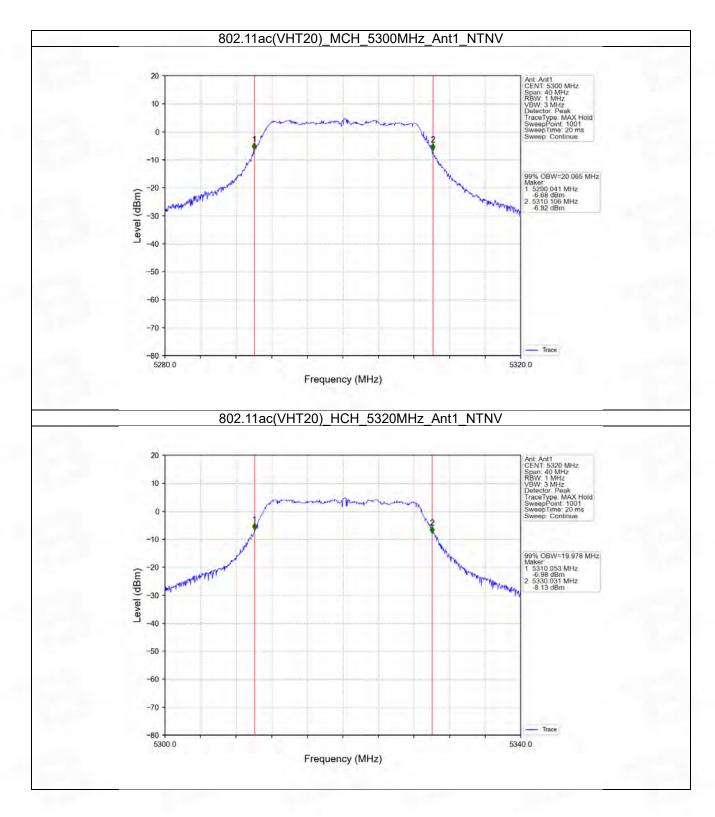


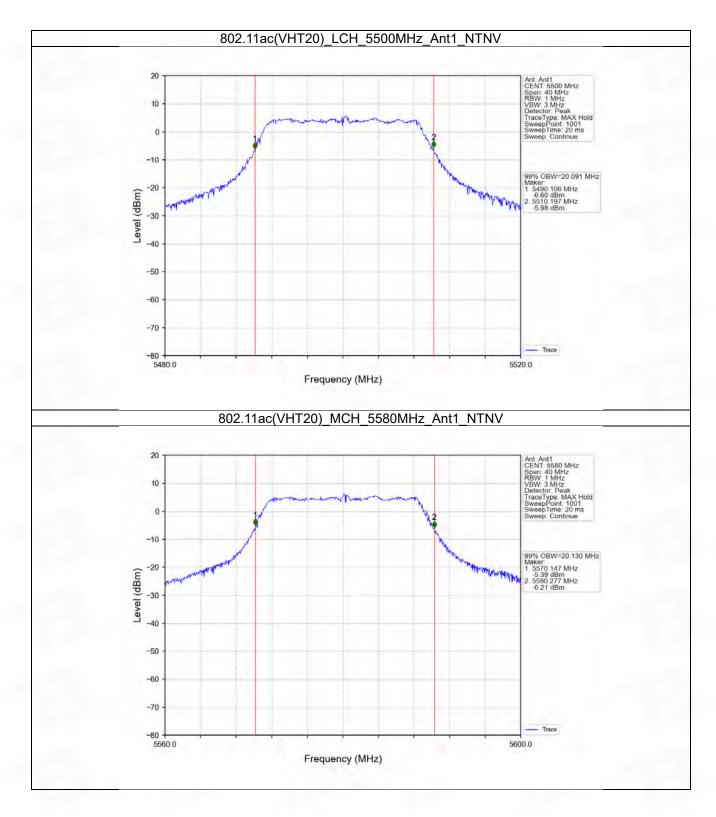
Page 73 of 147

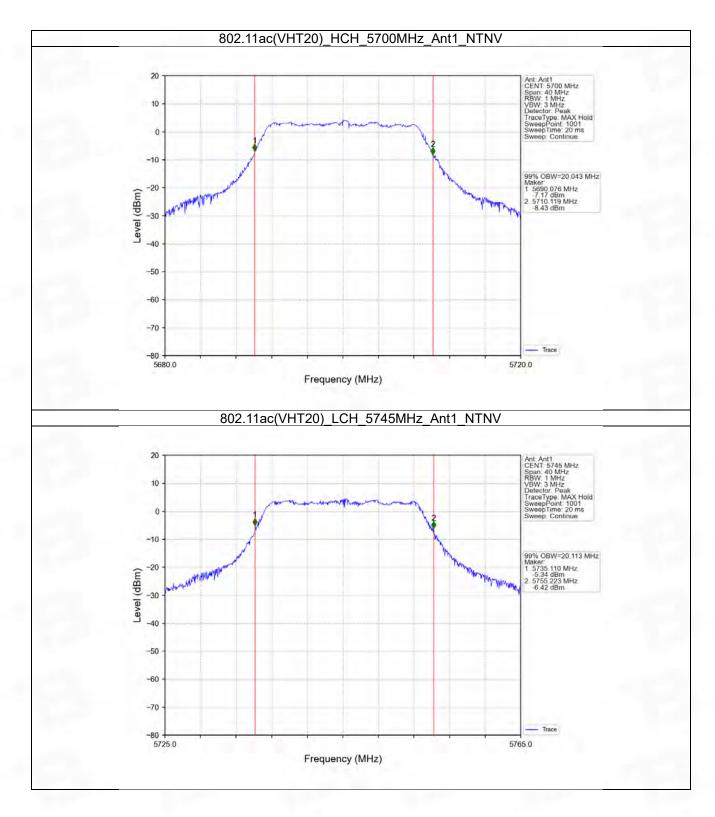


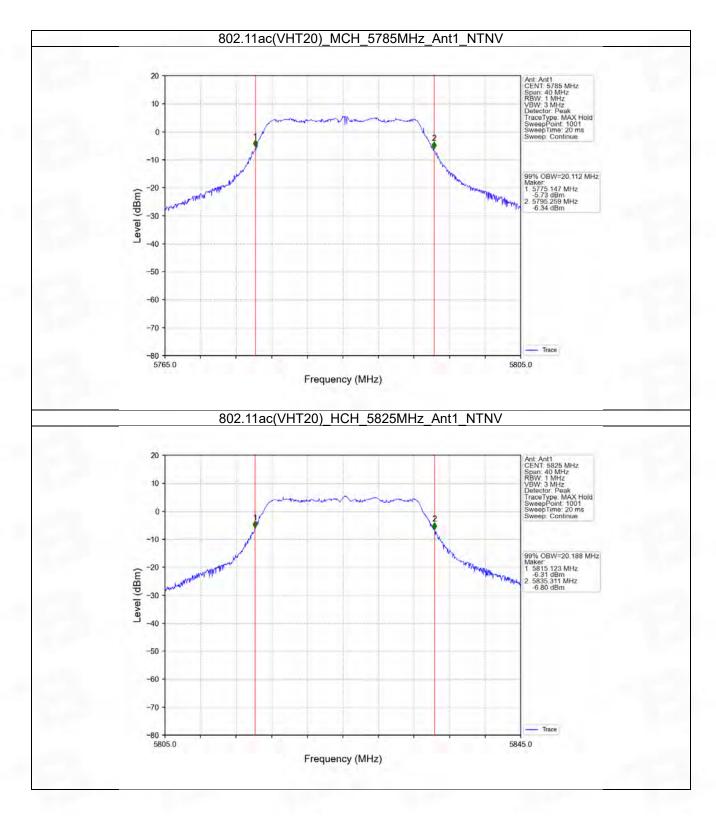


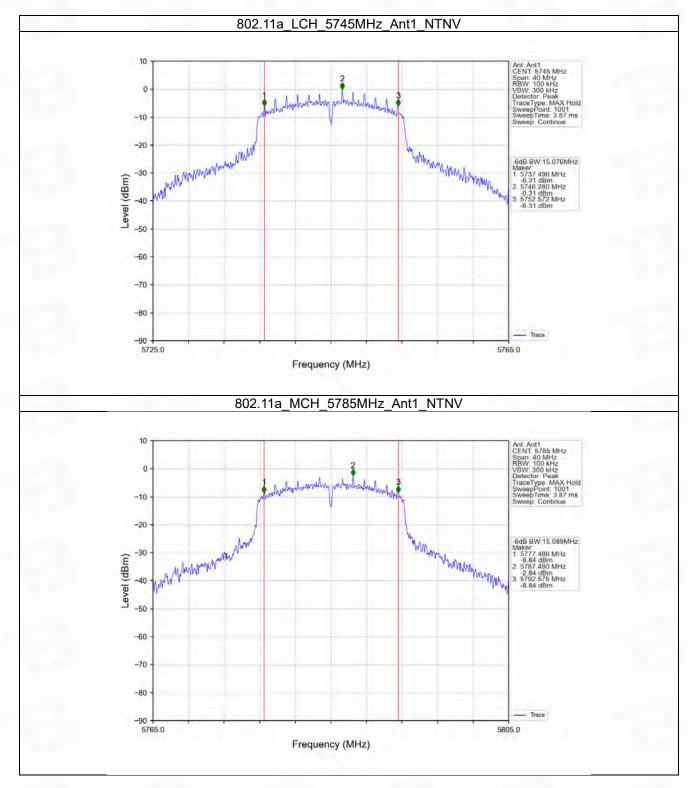
Page 76 of 147





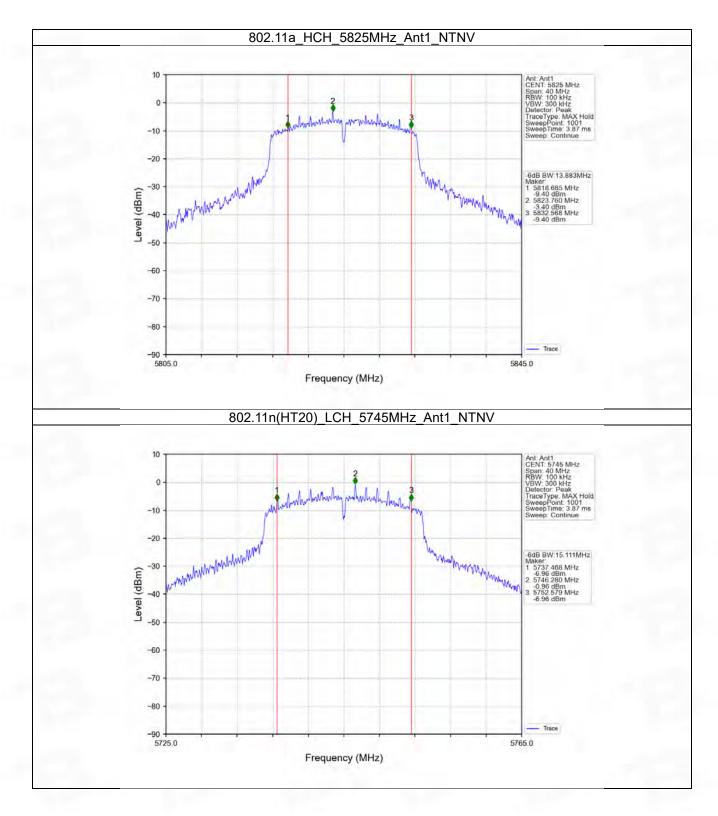




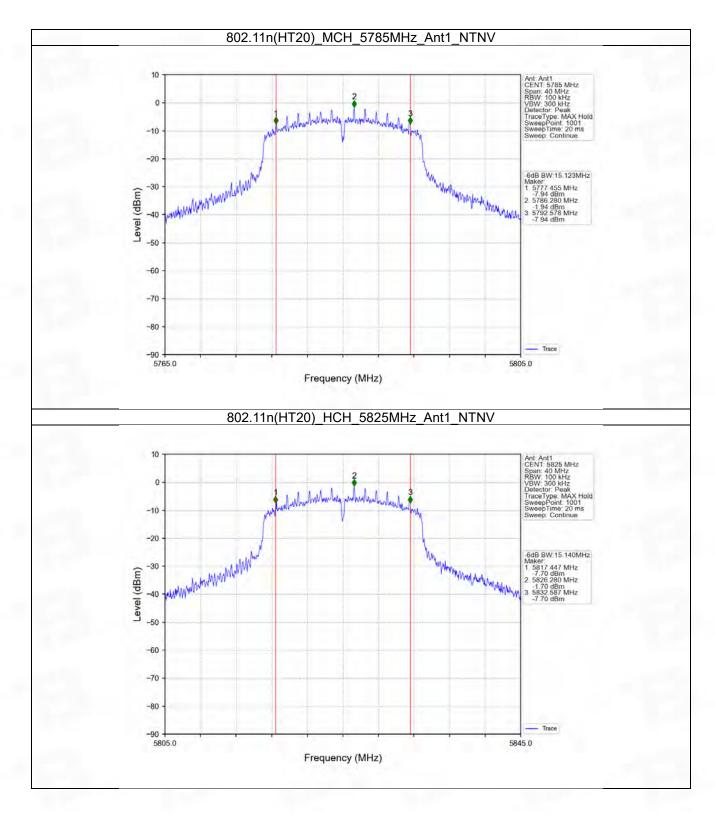

2.2 6dB BW

2.2.1 Test Result

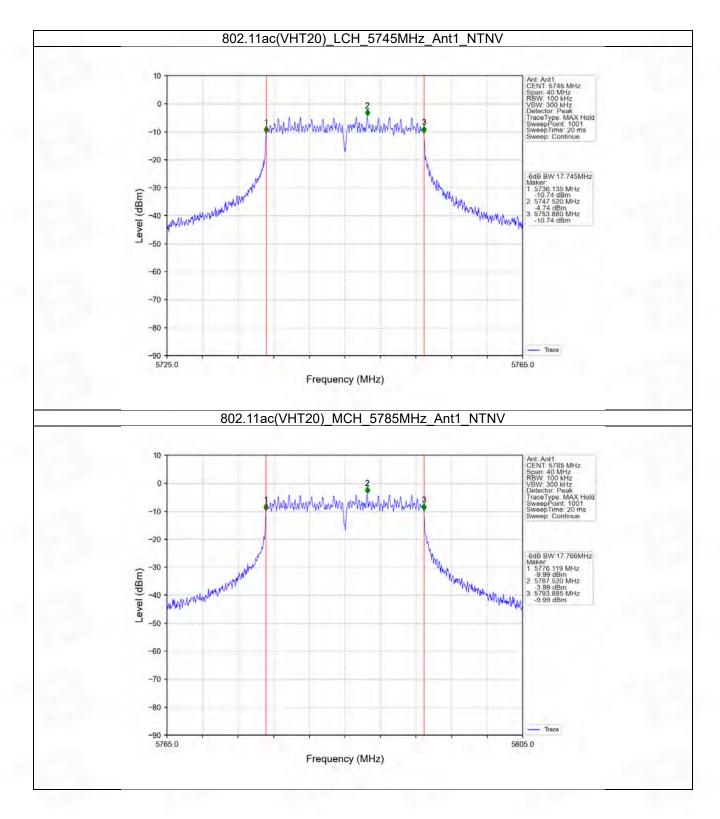
Mode	TX Type	Frequency (MHz)	ANT	6dB Bandwidth (MHz)		Vardiat
				Result	Limit	Verdict
		5745	1	15.076	>=0.5	Pass
802.11a	SISO	5785	1	15.089	>=0.5	Pass
		5825	1	13.883	>=0.5	Pass
000.11-	SISO	5745	1	15.111	>=0.5	Pass
802.11n (HT20)		5785	1	15.123	>=0.5	Pass
		5825	1	15.140	>=0.5	Pass
902 11 22	SISO	5745	1	17.745	>=0.5	Pass
802.11ac (VHT20)		5785	1	17.766	>=0.5	Pass
		5825	1	17.737	>=0.5	Pass

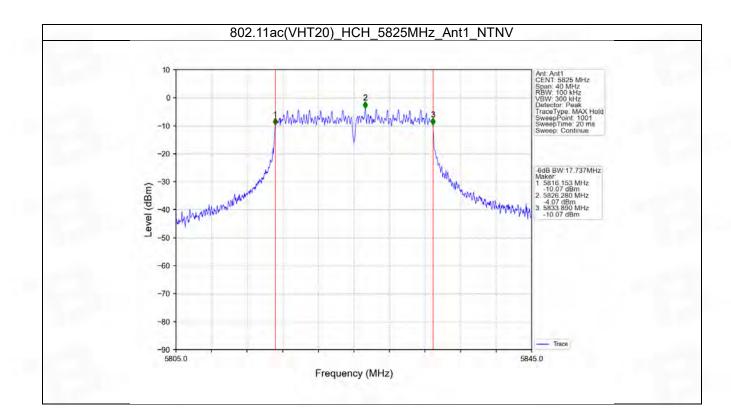


2.2.2 Test Graph



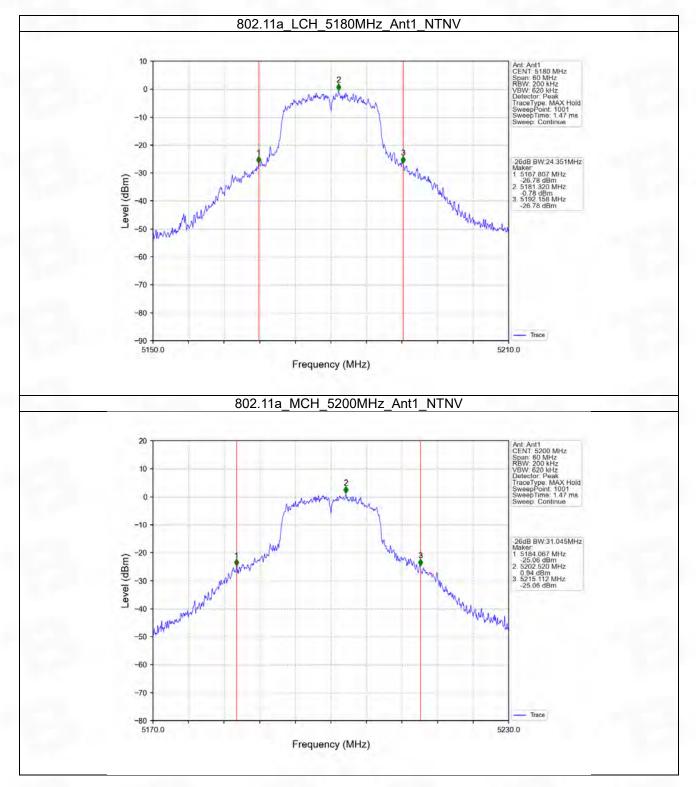
Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.





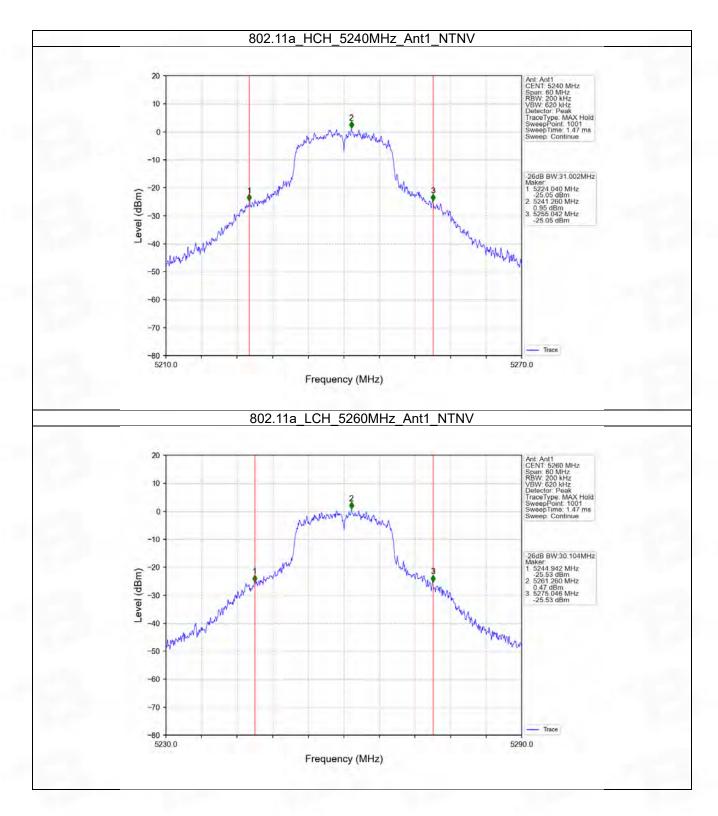
Page 86 of 147

2.3 26dB BW

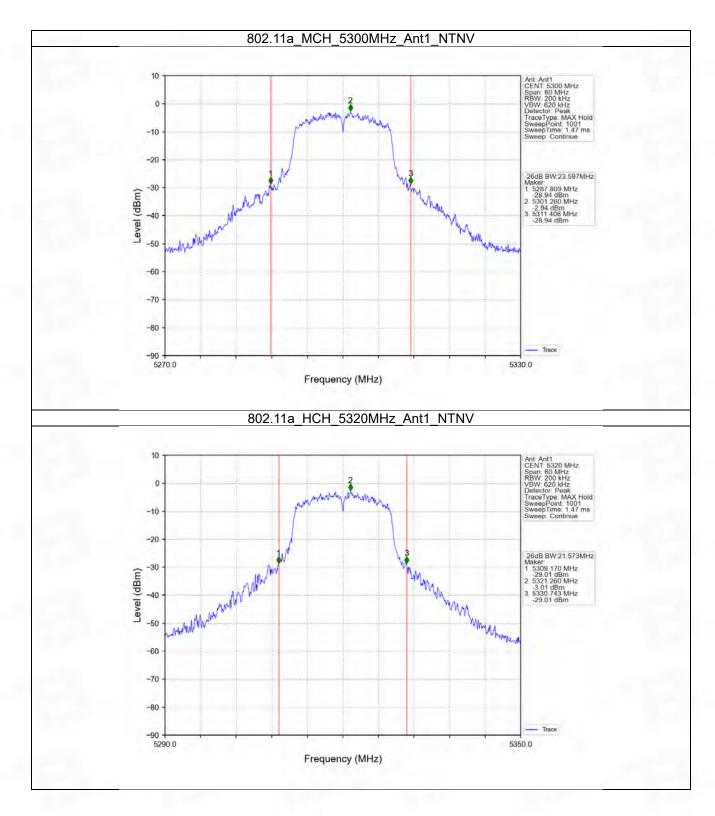

2.3.1 Test Result

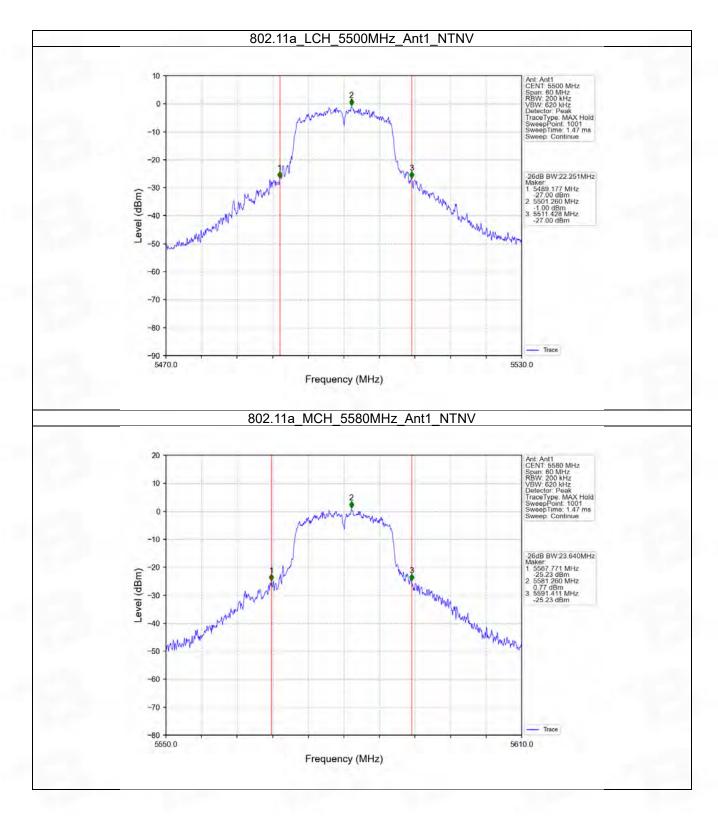
Mode	TX Type	Frequency (MHz)	ANT	26dB Bandwidth (MHz)		Manalist
				Result	Limit	Verdict
802.11a	SISO	5180	1	24.351	1	Pass
		5200	1	31.045	1	Pass
		5240	1	31.002	1	Pass
		5260	1	30.104	1	Pass
		5300	1	23.597	/	Pass
		5320	1	21.573	/	Pass
		5500	1	22.251	1	Pass
		5580	1	23.640	/	Pass
		5700	1	21.048	/	Pass
802.11n (HT20)	SISO	5180	1	24.863	/	Pass
		5200	1	30.732	/	Pass
		5240	1	29.753	1	Pass
		5260	1	30.357	/	Pass
		5300	1	24.128	/	Pass
		5320	1	22.177	/	Pass
		5500	1	24.493	/	Pass
		5580	1	23.986	1	Pass
		5700	1	22.195	/	Pass
802.11ac (VHT20)	SISO	5180	1	26.749	/	Pass
		5200	1	25.384	/	Pass
		5240	1	25.244	/	Pass
		5260	1	25.467	1	Pass
		5300	1	26.074	/	Pass
		5320	1	24.631	/	Pass
		5500	1	24.728	/	Pass
		5580	1	25.334	/	Pass
		5700	1	24.789	/	Pass

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 89 of 14BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

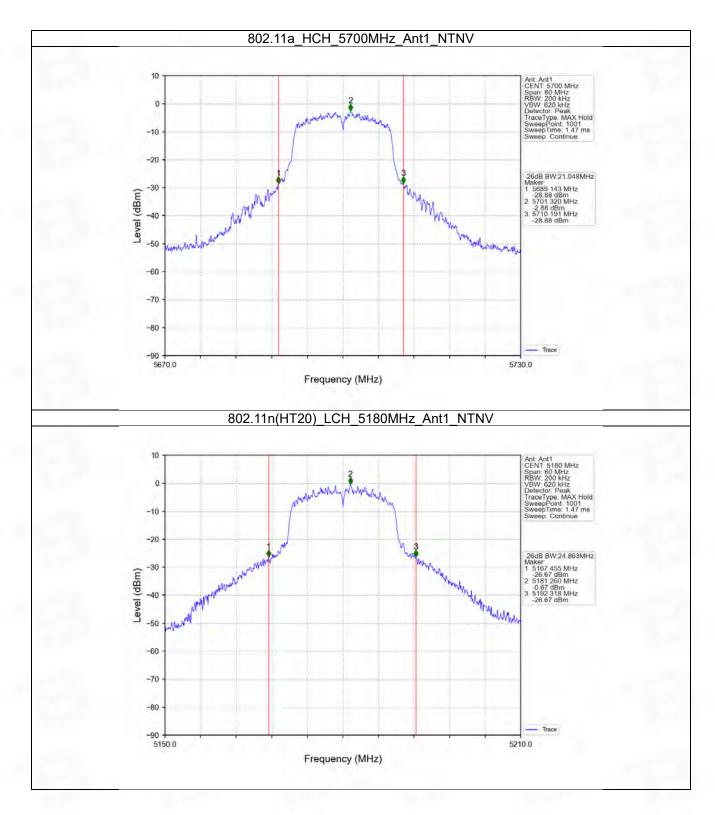


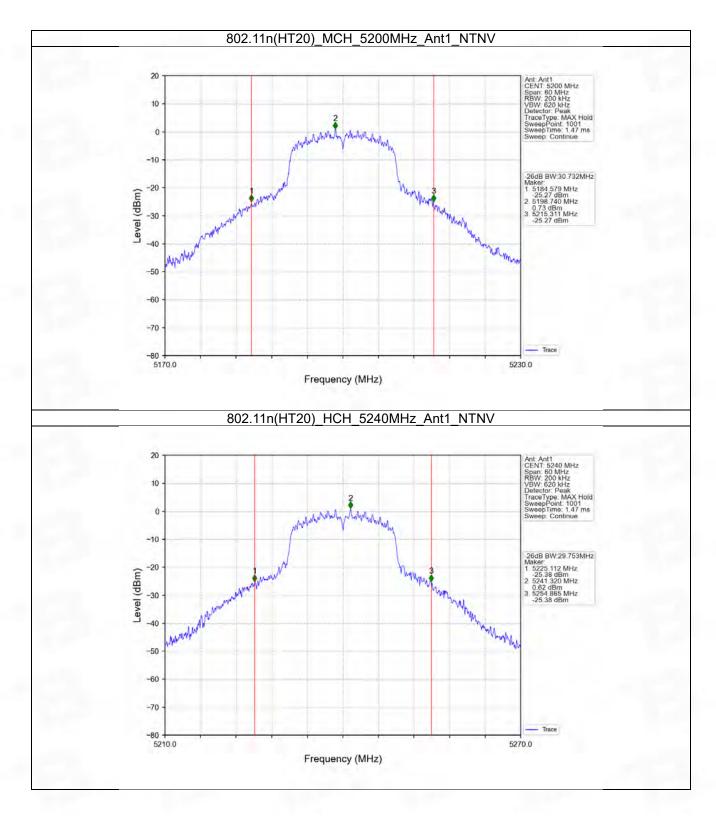
2.3.2 Test Graph

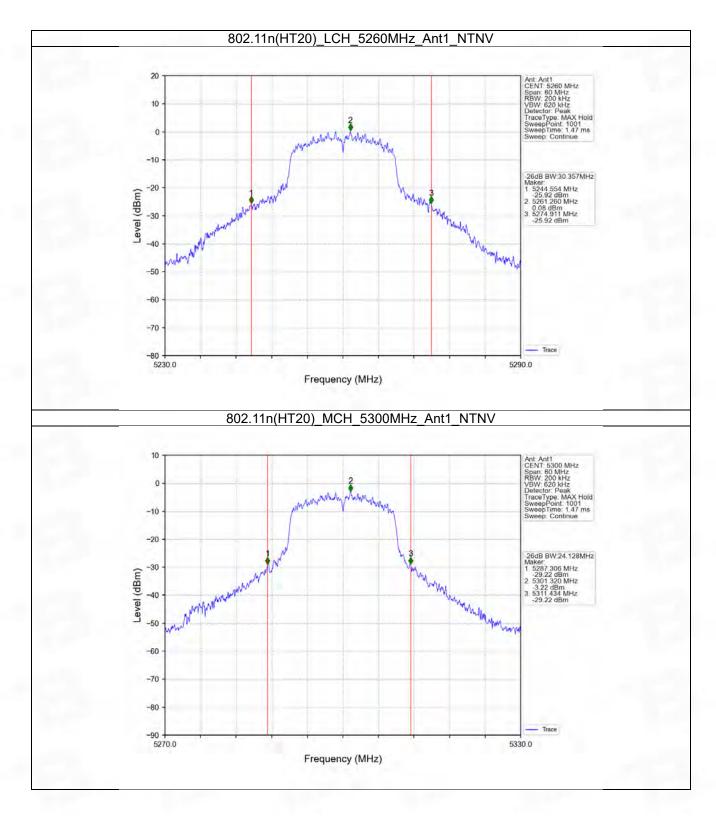

Total or partial reproduction of this document without permission of the Laboratory is not allowed. Pa BTF Testing Lab (Shenzhen) Co., Ltd.



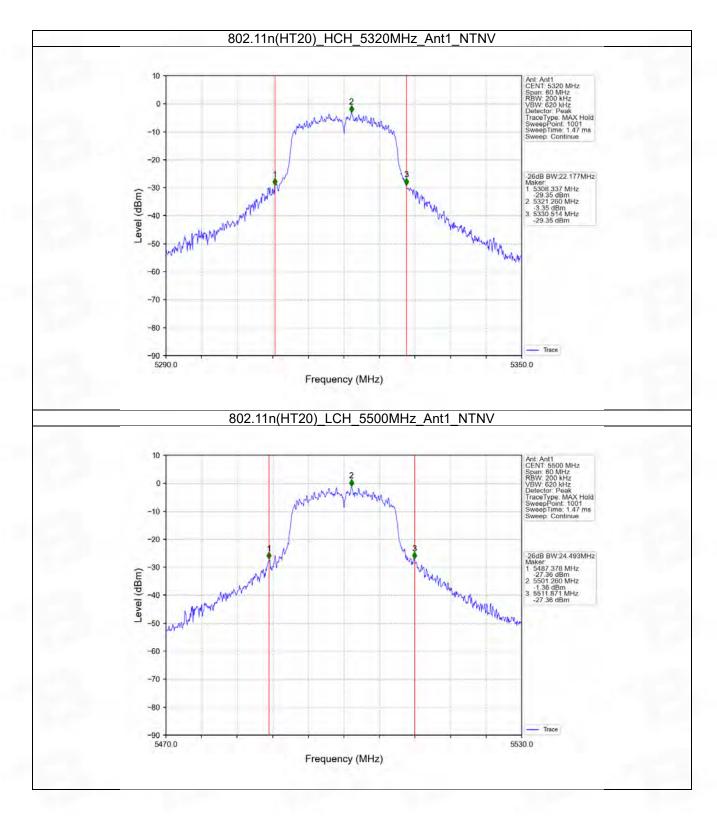
Page 91 of 147

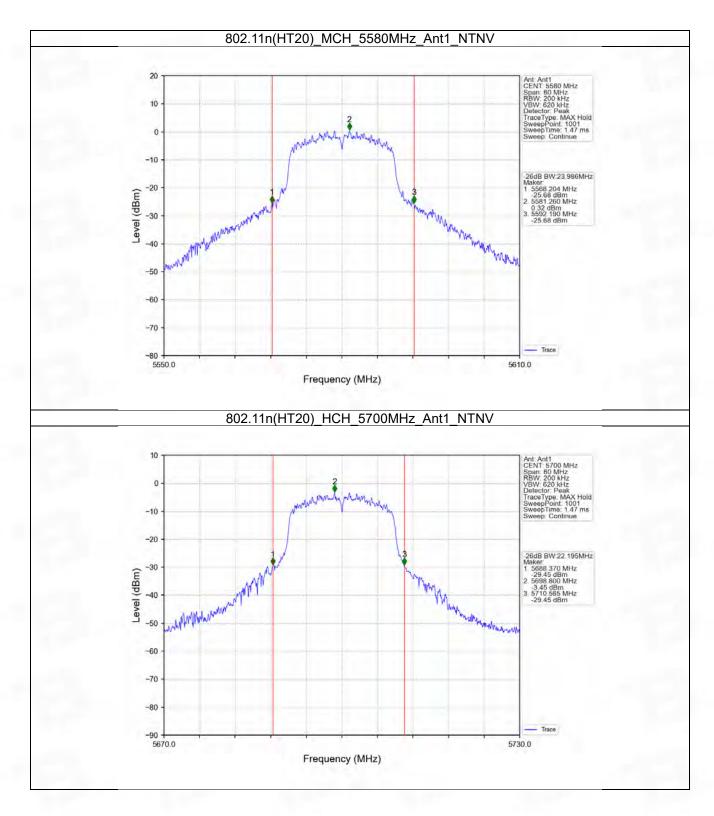


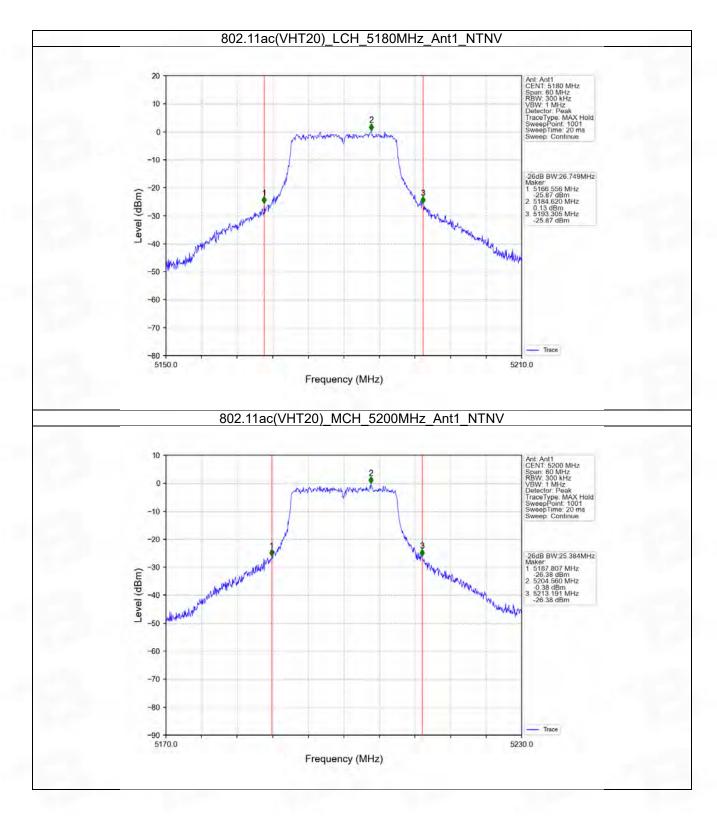

Page 93 of 147

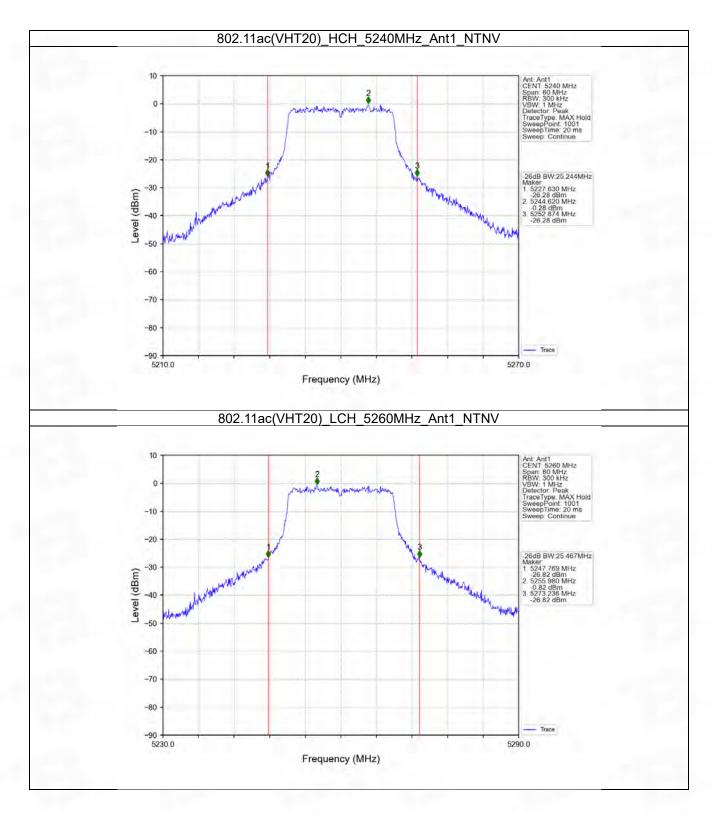


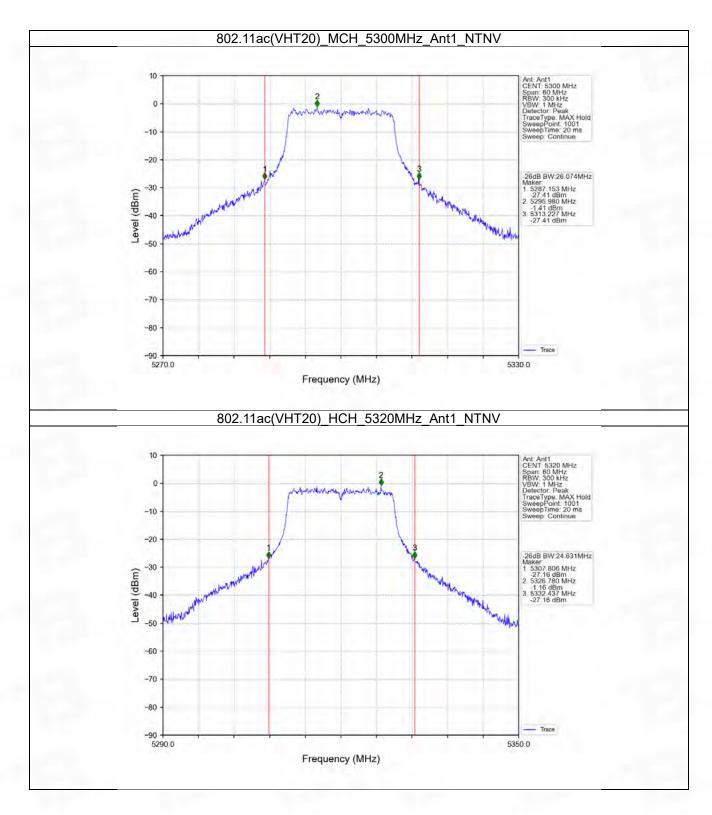
Page 94 of 147

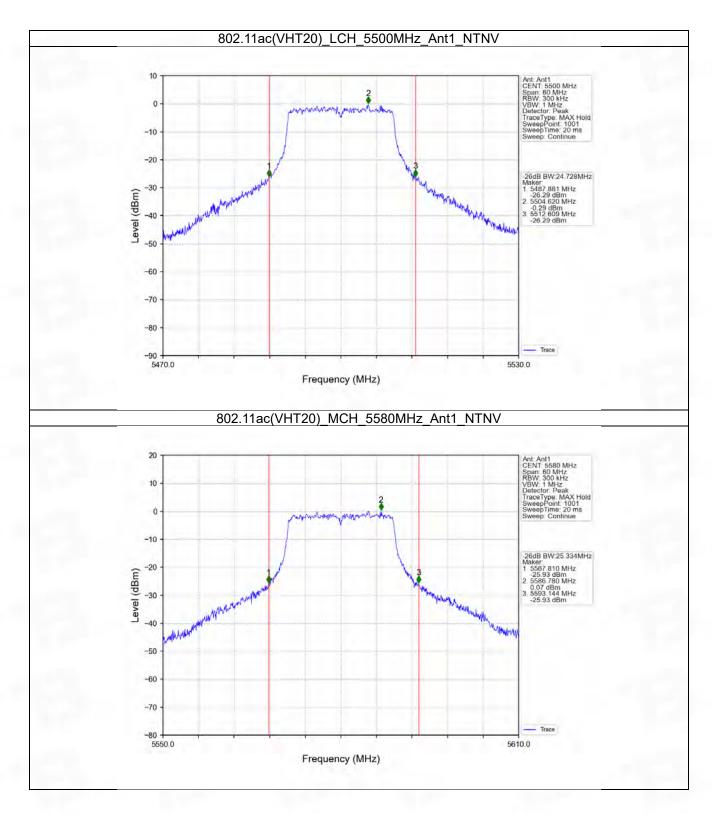


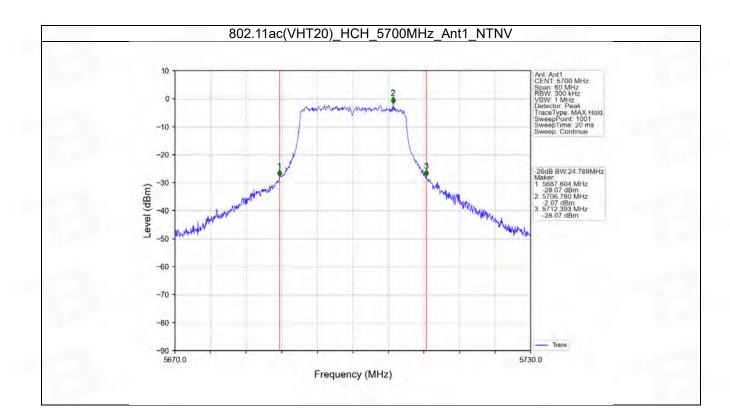







Page 99 of 147

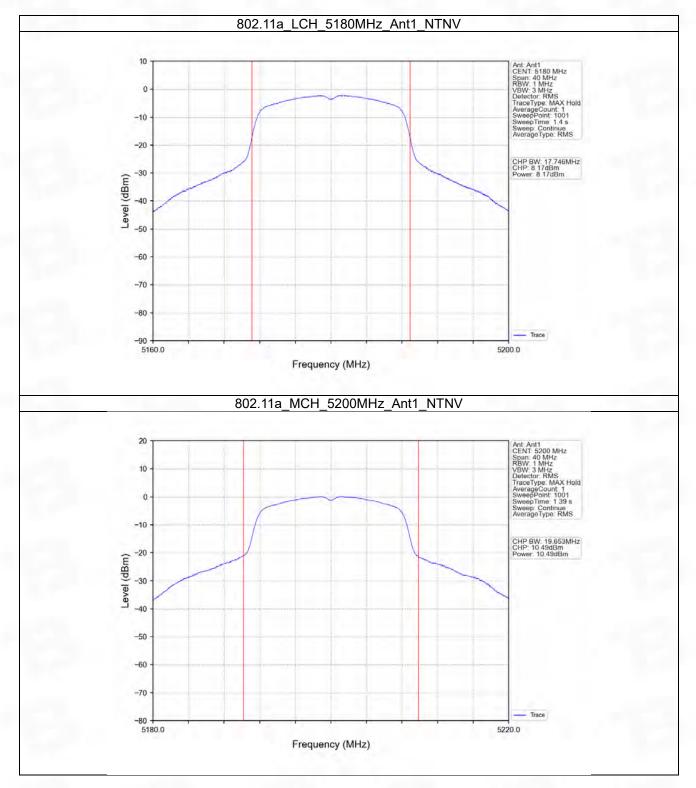

Page 100 of 147


Page 101 of 147

Page 102 of 147

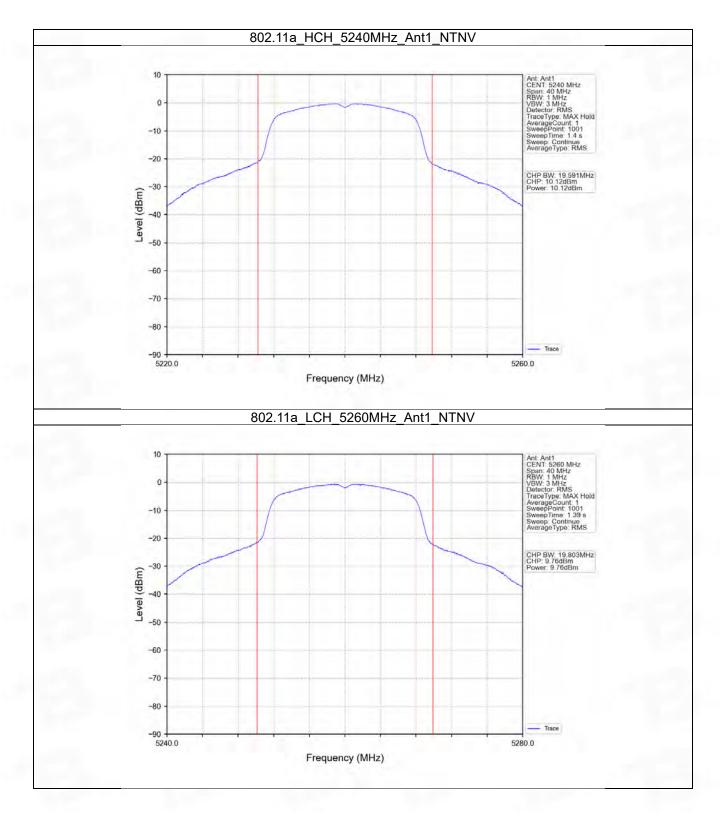
3. Maximum Conducted Output Power

3.1 Power

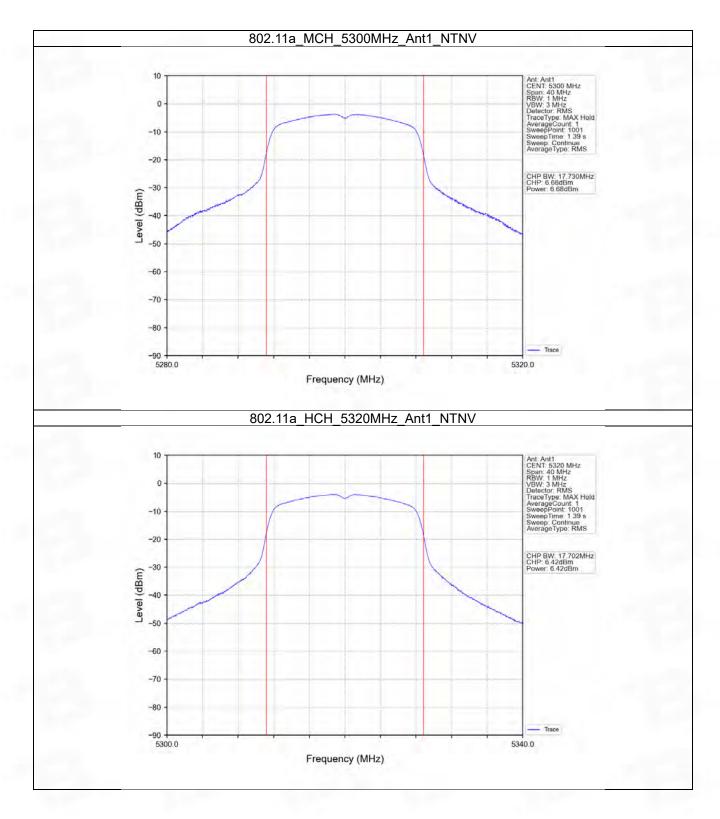

3.1.1 Test Result

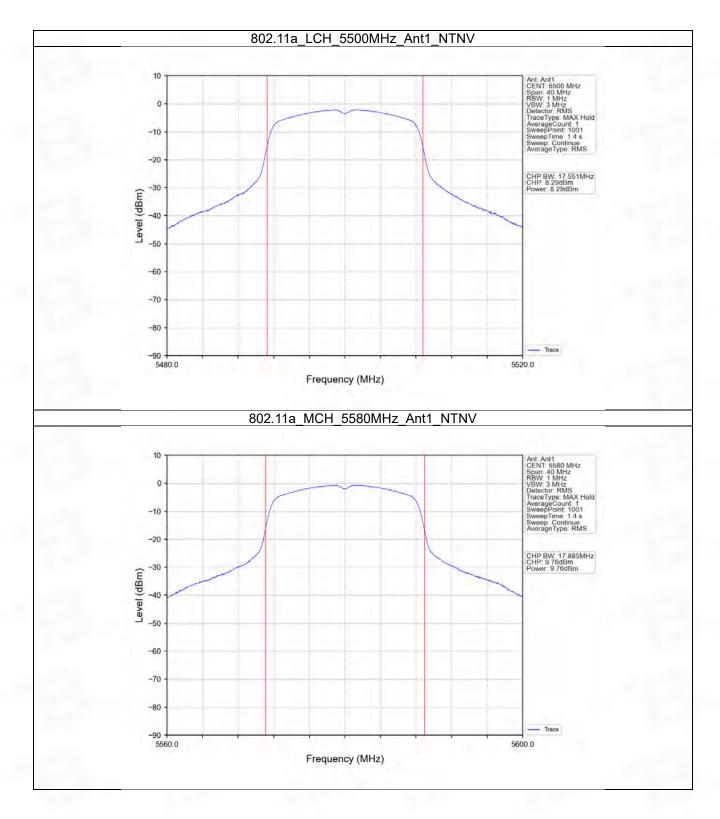
Mode	TX	Frequency	Maximum Average Cond	Verdict	
	Туре	(MHz)	ANT1	Limit	veruici
802.11a		5180	8.17	<=23.98	Pass
	SISO	5200	10.49	<=23.98	Pass
		5240	10.12	<=23.98	Pass
		5260	9.76	<=23.98	Pass
		5300	6.68	<=23.98	Pass
		5320	6.42	<=23.98	Pass
		5500	8.29	<=23.98	Pass
		5580	9.76	<=23.98	Pass
		5700	6.66	<=23.98	Pass
		5745	9.75	<=30	Pass
		5785	8.63	<=30	Pass
		5825	8.14	<=30	Pass
802.11n (HT20)	SISO	5180	8.49	<=23.98	Pass
		5200	9.77	<=23.98	Pass
		5240	9.50	<=23.98	Pass
		5260	9.17	<=23.98	Pass
		5300	6.06	<=23.98	Pass
		5320	5.94	<=23.98	Pass
		5500	7.67	<=23.98	Pass
		5580	9.38	<=23.98	Pass
		5700	6.03	<=23.98	Pass
		5745	8.76	<=30	Pass
		5785	8.55	<=30	Pass
		5825	8.05	<=30	Pass
802.11ac (VHT20)	SISO	5180	8.09	<=23.98	Pass
		5200	7.26	<=23.98	Pass
		5240	7.39	<=23.98	Pass
		5260	7.22	<=23.98	Pass
		5300	6.42	<=23.98	Pass
		5320	6.73	<=23.98	Pass
		5500	7.44	<=23.98	Pass
		5580	7.83	<=23.98	Pass
		5700	5.85	<=23.98	Pass
		5745	6.48	<=30	Pass
		5785	7.28	<=30	Pass
		5825	7.20	<=30	Pass

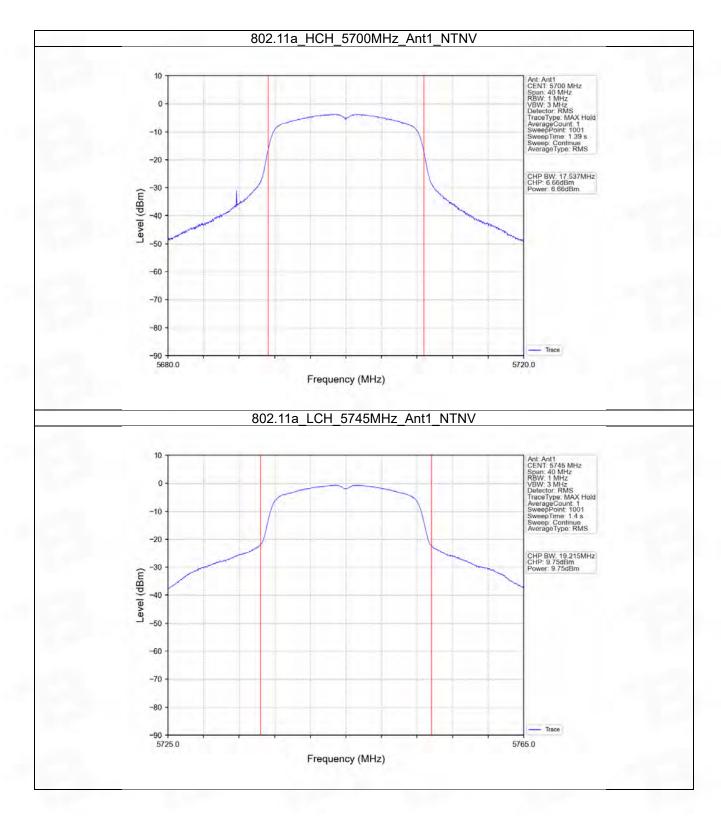
Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 104 of 14BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

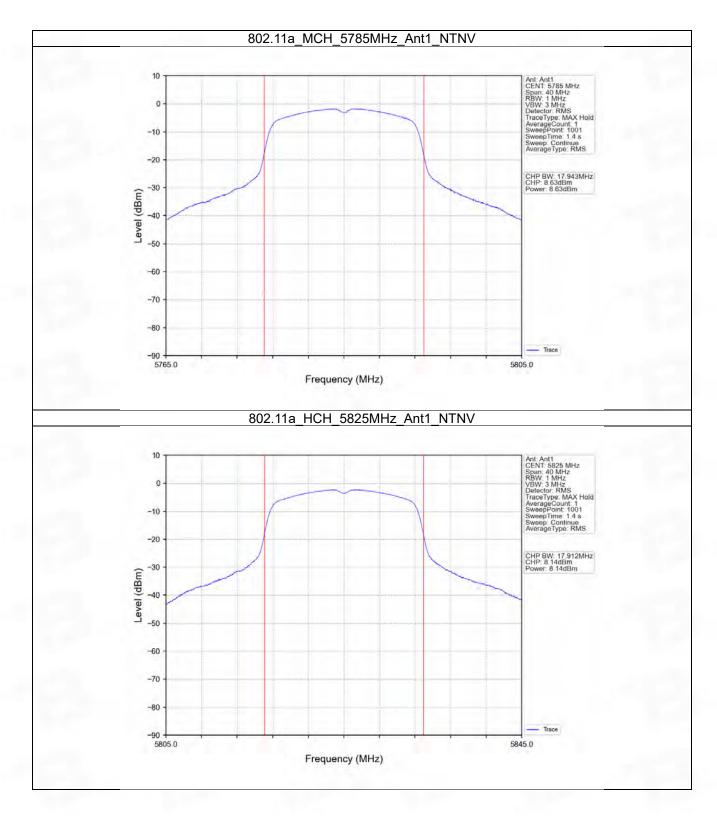


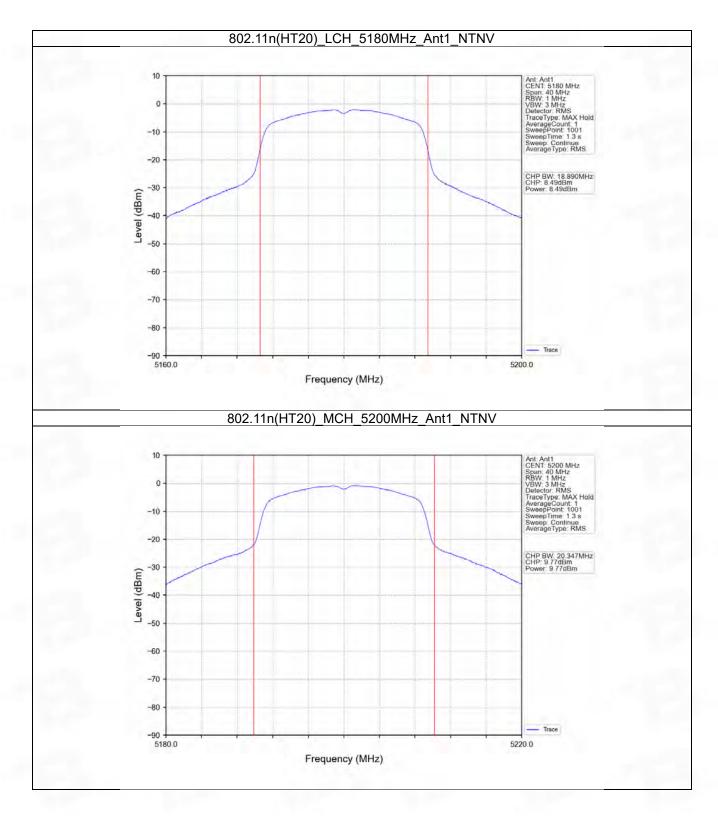
3.1.2 Test Graph


Total or partial reproduction of this document without permission of the Laboratory is not allowed. Page 105 of 147 BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

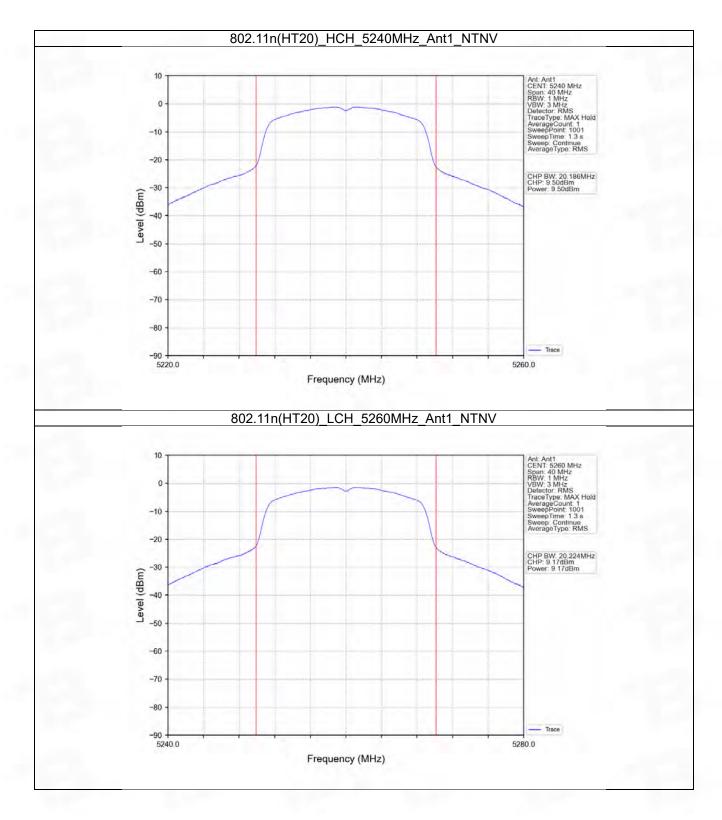

Page 106 of 147


Page 107 of 147


Page 108 of 147

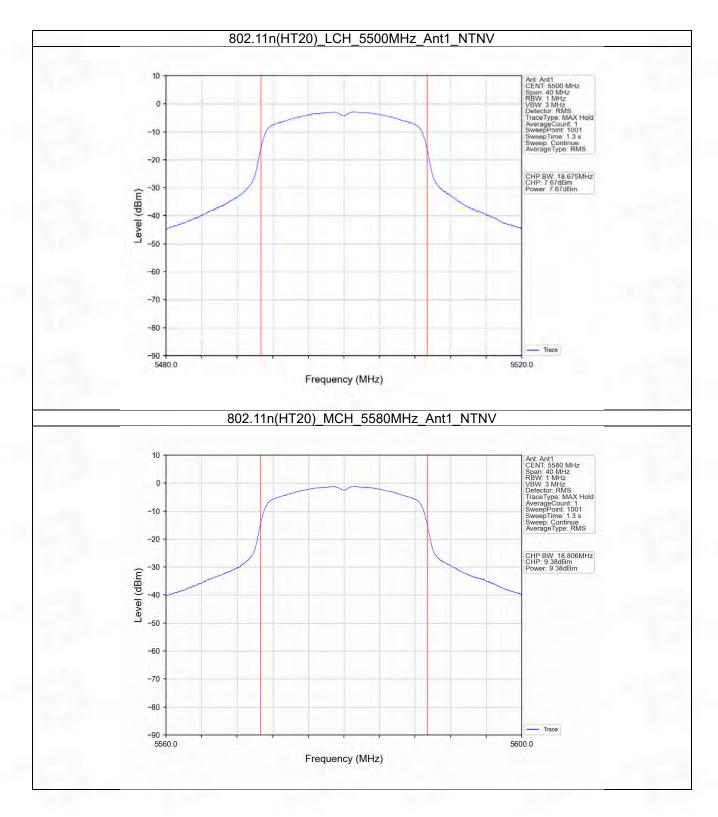

Page 109 of 147

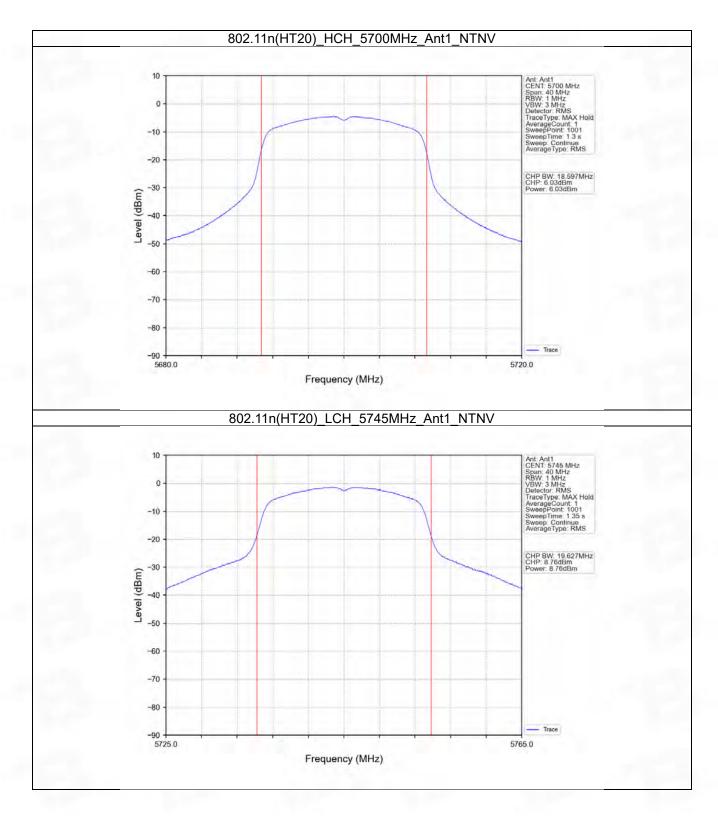
Page 110 of 147

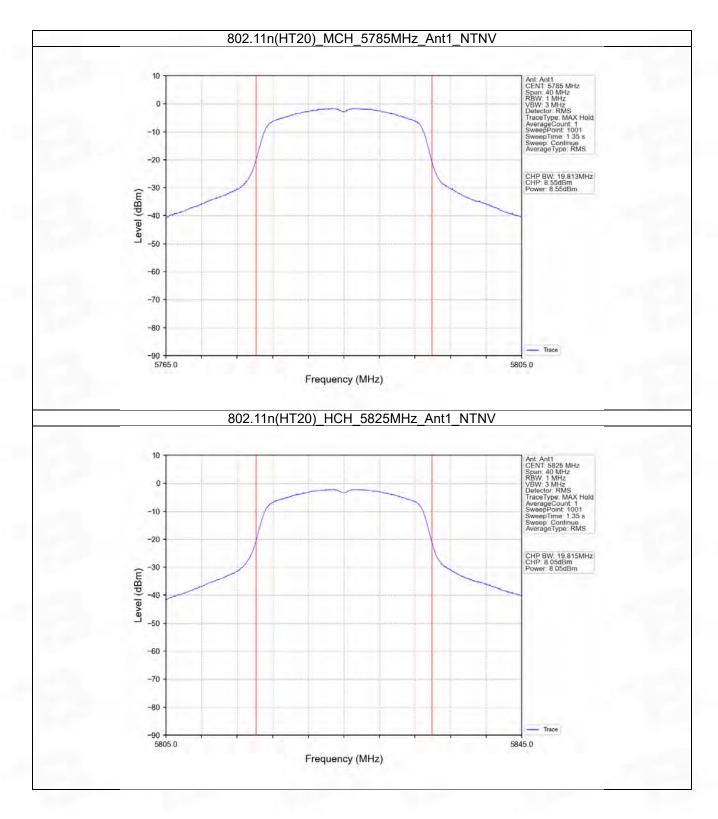


Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. 5101 - 201 and 201 Building 1 Block 2 Tenteu Industrial Back Tenteu Community Songgoon Street Backer District

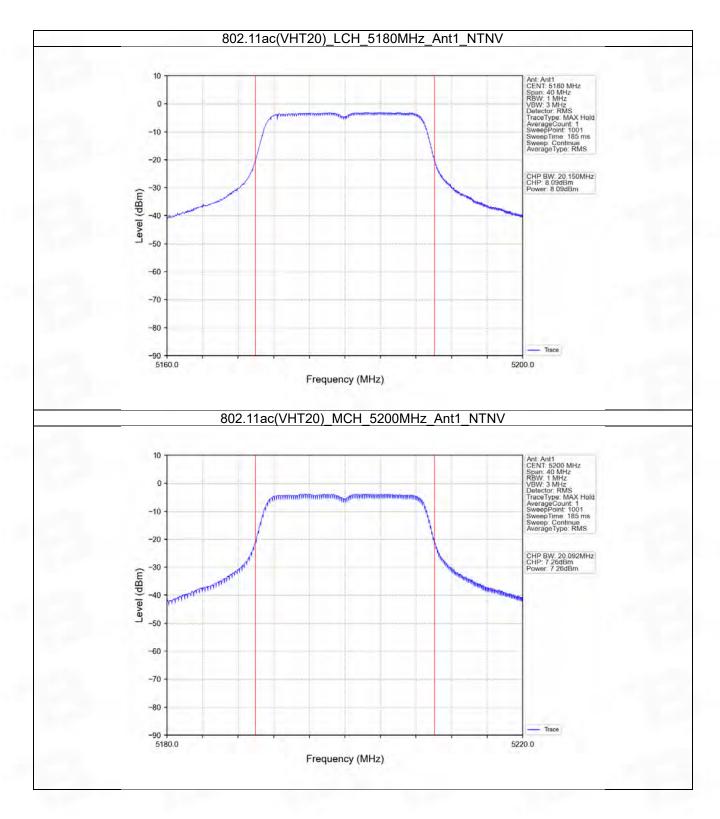
Page 111 of 147

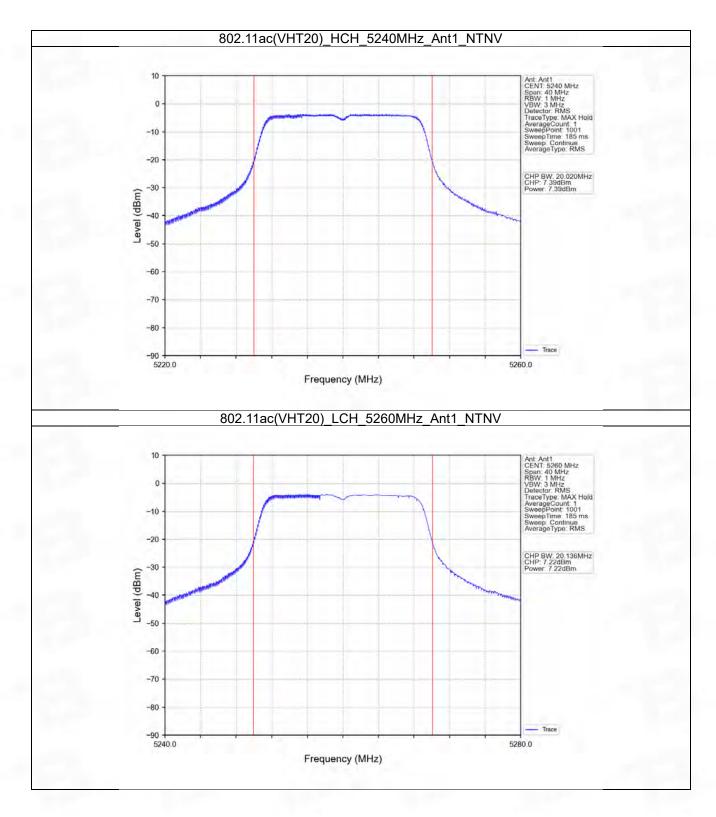

Page 112 of 147


Page 113 of 147

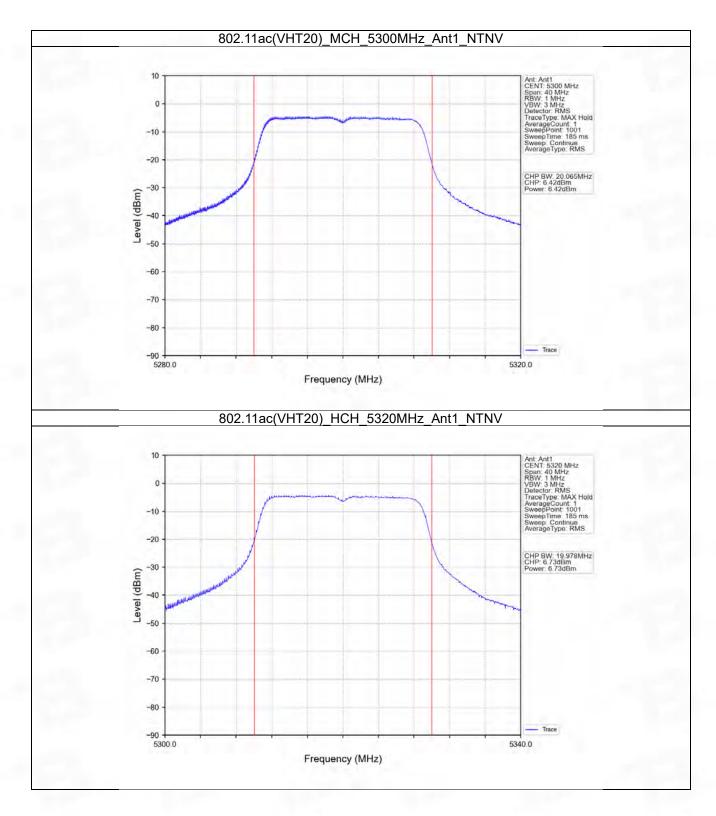

Page 114 of 147

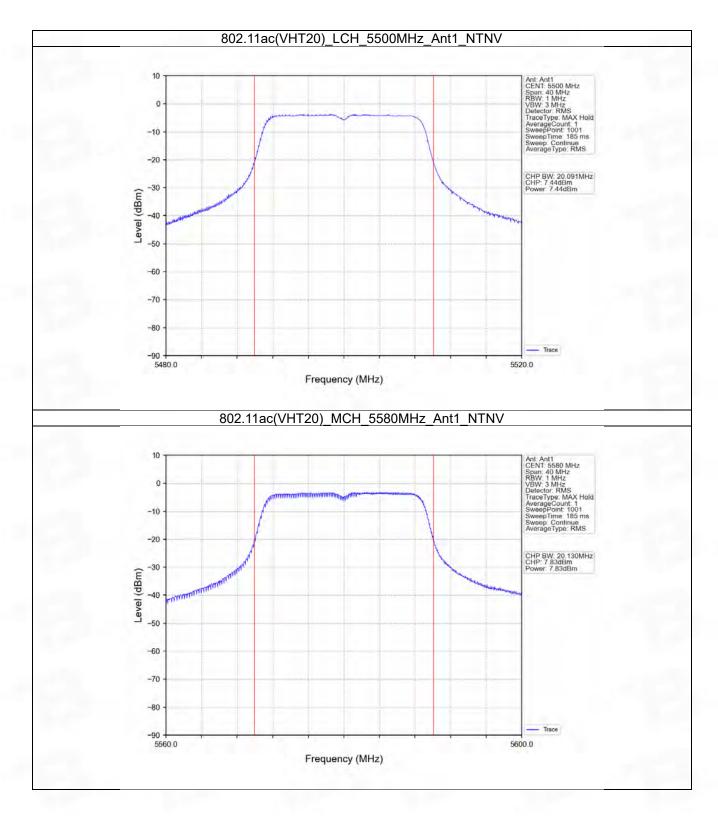
Page 115 of 147

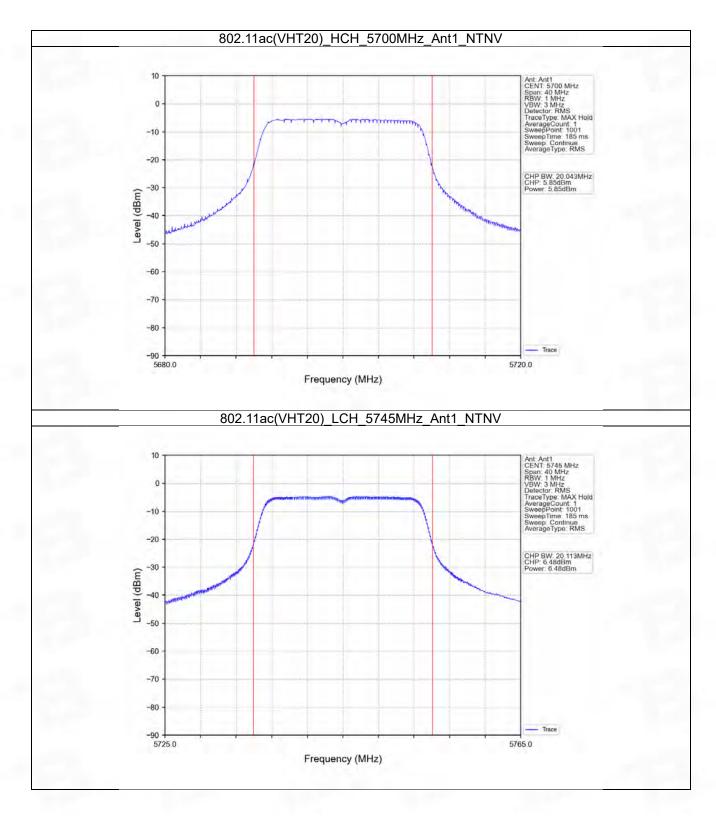


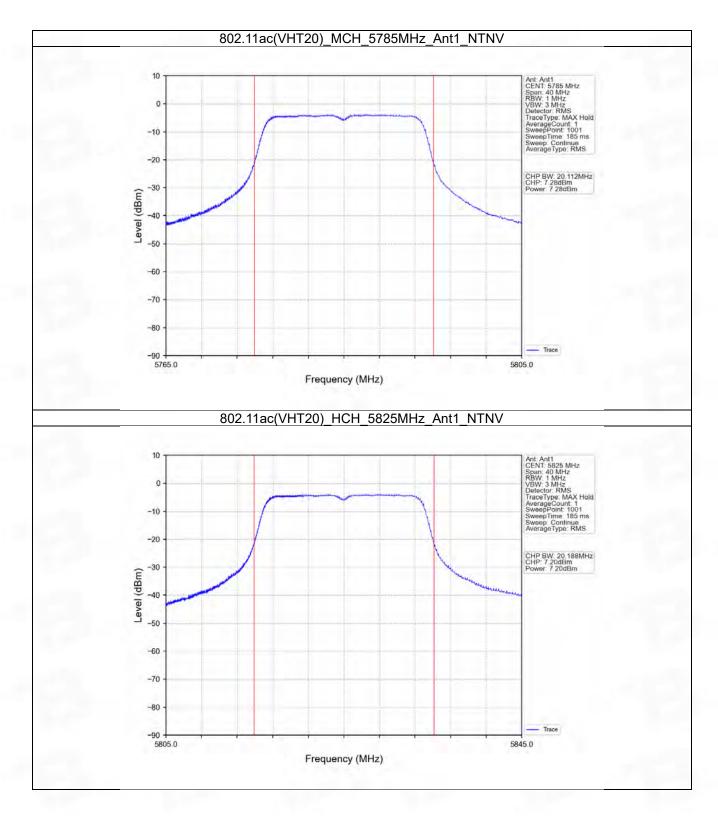

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. 5101 - 201 and 201 Building 1 Black 2 Tenteu Industrial Bark, Tenteu Community, Sanagang Street Baskan Distri-

Page 116 of 147




Page 118 of 147


Page 119 of 147



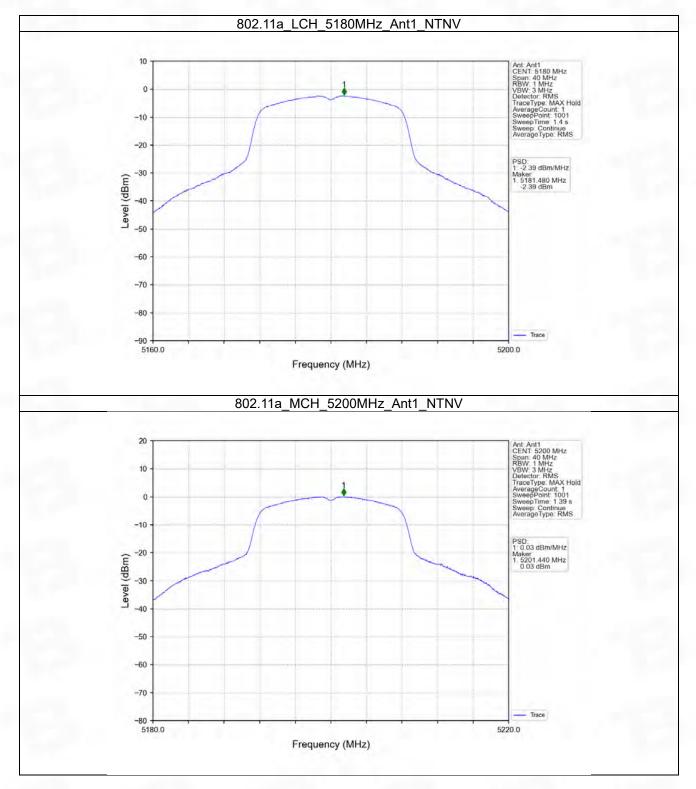
Page 120 of 147

Page 122 of 147

4. Maximum Power Spectral Density

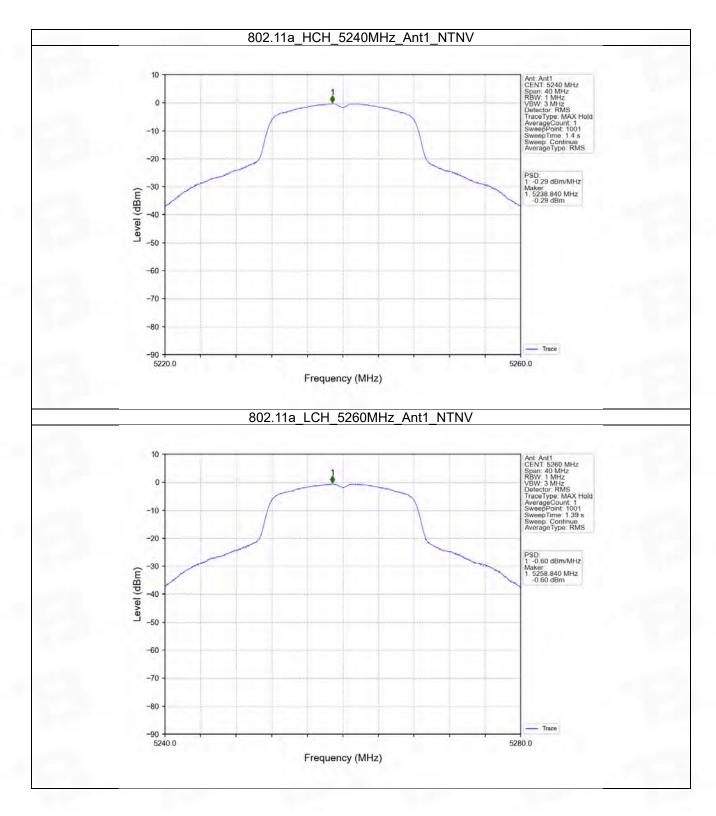
4.1 PSD

4.1.1 Test Result

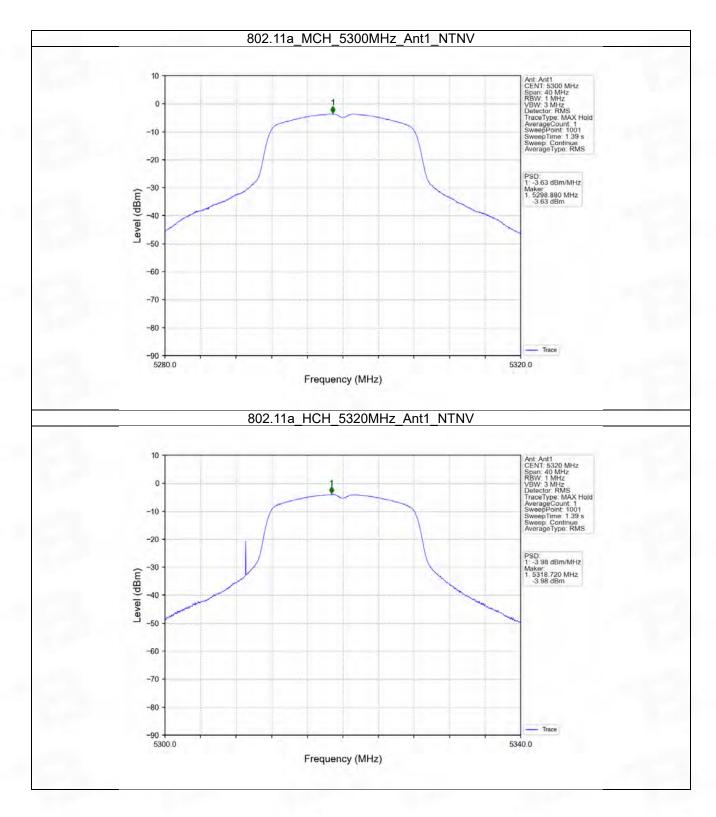

Mode	TX	Frequency	Maximum PS	Vordict		
Mode	Туре	(MHz)	ANT1	Limit	Verdict	
		5180	-2.39	<=11	Pass	
		5200	0.03	<=11	Pass	
		5240	-0.29	<=11	Pass	
		5260	-0.60	<=11	Pass	
802.11a	SISO	5300	-3.63	<=11	Pass	
		5320	-3.98	<=11	Pass	
		5500	-2.07	<=11	Pass	
		5580	-0.55	<=11	Pass	
		5700	-3.65	<=11	Pass	
		5180	-2.10	<=11	Pass	
		5200	-0.83	<=11	Pass	
000.44	-	5240	-1.11	<=11	Pass	
		5260	-1.47	<=11	Pass	
802.11n /⊔⊤20)	SISO	5300	-4.50	<=11	Pass	
(HT20)		5320	-4.64	<=11	Pass	
		5500	-2.94	<=11	Pass	
		5580	-1.24	<=11	Pass	
		5700	-4.51	<=11	Pass	
		5180	-2.92	<=11	Pass	
	SISO	5200	-3.81	<=11	Pass	
		5240	-3.62	<=11	Pass	
802.11ac		5260	-3.94	<=11	Pass	
		5300	-4.48	<=11	Pass	
(VHT20)		5320	-4.18	<=11	Pass	
		5500	-3.67	<=11	Pass	
		5580	-3.22	<=11	Pass	
		5700	-5.34	<=11	Pass	

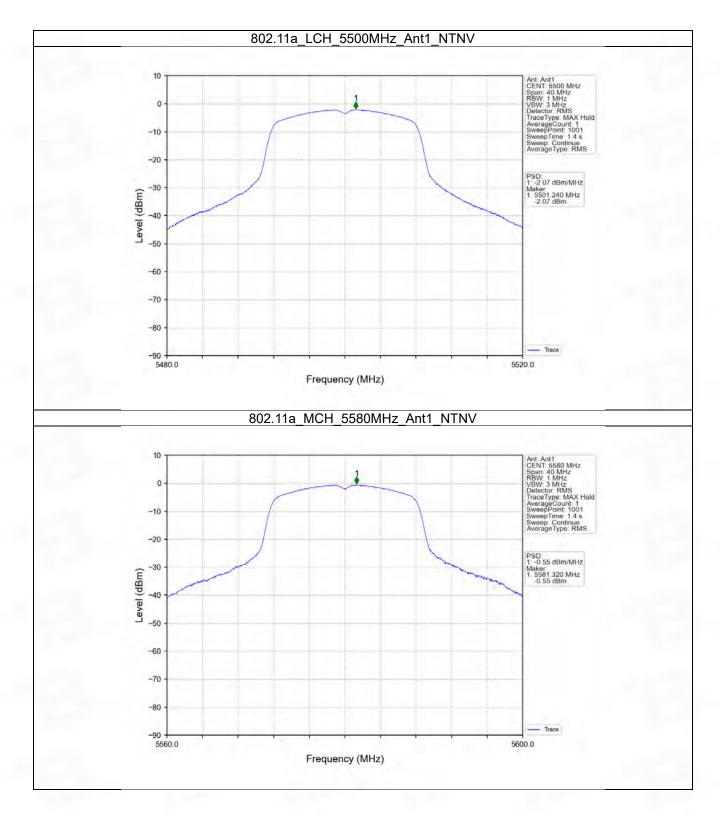
Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 123 of 14BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

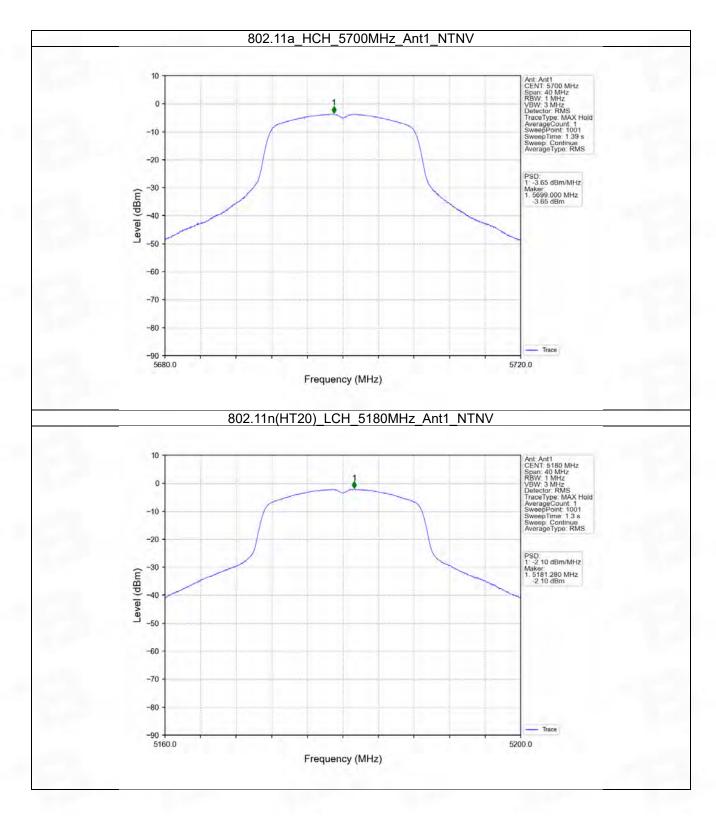
Page 123 of 147


4.1.2 Test Graph

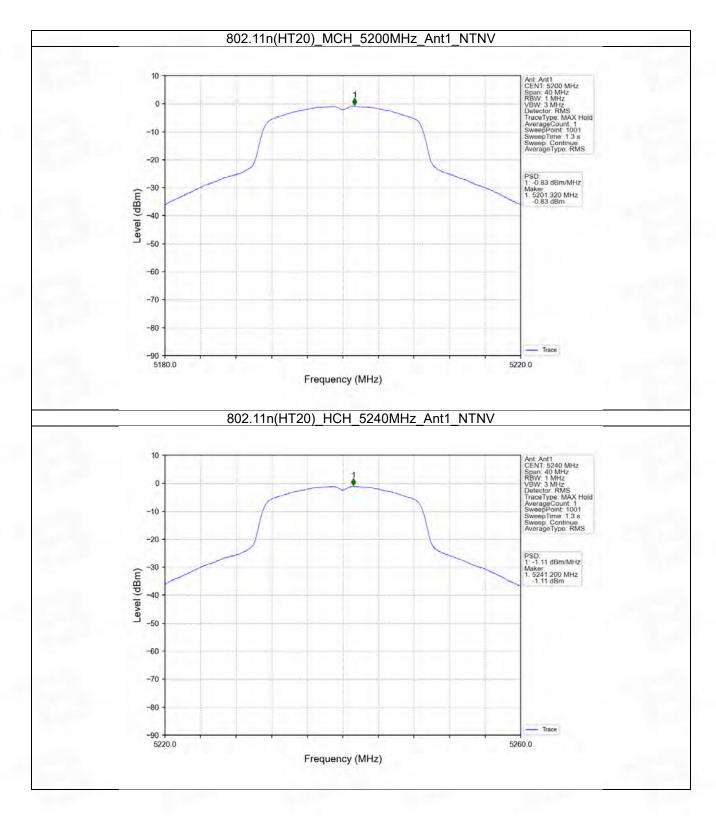
Total or partial reproduction of this document without permission of the Laboratory is not allowed. Page 1 BTF Testing Lab (Shenzhen) Co., Ltd.

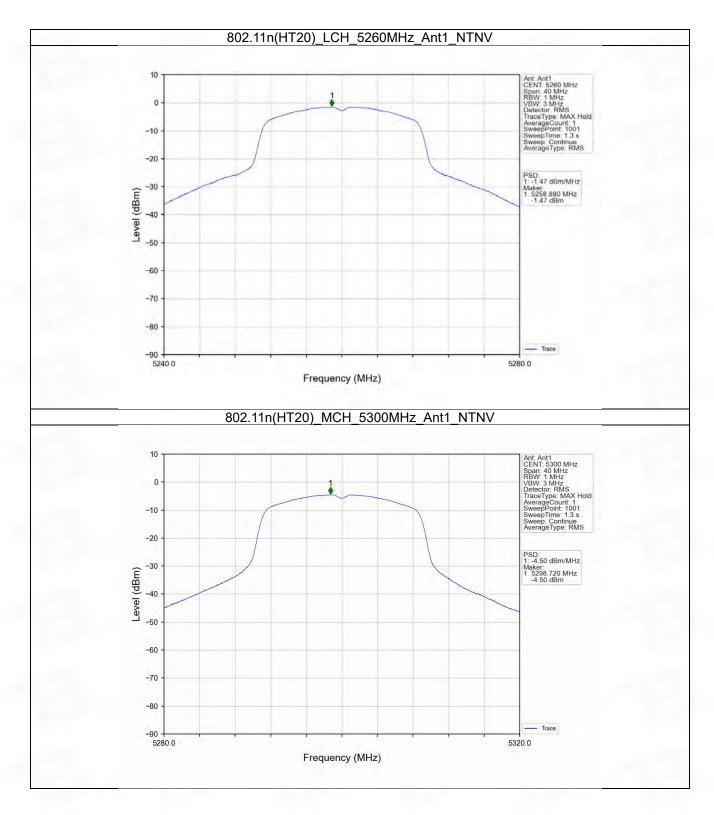

Page 124 of 147

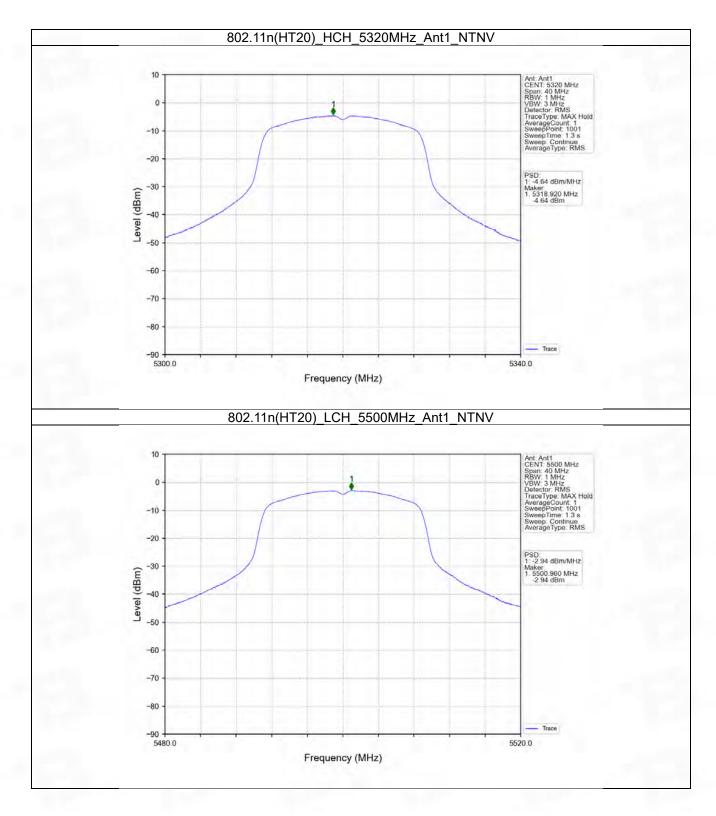

Page 125 of 147

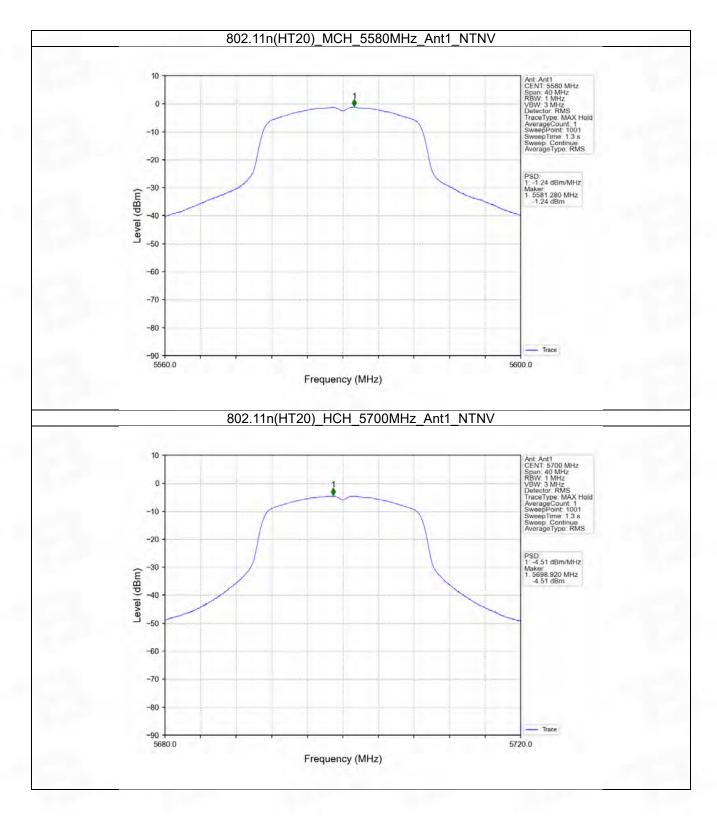


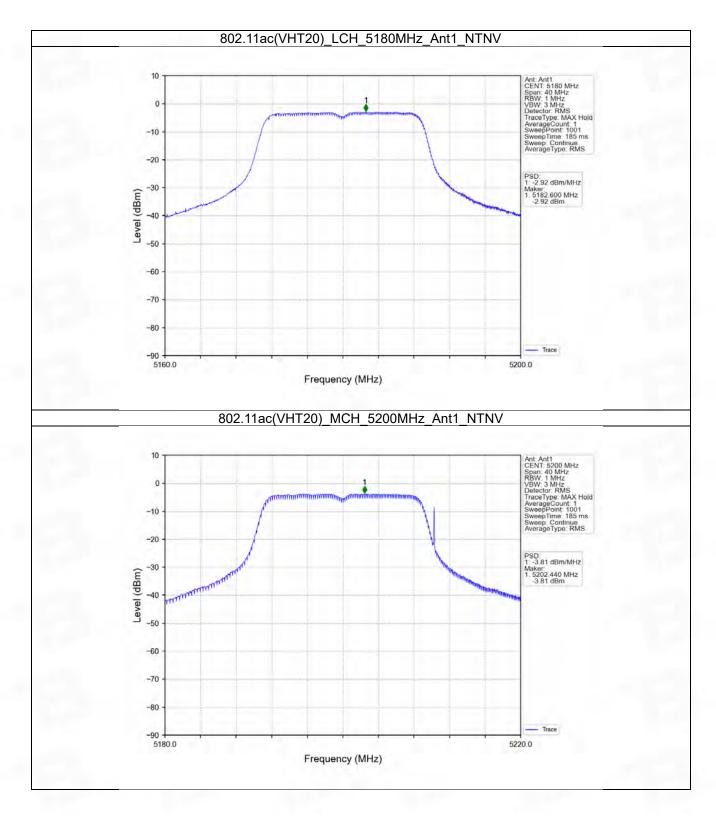
Page 126 of 147



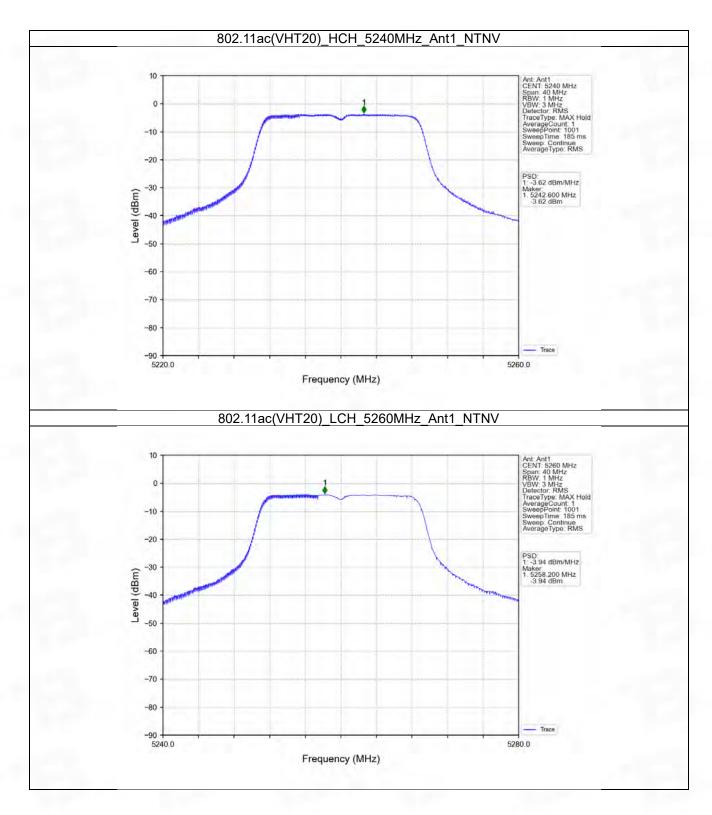

Page 128 of 147

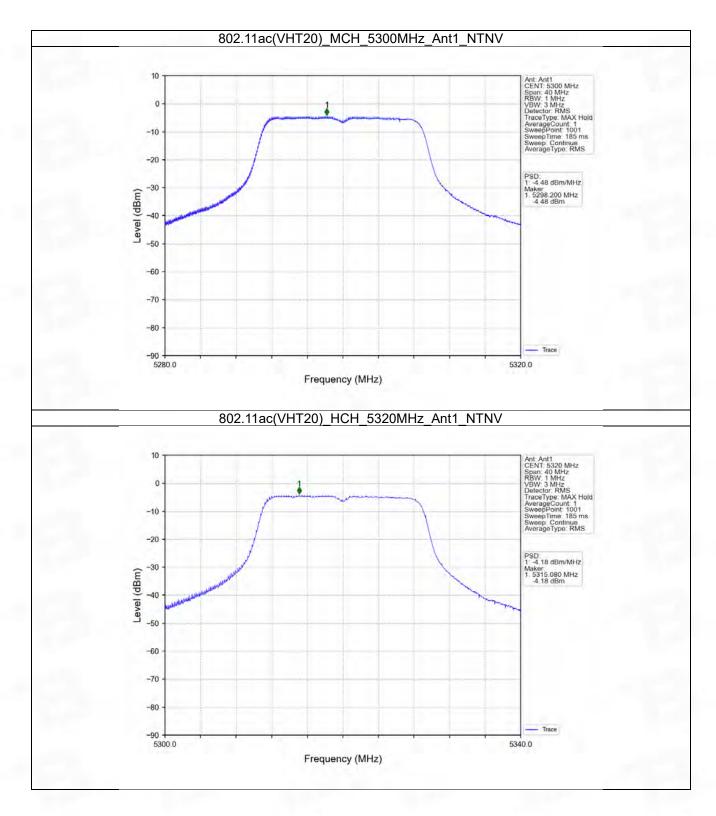

Page 129 of 147

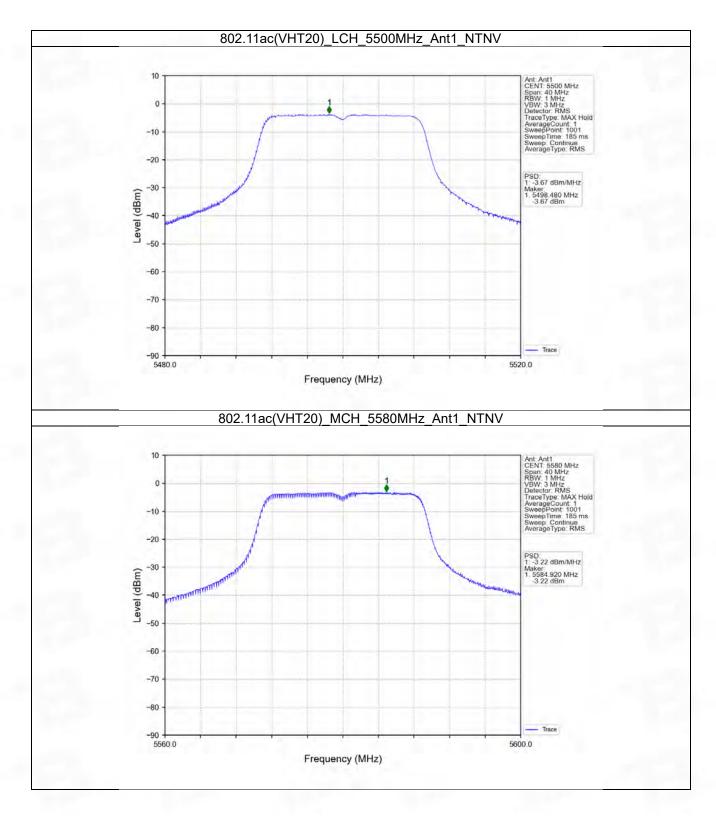

Page 130 of 147



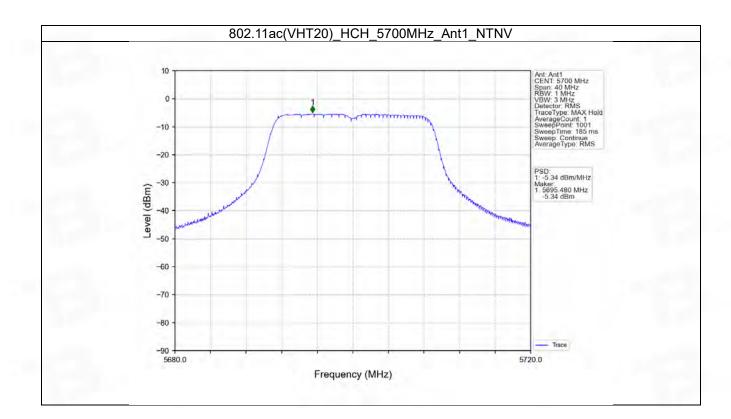
Page 131 of 147




Page 133 of 147



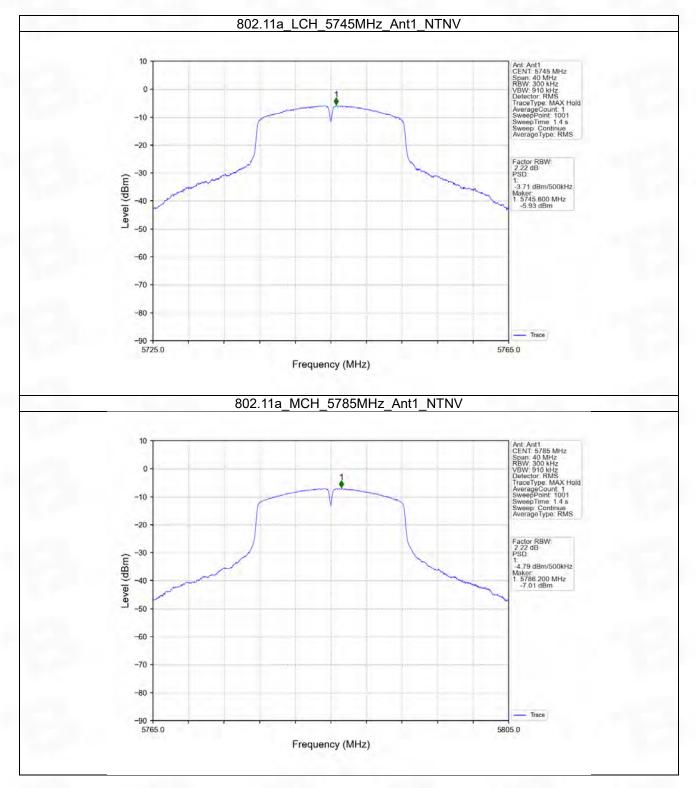
Page 134 of 147



Page 136 of 147

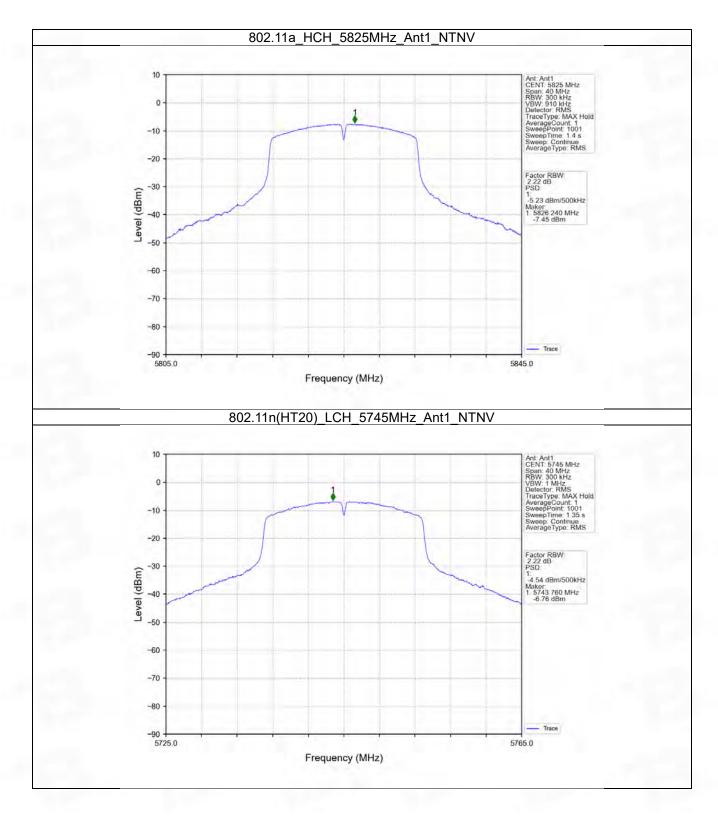
4.2 PSD-Band3

4.2.1 Test Result

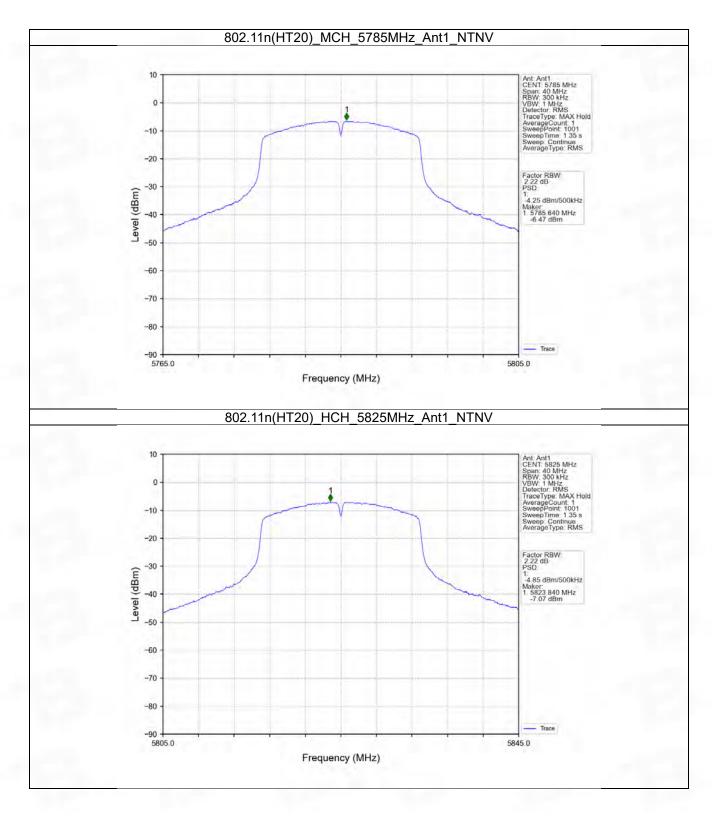

Mode	TX	Frequency	Maximum PSD	Vardiat	
wode	Туре	(MHz)	ANT1	Limit	Verdict
		5745	-3.71	<=30	Pass
802.11a	SISO	5785	-4.79	<=30	Pass
		5825	-5.23	<=30	Pass
802.11n (HT20)	SISO	5745	-4.54	<=30	Pass
		5785	-4.25	<=30	Pass
		5825	-4.85	<=30	Pass
802.11ac (VHT20)	SISO	5745	-6.71	<=30	Pass
		5785	-5.94	<=30	Pass
		5825	-5.88	<=30	Pass

Note1: Antenna Gain: Ant1: 2.75dBi;

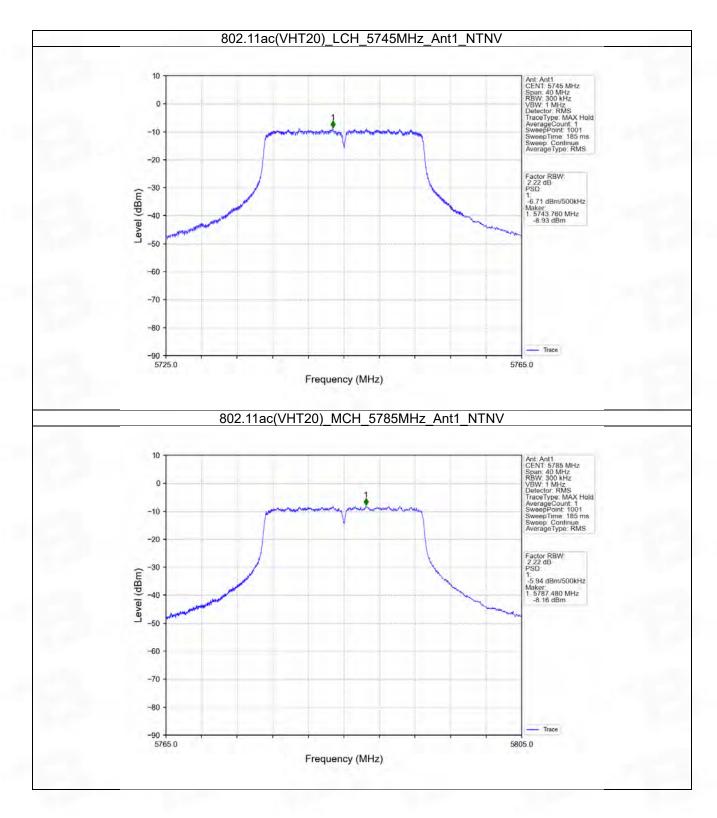
Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 138 of 147BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China


4.2.2 Test Graph

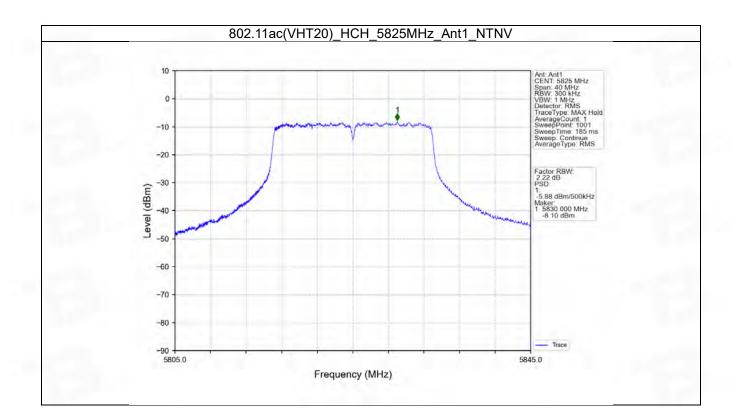
Total or partial reproduction of this document without permission of the Laboratory is not allowed. Page BTF Testing Lab (Shenzhen) Co., Ltd.


Page 139 of 147

Page 140 of 147



Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. E101 -201 and 201 Building 1 Block 2 Tantou Industrial Bark, Tantou Community, Sanagang Street, Baolan Distri-


Page 141 of 147

Page 142 of 147

5. Frequency Stability

5.1 Ant1

5.1.1 Test Result

	ΤХ	Frequency	Temperature	Ant1 Voltage	Measured Frequency	Limit	
Mode	Туре	(MHz)	(°C)	(VAC)	(MHz)	(MHz)	Verdic
		((= /	102	5180.006	5150 to 5250	Pass
		100 million 100	20	120	5180.005	5150 to 5250	Pass
		5180		138	5180.004	5150 to 5250	Pass
			-30	120	5180.004	5150 to 5250	Pass
			-20	120	5180.003	5150 to 5250	Pass
			-10	120	5180.003	5150 to 5250	Pass
			0	120	5180.002	5150 to 5250	Pass
			10	120	5180.001	5150 to 5250	Pass
		100	30	120	5180.001	5150 to 5250	Pass
			40	120	5180.000	5150 to 5250	Pass
			50	120	5180.000	5150 to 5250	Pass
				102	5199.998	5150 to 5250	Pass
			20	120	5199.997	5150 to 5250	Pass
		100		138	5199.997	5150 to 5250	Pass
			-30	120	5199.997	5150 to 5250	Pass
			-20	120	5199.996	5150 to 5250	Pass
		5200	-10	120	5199.996	5150 to 5250	Pass
Carrier Wave		-22	0	120	5199.996	5150 to 5250	Pass
			10	120	5199.996	5150 to 5250	Pass
			30	120	5199.996	5150 to 5250	Pass
	SISO		40	120	5199.996	5150 to 5250	Pass
			50	120	5199.996	5150 to 5250	Pass
	5240			102	5239.995	5150 to 5250	Pass
		100	20	120	5239.995	5150 to 5250	Pass
		5240		138	5239.995	5150 to 5250	Pass
			-30	120	5239.995	5150 to 5250	Pass
			-20	120	5239.994	5150 to 5250	Pass
			-10	120	5239.994	5150 to 5250	Pass
1 N N 1			0	120	5239.994	5150 to 5250	Pass
			10	120	5239.994	5150 to 5250	Pass
			30	120	5239.994	5150 to 5250	Pass
			40	120	5239.994	5150 to 5250	Pass
			50	120	5239.994	5150 to 5250	Pass
			20	102	5259.994	5250 to 5350	Pass
		5260		120	5259.994	5250 to 5350	Pass
				138	5259.993	5250 to 5350	Pass
			-30	120	5259.993	5250 to 5350	Pass
			-20	120	5259.993	5250 to 5350	Pass
			-10	120	5259.993	5250 to 5350	Pass
			0	120	5259.993	5250 to 5350	Pass
			10	120	5259.993	5250 to 5350	Pass

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 144 of 14BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 144 of 147

Test Report Number: BTF240426R00403

		30	120	5259.993	5250 to 5350	Pass
and the		40	120	5259.993	5250 to 5350	Pass
		50	120	5259.993	5250 to 5350	Pass
			102	5299.995	5250 to 5350	Pass
		20	120	5299.994	5250 to 5350	Pass
			138	5299.994	5250 to 5350	Pass
		-30	120	5299.994	5250 to 5350	Pass
		-20	120	5299.994	5250 to 5350	Pass
	5300	-10	120	5299.994	5250 to 5350	Pass
	0000	0	120	5299.993	5250 to 5350	Pass
		10	120	5299.994	5250 to 5350	Pass
		30	120	5299.993	5250 to 5350	Pass
		40	120	5299.993	5250 to 5350	Pass
		50	120	5299.993		
		50			5250 to 5350	Pass
		00	102	5319.994	5250 to 5350	Pass
		20	120	5319.994	5250 to 5350	Pass
the second s			138	5319.993	5250 to 5350	Pass
		-30	120	5319.993	5250 to 5350	Pass
		-20	120	5319.993	5250 to 5350	Pass
	5320	-10	120	5319.993	5250 to 5350	Pass
		0	120	5319.993	5250 to 5350	Pass
		10	120	5319.993	5250 to 5350	Pass
		30	120	5319.993	5250 to 5350	Pass
		40	120	5319.993	5250 to 5350	Pass
		50	120	5319.993	5250 to 5350	Pass
			102	5499.994	5470 to 5725	Pass
		20	120	5499.993	5470 to 5725	Pass
			138	5499.993	5470 to 5725	Pass
		-30	120	5499.993	5470 to 5725	Pass
		-20	120	5499.993	5470 to 5725	Pass
	5500	-10	120	5499.993	5470 to 5725	Pass
	0000	0	120	5499.993	5470 to 5725	Pass
		10	120	5499.993	5470 to 5725	Pass
		30	120	5499.993	5470 to 5725	Pass
		40	120	5499.993	5470 to 5725	Pass
		50	120			
and the		50	120	<u>5499.993</u> 5579.994	5470 to 5725 5470 to 5725	Pass
		20				Pass
10.000		20	120	5579.994	5470 to 5725	Pass
			138	5579.993	5470 to 5725	Pass
		-30	120	5579.993	5470 to 5725	Pass
		-20	120	5579.993	5470 to 5725	Pass
	5580	-10	120	5579.993	5470 to 5725	Pass
and the second sec		0	120	5579.993	5470 to 5725	Pass
		10	120	5579.993	5470 to 5725	Pass
		30	120	5579.993	5470 to 5725	Pass
		40	120	5579.993	5470 to 5725	Pass
		50	120	5579.993	5470 to 5725	Pass
			102	5699.994	5470 to 5725	Pass
		20	120	5699.993	5470 to 5725	Pass
	5700		138	5699.993	5470 to 5725	Pass
	5700	-30	120	5699.993	5470 to 5725	Pass
		-20	120	5699.993	5470 to 5725	Pass
		-10	120	5699.993	5470 to 5725	Pass

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 145 of 14BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 145 of 147

Test Report Number: BTF240426R00403

10 120 5699.993 5470 to 5725 F 30 120 5699.993 5470 to 5725 F 40 120 5699.992 5470 to 5725 F 50 120 5699.992 5470 to 5725 F 50 120 5699.992 5470 to 5725 F 20 120 5744.992 5725 to 5850 F 20 120 5744.991 5725 to 5850 F -30 120 5744.991 5725 to 5850 F -30 120 5744.991 5725 to 5850 F -20 120 5744.991 5725 to 5850 F	Pass Pass Pass Pass Pass Pass Pass Pass
40 120 5699.992 5470 to 5725 F 50 120 5699.992 5470 to 5725 F 102 5744.992 5725 to 5850 F 20 120 5744.991 5725 to 5850 F 138 5744.991 5725 to 5850 F -30 120 5744.991 5725 to 5850 F -20 120 5744.991 5725 to 5850 F	Pass Pass Pass Pass Pass Pass
50 120 5699.992 5470 to 5725 F 102 5744.992 5725 to 5850 F 20 120 5744.991 5725 to 5850 F 138 5744.991 5725 to 5850 F -30 120 5744.991 5725 to 5850 F -20 120 5744.991 5725 to 5850 F	Pass Pass Pass Pass Pass
102 5744.992 5725 to 5850 F 20 120 5744.991 5725 to 5850 F 138 5744.991 5725 to 5850 F -30 120 5744.991 5725 to 5850 F -20 120 5744.991 5725 to 5850 F	Pass Pass Pass Pass
102 5744.992 5725 to 5850 F 20 120 5744.991 5725 to 5850 F 138 5744.991 5725 to 5850 F -30 120 5744.991 5725 to 5850 F -20 120 5744.991 5725 to 5850 F	Pass Pass Pass Pass
20 120 5744.991 5725 to 5850 F 138 5744.991 5725 to 5850 F -30 120 5744.991 5725 to 5850 F -20 120 5744.991 5725 to 5850 F	Pass Pass
-301205744.9915725 to 5850F-201205744.9915725 to 5850F	Pass
-20 120 5744.991 5725 to 5850 F	
	Pass
5745 10 120 5744 001 5725 to 5950 5	
0145 - 10 120 0144.991 0120 01744.991	Pass
0 120 5744.991 5725 to 5850 F	Pass
10 120 5744.991 5725 to 5850 F	Pass
30 120 5744.991 5725 to 5850 F	Pass
40 120 5744.991 5725 to 5850 F	Pass
50 120 5744.991 5725 to 5850 F	Pass
102 5784.991 5725 to 5850 F	Pass
20 120 5784.991 5725 to 5850 F	Pass
138 5784.991 5725 to 5850 F	Pass
-30 120 5784.991 5725 to 5850 F	Pass
-20 120 5784.991 5725 to 5850 F	Pass
5785 -10 120 5784.991 5725 to 5850 F	Pass
0 120 5784.991 5725 to 5850 F	Pass
10 120 5784.991 5725 to 5850 F	Pass
30 120 5784.991 5725 to 5850 F	Pass
40 120 5784.991 5725 to 5850 F	Pass
50 120 5784.991 5725 to 5850 F	Pass
102 5824.994 5725 to 5850 F	Pass
	Pass
138 5824.993 5725 to 5850 F	Pass
-30 120 5824.993 5725 to 5850 F	Pass
-20 120 5824.993 5725 to 5850 F	Pass
	Pass
	Pass
	Pass
30 120 5824.993 5725 to 5850 F	Pass
	Pass
50 120 5824.993 5725 to 5850 F	Pass

6. Form731

6.1 Form731

6.1.1 Test Result

Lower Freq (MHz)	High Freq (MHz)	MAX Power (W)	MAX Power (dBm)
5180	5240	0.0112	10.49
5260	5320	0.0095	9.76
5500	5700	0.0095	9.76
5745	5825	0.0094	9.75

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 146 of 14BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 146 of 147

Test Report Number: BTF240426R00403

BTF Testing Lab (Shenzhen) Co., Ltd.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

www.btf-lab.com

-- END OF REPORT --