

APPENDIX C: PROBE AND DIPOLE CALIBRATION CERTIFICATES

# **Calibration Laboratory of**

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage С
  - Servizio svizzero di taratura
- S **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Element Morgan Hill, USA Certificate No. CLA13-1004\_Nov23

CALIBRATION CERTIFICATE CLA13 - SN: 1004 Object 11/29/2023 QA CAL-15.v10 Calibration procedure(s) Calibration Procedure for SAR Validation Sources below 700 MHz November 09, 2023 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Scheduled Calibration Cal Date (Certificate No.) ID # Primary Standards 30-Mar-23 (No. 217-03804/03805) Mar-24 Power meter NRP2 SN: 104778 Mar-24 SN: 103244 30-Mar-23 (No. 217-03804) Power sensor NRP-Z91 30-Mar-23 (No. 217-03805) Mar-24 Power sensor NRP-Z91 SN: 103245 Mar-24 30-Mar-23 (No. 217-03809) SN: CC2552 (20x) Reference 20 dB Attenuator Mar-24 SN: 310982 / 06327 30-Mar-23 (No. 217-03810) Type-N mismatch combination Jan-24 **Reference Probe EX3DV4** SN: 3877 06-Jan-23 (No. EX3-3877\_Jan23) DAE4 SN: 654 27-Jan-23 (No. DAE4-654\_Jan23) Jan-24 Scheduled Check Check Date (in house) Secondary Standards ID # In house check: Dec-24 08-Nov-21 (in house check Dec-22) Power meter NRP2 SN: 107193 In house check: Dec-24 SN: 100922 15-Dec-09 (in house check Dec-22) Power sensor NRP-Z91 In house check: Dec-24 SN: 100418 01-Jan-04 (in house check Dec-22) Power sensor NRP-Z91 In house check: Jun-24 SN: US3642U01700 04-Aug-99 (in house check Jun-22) **RF** generator HP 8648C 31-Mar-14 (in house check Oct-22) In house check: Oct-24 Network Analyzer Agilent E8358A SN: US41080477 Signature Name Function Laboratory Technician Calibrated by: Jeton Kastrati Sven Kühn Technical Manager Approved by: Issued: November 14, 2023 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

# Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst

S Schweizerischer Kalibrierdie C Service suisse d'étalonnage

Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

| tissue simulating liquid<br>sensitivity in TSL / NORM x,y,z |
|-------------------------------------------------------------|
| not applicable or not measured                              |

# Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

## Additional Documentation:

c) DASY System Handbook

## Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- *Return Loss:* This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

# **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version         | DASY5                        | V52.10.4                         |  |  |
|----------------------|------------------------------|----------------------------------|--|--|
| Extrapolation        | Advanced Extrapolation       |                                  |  |  |
| Phantom              | ELI4 Flat Phantom            | Shell thickness: 2 ± 0.2 mm      |  |  |
| EUT Positioning      | Touch Position               |                                  |  |  |
| Zoom Scan Resolution | dx, dy = 4.0 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) |  |  |
| Frequency            | 13 MHz ± 1 MHz               |                                  |  |  |

#### **Head TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 55.0         | 0.75 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 53.4 ± 6 %   | 0.71 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

# SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition        |                           |
|-------------------------------------------------------|------------------|---------------------------|
| SAR measured                                          | 1 W input power  | 0.557 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W | 0.578 W/kg ± 18.4 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition        |                           |
|---------------------------------------------------------|------------------|---------------------------|
| SAR measured                                            | 1 W input power  | 0.343 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W | 0.356 W/kg ± 18.0 % (k=2) |

# Appendix (Additional assessments outside the scope of SCS 0108)

# Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 55.4 Ω - 1.8 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 25.3 dB       |

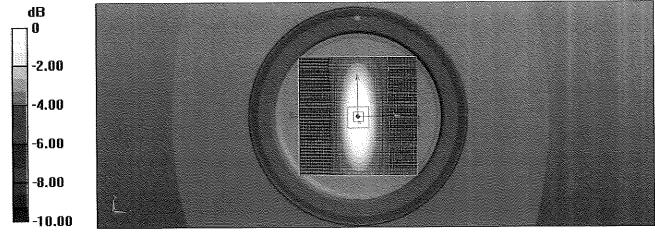
# Additional EUT Data

| Manufactured by | SPEAG |
|-----------------|-------|
|                 |       |

# **DASY5 Validation Report for Head TSL**

Date: 09.11.2023

Test Laboratory: SPEAG, Zurich, Switzerland


#### DUT: CLA13; Type: CLA13; Serial: CLA13 - SN: 1004

Communication System: UID 0 - CW; Frequency: 13 MHz Medium parameters used: f = 13 MHz;  $\sigma = 0.71$  S/m;  $\epsilon_r = 53.4$ ;  $\rho = 1000$  kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3877; ConvF(15.33, 15.33, 15.33) @ 13 MHz; Calibrated: 06.01.2023
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn654; Calibrated: 27.01.2023
- Phantom: ELI v6.0; Type: QDOVA003AA; Serial: TP:2034
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

CLA Calibration for HSL-LF Tissue/CLA-13, touch configuration, Pin=1W/Zoom Scan, dist=1.4mm (8x10x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 30.69 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 1.16 W/kg SAR(1 g) = 0.557 W/kg; SAR(10 g) = 0.343 W/kg Smallest distance from peaks to all points 3 dB below = 22.9 mm Ratio of SAR at M2 to SAR at M1 = 77.8% Maximum value of SAR (measured) = 0.832 W/kg



0 dB = 0.832 W/kg = -0.80 dBW/kg

# Impedance Measurement Plot for Head TSL

| <u>F</u> ile                           | ⊻iew                                                       | Channel                                 | Sw <u>e</u> ep   | Calibration | <u>Trace Scale</u> | , M <u>a</u> rker | System | <u>W</u> indow | <u>H</u> elp              |                       |
|----------------------------------------|------------------------------------------------------------|-----------------------------------------|------------------|-------------|--------------------|-------------------|--------|----------------|---------------------------|-----------------------|
|                                        |                                                            |                                         |                  |             | A                  |                   |        |                | 3.000000 MHz<br>8.9486 nF | 55.449 Ω<br>-1.7824 Ω |
|                                        | Ch1: St                                                    | Ch 1 Avg =<br>art 10.0000 f             |                  | 2000)       |                    | ·······           |        |                |                           | Stop 16.0000 MHz      |
| -13<br>-16<br>-17<br>-17<br>-27<br>-27 | 90<br>00<br>00<br>00<br>00<br>9.00<br>9.00<br>9.00<br>9.00 | <u>Ch 1 Awg</u><br>ant 10.0000<br>CH 1: | 20<br>bolH2 ==== |             | C* 1-Port          |                   | Avg=20 |                | 3.00000 MHz               | -25.304 dB            |

#### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Client





S

Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

PCTest

Certificate No: D2450V2-921\_Nov21

CALIBRATION CERTIFICATE D2450V2 - SN:921 Object QA CAL-05.v11 Calibration procedure(s) Calibration Procedure for SAR Validation Sources between 0.7-3 GHz 12/9/21 Calibration date: November 09, 2021 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). 12/14/2022 The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. YW 12/13/2023 All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) ID # **Primary Standards** Cal Date (Certificate No.) Scheduled Calibration Power meter NRP SN: 104778 09-Apr-21 (No. 217-03291/03292) Apr-22 Power sensor NRP-Z91 SN: 103244 09-Apr-21 (No. 217-03291) Apr-22 Power sensor NRP-Z91 SN: 103245 09-Apr-21 (No. 217-03292) Apr-22 Reference 20 dB Attenuator SN: BH9394 (20k) 09-Apr-21 (No. 217-03343) Apr-22 Type-N mismatch combination SN: 310982 / 06327 09-Apr-21 (No. 217-03344) Apr-22 Reference Probe EX3DV4 SN: 7349 28-Dec-20 (No. EX3-7349\_Dec20) Dec-21 DAE4 SN: 601 01-Nov-21 (No. DAE4-601\_Nov21) Nov-22 Secondary Standards ID # Check Date (in house) Scheduled Check Power meter E4419B SN: GB39512475 30-Oct-14 (in house check Oct-20) In house check: Oct-22 Power sensor HP 8481A SN: US37292783 07-Oct-15 (in house check Oct-20) In house check: Oct-22 Power sensor HP 8481A SN: MY41092317 07-Oct-15 (in house check Oct-20) In house check: Oct-22 RF generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Oct-20) In house check: Oct-22 Network Analyzer Agilent E8358A SN: US41080477 31-Mar-14 (in house check Oct-20) In house check: Oct-22 Name Function Signature Calibrated by: Michael Weber Laboratory Technician Approved by: Niels Kuster **Quality Manager** Issued: November 11, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

# **Calibration Laboratory of**

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage С
- Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

## Glossarv:

| TSL   | tissue simulating liquid        |
|-------|---------------------------------|
| ConvF | sensitivity in TSL / NORM x,y,z |
| N/A   | not applicable or not measured  |

# **Calibration is Performed According to the Following Standards:**

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

# Additional Documentation:

c) DASY System Handbook

# Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

#### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY52                 | V52.10.4                               |
|------------------------------|------------------------|----------------------------------------|
| Extrapolation                | Advanced Extrapolation |                                        |
| Phantom                      | Modular Flat Phantom   |                                        |
| Distance Dipole Center - TSL | 10 mm                  | with Spacer                            |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm      | ···· · · · · · · · · · · · · · · · · · |
| Frequency                    | 2450 MHz ± 1 MHz       |                                        |

#### **Head TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 39.2         | 1.80 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 39.1 ± 6 %   | 1.87 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

# SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 13.8 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 54.2 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          | , , , , , , , , , , , , , , , , , , , |
|---------------------------------------------------------|--------------------|---------------------------------------|
| SAR measured                                            | 250 mW input power | 6.43 W/kg                             |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 25.5 W/kg ± 16.5 % (k=2)              |

# **Body TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 52.7         | 1.95 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 51.2 ± 6 %   | 2.01 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

# SAR result with Body TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 12.7 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 49.7 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 5.98 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 23.6 W/kg ± 16.5 % (k=2) |

## Appendix (Additional assessments outside the scope of SCS 0108)

#### Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 52.7 Ω + 6.6 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 23.2 dB       |

#### Antenna Parameters with Body TSL

| Impedance, transformed to feed point | 49.9 Ω + 7.9 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 22.1 dB       |

#### **General Antenna Parameters and Design**

|                                  | 4 4 4 0  |
|----------------------------------|----------|
| Electrical Delay (one direction) | 1.148 ns |

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### Additional EUT Data

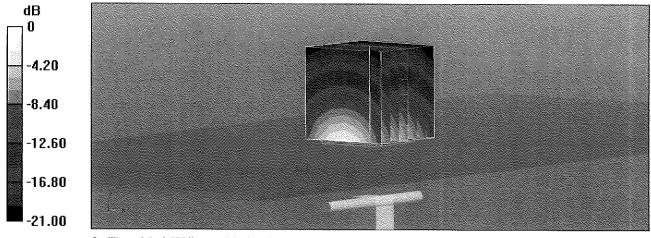
| Manufactured by | SPEAG |
|-----------------|-------|

## **DASY5 Validation Report for Head TSL**

Date: 09.11.2021

Test Laboratory: SPEAG, Zurich, Switzerland

#### DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:921


Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz;  $\sigma$  = 1.87 S/m;  $\epsilon_r$  = 39.1;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.96, 7.96, 7.96) @ 2450 MHz; Calibrated: 28.12.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 01.11.2021
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

#### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 118.8 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 26.7 W/kg SAR(1 g) = 13.8 W/kg; SAR(10 g) = 6.43 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 51.8% Maximum value of SAR (measured) = 22.4 W/kg



0 dB = 22.4 W/kg = 13.49 dBW/kg

# Impedance Measurement Plot for Head TSL

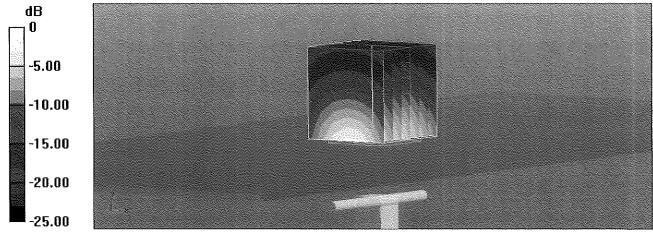
| Ch 1 Avg = 20<br>Ch 1: Start 2.25000 GHz                                                                     |   | 1: 2.450000 G<br>427.22<br>2.450000 G | pH 8.5765 Ω      |
|--------------------------------------------------------------------------------------------------------------|---|---------------------------------------|------------------|
| Ch1: Start 2.25000 GHz                                                                                       |   |                                       | Stop 2.65000 GHz |
| 0.00                                                                                                         | 1 |                                       |                  |
| -10.00<br>-15.00<br>-20.00<br>-25.00<br>-30.00<br>-35.00<br>-40.00<br>Ch1 Avg = 20<br>Ch1: Start 2.25000 GHz |   | > 1 2.450000 G                        | Hz -23.206 dB    |

## **DASY5 Validation Report for Body TSL**

Date: 09.11.2021

Test Laboratory: SPEAG, Zurich, Switzerland

#### DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:921


Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz;  $\sigma$  = 2.01 S/m;  $\epsilon_r$  = 51.2;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.12, 8.12, 8.12) @ 2450 MHz; Calibrated: 28.12.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 01.11.2021
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

#### Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 108.3 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 23.5 W/kg SAR(1 g) = 12.7 W/kg; SAR(10 g) = 5.98 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 54.9% Maximum value of SAR (measured) = 19.9 W/kg



0 dB = 19.9 W/kg = 12.99 dBW/kg

# Impedance Measurement Plot for Body TSL

| File           | ⊻iew              | <u>C</u> hannel                    | Sw <u>e</u> ep | Calibration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>Trace</u> <u>S</u> cale             | e M <u>a</u> rker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | System V  | <u>/</u> indow <u>F</u> | <u>i</u> elp                   |                          |             |                                                              |
|----------------|-------------------|------------------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------|--------------------------------|--------------------------|-------------|--------------------------------------------------------------|
|                |                   |                                    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | North Market            | 450000 G<br>511.02<br>450000 G | pН                       | 7,1<br>78,4 | .915 Ω<br>3666 Ω<br>95 mU<br>8.116 °                         |
| c              | ch1: Sta          | Ch 1 Avg =<br>art 2,25000 (        | 3Hz            | Comm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |                         |                                |                          | Stop 2.     | 65000 GHz                                                    |
| 10.00<br>5.00  | 3.                | 9B 811                             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | > 1       | . 2                     | .450000 C                      | 1-12                     | -22.        | 103 dB                                                       |
| 0.00           |                   |                                    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                         |                                |                          |             |                                                              |
| -10,0          | ю                 |                                    |                | <b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                         |                                |                          |             | an di daine genome di da |
| -15.0<br>-20.0 |                   |                                    |                | Manager and and a second and a | ······································ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                         |                                |                          |             |                                                              |
| -25.0          |                   |                                    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        | and the second s |           |                         |                                |                          |             |                                                              |
| -30.0<br>-35.0 | 30 -              |                                    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                         |                                |                          |             |                                                              |
| 40.0           | 00  <br>Chit: Sta | <u>Ch 1 Avg =</u><br>art 2.25000 ( | 20<br>GHz      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>  |                         |                                |                          | Stop 2.     | 65000 GHz                                                    |
| Stat           | tus               | CH 1: 5                            | 511            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C* 1-Port                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Avg=20 Di | elay                    |                                | nasillassanasilsada<br>A |             | CL                                                           |



Element Materials Technology Morgan Hill 18855 Adams Ct, Morgan Hill, CA 95037 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.element.com



# **Certification of Calibration**

Object

D2450V2 - SN: 921

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extended Calibration date:

November 09, 2022

Description:

SAR Validation Dipole at 2450 MHz.

#### Calibration Equipment used:

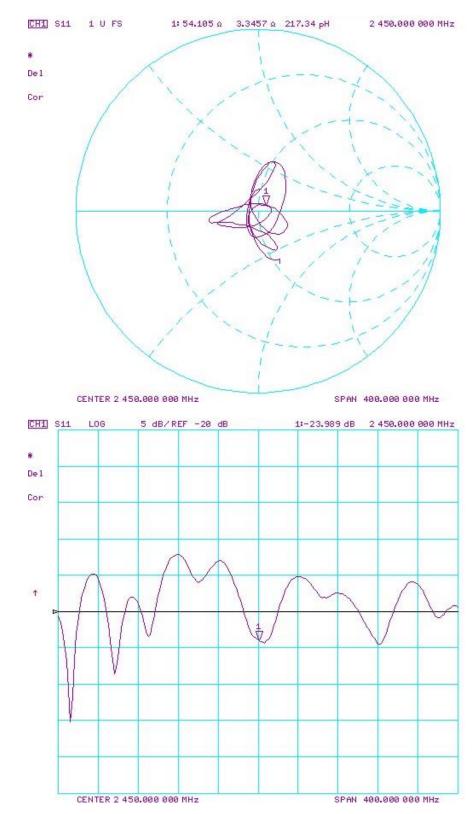
| Manufacturer       | Model         | Description                         | Cal Date   | Cal Interval | Cal Due    | Serial Number |
|--------------------|---------------|-------------------------------------|------------|--------------|------------|---------------|
| Agilent            | 8753ES        | S-Parameter Vector Network Analyzer | 12/17/2021 | Annual       | 12/17/2022 | MY40000670    |
| Agilent            | E4438C        | ESG Vector Signal Generator         | 3/24/2022  | Annual       | 3/24/2023  | MY45093678    |
| Amplifier Research | 15S1G6        | Amplifier                           | CBT        | N/A          | CBT        | 343972        |
| Anritsu            | ML2495A       | Power Meter                         | 3/17/2022  | Annual       | 3/17/2023  | 0941001       |
| Anritsu            | MA2411B       | Pulse Power Sensor                  | 3/2/2022   | Annual       | 3/2/2023   | 1126066       |
| Anritsu            | MA2411B       | Pulse Power Sensor                  | 3/28/2022  | Annual       | 3/28/2023  | 1339007       |
| Traceable          | 4040 90080-06 | Therm./ Clock/ Humidity Monitor     | 5/11/2022  | Biennial     | 5/11/2024  | 221514974     |
| Control Company    | 4353          | Long Stem Thermometer               | 9/10/2021  | Biennial     | 9/10/2023  | 210774685     |
| Agilent            | 85033E        | 3.5mm Standard Calibration Kit      | 6/21/2022  | Annual       | 6/21/2023  | MY53402352    |
| Mini-Circuits      | VLF-6000+     | Low Pass Filter DC to 6000 MHz      | CBT        | N/A          | CBT        | N/A           |
| Narda              | 4772-3        | Attenuator (3dB)                    | CBT        | N/A          | CBT        | 9406          |
| Mini-Circuits      | ZHDC-16-63-S+ | 50-6000MHz Bidirectional Coupler    | CBT        | N/A          | CBT        | N/A           |
| Pasternack         | NC-100        | Torque Wrench                       | 3/19/2022  | Annual       | 3/19/2023  | N/A           |
| SPEAG              | DAK-3.5       | Dielectric Assessment Kit           | 4/11/2022  | Annual       | 4/11/2023  | 1323          |
| SPEAG              | EX3DV4        | SAR Probe                           | 3/22/2022  | Annual       | 3/22/2023  | 7421          |
| SPEAG              | EX3DV4        | SAR Probe                           | 1/19/2022  | Annual       | 1/19/2023  | 3837          |
| SPEAG              | DAE4          | Dasy Data Acquisition Electronics   | 3/22/2022  | Annual       | 3/22/2023  | 604           |
| SPEAG              | DAE4          | Dasy Data Acquisition Electronics   | 1/13/2022  | Annual       | 1/13/2023  | 793           |

Measurement Uncertainty =  $\pm 23\%$  (k=2)

|                | Name            | Function                         | Signature |
|----------------|-----------------|----------------------------------|-----------|
| Calibrated By: | Arturo Oliveros | Associate Compliance<br>Engineer | AG        |
| Approved By:   | Kaitlin O'Keefe | Managing Director                | ROK       |

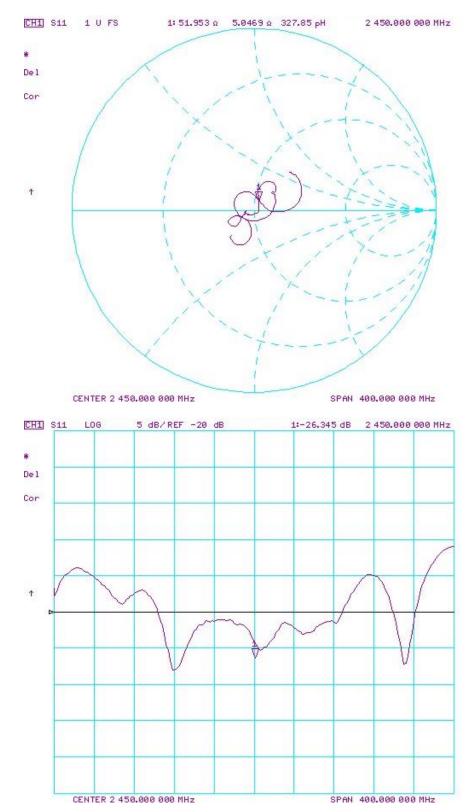
| Object:           | Date Issued: | Page 1 of 4 |
|-------------------|--------------|-------------|
| D2450V2 – SN: 921 | 11/09/2022   | Page 1 of 4 |

# **DIPOLE CALIBRATION EXTENSION**


Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than  $5\Omega$  from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:


| Calibration<br>Date | Extension<br>Date | Certificate<br>Electrical Delay<br>(ns) | Certificate SAR<br>Target Head (1g)<br>W/kg @ 20.0<br>dBm | Measured Head<br>SAR (1g) W/kg<br>@ 20.0 dBm | Deviation<br>1g (%) | Certificate SAR<br>Target Head (10g)<br>W/kg @ 20.0<br>dBm | Measured Head                                 | Deviation<br>10g (%) | Certificate<br>Impedance Head<br>(Ohm) Real | Measured<br>Impedance Head<br>(Ohm) Real |                          | Certificate<br>Impedance Head<br>(Ohm) Imaginary |     |                                  | Certificate<br>Return Loss<br>Head (dB) | Measured<br>Return Loss<br>Head (dB) | Deviation<br>(%) | PASS/FAIL |
|---------------------|-------------------|-----------------------------------------|-----------------------------------------------------------|----------------------------------------------|---------------------|------------------------------------------------------------|-----------------------------------------------|----------------------|---------------------------------------------|------------------------------------------|--------------------------|--------------------------------------------------|-----|----------------------------------|-----------------------------------------|--------------------------------------|------------------|-----------|
| 11/9/2021           | 11/9/2022         | 1.148                                   | 5.42                                                      | 5.47                                         | 0.92%               | 2.55                                                       | 2.56                                          | 0.39%                | 52.7                                        | 54.1                                     | 1.4                      | 6.6                                              | 3.3 | 3.3                              | -23.2                                   | -24                                  | -3.40%           | PASS      |
|                     |                   |                                         |                                                           |                                              |                     |                                                            |                                               |                      |                                             |                                          |                          |                                                  |     |                                  |                                         |                                      |                  |           |
| Calibration<br>Date | Extension<br>Date | Certificate<br>Electrical Delay<br>(ns) | Certificate SAR<br>Target Body (1g)<br>W/kg @ 20.0<br>dBm | Measured Body<br>SAR (1g) W/kg<br>@ 20.0 dBm | Deviation<br>1g (%) | Certificate SAR<br>Target Body (10g)<br>W/kg @ 20.0<br>dBm | Measured Body<br>SAR (10g) W/kg<br>@ 20.0 dBm | Deviation<br>10g (%) | Certificate<br>Impedance Body<br>(Ohm) Real | Measured<br>Impedance Body<br>(Ohm) Real | Difference<br>(Ohm) Real | Certificate<br>Impedance Body<br>(Ohm) Imaginary |     | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Body (dB) | Measured<br>Return Loss<br>Body (dB) | Deviation<br>(%) | PASS/FAIL |
| 11/9/2021           | 11/9/2022         | 1.148                                   | 4.97                                                      | 5.03                                         | 1.21%               | 2.36                                                       | 2.34                                          | -0.85%               | 49.9                                        | 52                                       | 2.1                      | 7.9                                              | 5   | 2.9                              | -22.1                                   | -26.3                                | -19.20%          | PASS      |

| Object:           | Date Issued: | Page 2 of 4 |
|-------------------|--------------|-------------|
| D2450V2 – SN: 921 | 11/09/2022   | rage 2 014  |



Impedance & Return-Loss Measurement Plot for Head TSL

| Object:           | Date Issued: | Page 3 of 4 |
|-------------------|--------------|-------------|
| D2450V2 – SN: 921 | 11/09/2022   | Page 3 of 4 |



Impedance & Return-Loss Measurement Plot for Body TSL

| Object:           | Date Issued: | Dage 4 of 4 |
|-------------------|--------------|-------------|
| D2450V2 – SN: 921 | 11/09/2022   | Page 4 of 4 |



ELEMENT MATERIALS TECHNOLOGY

(formerly PCTEST) 18855 Adams Ct, Morgan Hill, CA 95037 USA Tel. +1.408.538.5600 http://www.element.com



# **Certification of Calibration**

Object

D2450V2 – SN: 921

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extension Calibration date: November 9, 2023

Description:

SAR Validation Dipole at 2450 MHz.

## Calibration Equipment used:

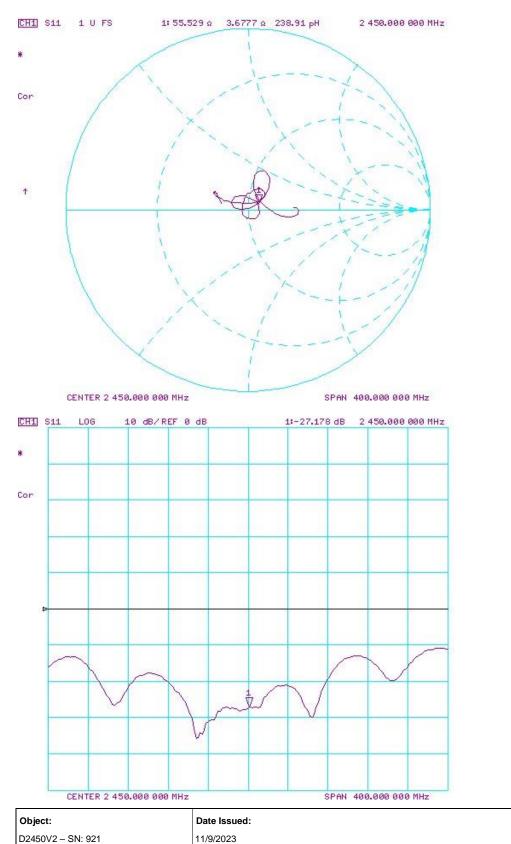
| Manufacturer       | Model         | Description                         | Cal Date   | Cal Interval | Cal Due    | Serial Number |
|--------------------|---------------|-------------------------------------|------------|--------------|------------|---------------|
| Agilent            | 8753ES        | S-Parameter Vector Network Analyzer | 6/2/2023   | Annual       | 6/12/2024  | MY40003841    |
| Agilent            | E4438C        | ESG Vector Signal Generator         | 4/25/2023  | Annual       | 4/25/2024  | US41460739    |
| Amplifier Research | 15S1G6        | Amplifier                           | CBT        | N/A          | CBT        | 343972        |
| Rohde & Schwarz    | NRX           | Power Meter                         | 1/11/2023  | Annual       | 1/11/2024  | 102583        |
| Rohde & Schwarz    | NRP-Z81       | Wide Band Power Sensor              | 1/19/2023  | Annual       | 1/19/2024  | 106563        |
| Rohde & Schwarz    | NRP-Z81       | Wide Band Power Sensor              | 1/11/2023  | Annual       | 1/11/2024  | 106564        |
| Traceable          | 4040 90080-06 | Therm./ Clock/ Humidity Monitor     | 5/11/2022  | Biennial     | 5/11/2024  | 221514974     |
| Control Company    | 4353          | Ultra Long Stem Thermometer         | 10/24/2023 | Annual       | 10/24/2024 | 200645916     |
| Agilent            | 85033E        | 3.5mm Standard Calibration Kit      | 7/18/2023  | Annual       | 7/18/2024  | MY53402352    |
| Mini-Circuits      | VLF-6000+     | Low Pass Filter DC to 6000 MHz      | CBT        | N/A          | CBT        | N/A           |
| Narda              | 4772-3        | Attenuator (3dB)                    | CBT        | N/A          | CBT        | 9406          |
| Mini-Circuits      | ZHDC-16-63-S+ | 50-6000MHz Bidirectional Coupler    | CBT        | N/A          | CBT        | N/A           |
| Pasternack         | NC-100        | Torque Wrench                       | 12/5/2022  | Biennial     | 12/5/2024  | N/A           |
| SPEAG              | DAK-3.5       | Dielectric Assessment Kit           | 5/9/2023   | Annual       | 5/9/2024   | 1070          |
| SPEAG              | EX3DV4        | SAR Probe                           | 4/18/2023  | Annual       | 4/18/2024  | 7532          |
| SPEAG              | DAE4          | Dasy Data Acquisition Electronics   | 4/14/2023  | Annual       | 4/14/2024  | 501           |

Measurement Uncertainty =  $\pm 23\%$  (k=2)

|                | Name            | Function                      | Signature |
|----------------|-----------------|-------------------------------|-----------|
| Calibrated By: | Arturo Oliveros | Compliance Engineer           | AG        |
| Approved By:   | Greg Snyder     | Executive VP of<br>Operations | Lugg M.S. |

| Object:           | Date Issued: | Page 1 of 3 |
|-------------------|--------------|-------------|
| D2450V2 – SN: 921 | 11/9/2023    | Fage 1015   |

# **DIPOLE CALIBRATION EXTENSION**


Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than  $5\Omega$  from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

| Calibrati<br>Date | on Extension Date | Certificate<br>Electrical<br>Delay (ns) | Certificate<br>SAR Target<br>Head (1g)<br>W/kg @ 20.0<br>dBm | Measured<br>Head SAR (1g)<br>W/kg @ 20.0<br>dBm | Deviation 1g (%) | Certificate<br>SAR Target<br>Head (10g)<br>W/kg @ 20.0<br>dBm | Measured<br>Head SAR<br>(10g) W/kg @<br>20.0 dBm | Deviation 10g (%) | Certificate<br>Impedance<br>Head (Ohm)<br>Real | Measured<br>Impedance<br>Head (Ohm)<br>Real | Difference<br>(Ohm) Real |     | Measured<br>Impedance<br>Head (Ohm)<br>Imaginary | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Head (dB) | Measured<br>Return Loss<br>Head (dB) | Deviation (%) |
|-------------------|-------------------|-----------------------------------------|--------------------------------------------------------------|-------------------------------------------------|------------------|---------------------------------------------------------------|--------------------------------------------------|-------------------|------------------------------------------------|---------------------------------------------|--------------------------|-----|--------------------------------------------------|----------------------------------|-----------------------------------------|--------------------------------------|---------------|
| 11/9/20           | 1 11/9/2023       | 1.148                                   | 5.42                                                         | 5.43                                            | 0.18%            | 2.55                                                          | 2.48                                             | -2.75%            | 52.7                                           | 55.5                                        | 2.8                      | 6.6 | 3.7                                              | 2.9                              | -23.2                                   | -27.2                                | -17.10%       |

| Object:           | Date Issued: | Page 2 of 3 |
|-------------------|--------------|-------------|
| D2450V2 – SN: 921 | 11/9/2023    | rage 2 01 5 |



#### Impedance & Return-Loss Measurement Plot for Head TSL

#### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland



S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage

- Servizio svizzero di taratura
- S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

1

Client Element

Certificate No: D5GHzV2-1066\_Nov22

# CALIBRATION CERTIFICATE

| Object                                                                   | D5GHzV2 - SN:1                                            | 066                                                                                            | VATM                       |
|--------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------|
| Calibration procedure(s)                                                 | QA CAL-22.v6                                              |                                                                                                |                            |
|                                                                          | Calibration Proce                                         | edure for SAR Validation Source                                                                | s between 3-10 GHz         |
|                                                                          |                                                           |                                                                                                | 12/6/22                    |
| Calibration date:                                                        | November 17, 20                                           | ) <u>22</u>                                                                                    | ✓ YW 12/5/20               |
| This calibration certificate documer<br>The measurements and the uncerte | its the traceability to nati<br>ainties with confidence p | onal standards, which realize the physical ur<br>robability are given on the following pages a | nits of measurements (SI). |
|                                                                          |                                                           | y facility: environment temperature (22 $\pm$ 3)°                                              |                            |
| Calibration Equipment used (M&TE                                         |                                                           |                                                                                                |                            |
| Primary Standards                                                        | ID #                                                      | Cal Date (Certificate No.)                                                                     | Scheduled Calibration      |
| ower meter NRP                                                           | SN: 104778                                                | 04-Apr-22 (No. 217-03525/03524)                                                                | Apr-23                     |
| ower sensor NRP-Z91                                                      | SN: 103244                                                | 04-Apr-22 (No. 217-03524)                                                                      | Apr-23                     |
| ower sensor NRP-Z91                                                      | SN: 103245                                                | 04-Apr-22 (No. 217-03525)                                                                      | Apr-23                     |
| leference 20 dB Attenuator                                               | SN: BH9394 (20k)                                          | 04-Apr-22 (No. 217-03527)                                                                      | Apr-23                     |
| ype-N mismatch combination                                               | SN: 310982 / 06327                                        | 04-Apr-22 (No. 217-03528)                                                                      | Apr-23                     |
| leference Probe EX3DV4                                                   | SN: 3503                                                  | 08-Mar-22 (No. EX3-3503_Mar22)                                                                 | Mar-23                     |
| DAE4                                                                     | SN: 601                                                   | 31-Aug-22 (No. DAE4-601_Aug22)                                                                 | Aug-23                     |
| Secondary Standards                                                      | ID #                                                      | Check Date (in house)                                                                          | Scheduled Check            |
| ower meter E4419B                                                        | SN: GB39512475                                            | 30-Oct-14 (in house check Oct-22)                                                              | In house check: Oct-24     |
| ower sensor HP 8481A                                                     | SN: US37292783                                            | 07-Oct-15 (in house check Oct-22)                                                              | In house check: Oct-24     |
| ower sensor HP 8481A                                                     | SN: MY41093315                                            | 07-Oct-15 (in house check Oct-22)                                                              | In house check: Oct-24     |
| IF generator R&S SMT-06                                                  | SN: 100972                                                | 15-Jun-15 (in house check Oct-22)                                                              | In house check: Oct-24     |
| letwork Analyzer Agilent E8358A                                          | SN: US41080477                                            | 31-Mar-14 (in house check Oct-22)                                                              | In house check: Oct-24     |
|                                                                          | Name                                                      | Function                                                                                       | Signature                  |
| Calibrated by:                                                           | Jeffrey Katzman                                           | Laboratory Technician                                                                          | d. kt                      |
| Approved by:                                                             | Sven Kühn                                                 | Technical Manager                                                                              | 5. (                       |
|                                                                          |                                                           | full without written approval of the laboratory                                                | Issued: November 17, 2022  |

# **Calibration Laboratory of**

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage С
  - Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

### Glossarv:

| TSL   | tissue simulating liquid        |
|-------|---------------------------------|
| ConvF | sensitivity in TSL / NORM x,y,z |
| N/A   | not applicable or not measured  |

# Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)". October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

# Additional Documentation:

c) DASY System Handbook

## Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end 0 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled Ø phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power. 0
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna ۲ connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the 0 nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

#### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY52                                                                       | V52.10.4                               |
|------------------------------|------------------------------------------------------------------------------|----------------------------------------|
| Extrapolation                | Advanced Extrapolation                                                       |                                        |
| Phantom                      | Modular Flat Phantom V5.0                                                    | ······································ |
| Distance Dipole Center - TSL | 10 mm                                                                        | with Spacer                            |
| Zoom Scan Resolution         | dx, dy = 4.0 mm, dz = 1.4 mm                                                 | Graded Ratio = 1.4 (Z direction)       |
| Frequency                    | 5250 MHz ± 1 MHz<br>5600 MHz ± 1 MHz<br>5750 MHz ± 1 MHz<br>5850 MHz ± 1 MHz |                                        |

#### Head TSL parameters at 5250 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.9         | 4.71 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 36.0 ± 6 %   | 4.60 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Head TSL at 5250 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL                   | Condition                    |                          |
|-------------------------------------------------------------------------|------------------------------|--------------------------|
| SAR measured                                                            | 100 mW input power           | 8.03 W/kg                |
| SAR for nominal Head TSL parameters                                     | normalized to 1W             | 80.3 W/kg ± 19.9 % (k=2) |
| ·····                                                                   |                              | ·                        |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL                 | condition                    |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL<br>SAR measured | condition 100 mW input power | 2.31 W/kg                |

#### Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.5         | 5.07 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 35.4 ± 6 %   | 4.97 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Head TSL at 5600 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 8.40 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 83.9 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.41 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 24.1 W/kg ± 19.5 % (k=2) |

# Head TSL parameters at 5750 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.4         | 5.22 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 35.2 ± 6 %   | 5.13 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

# SAR result with Head TSL at 5750 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 7.97 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 79.5 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.27 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 22.6 W/kg ± 19.5 % (k=2) |

Head TSL parameters at 5850 MHz The following parameters and calculations were applied.

| -                                       | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.2         | 5.32 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 35.1 ± 6 %   | 5.24 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Head TSL at 5850 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 8.23 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 82.2 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.34 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 23.4 W/kg ± 19.5 % (k=2) |

#### Body TSL parameters at 5250 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 48.9         | 5.36 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 48.3 ± 6 %   | 5.49 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

# SAR result with Body TSL at 5250 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 7.47 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 74.5 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.09 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 20.9 W/kg ± 19.5 % (k=2) |

Body TSL parameters at 5600 MHz The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 48.5         | 5.77 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 47.7 ± 6 %   | 5.96 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Body TSL at 5600 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 7.90 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 78.9 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          | · · · · · · · · · · · · · · · · · · · |
|---------------------------------------------------------|--------------------|---------------------------------------|
| SAR measured                                            | 100 mW input power | 2.20 W/kg                             |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 22.0 W/kg ± 19.5 % (k=2)              |

## Body TSL parameters at 5750 MHz

The following parameters and calculations were applied.

| · · · · · · · · · · · · · · · · · · ·   | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 48.3         | 5.94 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 47.4 ± 6 %   | 6.17 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

# SAR result with Body TSL at 5750 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 7.34 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 73.3 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.04 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 20.3 W/kg ± 19.5 % (k=2) |

Body TSL parameters at 5850 MHz The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 48.1         | 6.06 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 47.2 ± 6 %   | 6.31 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Body TSL at 5850 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 7.54 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 75.2 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          | ,                        |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.09 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 20.8 W/kg ± 19.5 % (k=2) |

# Appendix (Additional assessments outside the scope of SCS 0108)

# Antenna Parameters with Head TSL at 5250 MHz

| Impedance, transformed to feed point | 50.5 Ω - 4.4 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 27.1 dB       |

## Antenna Parameters with Head TSL at 5600 MHz

| Impedance, transformed to feed point | 56.9 Ω - 0.1 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 23.8 dB       |

#### Antenna Parameters with Head TSL at 5750 MHz

| Impedance, transformed to feed point | 55.3 Ω + 1.7 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 25.5 dB       |

# Antenna Parameters with Head TSL at 5850 MHz

| Impedance, transformed to feed point | 56.1 Ω - 1.5 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 24.6 dB       |

# Antenna Parameters with Body TSL at 5250 MHz

| Impedance, transformed to feed point | 50.1 Ω - 2.4 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 32.4 dB       |

#### Antenna Parameters with Body TSL at 5600 MHz

| Impedance, transformed to feed point | 56.9 Ω + 1.5 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 23.6 dB       |

#### Antenna Parameters with Body TSL at 5750 MHz

| Impedance, transformed to feed point | 56.9 Ω + 2.1 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 23.4 dB       |

#### Antenna Parameters with Body TSL at 5850 MHz

| Impedance, transformed to feed point | 57.3 Ω - 0.5 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 23.4 dB       |

#### **General Antenna Parameters and Design**

| Electrical Delay (one direction) | 1.195 ns |
|----------------------------------|----------|

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### **Additional EUT Data**

| ſ |                 |       | ٦. |
|---|-----------------|-------|----|
|   | Manufactured by | SPEAG |    |
| L | -               |       |    |

Date: 14.11.2022

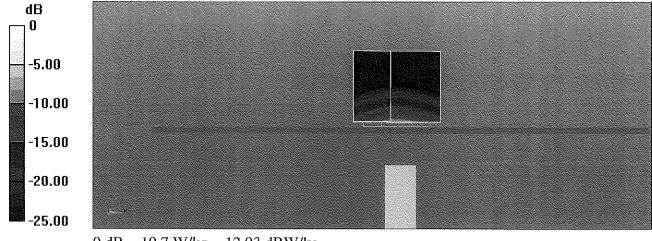
Test Laboratory: SPEAG, Zurich, Switzerland

#### DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1066

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz, Frequency: 5850 MHz Medium parameters used: f = 5250 MHz;  $\sigma$  = 4.60 S/m;  $\epsilon_r$  = 36.0;  $\rho$  = 1000 kg/m<sup>3</sup>, Medium parameters used: f = 5600 MHz;  $\sigma$  = 4.97 S/m;  $\epsilon_r$  = 35.4;  $\rho$  = 1000 kg/m<sup>3</sup> Medium parameters used: f = 5750 MHz;  $\sigma$  = 5.13 S/m;  $\epsilon_r$  = 35.2;  $\rho$  = 1000 kg/m<sup>3</sup>, Medium parameters used: f = 5850 MHz;  $\sigma$  = 5.24 S/m;  $\epsilon_r$  = 35.1;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.5, 5.5, 5.5) @ 5250 MHz, ConvF(5.1, 5.1, 5.1) @ 5600 MHz, ConvF(5.08, 5.08, 5.08) @ 5750 MHz, ConvF(4.99, 4.99, 4.99) @ 5850 MHz; Calibrated: 08.03.2022
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 31.08.2022
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)


#### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 74.31 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 27.1 W/kg SAR(1 g) = 8.03 W/kg; SAR(10 g) = 2.31 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 70.8% Maximum value of SAR (measured) = 18.1 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 74.64 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 30.6 W/kg SAR(1 g) = 8.40 W/kg; SAR(10 g) = 2.41 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 68.2% Maximum value of SAR (measured) = 19.4 W/kg Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 71.74 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 30.7 W/kg SAR(1 g) = 7.97 W/kg; SAR(10 g) = 2.27 W/kg Smallest distance from peaks to all points 3 dB below = 7.5 mm Ratio of SAR at M2 to SAR at M1 = 66.3% Maximum value of SAR (measured) = 18.8 W/kg

# Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5850 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 72.18 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 32.4 W/kg SAR(1 g) = 8.23 W/kg; SAR(10 g) = 2.34 W/kg Smallest distance from peaks to all points 3 dB below = 7.5 mm Ratio of SAR at M2 to SAR at M1 = 65.6% Maximum value of SAR (measured) = 19.7 W/kg



0 dB = 19.7 W/kg = 12.93 dBW/kg

# Impedance Measurement Plot for Head TSL

|       |                     |                        |                      |                                            |                                                |                                                                                                                  |                           | Í:                   | 5.250000 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50.502 Ω                           |
|-------|---------------------|------------------------|----------------------|--------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
|       |                     |                        |                      |                                            |                                                | £ ``\                                                                                                            |                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    |
|       |                     |                        |                      |                                            |                                                | $\left[ \right]$                                                                                                 | 1                         | 2:                   | 6,8995 pF<br>5,600000 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -4,3938 Ω<br>56,865 Ω              |
|       |                     |                        |                      |                                            | $\times$ /                                     | 7                                                                                                                | and a second and a second |                      | 218.86 pF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -129.86 m Q                        |
|       |                     |                        |                      | for and                                    | $\wedge$ $\times$                              | X                                                                                                                |                           | 3:                   | 5.750000 GHz<br>47.601 pH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 55.330 Ω<br>1.7198 Ω               |
|       |                     |                        |                      | -1                                         | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~        | $\sim \times$                                                                                                    |                           | > 4:                 | 5.850000 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $58.078~\Omega$                    |
|       |                     |                        |                      |                                            |                                                |                                                                                                                  |                           | R:                   | 17.723 pF<br>5.500000 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1.5351 Ω<br>29,988 mU             |
|       |                     |                        |                      | - ( - (                                    |                                                | Ç                                                                                                                | 7-A -                     | Pv.                  | a ao ana ana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -71.801 *                          |
|       |                     |                        |                      | June T                                     | $\langle \lambda \rangle$                      | $\times$ 7                                                                                                       |                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    |
|       |                     |                        |                      | N.                                         | $\times$ $^{\sim}$                             | $\sqrt{1}$                                                                                                       | 74                        |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    |
|       |                     |                        |                      | · · · · · · · · · · · · · · · · · · ·      | < <u> </u>                                     |                                                                                                                  |                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    |
|       | Ch 1 Awg =          |                        |                      |                                            | <sup>**</sup> **********                       |                                                                                                                  |                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    |
| C     | h1: Start 5.00000 ( | GHz                    |                      | 777 <del>77 - 2</del> 71107 - 17107 - 1701 |                                                |                                                                                                                  |                           |                      | Stop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6,00000 GHz                        |
| 10.00 | § 20030500002000000 | 1                      |                      |                                            |                                                |                                                                                                                  |                           | t:                   | 5.250000 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -27,139,68                         |
| 5.00  | -                   |                        |                      |                                            |                                                |                                                                                                                  |                           | <del>2:</del>        | -5.00000-0He-<br>5.750000-0Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 23,943, <u>48</u><br>-25,498,d.8 |
| 0.00  |                     |                        |                      |                                            |                                                |                                                                                                                  |                           | 24                   | 5.150000 GH2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -24,570 dB                         |
| 5,00  |                     |                        |                      |                                            |                                                |                                                                                                                  |                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    |
| -10.0 | 10                  |                        |                      |                                            |                                                |                                                                                                                  |                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    |
| 15.0  | ŵ                   |                        |                      |                                            |                                                |                                                                                                                  |                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    |
| -20.0 | 10 *                |                        |                      |                                            |                                                |                                                                                                                  |                           | · · · · · · · · · ·  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    |
| 25.0  | ю́ —                |                        |                      |                                            |                                                |                                                                                                                  | X                         | <u></u>              | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [                                  |
| -30.0 | ıa                  |                        | یک رکند<br>سیج است ا |                                            | , <i></i> ,                                    | 2                                                                                                                |                           | 3                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | []                                 |
| -35.0 |                     |                        |                      | a and a second                             | ······                                         |                                                                                                                  |                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    |
| 40.0  | in)Ch.1.Awg =       |                        |                      |                                            |                                                |                                                                                                                  |                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    |
|       | h1: Start 5.00000   | GHz                    |                      |                                            |                                                |                                                                                                                  |                           |                      | Stop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.00000 GHz                        |
| Ц ü   | addadaadaa ahadaa   | aaana ahaana ahaa daha | 1.1                  | e e esta a servez a elemente e             | <ol> <li>Construction (2) for a set</li> </ol> | early a second |                           | al e a sub e a e e e | <ul> <li>A start st<br/>Start start st<br/>Start start st<br/>Start start st<br/>Start start st<br/>Start start st<br/>Start start st</li></ul> | the second state of the second     |

Date: 17.11.2022

Test Laboratory: SPEAG, Zurich, Switzerland

# DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1066

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz, Frequency: 5850 MHz Medium parameters used: f = 5250 MHz;  $\sigma$  = 5.49 S/m;  $\epsilon_r$  = 48.3;  $\rho$  = 1000 kg/m<sup>3</sup>, Medium parameters used: f = 5600 MHz;  $\sigma$  = 5.96 S/m;  $\epsilon_r$  = 47.7;  $\rho$  = 1000 kg/m<sup>3</sup>, Medium parameters used: f = 5750 MHz;  $\sigma$  = 6.17 S/m;  $\epsilon_r$  = 47.4;  $\rho$  = 1000 kg/m<sup>3</sup>, Medium parameters used: f = 5850 MHz;  $\sigma$  = 6.31 S/m;  $\epsilon_r$  = 47.2;  $\rho$  = 1000 kg/m<sup>3</sup> Medium parameters used: f = 5850 MHz;  $\sigma$  = 6.31 S/m;  $\epsilon_r$  = 47.2;  $\rho$  = 1000 kg/m<sup>3</sup>

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.26, 5.26, 5.26) @ 5250 MHz, ConvF(4.79, 4.79, 4.79) @ 5600 MHz, ConvF(4.66, 4.66, 4.66) @ 5750 MHz, ConvF(4.61, 4.61, 4.61) @ 5850 MHz; Calibrated: 08.03.2022
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 31.08.2022
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

#### Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 66.40 V/m; Power Drift = -0.09 dBPeak SAR (extrapolated) = 28.2 W/kg SAR(1 g) = 7.47 W/kg; SAR(10 g) = 2.09 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 67.4% Maximum value of SAR (measured) = 17.3 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.97 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 33.0 W/kg SAR(1 g) = 7.90 W/kg; SAR(10 g) = 2.20 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 64.2% Maximum value of SAR (measured) = 19.2 W/kg Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 64.01 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 32.0 W/kg SAR(1 g) = 7.34 W/kg; SAR(10 g) = 2.04 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 62.7% Maximum value of SAR (measured) = 18.3 W/kg

# Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5850 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 63.69 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 33.1 W/kg SAR(1 g) = 7.54 W/kg; SAR(10 g) = 2.09 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 62.4% Maximum value of SAR (measured) = 19.0 W/kg



0 dB = 19.2 W/kg = 12.84 dBW/kg

# Impedance Measurement Plot for Body TSL

| 10                                                                           | <u>View</u> <u>C</u> hanne                                         | I Sw <u>e</u> ep C | alibration | <u>T</u> race <u>S</u> cale | M <u>a</u> rker                       | System                              | <u>W</u> indow <u>H</u> elp | 3            |                                                         |                                         |
|------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------|------------|-----------------------------|---------------------------------------|-------------------------------------|-----------------------------|--------------|---------------------------------------------------------|-----------------------------------------|
|                                                                              |                                                                    |                    |            |                             | ,                                     |                                     | <u>ъ</u>                    | 1: 5         | .250000 GHz<br>12.651 pF                                | 50.033 Q<br>-2.3363 Q                   |
|                                                                              |                                                                    |                    |            |                             | $\sum_{i=1}^{n}$                      | 7                                   |                             | 2: 5         | .sooooo 6Hz                                             | 56,932 Q                                |
|                                                                              |                                                                    |                    |            |                             | $\sim$                                | \{                                  |                             | 3: 5         | 43.049 pH<br>.750000 GHz                                | 1.5147 Ω<br>56.927 Ω                    |
|                                                                              |                                                                    |                    |            | $-/ \rightarrow$            | -1                                    | $\langle \ \rangle \langle \rangle$ |                             | 4. **        | 58.336 pH                                               | 2. <b>1</b> 078 Ω                       |
|                                                                              |                                                                    |                    |            |                             |                                       |                                     |                             | 4: 5         | .850000 GHz<br>58.210 pF                                | 57.273 Q<br>-467.37 mQ                  |
|                                                                              |                                                                    |                    |            |                             |                                       |                                     | 77                          | R: 5         | .500000 GHz                                             | 14,435 mU                               |
|                                                                              |                                                                    |                    |            | 1-t                         |                                       | $\sim$                              |                             |              |                                                         | -11.619 *                               |
|                                                                              |                                                                    |                    |            |                             | $\bigvee \land$                       | $ \land \rightarrow $               | - <u>//</u>                 |              |                                                         |                                         |
|                                                                              |                                                                    |                    |            | $\sim$                      | $\sim$                                |                                     |                             |              |                                                         |                                         |
|                                                                              | Ch 1 Avg                                                           |                    |            | ~                           | ×                                     |                                     | هر                          |              |                                                         |                                         |
| ļļ                                                                           | 3h1: Start 5.00000                                                 |                    |            |                             |                                       |                                     |                             |              | Stop                                                    | 6,00000 GHz                             |
| 10.0                                                                         | \$ 777.000003000000000072                                          | 1                  |            | 1                           |                                       |                                     |                             | 1: 5         |                                                         | -32,413.68                              |
| 1 10 000                                                                     |                                                                    |                    |            |                             |                                       |                                     |                             |              |                                                         |                                         |
| 5.00                                                                         |                                                                    |                    | -          | -                           |                                       |                                     | 1                           |              |                                                         | 22,562,48                               |
| 0.60                                                                         | )                                                                  |                    |            |                             | · · · · · · · · · · · · · · · · · · · |                                     |                             | 4: 5         | . <mark>400904-GHz</mark><br>.250000 GHz<br>.250000 GHz | - 22,563,48<br>-23,389,48<br>-23,358,48 |
| 0,00                                                                         | )                                                                  |                    |            |                             |                                       |                                     |                             | 4: 5         | .250000 GHz                                             | -23,388.48                              |
| 0,00<br>-5.00<br>-10.0                                                       | )                                                                  |                    |            |                             |                                       |                                     |                             | 4: 5         | .250000 GHz                                             | -23,388.48                              |
| 0,00<br>-5.00<br>-10.0                                                       | )<br>)<br>)0<br>)0                                                 |                    |            |                             |                                       |                                     |                             | 4: 5         | .250000 GHz                                             | -23,388.48                              |
| 0,00<br>-5.00<br>-10.0                                                       | )<br>)<br>)0<br>)0                                                 |                    |            |                             |                                       |                                     |                             | 4: 5         | .750000 GHz<br>.850000 GHz                              | -23,388.48                              |
| 0,00<br>-5.00<br>-10.0                                                       |                                                                    |                    |            |                             |                                       |                                     |                             | 4: 5         | .250000 GHz                                             | -23,388.48                              |
| 0,00<br>-5.00<br>-10.0<br>-15.0<br>-20,0                                     |                                                                    |                    |            |                             |                                       |                                     |                             | 4: 5<br>5: 5 | .750000 GHz<br>.850000 GHz                              | -23,388.48                              |
| 0,00<br>-5.00<br>-10.0<br>-15.0<br>-20.0<br>-25.0<br>-30.0<br>-35.0          |                                                                    |                    |            |                             |                                       |                                     |                             | 4: 5<br>5: 5 | .750000 GHz<br>.850000 GHz                              | -23,388.48                              |
| 0,00<br>-5.00<br>-10.0<br>-15.0<br>-20.0<br>-25.0<br>-30.0<br>-35.0          |                                                                    | IGHz               |            |                             |                                       |                                     |                             | 4: 5<br>5: 5 | .750000 GHz<br>7850000 GHz<br>7850000 GHz               | -23,389 dB                              |
| 0,00<br>-5.00<br>-10.0<br>-15.0<br>-20.0<br>-25.0<br>-30.0<br>-35.0<br>-36.0 | )<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>) | IGHz               |            | C* 1-Port                   |                                       |                                     |                             | 4: 5<br>5: 5 | .750000 GHz<br>7850000 GHz<br>7850000 GHz               | -23,388.48                              |



**ELEMENT MATERIALS TECHNOLOGY** 

(formerly PCTEST) 18855 Adams Ct, Morgan Hill, CA 95037 USA Tel. +1.408.538.5600 http://www.element.com



# **Certification of Calibration**

| Object                      | D5GHzV2 – SN: 1066                                   |
|-----------------------------|------------------------------------------------------|
| Calibration procedure(s)    | Procedure for Calibration Extension for SAR Dipoles. |
| Extension Calibration date: | November 17, 2023                                    |
| Description:                | SAR Validation Dipole at 5250,5600,5750,5850 MHz.    |
|                             |                                                      |

### Calibration Equipment used:

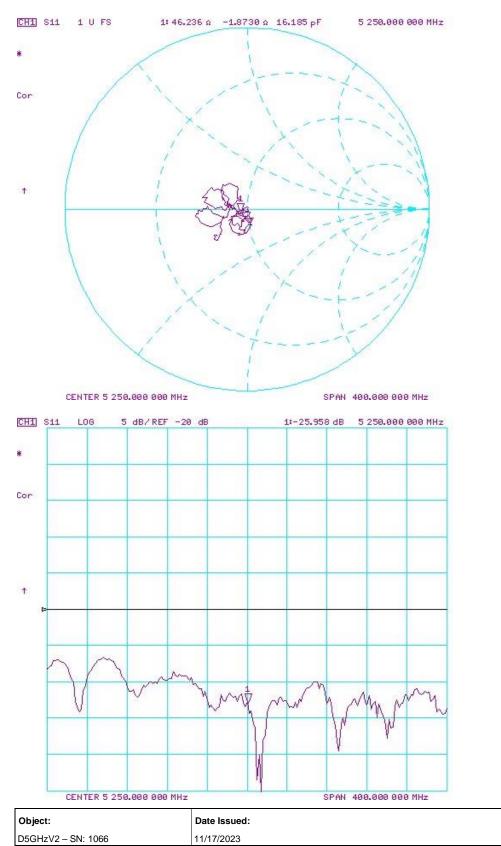
| Manufacturer       | Model         | Description                         | Cal Date   | Cal Interval | Cal Due    | Serial Number |
|--------------------|---------------|-------------------------------------|------------|--------------|------------|---------------|
| Agilent            | 8753ES        | S-Parameter Vector Network Analyzer | 6/2/2023   | Annual       | 6/12/2024  | MY40003841    |
| Agilent            | E4438C        | ESG Vector Signal Generator         | 4/25/2023  | Annual       | 4/25/2024  | US41460739    |
| Amplifier Research | 15S1G6        | Amplifier                           | CBT        | N/A          | CBT        | 343972        |
| Rohde & Schwarz    | NRX           | Power Meter                         | 1/11/2023  | Annual       | 1/11/2024  | 102583        |
| Rohde & Schwarz    | NRP-Z81       | Wide Band Power Sensor              | 1/19/2023  | Annual       | 1/19/2024  | 106563        |
| Rohde & Schwarz    | NRP-Z81       | Wide Band Power Sensor              | 1/11/2023  | Annual       | 1/11/2024  | 106564        |
| Traceable          | 4040 90080-06 | Therm./ Clock/ Humidity Monitor     | 5/11/2022  | Biennial     | 5/11/2024  | 221514974     |
| Control Company    | 4353          | Ultra Long Stem Thermometer         | 10/24/2023 | Annual       | 10/24/2024 | 200645916     |
| Agilent            | 85033E        | 3.5mm Standard Calibration Kit      | 7/18/2023  | Annual       | 7/18/2024  | MY53402352    |
| Mini-Circuits      | VLF-6000+     | Low Pass Filter DC to 6000 MHz      | CBT        | N/A          | CBT        | N/A           |
| Narda              | 4772-3        | Attenuator (3dB)                    | CBT        | N/A          | CBT        | 9406          |
| Mini-Circuits      | ZHDC-16-63-S+ | 50-6000MHz Bidirectional Coupler    | CBT        | N/A          | CBT        | N/A           |
| Pasternack         | NC-100        | Torque Wrench                       | 12/5/2022  | Biennial     | 12/5/2024  | N/A           |
| SPEAG              | DAK-3.5       | Dielectric Assessment Kit           | 5/9/2023   | Annual       | 5/9/2024   | 1070          |
| SPEAG              | EX3DV4        | SAR Probe                           | 10/2/2023  | Annual       | 10/2/2024  | 3949          |
| SPEAG              | DAE4          | Dasy Data Acquisition Electronics   | 9/12/2023  | Annual       | 9/12/2024  | 1684          |

Measurement Uncertainty =  $\pm 23\%$  (k=2)

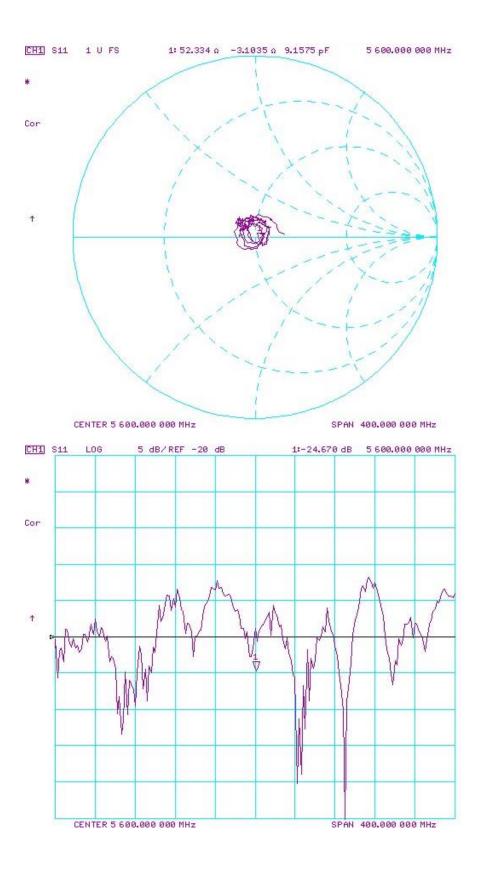
|                | Name            | Function                      | Signature |
|----------------|-----------------|-------------------------------|-----------|
| Calibrated By: | Arturo Oliveros | Compliance Engineer           | AG        |
| Approved By:   | Greg Snyder     | Executive VP of<br>Operations | Lugg M.S. |

| Object:            | Date Issued: | Page 1 of 6 |
|--------------------|--------------|-------------|
| D5GHzV2 – SN: 1066 | 11/17/2023   | Fage 1010   |

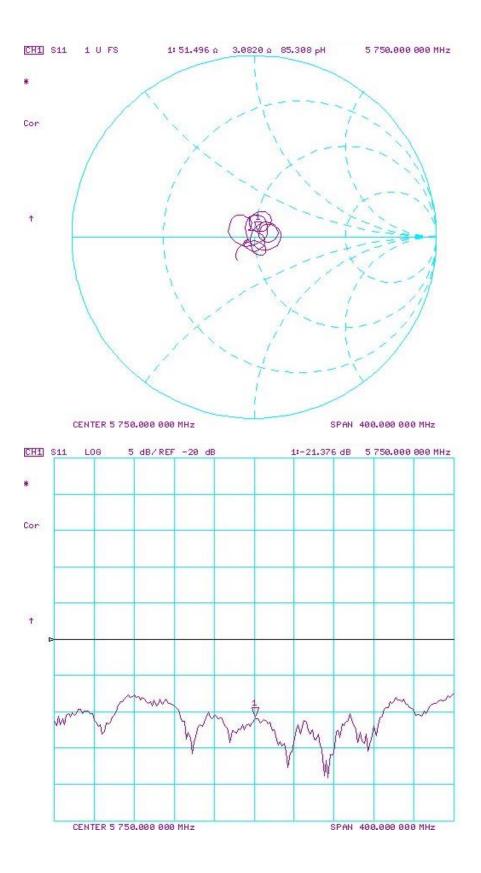
# **DIPOLE CALIBRATION EXTENSION**


Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

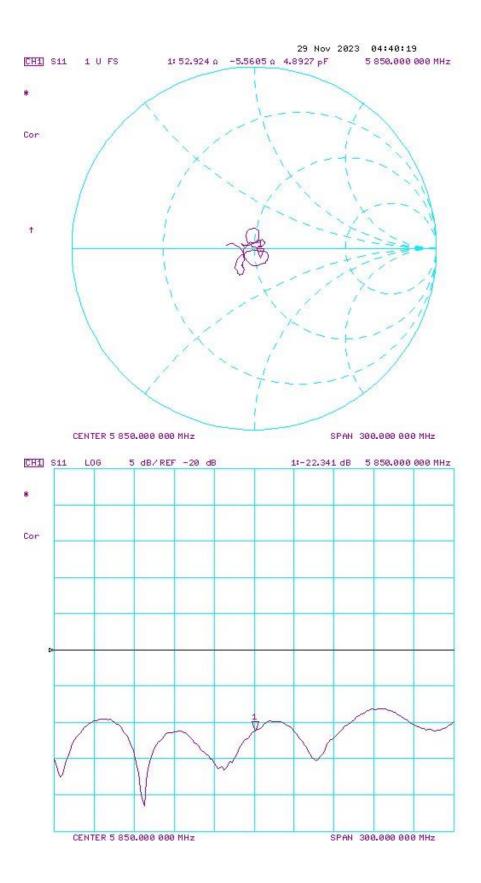
- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than  $5\Omega$  from the previous measurement.


The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

| equency<br>(MHz) | Calibration<br>Date | Extension Date | LICONICAI | Certificate<br>SAR Target<br>Head (1g)<br>W/kg @ 17.0<br>dBm | Measured Head<br>SAR (1g) W/kg<br>@ 17.0 dBm | Deviation 1g<br>(%) | Certificate<br>SAR Target<br>Head (10g)<br>W/kg @ 17.0<br>dBm | Measured Head<br>SAR (10g) W/kg<br>@ 17.0 dBm | Deviation 10g<br>(%) | Certificate<br>Impedance<br>Head (Ohm)<br>Real | Measured<br>Impedance<br>Head (Ohm)<br>Real | Difference<br>(Ohm) Real | Certificate<br>Impedance<br>Head (Ohm)<br>Imaginary | Measured<br>Impedance<br>Head (Ohm)<br>Imaginary | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Head (dB) | Measured<br>Return Loss<br>Head (dB) | Deviation<br>(%) |
|------------------|---------------------|----------------|-----------|--------------------------------------------------------------|----------------------------------------------|---------------------|---------------------------------------------------------------|-----------------------------------------------|----------------------|------------------------------------------------|---------------------------------------------|--------------------------|-----------------------------------------------------|--------------------------------------------------|----------------------------------|-----------------------------------------|--------------------------------------|------------------|
| 5250             | 11/17/2022          | 11/17/2023     | 1.195     | 4.02                                                         | 3.93                                         | -2.12%              | 1.16                                                          | 1.12                                          | -3.03%               | 50.5                                           | 46.2                                        | 4.3                      | -4.4                                                | -1.9                                             | 2.5                              | -27.1                                   | -26.0                                | 4.20%            |
| 5600             | 11/17/2022          | 11/17/2023     | 1.195     | 4.20                                                         | 4.00                                         | -4.65%              | 1.21                                                          | 1.13                                          | -6.22%               | 56.9                                           | 52.3                                        | 4.6                      | -0.1                                                | -3.1                                             | 3.0                              | -23.8                                   | -24.7                                | -3.70%           |
| 5750             | 11/17/2022          | 11/17/2023     | 1.195     | 3.98                                                         | 3.68                                         | -7.42%              | 1.13                                                          | 1.04                                          | -7.96%               | 55.3                                           | 51.5                                        | 3.8                      | 1.7                                                 | 3.1                                              | 1.4                              | -25.5                                   | -21.4                                | 16.20%           |
| 5850             | 11/17/2022          | 11/17/2023     | 1.195     | 4.11                                                         | 3.84                                         | -6.57%              | 1.17                                                          | 1.08                                          | -7.69%               | 56.1                                           | 52.9                                        | 3.2                      | -1.5                                                | -5.6                                             | 4.1                              | -24.6                                   | -22.3                                | 9.20%            |


| Object:            | Date Issued: | Page 2 of 6 |
|--------------------|--------------|-------------|
| D5GHzV2 – SN: 1066 | 11/17/2023   | rage 2 010  |




#### Impedance & Return-Loss Measurement Plot for Head TSL



| Object:            | Date Issued: | Page 4 of 6 |
|--------------------|--------------|-------------|
| D5GHzV2 – SN: 1066 | 11/17/2023   | rage 4 01 0 |



| Obje | ct:             | Date Issued: | Page 5 of 6 |
|------|-----------------|--------------|-------------|
| D5GH | HzV2 – SN: 1066 | 11/17/2023   | rage 5 01 0 |



| Object:            | Date Issued: | Page 6 of 6 |
|--------------------|--------------|-------------|
| D5GHzV2 – SN: 1066 | 11/17/2023   | rage 0 01 0 |

# Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





С

S Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Client Element Columbia, USA

Certificate No. 5G-Veri10-1006\_Oct23

# **CALIBRATION CERTIFICATE**

| Object                                   | 5G Verification Sc                 | ource 10 GHz - SN: 1006                                                                                                                                    |                          |
|------------------------------------------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
|                                          |                                    |                                                                                                                                                            |                          |
|                                          | QA CAL-45.v4<br>Calibration proced | dure for sources in air above 6 GHz                                                                                                                        | J YW<br>11/16/23         |
| Calibration date:                        | October 13, 2023                   |                                                                                                                                                            |                          |
| The measurements and the uncertain       | nties with confidence pro          | nal standards, which realize the physical units of obability are given on the following pages and are racility: environment temperature (22 $\pm$ 3)°C and | part of the certificate. |
| Calibration Equipment used (M&TE         | critical for calibration)          |                                                                                                                                                            |                          |
| Primary Standards                        | ID #                               | Cal Date (Certificate No.)                                                                                                                                 | Scheduled Calibration    |
| Reference Probe EUmmWV3                  | SN: 9374                           | 22-May-23 (No. EUmm-9374_May23)                                                                                                                            | May-24                   |
| DAE4ip                                   | SN: 1602                           | 05-Jul-23 (No. DAE4ip-1602_Jul23)                                                                                                                          | Jul-24                   |
| Secondary Standards                      | ID #                               | Check Date (in house)                                                                                                                                      | Scheduled Check          |
| RF generator R&S SMF100A                 | SN: 100184                         | 19-May-22 (in house check Nov-22)                                                                                                                          | In house check: Nov-23   |
| Power sensor R&S NRP18S-10               | SN: 101258                         | 31-May-22 (in house check Nov-22)                                                                                                                          | In house check: Nov-23   |
| Network Analyzer Keysight E5063A         | Langer Charles II - Langer at      | 31-Oct-19 (in house check Oct-22)                                                                                                                          | In house check: Oct-25   |
|                                          |                                    |                                                                                                                                                            |                          |
|                                          | Name                               | Function                                                                                                                                                   | Signature                |
| Calibrated by:                           | Joanna Lleshaj                     | Laboratory Technician                                                                                                                                      | Mfellesti                |
| Approved by:                             | Sven Kühn                          | Technical Manager                                                                                                                                          | Mfellesy:                |
| This calibration certificate shall not I | be reproduced except in            | full without written approval of the laboratory.                                                                                                           | Issued: October 16, 2023 |

#### **Calibration Laboratory of**

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S

S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage

Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

#### Glossary

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

CW

# I Continuous wave

# Calibration is Performed According to the Following Standards

- Internal procedure QA CAL-45, Calibration procedure for sources in air above 6 GHz.
- IEC/IEEE 63195-1, "Assessment of power density of human exposure to radio frequency fields from wireless devices in close proximity to the head and body (frequency range of 6 GHz to 300 GHz)", May 2022

#### Methods Applied and Interpretation of Parameters

- *Coordinate System:* z-axis in the waveguide horn boresight, x-axis is in the direction of the E-field, y-axis normal to the others in the field scanning plane parallel to the horn flare and horn flange.
- *Measurement Conditions: (1) 10 GHz:* The radiated power is the forward power to the horn antenna minus ohmic and mismatch loss. The forward power is measured prior and after the measurement with a power sensor. During the measurements, the horn is directly connected to the cable and the antenna ohmic and mismatch losses are determined by far-field measurements. *(2) 30, 45, 60 and 90 GHz*: The verification sources are switched on for at least 30 minutes. Absorbers are used around the probe cub and at the ceiling to minimize reflections.
- *Horn Positioning:* The waveguide horn is mounted vertically on the flange of the waveguide source to allow vertical positioning of the EUmmW probe during the scan. The plane is parallel to the phantom surface. Probe distance is verified using mechanical gauges positioned on the flare of the horn.
- E- field distribution: E field is measured in two x-y-plane (10mm, 10mm + λ/4) with a vectorial E-field probe. The E-field value stated as calibration value represents the E-field-maxima and the averaged (1cm<sup>2</sup> and 4cm<sup>2</sup>) power density values at 10mm in front of the horn.
- *Field polarization:* Above the open horn, linear polarization of the field is expected. This is verified graphically in the field representation.

#### Calibrated Quantity

 Local peak E-field (V/m) and average of peak spatial components of the poynting vector (W/m<sup>2</sup>) averaged over the surface area of 1 cm<sup>2</sup> and 4cm<sup>2</sup> at the nominal operational frequency of the verification source. Both square and circular averaging results are listed.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                   | DASY8 Module mmWave  | V3.2 |
|--------------------------------|----------------------|------|
| Phantom                        | 5G Phantom           |      |
| Distance Horn Aperture - plane | 10 mm                |      |
| Number of measured planes      | 2 (10mm, 10mm + λ/4) |      |
| Frequency                      | 10 GHz ± 10 MHz      |      |

# **Calibration Parameters, 10 GHz**

#### **Circular Averaging**

|       |      | Max E-field<br>(V/m) | Uncertainty<br>(k = 2) | Avg Power Density<br>Avg (psPDn+, psPDtot+, psPDmod+)<br>(W/m <sup>2</sup> ) |                   | Uncertainty<br>(k = 2) |
|-------|------|----------------------|------------------------|------------------------------------------------------------------------------|-------------------|------------------------|
|       |      |                      |                        | 1 cm <sup>2</sup>                                                            | 4 cm <sup>2</sup> |                        |
| 10 mm | 93.3 | 157                  | 1.27 dB                | 64.1                                                                         | 58.9              | 1.28 dB                |

| Distance Horn  | Prad <sup>1</sup> | Max E-field | Uncertainty | Power             | Density           | Uncertainty |
|----------------|-------------------|-------------|-------------|-------------------|-------------------|-------------|
| Aperture to    | (mW)              | (V/m)       | (k = 2)     | psPDn+, psPDt     | ot+, psPDmod+     | (k = 2)     |
| Measured Plane |                   |             |             | (W/m²)            |                   |             |
|                |                   |             |             | 1 cm <sup>2</sup> | 4 cm <sup>2</sup> |             |
| 10 mm          | 93.3              | 157         | 1.27 dB     | 63.9, 64.1, 64.4  | 58.5, 58.9, 59.2  | 1.28 dB     |

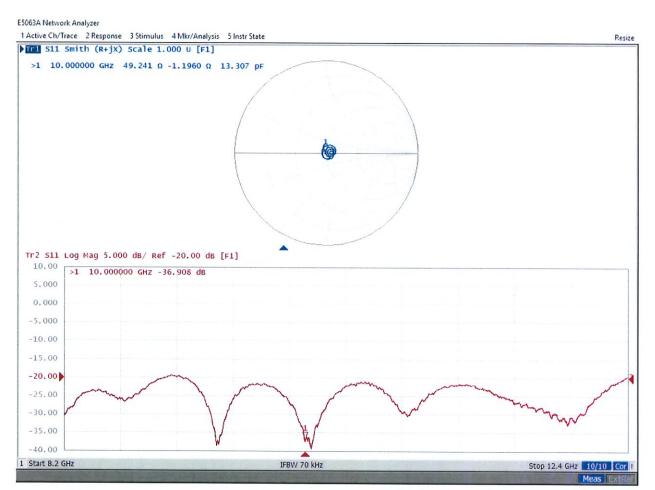
#### **Square Averaging**

| Distance Horn  | Prad <sup>1</sup> | Max E-field | Uncertainty | Avg Powe          | er Density               | Uncertainty |
|----------------|-------------------|-------------|-------------|-------------------|--------------------------|-------------|
| Aperture to    | (mW)              | (V/m)       | (k = 2)     | Avg (psPDn+, psf  | PDtot+, psPDmod+)        | (k = 2)     |
| Measured Plane |                   |             |             | (W                | /m²)                     |             |
|                |                   |             |             | 1 cm <sup>2</sup> | <b>4</b> cm <sup>2</sup> |             |
| 10 mm          | 93.3              | 157         | 1.27 dB     | 64.1              | 58.7                     | 1.28 dB     |

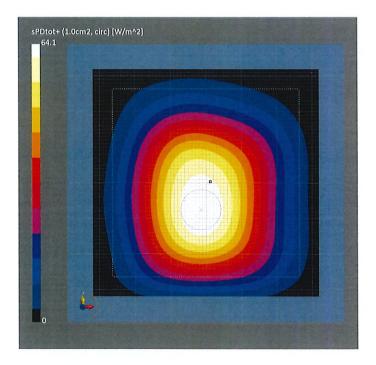
| Distance Horn  | Prad <sup>1</sup> | Max E-field | Uncertainty | Power             | Density           | Uncertainty |
|----------------|-------------------|-------------|-------------|-------------------|-------------------|-------------|
| Aperture to    | (mW)              | (V/m)       | (k = 2)     | psPDn+, psPDt     | ot+, psPDmod+     | (k = 2)     |
| Measured Plane |                   |             |             | (W/m²)            |                   |             |
|                |                   |             |             | 1 cm <sup>2</sup> | 4 cm <sup>2</sup> |             |
| 10 mm          | 93.3              | 157         | 1.27 dB     | 63.9, 64.1, 64.4  | 58.3, 58.8, 59.1  | 1.28 dB     |

#### Max Power Density

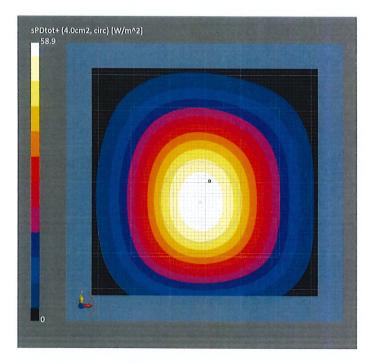
| Distance Horn  | Prad | Max E-field | Uncertainty | Max Power Density | Uncertainty |
|----------------|------|-------------|-------------|-------------------|-------------|
| Aperture to    | (mW) | (V/m)       | (k = 2)     | Sn, Stot,  Stot   | (k = 2)     |
| Measured Plane |      |             |             | (W/m²)            |             |
| 10 mm          | 93.3 | 157         | 1.27 dB     | 66.0, 66.2, 66.4  | 1.28 dB     |


<sup>&</sup>lt;sup>1</sup> Assessed ohmic and mismatch loss plus numerical offset: 0.30 dB

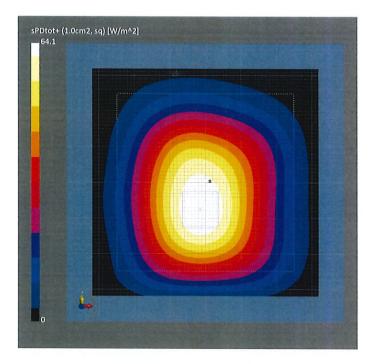
# Appendix (Additional assessments outside the scope of SCS 0108)


#### **Antenna Parameters**

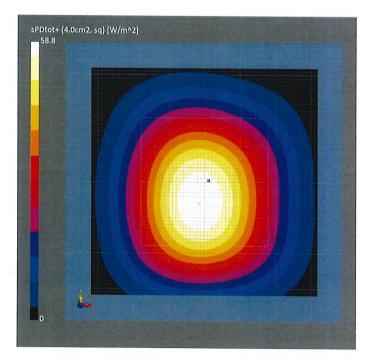
| Impedance, transformed to feed point | 49.2 Ω - 1.2 jΩ |  |
|--------------------------------------|-----------------|--|
| Return Loss                          | - 36.9 dB       |  |


#### **Impedance Measurement Plot**




| Name, Manufacturer          | oerties<br>Dimensions [mm       | ]               | IMEI                                                                                                                      | DUT Type                                                                                                 |                                                                            |
|-----------------------------|---------------------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| 5G Verification Source 10 G | GHz 100.0 x 100.0 x 1           | .72.0           | SN: 1006                                                                                                                  | )-                                                                                                       |                                                                            |
| xposure Conditions          |                                 |                 |                                                                                                                           |                                                                                                          |                                                                            |
| Phantom Section             | Position, Test Distance<br>[mm] | Band            | Group,                                                                                                                    | Frequency [MHz],<br>Channel Number                                                                       | Conversion Factor                                                          |
| 5G -                        | 10.0 mm                         | Validation band | CW                                                                                                                        | 10000.0,<br>10000                                                                                        | 1.0                                                                        |
| Hardware Setup              |                                 |                 |                                                                                                                           |                                                                                                          |                                                                            |
| Phantom                     | Medium                          |                 | Probe, Calibra                                                                                                            | tion Date                                                                                                | DAE, Calibration Date                                                      |
| mmWave Phantom - 1002       | Air                             |                 | EUmmWV3 - 5<br>2023-05-22                                                                                                 | N9374_F1-55GHz,                                                                                          | DAE4ip Sn1602,<br>2023-07-05                                               |
| Scan Setup                  |                                 |                 | Measurem                                                                                                                  | ent Results                                                                                              |                                                                            |
|                             |                                 | 5G So           | an                                                                                                                        |                                                                                                          | 5G Scan                                                                    |
|                             |                                 | 4               |                                                                                                                           |                                                                                                          |                                                                            |
| Sensor Surface [mm]         |                                 | 1               | 0.0 Date                                                                                                                  |                                                                                                          | 2023-10-13, 09:28                                                          |
| Sensor Surface [mm]<br>MAIA |                                 | MAIA not us     |                                                                                                                           | m²]                                                                                                      | activity in the second second second second second                         |
|                             |                                 |                 |                                                                                                                           | m²]                                                                                                      | 2023-10-13, 09:28<br>1.00<br>Circular Averaging                            |
|                             |                                 |                 | sed Avg. Area [cr                                                                                                         |                                                                                                          | 1.00                                                                       |
|                             |                                 |                 | Avg. Area [cr<br>Avg. Type<br>psPDn+ [W/r<br>psPDtot+ [W                                                                  | m²]<br>//m²]                                                                                             | 1.00<br>Circular Averaging                                                 |
|                             |                                 |                 | Avg. Area [cr<br>Avg. Type<br>psPDn+ [W/r<br>psPDtot+ [W<br>psPDmod+ ['                                                   | m²]<br>'/m²]<br>W/m²]                                                                                    | 1.00<br>Circular Averaging<br>63.9<br>64.1<br>64.4                         |
|                             |                                 |                 | sed Avg. Area [cr<br>Avg. Type<br>psPDn+ [W/i<br>psPDtot+ [W<br>psPDmod+ ['<br>Max(Sn) [W/                                | m <sup>2</sup> ]<br>//m <sup>2</sup> ]<br>W/m <sup>2</sup> ]<br>/m <sup>2</sup> ]                        | 1.00<br>Circular Averaging<br>63.9<br>64.1<br>64.4<br>66.0                 |
|                             |                                 |                 | sed Avg. Area [cr<br>Avg. Type<br>psPDn+ [W/i<br>psPDtot+ [W<br>psPDmod+ ['<br>Max(Sn) [W/<br>Max(Stot) [V                | m <sup>2</sup> ]<br>//m <sup>2</sup> ]<br>W/m <sup>2</sup> ]<br>/m <sup>2</sup> ]<br>V/m <sup>2</sup> ]  | 1.00<br>Circular Averaging<br>63.9<br>64.1<br>64.4<br>66.0<br>66.2         |
|                             |                                 |                 | sed Avg. Area [cr<br>Avg. Type<br>psPDn+ [W/i<br>psPDtot+ [W<br>psPDmod+ ['<br>Max(Sn) [W/<br>Max(Stot) [V<br>Max( Stot ) | m <sup>2</sup> ]<br>//m <sup>2</sup> ]<br>W/m <sup>2</sup> ]<br>/m <sup>2</sup> ]<br>V/m <sup>2</sup> ]  | 1.00<br>Circular Averaging<br>63.9<br>64.1<br>64.4<br>66.0<br>66.2<br>66.4 |
|                             |                                 |                 | sed Avg. Area [cr<br>Avg. Type<br>psPDn+ [W/i<br>psPDtot+ [W<br>psPDmod+ ['<br>Max(Sn) [W/<br>Max(Stot) [V                | m <sup>2</sup> ]<br>//m <sup>2</sup> ]<br>W/m <sup>2</sup> ]<br>/m <sup>2</sup> ]<br>[W/m <sup>2</sup> ] | 1.00<br>Circular Averaging<br>63.9<br>64.1<br>64.4<br>66.0<br>66.2         |




| Name, Manufacturer          | Dimensions [mn                  | n]              | IMEI                        | DUT Type                                |                              |
|-----------------------------|---------------------------------|-----------------|-----------------------------|-----------------------------------------|------------------------------|
| 5G Verification Source 10 G | GHz 100.0 x 100.0 x             | 172.0           | SN: 1006                    | -                                       |                              |
| xposure Conditions          |                                 |                 |                             |                                         |                              |
| Phantom Section             | Position, Test Distance<br>[mm] | Band            | Group,                      | Frequency [MHz],<br>Channel Number      | <b>Conversion Factor</b>     |
| 5G -                        | 10.0 mm                         | Validation band | CW                          | 10000.0,<br>10000                       | 1.0                          |
| Hardware Setup              |                                 |                 |                             |                                         |                              |
| Phantom                     | Medium                          |                 | Probe, Calibra              | ation Date                              | DAE, Calibration Date        |
| mmWave Phantom - 1002       | Air                             |                 | EUmmWV3 -<br>2023-05-22     | SN9374_F1-55GHz,                        | DAE4ip Sn1602,<br>2023-07-05 |
| Scan Setup                  |                                 |                 | Measurem                    | ent Results                             |                              |
|                             |                                 | 5G S            | can                         |                                         | 5G Scar                      |
| Sensor Surface [mm]         |                                 | 1               | 0.0 Date                    |                                         | 2023-10-13, 09:28            |
| MAIA                        |                                 | MAIA not us     | sed Avg. Area [c            | :m²]                                    | 4.00                         |
|                             |                                 |                 | Avg. Type                   |                                         | Circular Averaging           |
|                             |                                 |                 | psPDn+ [W/                  |                                         | 58.5                         |
|                             |                                 |                 | psPDtot+ [V                 |                                         | 58.9                         |
|                             |                                 |                 | psPDmod+                    |                                         | 59.2                         |
|                             |                                 |                 | Max(Sn) [W                  |                                         | 66.0                         |
|                             |                                 |                 | Max(Stot) [\<br>Max( Stot ) |                                         | 66.2<br>66.4                 |
|                             |                                 |                 | IVIDAU SLOLI                | /////////////////////////////////////// | 66.4                         |
|                             |                                 |                 | E <sub>max</sub> [V/m]      |                                         | 157                          |



| Name, Manufacturer          | Dimensions [mm                  | ]               | IMEI                        | DUT Type                           |                              |
|-----------------------------|---------------------------------|-----------------|-----------------------------|------------------------------------|------------------------------|
| 5G Verification Source 10 G | Hz 100.0 x 100.0 x 1            | 72.0            | SN: 1006                    | 7                                  |                              |
| xposure Conditions          |                                 |                 |                             |                                    |                              |
| Phantom Section             | Position, Test Distance<br>[mm] | Band            | Group,                      | Frequency [MHz],<br>Channel Number | <b>Conversion Factor</b>     |
| 5G -                        | 10.0 mm                         | Validation band | CW                          | 10000.0,<br>10000                  | 1.0                          |
| ardware Setup               |                                 |                 |                             |                                    |                              |
| Phantom                     | Medium                          |                 | Probe, Calibra              | ation Date                         | DAE, Calibration Date        |
| mmWave Phantom - 1002       | Air                             |                 | EUmmWV3 - 5<br>2023-05-22   | SN9374_F1-55GHz,                   | DAE4ip Sn1602,<br>2023-07-05 |
| Scan Setup                  |                                 |                 |                             | ent Results                        |                              |
|                             |                                 | 5G So           |                             |                                    | 5G Scar                      |
| Sensor Surface [mm]         |                                 |                 | 0.0 Date                    |                                    | 2023-10-13, 09:23            |
| MAIA                        |                                 | MAIA not us     |                             | m²]                                | 1.00                         |
|                             |                                 |                 | Avg. Type                   |                                    | Square Averaging             |
|                             |                                 |                 | psPDn+ [W/                  |                                    | 63.                          |
|                             |                                 |                 | psPDtot+ [W                 |                                    | 64.3                         |
|                             |                                 |                 | psPDmod+ [                  |                                    | 64.                          |
|                             |                                 |                 | Max(Sn) [W,<br>Max(Stot) [V |                                    | 66.0                         |
|                             |                                 |                 | Max( Stot )                 |                                    | 66.<br>66.                   |
|                             |                                 |                 | E <sub>max</sub> [V/m]      |                                    | 15                           |
|                             |                                 |                 | ⊏max [V/III]                |                                    | 15                           |



| Name, Manufacturer          | Dimensions [mn                  | ן               | IMEI                                  | DUT Type                                                                                                         |                                                       |
|-----------------------------|---------------------------------|-----------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| 5G Verification Source 10 G | GHz 100.0 x 100.0 x             | 172.0           | SN: 1006                              | -                                                                                                                |                                                       |
| Exposure Conditions         |                                 |                 |                                       |                                                                                                                  |                                                       |
| Phantom Section             | Position, Test Distance<br>[mm] | Band            | Group,                                | Frequency [MHz],<br>Channel Number                                                                               | <b>Conversion Factor</b>                              |
| 5G -                        | 10.0 mm                         | Validation band | CW                                    | 10000.0,<br>10000                                                                                                | 1.0                                                   |
| Hardware Setup<br>Phantom   | Medium                          |                 | Probe, Calibra                        | tion Data                                                                                                        |                                                       |
| mmWave Phantom - 1002       | Air                             |                 | · · · · · · · · · · · · · · · · · · · | SN9374_F1-55GHz,                                                                                                 | DAE, Calibration Date<br>DAE4ip Sn1602,<br>2023-07-05 |
| Scan Setup                  |                                 |                 | Measurem                              | ent Results                                                                                                      |                                                       |
|                             |                                 | 5G So           | can                                   |                                                                                                                  | 5G Scan                                               |
| Sensor Surface [mm]         |                                 | 1               | 0.0 Date                              |                                                                                                                  | 2023-10-13, 09:28                                     |
| MAIA                        |                                 | MAIA not us     | sed Avg. Area [c                      | m²]                                                                                                              | 4.00                                                  |
|                             |                                 |                 | Avg. Type                             |                                                                                                                  | Square Averaging                                      |
|                             |                                 |                 | psPDn+ [W/                            |                                                                                                                  | 58.3                                                  |
|                             |                                 |                 | psPDtot+ [W                           |                                                                                                                  | 58.8                                                  |
|                             |                                 |                 | psPDmod+ [                            |                                                                                                                  | 59.1                                                  |
|                             |                                 |                 | Max(Sn) [W,                           | State - Constant - Const | 66.0                                                  |
|                             |                                 |                 | Max(Stot) [V                          |                                                                                                                  | 66.2                                                  |
|                             |                                 |                 | Max( Stot )<br>E <sub>max</sub> [V/m] | [vv/m-]                                                                                                          | 66.4                                                  |
|                             |                                 |                 | ⊏max [V/fII]                          |                                                                                                                  | 157                                                   |



#### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland



Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage
- С Servizio svizzero di taratura
- S **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No. D8GHzV2-1006\_May24

# CALIBRATION CERTIFICATE

Element

Morgan Hill, USA

Object

Client

D8GHzV2 - SN:1006

Calibration procedure(s)

QA CAL-22.v7 Calibration Procedure for SAR Validation Sources between 3-10 GHz 5/22/2024

Calibration date:

May 08, 2024

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards              | ID #             | Cal Date (Certificate No.)          | Scheduled Calibration |
|--------------------------------|------------------|-------------------------------------|-----------------------|
| Power sensor R&S NRP33T        | SN: 100967       | 28-Mar-24 (No. 217-04038)           | Mar-25                |
| Reference 20 dB Attenuator     | SN: BH9394 (20k) | 26-Mar-24 (No. 217-04046)           | Mar-25                |
| Mismatch combination           | SN: 84224 / 360D | 28-Mar-24 (No. 217-04050)           | Mar-25                |
| Reference Probe EX3DV4         | SN: 7405         | 12-Jun-23 (No. EX3-7405_Jun23)      | Jun-24                |
| DAE4                           | SN: 908          | 27-Mar-24 (No. DAE4-908_Mar24)      | Mar-25                |
| Secondary Standards            | ID #             | Check Date (in house)               | Scheduled Check       |
| DE concertos Anonico ADOINIGOO | ON: 007          | 10 Dee 10 %= heree als als lose 0.0 |                       |

| RF generator Anapico APSIN20G    | SN: 827       | 18-Dec-18 (in house check Jan-24) | In house check: Jan-25 |
|----------------------------------|---------------|-----------------------------------|------------------------|
| Power sensor NRP-Z23             | SN: 100169    | 10-Jan-19 (in house check Jan-24) | In house check: Jan-25 |
| Power sensor NRP-18T             | SN: 100950    | 28-Sep-22 (in house check Jan-24) | In house check: Jan-25 |
| Network Analyzer Keysight E5063A | SN:MY54504221 | 31-Oct-19 (in house check Oct-22) | In house check: Oct-25 |
|                                  |               |                                   |                        |

Calibrated by:

Jeton Kastrati

Name

Laboratory Technician

Function

Signature

Approved by:

Sven Kühn

**Technical Manager** 

Issued: May 13, 2024

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

#### **Calibration Laboratory of**

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage

С Servizio svizzero di taratura

S **Swiss Calibration Service** 

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

| TSL   | tissue simulating liquid        |
|-------|---------------------------------|
| ConvF | sensitivity in TSL / NORM x,y,z |
| N/A   | not applicable or not measured  |

### Calibration is Performed According to the Following Standards:

a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range Of 4 MHz To 10 GHz)", October 2020.

#### Additional Documentation:

b) DASY System Handbook

#### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.
- The absorbed power density (APD): The absorbed power density is evaluated according to Samaras T, Christ A, Kuster N, "Compliance assessment of the epithelial or absorbed power density above 6 GHz using SAR measurement systems", Bioelectromagnetics, 2021 (submitted). The additional evaluation uncertainty of 0.55 dB (rectangular distribution) is considered.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

# **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY6                        | V16.2                            |
|------------------------------|------------------------------|----------------------------------|
| Extrapolation                | Advanced Extrapolation       |                                  |
| Phantom                      | Modular Flat Phantom         |                                  |
| Distance Dipole Center - TSL | 5 mm                         | with Spacer                      |
| Zoom Scan Resolution         | dx, dy = 2.7 mm, dz = 1.2 mm | Graded Ratio = 1.2 (Z direction) |
| Frequency                    | 8000 MHz ± 1 MHz             |                                  |

### **Head TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 32.7         | 7.84 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 32.5 ± 6 %   | 8.21 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

# SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                         |
|-------------------------------------------------------|--------------------|-------------------------|
| SAR measured                                          | 100 mW input power | 27.0 W/kg               |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 270 W/kg ± 24.7 % (k=2) |

| SAR averaged over 8 cm <sup>3</sup> (8 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 5.57 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 55.6 W/kg ± 24.4 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 4.55 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 45.4 W/kg ± 24.4 % (k=2) |

#### Appendix

#### Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 56.3 Ω + 3.7 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 23.2 dB       |

#### APD (Absorbed Power Density)

| APD averaged over 1 cm <sup>2</sup> | Condition          |                          |
|-------------------------------------|--------------------|--------------------------|
| APD measured                        | 100 mW input power | 269 W/m <sup>2</sup>     |
| APD measured                        | normalized to 1W   | 2690 W/m² ± 29.2 % (k=2) |

| APD averaged over 4 cm <sup>2</sup> | condition          |                          |
|-------------------------------------|--------------------|--------------------------|
| APD measured                        | 100 mW input power | 111 W/m <sup>2</sup>     |
| APD measured                        | normalized to 1W   | 1110 W/m² ± 28.9 % (k=2) |

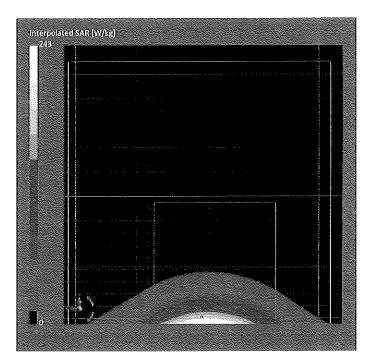
\* The reported APD values have been derived using the psSAR1g and psSAR8g.

#### **General Antenna Parameters and Design**

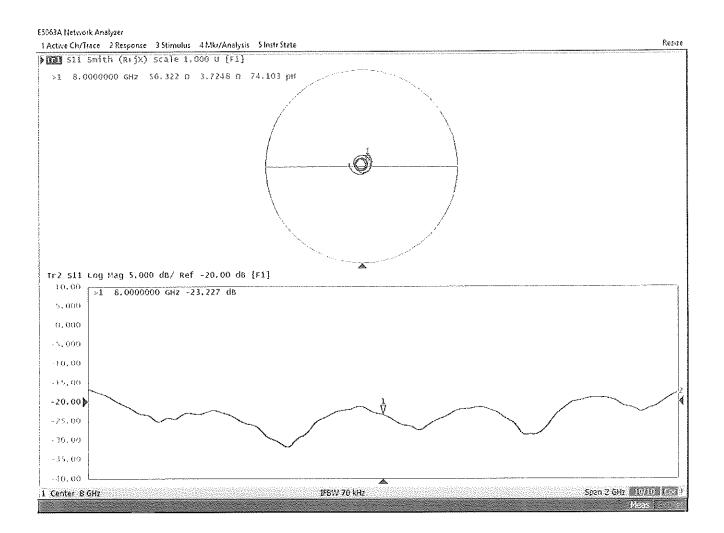
After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.


#### Additional EUT Data

| Manufactured by | SPEAG |
|-----------------|-------|
| -               |       |


### **DASY6 Validation Report for Head TSL**

Measurement Report for D8GHz-1006, UID 0 -, Channel 8000 (8000.0MHz)

| Device under T<br>Name, Manufa<br>D8GHz    | cturer D                                     | Dimensions               |                   | <b>MEI</b><br>N: 1006 | DUT Typ<br>-                      | e                  |                                |
|--------------------------------------------|----------------------------------------------|--------------------------|-------------------|-----------------------|-----------------------------------|--------------------|--------------------------------|
| Exposure Cond<br>Phantom<br>Section, TSL   | itions<br>Position, Test<br>Distance<br>[mm] | : Band                   | Group,<br>UID     | Frequency<br>[MHz]    | Conversion<br>Factor              | TSL Cond.<br>[S/m] | TSL<br>Permittivity            |
| Flat, HSL                                  | 5.00                                         | Band                     | CW,               | 8000                  | 5.65                              | 8.21               | 32.5                           |
| Hardware Setu<br>Phantom<br>MFP V8.0 Cento | · .                                          | <b>TSL</b><br>HBBL600-10 | 000V6             | •                     | bration Date<br>N7405, 2023-06-12 |                    | oration Date<br>08, 2024-03-27 |
| Scan Setup                                 |                                              |                          |                   | Measureme             | ent Results                       |                    |                                |
|                                            |                                              |                          | Zoom Sca          | n                     |                                   |                    | Zoom Scan                      |
| Grid Extents [                             | mm]                                          |                          | 22.0 x 22.0 x 22. |                       |                                   | 2                  | 024-05-08, 15:27               |
| Grid Steps [m                              | m]                                           |                          | 2.6 x 2.6 x 1.    |                       |                                   |                    | 27.0                           |
| Sensor Surfac                              | e [mm]                                       |                          | 1.                | 1. 01                 |                                   |                    | 5.57                           |
| Graded Grid                                |                                              |                          | Ye                |                       |                                   |                    | 4.55                           |
| Grading Ratio                              |                                              |                          | 1.                |                       |                                   |                    | 0.05                           |
| MAIA                                       |                                              |                          | N/.               |                       | +                                 |                    | Disabled                       |
| Surface Detec                              | tion                                         |                          | VMS + 6           |                       |                                   |                    |                                |
| Scan Method                                |                                              |                          | Measure           |                       | • • • • •                         |                    | Enabled                        |
|                                            |                                              |                          |                   | M2/M1 [%              | *                                 |                    | 43.8                           |
|                                            |                                              |                          |                   | Dist 3dB P            | eak [mm]                          |                    | 4.4                            |



#### Impedance Measurement Plot for Head TSL



#### **Calibration Laboratory of** Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland





S

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage С

Servizio svizzero di taratura S

**Swiss Calibration Service** 

Issued: October 12, 2023

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No. D6.5GHzV2-1019\_Oct23

Accreditation No.: SCS 0108

Morgan Hill, USA

Element

Client

| CALIBRATION CE                    | ERTIFICATE                                                                        |                                                                                                                                                                |                            |  |
|-----------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--|
|                                   |                                                                                   |                                                                                                                                                                |                            |  |
| Object                            | D6.5GHzV2 - SN:1019                                                               |                                                                                                                                                                |                            |  |
|                                   |                                                                                   |                                                                                                                                                                |                            |  |
|                                   | QA CAL-22.v7<br>Calibration Procedure for SAR Validation Sources between 3-10 GHz |                                                                                                                                                                |                            |  |
|                                   |                                                                                   |                                                                                                                                                                | J JN 11/16/23              |  |
|                                   |                                                                                   |                                                                                                                                                                | $\sqrt{\frac{1}{16}}$      |  |
| Calibration date:                 | October 11, 2023                                                                  |                                                                                                                                                                | 11/1-1                     |  |
| The measurements and the uncertai | inties with confidence pr                                                         | onal standards, which realize the physical units of<br>robability are given on the following pages and ar<br>y facility: environment temperature (22 ± 3)°C an | e part of the certificate. |  |
| Primary Standards                 | ID #                                                                              | Cal Date (Certificate No.)                                                                                                                                     | Scheduled Calibration      |  |
| Power sensor R&S NRP33T           | SN: 100967                                                                        | 03-Apr-23 (No. 217-03806)                                                                                                                                      | Apr-24                     |  |
| Reference 20 dB Attenuator        | SN: BH9394 (20k)                                                                  | 30-Mar-23 (No. 217-03809)                                                                                                                                      | Mar-24                     |  |
| Mismatch combination              | SN: 84224 / 360D                                                                  | 03-Apr-23 (No. 217-03812)                                                                                                                                      | Apr-24                     |  |
| Reference Probe EX3DV4            | SN: 7405                                                                          | 12-Jun-23 (No. EX3-7405_Jun23)                                                                                                                                 | Jun-24                     |  |
| DAE4                              | SN: 908                                                                           | 03-Jul-23 (No. DAE4-908_Jul23)                                                                                                                                 | Jul-24                     |  |
|                                   |                                                                                   |                                                                                                                                                                |                            |  |
| Secondary Standards               | ID #                                                                              | Check Date (in house)                                                                                                                                          | Scheduled Check            |  |
| RF generator Anapico APSIN20G     | SN: 827                                                                           | 18-Dec-18 (in house check Dec-21)                                                                                                                              | In house check: Dec-23     |  |
| Power sensor NRP-Z23              | SN: 100169                                                                        | 10-Jan-19 (in house check Nov-22)                                                                                                                              | In house check: Nov-23     |  |
| Power sensor NRP-18T              | SN: 100950                                                                        | 28-Sep-22 (in house check Nov-22)                                                                                                                              | In house check: Nov-23     |  |
| Network Analyzer Keysight E5063A  | SN:MY54504221                                                                     | 31-Oct-19 (in house check Oct-22)                                                                                                                              | In house check: Oct-25     |  |
| Calibrated by:                    | Name<br>Jeton Kastrati                                                            | Function<br>Laboratory Technician 🖂                                                                                                                            | Signature                  |  |
|                                   |                                                                                   |                                                                                                                                                                | 4.0                        |  |

Approved by:

**Technical Manager** 

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Sven Kühn

**Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S

Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage С
- Servizio svizzero di taratura S
  - **Swiss Calibration Service**

#### **Glossary:**

| TSL   | tissue simulating liquid        |
|-------|---------------------------------|
| ConvF | sensitivity in TSL / NORM x,y,z |
| N/A   | not applicable or not measured  |

#### **Calibration is Performed According to the Following Standards:**

a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range Of 4 MHz To 10 GHz)", October 2020.

#### Additional Documentation:

b) DASY System Handbook

#### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power. .
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.
- The absorbed power density (APD): The absorbed power density is evaluated according to Samaras T, Christ A, Kuster N, "Compliance assessment of the epithelial or absorbed power density above 6 GHz using SAR measurement systems", Bioelectromagnetics, 2021 (submitted). The additional evaluation uncertainty of 0.55 dB (rectangular distribution) is considered.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

## **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY6                        | V16.2                                 |  |
|------------------------------|------------------------------|---------------------------------------|--|
| Extrapolation                | Advanced Extrapolation       |                                       |  |
| Phantom                      | Modular Flat Phantom         | · · · · · · · · · · · · · · · · · · · |  |
| Distance Dipole Center - TSL | 5 mm                         | with Spacer                           |  |
| Zoom Scan Resolution         | dx, dy = 3.4 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction)      |  |
| Frequency                    | 6500 MHz ± 1 MHz             |                                       |  |

#### **Head TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |  |
|-----------------------------------------|-----------------|--------------|------------------|--|
| Nominal Head TSL parameters             | 22.0 °C         | 34.5         | 6.07 mho/m       |  |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 34.1 ± 6 %   | 6.19 mho/m ± 6 % |  |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |  |

#### SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                         |
|-------------------------------------------------------|--------------------|-------------------------|
| SAR measured                                          | 100 mW input power | 29.4 W/kg               |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 293 W/kg ± 24.7 % (k=2) |
|                                                       |                    |                         |
| SAR averaged over 8 cm <sup>3</sup> (8 g) of Head TSL | Condition          |                         |
| SAR measured                                          | 100 mW input power | 6.62 W/kg               |
|                                                       |                    |                         |

| SAR averaged over 10 $\text{cm}^3$ (10 g) of Head TSL | condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 5.43 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 54.1 W/kg ± 24.4 % (k=2) |

#### Appendix (Additional assessments outside the scope of SCS 0108)

#### Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 49.5 Ω - 5.9 jΩ |  |  |
|--------------------------------------|-----------------|--|--|
| Return Loss                          | - 24.5 dB       |  |  |

#### **APD (Absorbed Power Density)**

| APD averaged over 1 cm <sup>2</sup> | Condition          |                                      |
|-------------------------------------|--------------------|--------------------------------------|
| APD measured                        | 100 mW input power | 293 W/m²                             |
| APD measured                        | normalized to 1W   | 2930 W/m <sup>2</sup> ± 29.2 % (k=2) |

| APD averaged over 4 cm <sup>2</sup> | condition          |                                      |
|-------------------------------------|--------------------|--------------------------------------|
| APD measured                        | 100 mW input power | 132 W/m <sup>2</sup>                 |
| APD measured                        | normalized to 1W   | 1320 W/m <sup>2</sup> ± 28.9 % (k=2) |

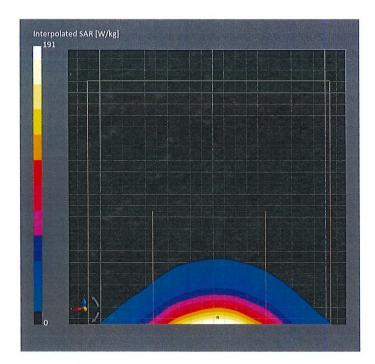
\*The reported APD values have been derived using the psSAR1g and psSAR8g.

#### **General Antenna Parameters and Design**

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

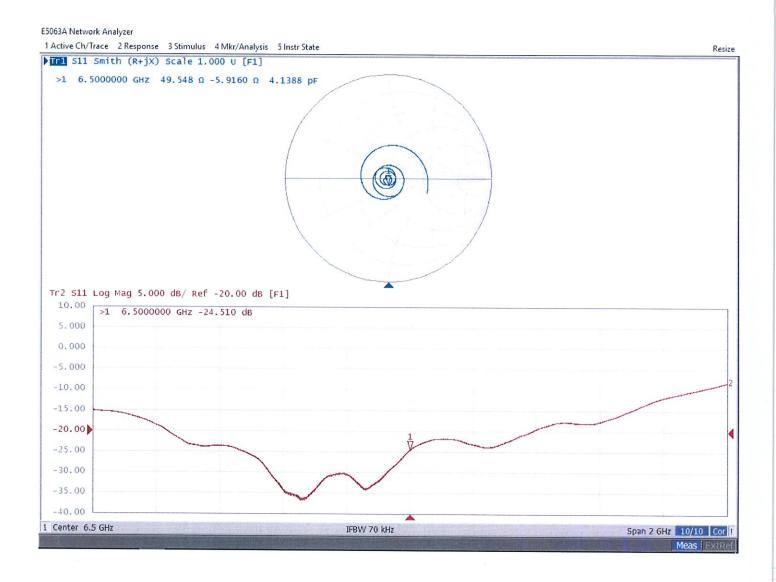
The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.


#### Additional EUT Data

| Manufactured by | SPEAG |
|-----------------|-------|

# **DASY6 Validation Report for Head TSL**


Measurement Report for D6.5GHz-1019, UID 0 -, Channel 6500 (6500.0MHz)

| Device under T                         |                                      | line on olong               | [] IN              | 1EI                    | DUT Typ              |                    |                     |
|----------------------------------------|--------------------------------------|-----------------------------|--------------------|------------------------|----------------------|--------------------|---------------------|
| Name, Manufa<br>D6.5GHz                |                                      | imensions                   | R                  | V: 1019                | -                    | 2                  |                     |
| 20.30112                               |                                      | 10.0 × 10.0 /               | 10.0 51            | . 1015                 |                      |                    |                     |
| Exposure Cond                          | litions                              |                             |                    |                        |                      |                    |                     |
| Phantom<br>Section, TSL                | Position, Test<br>Distance<br>[mm]   | Band                        | Group,<br>UID      | Frequency<br>[MHz]     | Conversion<br>Factor | TSL Cond.<br>[S/m] | TSL<br>Permittivity |
| Flat, HSL                              | 5.00                                 | Band                        | CW,                | 6500                   | 5.50                 | 6.19               | 34.1                |
| Hardware Setu<br>Phantom               |                                      | ſSL                         |                    | Probe, Calil           | pration Date         | DAE, Calil         | pration Date        |
| MFP V8.0 Center - 1182 HBBL600-10000V6 |                                      | EX3DV4 - SN7405, 2023-06-12 |                    | DAE4 Sn908, 2023-07-03 |                      |                    |                     |
| Scan Setup                             |                                      |                             | Measureme          | ent Results            |                      |                    |                     |
|                                        |                                      |                             | Zoom Scan          |                        |                      |                    | Zoom Scan           |
| Grid Extents                           | Grid Extents [mm] 22.0 x 22.0 x 22.0 |                             | Date               |                        |                      | 2023-10-11, 12:13  |                     |
| Grid Steps [m                          | ım]                                  | 3.4 x 3.4 x 1.4             |                    |                        |                      | 29.4               |                     |
| Sensor Surfac                          | ce [mm]                              |                             | 1.4 psSAR8g [W/Kg] |                        | 6.62                 |                    |                     |
| Graded Grid                            |                                      | Yes                         |                    |                        | 5.43                 |                    |                     |
| Grading Ratio 1.4                      |                                      | Power Drift [dB]            |                    | -0.01                  |                      |                    |                     |
| MAIA N/A                               |                                      | Power Scaling               |                    | Disabled               |                      |                    |                     |
| Surface Dete                           |                                      |                             | VMS + 6p           | U                      |                      |                    |                     |
| Scan Method                            |                                      |                             | Measured           |                        |                      |                    | No correction       |
|                                        |                                      |                             |                    | M2/M1 [9               | 5                    |                    | 50.2                |
|                                        |                                      |                             |                    | Dist 3dB P             | eak [mm]             |                    | 4.8                 |



Certificate No: D6.5GHzV2-1019\_Oct23

#### Impedance Measurement Plot for Head TSL

