

- Product Trade mark Model/Type reference Serial Number Report Number FCC ID Date of Issue Test Standards Test result
- : Intelligent in-vehicle host
- (C) KANDI
- : KL3684320
- : N/A
- EED32O81356304
- : 2A8M8-K32
- : Dec. 06, 2022
- : 47 CFR Part 15 Subpart E

: PASS

Prepared for: SC Autosports, LLC 8050 Forest Lane Dallas,TX 75243

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tom ch Firazer. Lo Compiled by: Reviewed by: Tom Chen Frazer Li RNATI Javon Ma Date: Dec. 06, 2022 proved b Aaron Ma Check No.: 1745300822 Report Seal

2 Content

5 GENERAL INFORMATION	5
5.1 CLIENT INFORMATION	
5.2 GENERAL DESCRIPTION OF EUT	
5.3 TEST CONFIGURATION	7
5.4 TEST ENVIRONMENT	
5.5 DESCRIPTION OF SUPPORT UNITS	
5.6 TEST LOCATION	8
5.7 DEVIATION FROM STANDARDS	8
5.8 ABNORMALITIES FROM STANDARD CONDITIONS	
5.9 OTHER INFORMATION REQUESTED BY THE CUSTOMER	
5.10 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2)	8
6 EQUIPMENT LIST	9
7 RADIO TECHNICAL REQUIREMENTS SPECIFICATION	12
7.1 ANTENNA REQUIREMENT	
7.2 MAXIMUM CONDUCTED OUTPUT POWER	
7.3 6dB Emisson Bandwidth	14
7.4 26DB EMISSION BANDWIDTH AND 99% OCCUPIED BANDWIDTH	
7.5 MAXIMUM POWER SPECTRAL DENSITY	
7.6 FREQUENCY STABILITY	
7.7 RADIATED EMISSION	
7.8 RADIATED EMISSION WHICH FALL IN THE RESTRICTED BANDS	
8 APPENDIX A	
PHOTOGRAPHS OF TEST SETUP	
PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS	

Version No.	Date	Description	
00 Dec. 06, 2022	Original		

ant Current and

Test Item	Test Requirement	Result
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203	PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart E Section 15.407 (b)(6) N/A
Duty Cycle	47 CFR Part 15 Subpart E Section 15.407	PASS
Maximum Conducted Output Power	47 CFR Part 15 Subpart E Section 15.407 (a) PASS
26dB emission bandwidth	47 CFR Part 15 Subpart E Section 15.407 (a) PASS
99% Occupied bandwidth		PASS
6dB emission bandwidth	47 CFR Part 15 Subpart E Section 15.407 (e) PASS
Maximum Power Spectral Density	47 CFR Part 15 Subpart E Section 15.407 (a) PASS
Frequency stability	47 CFR Part 15 Subpart E Section 15.407 (g) PASS
Radiated Emissions	47 CFR Part 15 Subpart E Section 15.407 (b) PASS
Radiated Emissions which fall in the restricted bands	47 CFR Part 15 Subpart E Section 15.407 (b) PASS

Remark:

N/A:The EUT is powered by DC 12.0V.

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

Page 5 of 42

5 General Information 5.1 Client Information

Fa	ctory :	SC Autosports, LLC		
Ad	dress of Manufacturer:	8050 Forest Lane Dallas,TX 75243		
Ma	inufacturer:	SC Autosports, LLC	J	V
Ad	dress of Applicant:	8050 Forest Lane Dallas,TX 75243	(a^{γ})	(6))
Ap	plicant:	SC Autosports, LLC	(in)	(in)

Product Name:	Intelligent in-vehicle host
Model No.:	KL3684320
Trade mark:	(C) KANDI
Product Type:	Fix Location
Type of Modulation:	IEEE 802.11a: OFDM (BPSK, QPSK, 16QAM, 64QAM) IEEE 802.11n(HT20/HT40): OFDM (BPSK, QPSK, 16QAM, 64QAM) IEEE 802.11ac(VHT20/VHT40): OFDM (BPSK, QPSK, 16QAM, 64QAM)
Operating Frequency	U-NII-3:5745-5825MHz
Antenna Type:	Internal antenna
Antenna Gain:	-1.2dBi
Power Supply:	DC 12.0V
Test voltage:	DC 12.0V
Sample Received Date:	Sep. 15, 2022
Sample tested Date:	Sep. 15, 2022 to Sep. 22, 2022

Operation	Frequency	each of	channel
-----------	-----------	---------	---------

802.11a/802.11n/802.11ac (20MHz) Frequency/Channel Operations:

U-NII-1		U-NII-3	
Channel	Frequency(MHz)	Channel	Frequency(MHz)
36	5180	149	5745
40	5200	153	5765
44	5220	157	5785
48	5240	161	5805
_ @	U -	165	5825

802.11n/802.11ac (40MHz) Frequency/Channel Operations:

U-NII-1		U-NII-3	
Channel	Frequency(MHz)	Channel	Frequency(MHz)
38	5190	151	5755
46	5230	159	5795
(c)	N)	6)

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

5.3 Test Configuration

EUT Test Software Settings:	
Software:	RF test
EUT Power Grade:	Default (Power level is built-in set parameters and cannot be changed and selected)
Use test software to set the low transmitting of the EUT.	est frequency, the middle frequency and the highest frequency keep
Test Mode:	
We have verified the construction the EUT in transmitting operation	on and function in typical operation. All the test modes were carried out with on, which was shown in this test report and defined as follows:
Per-scan all kind of data rate	in lowest channel, and found the follow list which it

was worst case.

Mode	Data rate
802.11a	6 Mbps
802.11n(HT20)	MCS0
802.11n(HT40)	MCS0
802.11ac(VHT20)	MCS0
802.11ac(VHT40)	MCS0

5.4 Test Environment

Operating Environment:			
Radiated Spurious Emission	s:		
Temperature:	22~25.0 °C		
Humidity:	50~55 % RH		
Atmospheric Pressure:	1010mbar	G	6)
Conducted Emissions:			
Temperature:	22~25.0 °C		
Humidity:	50~55 % RH		
Atmospheric Pressure:	1010mbar	•) ((~S)
RF Conducted:			
Humidity:	50~55 % RH		
Atmospheric Pressure:	1010mbar		
	NT (Normal Temperature)	22~25.0 °C	
Temperature:	LT (Low Temperature)	-20 °C	e
	HT (High Temperature)	70 °C	
	NV (Normal Voltage)	DC 12.0 V	
Working Voltage of the EUT:	LV (Low Voltage)	DC 10.8 V	
	HV (High Voltage)	DC 13.2 V	S)

5.5 Description of Support Units

The EUT has been tested with associated equipment below.

1) support equipment

Description	wanulacturer	Model No.	Certification	Supplied by
Integrated	SC Autosports,	KI 368/310	FCC	Client
screen	LLC	KL3004310	FCC	Client

5.6 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted.

FCC Designation No.: CN1164

O

5.7 Deviation from Standards

None.

5.8 Abnormalities from Standard Conditions

None.

5.9 Other Information Requested by the Customer

None.

5.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1 Radio Frequency		7.9 x 10 ⁻⁸
5		0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-18GHz)
		3.3dB (9kHz-30MHz)
2	Padiated Spurious optionian test	4.5dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.8dB (1GHz-18GHz)
		3.4dB (18GHz-40GHz)
Λ	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

6 Equipment List

		RF test s	system		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Spectrum Analyzer	Keysight	N9010A	MY54510339	12-24-2021	12-23-2022
Signal Generator	Keysight	N5182B	MY53051549	12-24-2021	12-23-2022
Spectrum Analyzer	R&S	FSV40	101200	07-29-2022	07-28-2023
Signal Generator	Agilent	N5181A	MY46240094	12-24-2021	12-23-2022
DC Power	Keysight	E3642A	MY56376072	12-24-2021	12-23-2022
Power unit	R&S	OSP120	101374	12-24-2021	12-23-2022
RF control unit	JS Tonscend	JS0806-2	158060006	12-24-2021	12-23-2022
Communication test set	R&S	CMW500	120765	12-22-2021	12-21-2022
high-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	12-24-2021	12-23-2022
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-16-2022	06-15-2023
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3	2.6.77.0518	(9 -

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

Page 9 of 42

Page 10 of 42

	3M Semi-an	echoic Chamber (2)	- Radiated distu	urbance Test	
Equipment	Manufacturer	Model	Serial No.	Cal. Date	Due Date
3M Chamber & Accessory Equipment	TDK	SAC-3		05/22/2022	05/21/2025
Receiver	R&S	ESCI7	100938-003	10/14/2021	10/13/2022
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	9163-618	05/22/2022	05/21/2023
Multi device Controller	maturo	NCD/070/10711112		- 62	- <i></i>
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D-1869	04/15/2021	04/14/2024
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04/17/2021	04/16/2024
Microwave Preamplifier	Agilent	8449B	3008A02425	06/20/2022	06/19/2023

Page 11 of 42

		3M full-anechoi	c Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy
RSE Automatic test software	JS Tonscend	JS36-RSE	10166		
Receiver	Keysight	N9038A	MY57290136	03-01-2022	02-28-2023
Spectrum Analyzer	Keysight	N9020B	MY57111112	02-23-2022	02-22-2023
Spectrum Analyzer	Keysight	N9030B	MY57140871	02-23-2022	02-22-2023
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2021	04-27-2024
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-15-2021	04-14-2024
Horn Antenna	ETS-LINDGREN	3117	57407	07-04-2021	07-03-2024
Preamplifier	EMCI	EMC184055SE	980597	04-20-2022	04-19-2023
Preamplifier	EMCI	EMC001330	980563	04-01-2022	03-31-2023
Preamplifier	JS Tonscend	980380	EMC051845SE	12-24-2021	12-23-2022
Communication test set	R&S	CMW500	102898	12-24-2021	12-23-2022
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-11-2022	04-10-2023
Fully Anechoic Chamber	ток	FAC-3	0	01-09-2021	01-08-2024
Cable line	Times	SFT205-NMSM-2.50M	394812-0001		
Cable line	Times	SFT205-NMSM-2.50M	394812-0002	<u>-</u>	-
Cable line	Times	SFT205-NMSM-2.50M	394812-0003	<u> </u>	0
Cable line	Times	SFT205-NMSM-2.50M	393495-0001		
Cable line	Times	EMC104-NMNM-1000	SN160710	- 6	9
Cable line	Times	SFT205-NMSM-3.00M	394813-0001		
Cable line	Times	SFT205-NMNM-1.50M	381964-0001		
Cable line	Times	SFT205-NMSM-7.00M	394815-0001	<u>-</u>	-
Cable line	Times	HF160-KMKM-3.00M	393493-0001	S	

Page 12 of 42

7 Radio Technical Requirements Specification

(SI)

1.1	Antenna Requirer	nem				
_	Standard requirement:	47 CFR Part 15C Sec	ction 15.203	~		
	15.203 requirement: An intentional radiator sha responsible party shall be antenna that uses a uniqu so that a broken antenna o electrical connector is prof	Il be designed to ensure used with the device. The coupling to the intentio can be replaced by the us nibited.	that no antenn ne use of a per nal radiator, th ser, but the use	a other than t manently atta e manufactur e of a standar	that furnished iched antenna er may desigr d antenna jac	by the a or of an a the unit ck or
	EUT Antenna:	Please see Internal p	hotos		\odot	
	The antenna is integral an	tenna. The best case ga	in of the antenr	na is -1.2dBi.		

100	Test Requirement:	47 CFR Part 15C S	ection 15.407 (a)				
6	Test Method:	KDB789033 D02 G E	General UNII Test Procedures New Rules v02r01 Section				
(T	Test Setup:	Control Computes Computes Supply Power Supply TEMPERATURE CABI	RF test System Instrument				
(N	Test Procedure:	 The testing follow General UNII Test I The RF output of attenuator. The pat measurement. Set to the maxim continuously. Measure the con report. 	vs the Measurement Procedure of KDB789033 D02 Procedures New Rules v02r01 Section E, 3, a f EUT was connected to the power meter by RF cable and th loss was compensated to the results for each num power setting and enable the EUT transmit ducted output power and record the results in the test				
	Limit:						
		Frequency band (MHz)	Limit				
		5150-5250	≤1W(30dBm) for master device				
			≤250mW(24dBm) for client device				
		5250-5350	≤250mW(24dBm) for client device or 11dBm+10logB*				
		5470-5725	≤250mW(24dBm) for client device or 11dBm+10logB*				
		5725-5850	≤1W(30dBm)				
©`		Remark:	* Where B is the 26dB emission bandwidth in MHz The maximum conducted output power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms- equivalent voltage.				
	Test Mode:	Transmitting mode	with modulation				
	Test Results:	Refer to Appendix 5	5G WIFI				

7.3 6dB Emisson Bandwidth

	Test Requirement:	47 CFR Part 15C Section 15.407 (e)
	Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C
C.	Test Setup:	Control Control Control Power Supple TemPERATURE CABINET RF test System Instrument
Ś		Remark: Offset=Cable loss+ attenuation factor.
	Test Procedure:	 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report.
	Limit:	≥ 500 kHz
~	Test Mode:	Transmitting mode with modulation
	Test Results:	Refer to Appendix 5G WIFI

7.4 26dB Emission Bandwidth and 99% Occupied Bandwidth

Test	Requirement:	47 CFR Part 15C Section 15.407 (a)		
Test	Method:	KDB789033 D02 General UNII Test Procedures New Rules v0	2r01 Section D	
Test	: Setup:	(25) (25)	S	
(T)		RF test System Instrument Remark: Offset=Cable loss+ attenuation factor.		
Test	Procedure:	 KDB789033 D02 General UNII Test Procedures New Rules Section D Set to the maximum power setting and enable the EUT transcontinuously. Make the measurement with the spectrum analyzer's resolut (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. make an accurate measurement. Measure and record the results in the test report. 	v02r01 smit tion bandwidth In order to	
Limi	t:	No restriction limits	~~~~	
Test	Mode:	Transmitting mode with modulation		
Test	Results:	Refer to Appendix 5G WIFI	V	

Page 16 of 42

7.5 Maximum Power Spectral Density

Test Requirement: 47 CFR Part 15C Section 15.407 (a)								
13	Test Method:	KDB789033 D02 G	General UNII Test	Procedures New Rules v02r01	Section F			
6	Test Setup:	(c	52)	(25)	(\mathcal{S})			
		Control Computer Power Supply TEMPERATURE CAE	Attenuator	RF test System Instrument				
S.		Remark: Offset=Ca	able loss+ attenua	ation factor.				
	Test Procedure:	 Set the spectrum analyzer or EMI receiver span to view the entire emission bandwidth. 1. Set RBW = 510 kHz/1 MHz, VBW ≥ 3*RBW, Sweep time = Auto, Detector = RMS. Allow the sweeps to continue until the trace stabilizes. Use the peak marker function to determine the maximum amplitude level. 						
	Limit:							
		Frequency band (MHz)	Limit					
13		5150-5250	≤17dBm in 1MHz for master device					
6		6	≤11dBm in 1MF	n 1MHz for client device				
\sim		5250-5350	≤11dBm in 1MF	Iz for client device	\sim			
		5470-5725	≤11dBm in 1MF	Iz for client device				
		5725-5850	≤30dBm in 500	kHz				
		Remark:	The maximum p a conducted em calibrated test i	ower spectral density is measured as ission by direct connection of a istrument to the equipment under test.				
	Test Mode:	Transmitting mode with modulation						
100	Test Results:	Refer to Appendix	5G WIFI	(°>>	12			
($(\mathcal{C}_{\mathcal{L}})$		((cr)	(\mathbf{c})			

7.6 Frequency Stability

Test Requirement:	47 CFR Part 15C Section 15.407 (g)				
Test Method:	ANSI C63.10: 2013	13	13		
Test Setup:	(<i>e</i> .s*)	(25)	(St)		
	Control Computer Power Supply TemPERATURE CABINET	RF test – System Instrument			
		tion to Mark	((S)		
Test Procedure:	 1.The EUT was placed inside the erby nominal AC/DC voltage. 2. Turn the EUT on and couple its o 3. Turn the EUT off and set the chars specified. d. Allow sufficient time (ap of the chamber to stabilize. 4. Repeat step 2 and 3 with the tem temperature. 5. The test chamber was allowed to of 30 minutes. The supply voltage w 115% and the frequency record. 	ation factor. nvironmental test ch utput to a spectrum mber to the highest oproximately 30 min perature chamber s stabilize at +20 deg vas then adjusted or	amber and powered analyzer. temperature) for the temperature et to the lowest gree C for a minimum the EUT from 85% to		
Limit:	The frequency tolerance shall be maintained within the band of operation frequency over a temperature variation of 0 degrees to 45 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.				
Test Mode:	Transmitting mode with modulation				
Test Results:	Refer to Appendix 5G WIFI	/	(C)		

7.7 Radiated Emission

	Test Requirement:	47 CFR Part 15C Section 15.209 and 15.407 (b)						
205	Test Method:	ANSI C63.10 2013						
	Test Site:	Measurement Distanc	e: 3n	n (Semi-Aneo	choic Chai	mbe	r)	(2)
2	Receiver Setup:	Frequency		Detector	RB	N	VBW	Remark
		0.009MHz-0.090MH	Ηz	Peak	10kH	Ηz	30kHz	Peak
		0.009MHz-0.090MH	Ηz	Average	10kH	Ηz	30kHz	Average
		0.090MHz-0.110MH	Ηz	Quasi-pea	k 10kH	Ηz	30kHz	Quasi-peak
		0.110MHz-0.490MH	Ηz	Peak	10kH	Ηz	30kHz	Peak
		0.110MHz-0.490MH	Ηz	Average	10kH	Ηz	30kHz	Average
		0.490MHz -30MH	z	Quasi-pea	k 10kł	Ηz	30kHz	Quasi-peak
1		30MHz-1GHz	0	Quasi-pea	k 100 k	Hz	300kHz	Quasi-peak
3			7	Peak	1MF	łz	3MHz	Peak
<u> </u>		Above 1GHz		Peak	1MF	łz	10kHz	Average
	Limit:		1					
		Frequency	Fie (mic	ld strength rovolt/meter)	Limit (dBuV/m)	F	Remark	Measurement distance (m)
		0.009MHz-0.490MHz	24	400/F(kHz)	-		- 6	300
		0.490MHz-1.705MHz	24	000/F(kHz)	-		-	30
		1.705MHz-30MHz		30	-		-	30
		30MHz-88MHz	0	100	40.0	Qu	asi-peak	3
3		88MHz-216MHz	1	150	43.5	Qu	asi-peak	3
		216MHz-960MHz		200	46.0	Qu	asi-peak	3
		960MHz-1GHz		500	54.0	Qu	asi-peak	3
		Above 1GHz		500	54.0	A	verage	3
		 *(1) For transmitters outside of the 5.15-dBm/MHz. (2) For transmitters op of the 5.15-5.35 GHz k (3) For transmitters op outside of the 5.47-5 dBm/MHz. (4) For transmitters op (i) All emissions shall above or below the ba above or below the ba edge increasing linear the band edge, and f linearly to a level of 27 	ope 5.35 operation operation operation be lir and operation operat	rating in the GHz band ing in the 5.2 shall not exc ating in the 5 GHz band ing in the 5.7 mited to a lev edge increas edge, and fr a level of 15 5 MHz abov n/MHz at the	e 5.15-5.2 shall not 5-5.35 GH ceed an e. 5.47-5.72 shall no 25-5.85 G rel of −27 ing linearl com 25 M 5.6 dBm/W re or belo band edg	5 G t ex lz ba i.r.p. 5 G t ex Hz t dBm y to Hz a lHz a lHz a w th e.	Hz band: ceed an of -27 dE Hz band: ceed an o/MHz at 7 10 dBm/N above or b at 5 MHz an on band e	All emissions e.i.r.p. of -27 hissions outside Bm/MHz. All emissions e.i.r.p. of -27 5 MHz or more MHz at 25 MHz below the band above or below bdge increasing
<u>s</u>		Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing						

Ì

		an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. Note: (i) EIRP = ((E*d)^2) / 30 where: • E is the field strength in V/m; • d is the measurement distance in meters; • EIRP is the equivalent isotropically radiated power in watts. (ii) Working in dB units, the above equation is equivalent to: EIRP[dBm] = E[dBµV/m] + 20 log(d[meters]) - 104.77 (iii) Or, if d is 3 meters: EIRP[dBm] = E[dBµV/m] - 95.2
_	Test Setup:	
(A	0.8 m	RX Antenna 3 m EUT Turn Table Ground Plane
		Receiver
e la	()	Figure 1. Below 30MHz
(in	AE EUT (Turntable) Ground Reference Test Receiver	Antenna Tower Antenna Tower Antenna Tower Antenna Tower Antenna Tower Cround Retence Plane Test Receiver Controller
	Figure 2. 30MHz to 10	GHz Figure 3. Above 1 GHz
(internet in the second	Test Procedure:	 a. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. Note: For the radiated emission test above 1GHz:

Page 20 of 42

	Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
	b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	 e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	g. Test the EUT in the lowest channel, the middle channel and the highest channel
	h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	i. Repeat above procedures until all frequencies measured was complete.
Test Mode:	Transmitting mode with modulation
Test Results:	Pass

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

Remark: During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case lowest channel of 6Mbps for 802.11 a was recorded in the report.

No. M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	84.1100	14.19	10.98	25.17	40.00	-14.83	QP	200	39	
2	101.2885	14.76	13.87	28.63	43.50	-14.87	QP	200	39	
3	155.9101	17.03	9.92	26.95	43.50	-16.55	QP	200	303	
4	180.0164	16.55	11.30	27.85	43.50	-15.65	QP	200	303	
5 *	313.2760	18.01	17.54	35.55	46.00	-10.45	QP	100	198	
6	457.5073	14.88	20.63	35.51	46.00	-10.49	QP	100	198	

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

Page 22 of 42

No. I	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin	0	Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		97.7983	11.40	13.74	25.14	43.50	-18.36	QP	200	331	
2		207.8501	10.43	14.05	24.48	43.50	-19.02	QP	100	4	
3		261.0583	11.86	15.90	27.76	46.00	-18.24	QP	200	133	
4		316.5890	19.08	17.61	36.69	46.00	-9.31	QP	200	143	
5	*	457.5073	16.34	20.63	36.97	46.00	-9.03	QP	100	81	
6		520.8882	13.28	22.06	35.34	46.00	-10.66	QP	100	60	

Transmitter Emission above 1GHz

Remark: Through Pre-scan, for 20MHz Occupied Bandwidth, 802.11 n(HT20) mode was the worst case; for 40MHz Occupied Bandwidth, 802.11 n(HT40) mode was the worst case; only the worst case was recorded in the report.

2		15.71		16.7	1	16.7			C.C.I.
Mode	:	8	302.11 n(HT2	0) Transmit	ting	Chann	el:	5745MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1430.1430	1.85	40.79	42.64	68.20	25.56	PASS	Horizontal	PK
2	2677.1177	6.02	39.00	45.02	68.20	23.18	PASS	Horizontal	PK
3	3806.3806	9.39	38.28	47.67	68.20	20.53	PASS	Horizontal	PK
4	9303.1202	-7.59	52.28	44.69	68.20	23.51	PASS	Horizontal	PK
5	11489.7993	-5.84	52.36	46.52	68.20	21.68	PASS	Horizontal	PK
6	15442.2295	-0.29	50.48	50.19	68.20	18.01	PASS	Horizontal	PK
7	1704.0704	3.60	39.36	42.96	68.20	25.24	PASS	Vertical	PK
8	2799.7800	6.47	42.51	48.98	68.20	19.22	PASS	Vertical	PK
9	4519.2519	12.25	36.42	48.67	68.20	19.53	PASS	Vertical	PK
10	9750.8834	-7.37	52.09	44.72	68.20	23.48	PASS	Vertical	PK
11	12459.6973	-4.17	52.58	48.41	68.20	19.79	PASS	Vertical	PK
12	16939.6293	2.77	50.43	53.20	68.20	15.00	PASS	Vertical	PK

ŝ	Mode	:	8	302.11 n(HT2	0) Transmitti	ng	Channe	el:	5785MHz	
2	NO	Freq. [MHz]	Factor [dB]	or J Reading Level Limit [dBμV] [dBμV/m] [dBμV/m] Margin [df		Margin [dB]	Result	Polarity	Remark	
	1	1540.1540	2.23	40.85	43.08	68.20	25.12	PASS	Horizontal	PK
	2	2799.7800	6.47	40.71	47.18	68.20	21.02	PASS	Horizontal	PK
	3	4319.0319	11.88	35.55	47.43	68.20	20.77	PASS	Horizontal	PK
	4	8373.8583	-10.75	54.01	43.26	68.20	24.94	PASS	Horizontal	PK
	5	11747.4165	-5.98	53.03	47.05	68.20	21.15	PASS	Horizontal	PK
	6	15495.1330	0.41	49.76	50.17	68.20	18.03	PASS	Horizontal	PK
0	7	1369.6370	1.77	41.29	43.06	68.20	25.14	PASS	Vertical	PK
	8	2799.2299	6.47	42.44	48.91	68.20	19.29	PASS	Vertical	PK
2	9	5038.5039	13.87	38.10	51.97	68.20	16.23	PASS	Vertical	PK
	10	9234.1156	-7.67	52.25	44.58	68.20	23.62	PASS	Vertical	PK
	11	11571.0714	-6.28	54.34	48.06	68.20	20.14	PASS	Vertical	PK
	12	14971.4648	-0.94	51.09	50.15	68.20	18.05	PASS	Vertical	PK

Page 23 of 42

Page 24 of 42

	Mode	:	80)2.11 n(HT2	0) Transmitti	ng	Channe	el:	5825MHz		
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
	1	1136.4136	1.09	41.46	42.55	68.20	25.65	PASS	Horizontal	PK	
10	2	1711.2211	3.61	39.32	42.93	68.20	25.27	PASS	Horizontal	PK	
	3	2799.2299	6.47	40.78	47.25	68.20	20.95	PASS	Horizontal	PK	
-	4	7453.7969	-11.38	54.65	43.27	68.20	24.93	PASS	Horizontal	PK	
	5	11121.0081	-6.27	54.12	47.85	68.20	20.35	PASS	Horizontal	PK	
	6	13874.2916	-1.24	50.46	49.22	68.20	18.98	PASS	Horizontal	PK	
	7	1281.0781	1.53	40.62	42.15	68.20	26.05	PASS	Vertical	PK	
	8	2799.2299	6.47	41.88	48.35	68.20	19.85	PASS	Vertical	PK	
	9	4997.2497	13.68	37.90	51.58	68.20	16.62	PASS	Vertical	PK	
	10	7727.5152	-11.23	53.99	42.76	68.20	25.44	PASS	Vertical	PK	
0	11	11646.9765	-6.15	54.57	48.42	68.20	19.78	PASS	Vertical	PK	
4	12	16307.0871	0.79	50.69	51.48	68.20	16.72	PASS	Vertical	PK	
)					0)	0)			

	Mode	:		802.11 n(HT4	l0) Transmitti	ing	Channe	el:	5755MHz	
	NO	Freq. [MHz]	Facto [dB]	or] Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1717.2717	3.62	40.15	43.77	68.20	24.43	PASS	Horizontal	PK
10	2	2799.2299	6.47	41.31	47.78	68.20	20.42	PASS	Horizontal	PK
4	3	5750.8251	20.2	2 35.13	55.35	68.20	12.85	PASS	Horizontal	PK
6	4	7616.3411	-10.6	53.90	43.26	68.20	24.94	PASS	Horizontal	PK
	5	10814.3210	-6.2	1 52.36	46.15	68.20	22.05	PASS	Horizontal	PK
	6	15959.7640	-0.09	9 51.29	51.20	68.20	17.00	PASS	Horizontal	PK
	7	1629.8130	2.97	39.61	42.58	68.20	25.62	PASS	Vertical	PK
	8	2799.2299	6.47	42.60	49.07	68.20	19.13	PASS	Vertical	PK
	9	5002.7503	13.7	0 37.88	51.58	68.20	16.62	PASS	Vertical	PK
	10	7369.4580	-11.4	0 54.06	42.66	68.20	25.54	PASS	Vertical	PK
	11	9208.0472	-7.7 [,]	1 53.00	45.29	68.20	22.91	PASS	Vertical	PK
1	12	15903.0269	0.12	2 50.70	50.82	68.20	17.38	PASS	Vertical	PK
e.			6	1	6	1	6			CN)

ao 25 of 42

Page 25 of 42

		-		-							
I	Mode	:	8	02.11 n(HT4	0) Transmitti	ng	Channe	el:	5795MHz	5795MHz	
ŝ	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
4	1	1284.9285	1.56	41.71	43.27	68.20	24.93	PASS	Horizontal	PK	
	2	2415.2915	4.95	39.61	44.56	68.20	23.64	PASS	Horizontal	PK	
	3	3203.5204	7.84	38.86	46.70	68.20	21.50	PASS	Horizontal	PK	
	4	8892.9262	-9.27	52.88	43.61	68.20	24.59	PASS	Horizontal	PK	
	5	11913.0275	-5.36	52.81	47.45	68.20	20.75	PASS	Horizontal	PK	
	6	14423.2616	0.30	49.45	49.75	68.20	18.45	PASS	Horizontal	PK	
	7	1391.0891	1.80	40.50	42.30	68.20	25.90	PASS	Vertical	PK	
	8	2799.2299	6.47	41.99	48.46	68.20	19.74	PASS	Vertical	PK	
4	9	4322.3322	11.90	36.72	48.62	68.20	19.58	PASS	Vertical	PK	
3	10	9271.6848	-7.62	52.73	45.11	68.20	23.09	PASS	Vertical	PK	
	11	11979.7320	-4.95	51.97	47.02	68.20	21.18	PASS	Vertical	PK	
	12	15903.0269	0.12	50.54	50.66	68.20	17.54	PASS	Vertical	PK	

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor-Antenna Factor-Cable Factor

2) Scan from 9kHz to 40GHz, the disturbance above 18GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

7.8 Radiated Emission which fall in the restricted bands

	Test Requirement:	47 CFR Part 15C Section 15.209 and 15.407 (b)								
13	Test Method:	ANSI C63.10 2013								
6	Test Site:	Measurement Distanc	e: 3n	n (Semi-Aneo	choi	c Char	nbei	r)	(\mathcal{S}^{\prime})	
	Receiver Setup:	Frequency	_	Detector		RBV	V VBW		Remark	
		0.009MHz-0.090MH	Ηz	Peak		10kH	łz	30kHz	Peak	
		0.009MHz-0.090MH	Ηz	Average		10kH	Ιz	30kHz	Average	
		0.090MHz-0.110MH	Ηz	Quasi-pea	k	10k⊦	łz	30kHz	Quasi-peak	
		0.110MHz-0.490MH	Ηz	Peak		10kF	łz	30kHz	Peak	
		0.110MHz-0.490MH	Ηz	Average		10k⊦	łz	30kHz	Average	
10-		0.490MHz -30MH	z	Quasi-pea	k	10k⊢	łz	30kHz	Quasi-peak	
		30MHz-1GHz	0	Quasi-pea	k	100 k	Hz	300kHz	Quasi-peak	
0			J	Peak		1MH	lz	3MHz	Peak	
				Peak		1MH	lz	10kHz	Average	
	Limit:	Frequency	Fie (mic	ld strength rovolt/meter)	L (dB	imit uV/m)	R	emark	Measurement distance (m)	
		0.009MHz-0.490MHz	24	100/F(kHz)		-		-	300	
		0.490MHz-1.705MHz	24	000/F(kHz)		-		-	30	
13		1.705MHz-30MHz		30		- ~~		-	30	
8		30MHz-88MHz	()	100	40	0.0	Qu	asi-peak	3	
		88MHz-216MHz	/	150	43	3.5	Qu	asi-peak	3	
		216MHz-960MHz		200	46	6.0	Qu	asi-peak	3	
		960MHz-1GHz		500	54	4.0	Qu	asi-peak	3	
		Above 1GHz		500	54	4.0	A	verage	3	
		 *(1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz. (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz. (3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz. (4) For transmitters operating in the 5.725-5.85 GHz band: (i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge, and from 25 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge. 								
S I		measurements emploint frequency bands 9-9	oying 0kH:	a CISPR z. 110-490kl	qua Hz	asi-pea and a	ak c abov	detector e e 1000 N	except for the /Hz. Radiated	

S

Page 27 of 42

Page 28 of 42

	Suspected List												
(À	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark			
C	1	5745.1976	13.85	81.38	95.23	122.20	26.97	PASS	Horizontal	PK			

Page 30 of 42

	Suspected List											
13	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
6	1	5743.6968	13.84	80.84	94.68	122.20	27.52	PASS	Vertical	PK		

Page 31 of 42

13	NO	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Result	Polarity	Remark
2	1	5785.9055	13.92	83.18	97.10	122.20	25.10	PASS	Horizontal	PK

Page 32 of 42

Page 33 of 42

13	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
(c)	1	5826.0505	14.04	82.97	97.01	122.20	25.19	PASS	Horizontal	PK
	1									

Page 34 of 42

Page 35 of 42

13	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
(c)	1	5761.8934	13.88	79.42	93.30	122.20	28.90	PASS	Horizontal	PK	
	1			•							

Page 36 of 42

	Suspe	cted List								
13	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
(\mathcal{A})	1	5752.7014	13.86	78.55	92.41	122.20	29.79	PASS	Vertical	PK
	1									

Page 37 of 42

13	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
2	1	5793.0340	13.93	79.61	93.54	122.20	28.66	PASS	Horizontal	PK
	1									

Page 38 of 42

-	NO	Freq. [MHz]	[dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remar
\mathbb{S}	1	5792.6588	13.93	79.03	92.96	122.20	29.24	PASS	Vertical	PK
3										

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor-Antenna Factor-Cable Factor

2) Scan from 1GHz to 25GHz, the disturbance above 13GHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com