

## 4.4 Unwanted Emissions Measurement

This section is to measure unwanted emissions through radiated measurement for band edge spurious emissions and out of band emissions measurement.

#### 4.4.1 Limit of Unwanted Emissions

 For transmitters operating in the 5150-5250 MHz band: all emissions outside of the 5150-5350 MHz band shall not exceed an EIRP of -27dBm/MHz.

For transmitters operating in the 5250-5350 MHz band: all emissions outside of the 5150-5350 MHz band shall not exceed an EIRP of-27 dBm/MHz. Devices operating in the 5250-5350 MHz band that generate emissions in the 5150-5250 MHz band must meet all applicable technical requirements for operation in the 5150-5250 MHz band (including indoor use) or alternatively meet an out-of-band emission EIRP limit of -27 dBm/MHz in the 5150-5250 MHz band.

For transmitters operating in the 5470-5725 MHz band: all emissions outside of the 5470-5725MHz band shall not exceed an EIRP of -27 dBm/MHz.

For transmitters operating in the 5.725-5.85 GHz band:

15.407(b)(4)(i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

(2) Unwanted spurious emissions fallen in restricted bands shall comply with the general field strength limits as below table.

| Frequency<br>(MHz) | Field Strength<br>(microvolts/meter) | Measurement Distance<br>(meters) |
|--------------------|--------------------------------------|----------------------------------|
| 0.009-0.490        | 2400/F(kHz)                          | 300                              |
| 0.490-1.705        | 24000/F(kHz)                         | 30                               |
| 1.705 - 30.0       | 30                                   | 30                               |
| 30-88              | 100                                  | 3                                |
| 88 -216            | 150                                  | 3                                |
| 216 - 960          | 200                                  | 3                                |
| Above 960          | 500                                  | 3                                |



| EIRP (dBm) | Field Strength at 3m (dB $\mu$ V/m) |
|------------|-------------------------------------|
| - 27       | 68.2                                |

**Note:** The following formula is used to convert the EIRP to field strength.

 $EIRP = E_{Meas} + 20log (d_{Meas}) - 104.7$ 

where

EIRP is the equivalent isotropically radiated power, in dBm

 $E_{Meas}$  is the field strength of the emission at the measurement distance, in  $dB_{\mu}V/m$ 

 $d_{\text{Meas}}$  is the measurement distance, in m

#### 4.4.2 Measuring Instruments

The measuring equipment is listed in the section 3.3 of this test report.

#### 4.4.3 Test Procedures

 The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01 Section G) Unwanted emissions measurement.

(1)Procedure for Unwanted Emissions Measurements Below 1000MHz

- RBW = 120 kHz
- VBW = 300 kHz
- Detector = Peak
- Trace mode = max hold

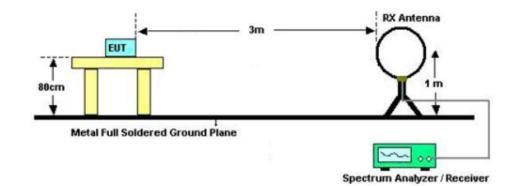
(2)Procedure for Peak Unwanted Emissions Measurements Above 1000 MHz

- RBW= 1 MHz
- VBW ≥ 3 MHz
- Detector = Peak
- Sweep time = auto
- Trace mode = max hold

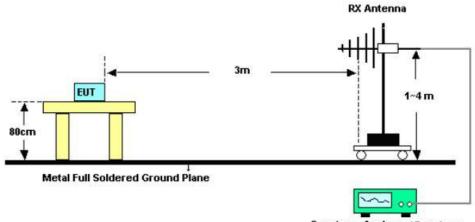
(3)Procedures for Average Unwanted Emissions Measurements Above 1000MHz

- RBW = 1 MHz
- VBW = 10 Hz, when duty cycle is no less than 98 percent
- VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
- 2. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 3. The EUT was set 3 meters from the interference receiving antenna which was mounted on the top of a variable height antenna tower.
- 4.. The antenna is a broadband antenna and its height is adjusted between one meter and four.



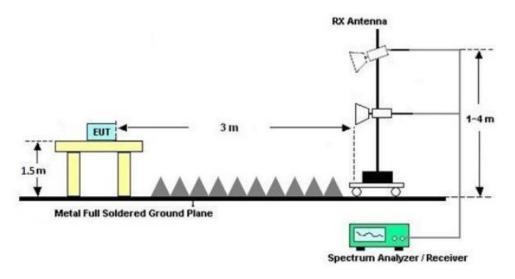

meters above ground to find the maximum value of the field strength for both horizontal polarization and vertical polarization of the antenna.

- 5. For each suspected emission, the EUT was arranged to its worst case and then adjust the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading.
- 6. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 7. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than peak limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.




### 4.4.4 Test Setup

For radiated emissions below 30MHz




#### For radiated emissions from 30MHz to 1GHz



Spectrum Analyzer / Receiver

#### For radiated emissions above 1GHz





#### 4.4.5Test Results of Radiated Spurious Emissions (9 kHz - 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.

#### 4.4.6 Test Result of Radiated Spurious at Band Edges

Please refer to ANNEX B.1.

# 4.4.7 Test Result of Radiated Spurious Emissions (30MHz - 10th Harmonic or 40GHz whichever is lower)

Please refer to ANNEX B.1

#### 4.4.8 Duty Cycle

Please refer to ANNEX A.4.



# 4.5 AC Conducted Emission Measurement

#### 4.5.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

| Frequency of emission (MHz) | Conducted limit (dBµV) |           |  |  |
|-----------------------------|------------------------|-----------|--|--|
|                             | Quasi-peak             | Average   |  |  |
| 0.15-0.5                    | 66 to 56*              | 56 to 46* |  |  |
| 0.5-5                       | 56                     | 46        |  |  |
| 5-30                        | 60                     | 50        |  |  |

Decreases with the logarithm of the frequency.

#### 4.5.2 Measuring Instruments

The section 3.3 of List of Measuring Equipment of this test report is used for test.

#### 4.5.3 Test Procedures

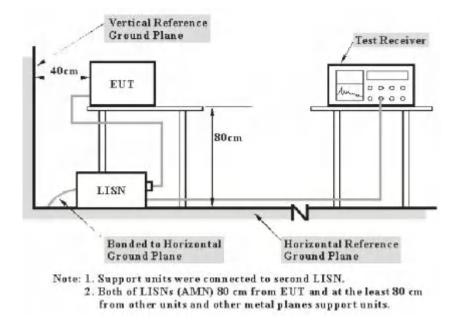
1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.

2. Connect EUT to the power mains through a line impedance stabilization network (LISN).

3. All the support units are connecting to the other LISN.

4. The LISN provides 50 ohm coupling impedance for the measuring instrument.

5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.


6. Both sides of AC line were checked for maximum conducted interference.

7. The frequency range from 150 kHz to 30 MHz was searched.

8. Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth =9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.



#### 4.5.4 Test Setup



#### 4.5.5 Uncertainty Measurement

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT. The listed uncertainties are the worst case uncertainty for the entire range of measurement. Please note that the uncertainty values are provided for informational purposes only and are not used in determining the PASS/FAIL results.

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

| CASE                          | Uncertainty |  |  |
|-------------------------------|-------------|--|--|
| Continuous Emission (AC port) | 2.92 dB     |  |  |

#### 4.5.6 Test Result

**Remark:**The product is DC powered, this test item is not applicable.



## 4.6 Antenna Requirements

#### 4.6.1 Standard Applicable

15.203 requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement: The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and(b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6dBi.

#### 4.6.2 Antenna Anti-Replacement Construction

The antenna is External on the main PCB and no consideration of replacement. The best case gain of the antenna is -0.70dBi.

----- THE END ------



# **ANNEX A: Test Results of Conducted Test**

# A.1 6dB and 26dB and 99% Occupied Bandwidth Measurement

#### Test Result\_26dB Bandwidth

| Test Mode | Antenna | Frequency[MHz] | 26db EBW [MHz] | FL[MHz]  | FH[MHz]  | Limit[MHz] | Verdict |
|-----------|---------|----------------|----------------|----------|----------|------------|---------|
| 11A-CDD   | Ant1    | 5180           | 18.760         | 5170.400 | 5189.160 |            |         |
| 11A-CDD   | Ant2    | 5180           | 19.480         | 5170.280 | 5189.760 |            |         |
| 11A-CDD   | Ant1    | 5220           | 19.120         | 5210.200 | 5229.320 |            |         |
| 11A-CDD   | Ant2    | 5220           | 19.880         | 5210.320 | 5230.200 |            |         |
| 11A-CDD   | Ant1    | 5240           | 19.240         | 5230.160 | 5249.400 |            |         |
| 11A-CDD   | Ant2    | 5240           | 19.240         | 5230.320 | 5249.560 |            |         |
| 11A-CDD   | Ant1    | 5260           | 19.200         | 5250.480 | 5269.680 |            |         |
| 11A-CDD   | Ant2    | 5260           | 19.440         | 5249.920 | 5269.360 |            |         |
| 11A-CDD   | Ant1    | 5300           | 19.320         | 5290.440 | 5309.760 |            |         |
| 11A-CDD   | Ant2    | 5300           | 19.760         | 5289.840 | 5309.600 |            |         |
| 11A-CDD   | Ant1    | 5320           | 19.600         | 5310.200 | 5329.800 |            |         |
| 11A-CDD   | Ant2    | 5320           | 19.880         | 5310.280 | 5330.160 |            |         |
| 11A-CDD   | Ant1    | 5500           | 19.520         | 5490.200 | 5509.720 |            |         |
| 11A-CDD   | Ant2    | 5500           | 19.280         | 5490.080 | 5509.360 |            |         |
| 11A-CDD   | Ant1    | 5580           | 18.840         | 5570.560 | 5589.400 |            |         |
| 11A-CDD   | Ant2    | 5580           | 19.000         | 5570.480 | 5589.480 |            |         |
| 11A-CDD   | Ant1    | 5700           | 20.000         | 5690.040 | 5710.040 |            |         |
| 11A-CDD   | Ant2    | 5700           | 19.120         | 5690.400 | 5709.520 |            |         |
| 11A-CDD   | Ant1    | 5720           | 19.280         | 5710.360 | 5729.640 |            |         |
| 11A-CDD   | Ant2    | 5720           | 19.000         | 5710.400 | 5729.400 |            |         |
| 11A-CDD   | Ant1    | 5720_UNII-2C   | 14.64          | 5710.360 | 5725     |            |         |
| 11A-CDD   | Ant2    | 5720_UNII-2C   | 14.6           | 5710.400 | 5725     |            |         |
| 11A-CDD   | Ant1    | 5720_UNII-3    | 4.64           | 5725     | 5729.640 |            |         |
| 11A-CDD   | Ant2    | 5720_UNII-3    | 4.4            | 5725     | 5729.400 |            |         |
| 11A-CDD   | Ant1    | 5745           | 19.680         | 5735.200 | 5754.880 |            |         |
| 11A-CDD   | Ant2    | 5745           | 19.280         | 5735.320 | 5754.600 |            |         |
| 11A-CDD   | Ant2    | 5785           | 19.600         | 5775.080 | 5794.680 |            |         |
| 11A-CDD   | Ant1    | 5785           | 19.280         | 5775.240 | 5794.520 |            |         |
| 11A-CDD   | Ant1    | 5825           | 19.120         | 5815.240 | 5834.360 |            |         |
| 11A-CDD   | Ant2    | 5825           | 19.240         | 5815.240 | 5834.480 |            |         |
| 11N20MIMO | Ant1    | 5180           | 20.920         | 5169.600 | 5190.520 |            |         |
| 11N20MIMO | Ant2    | 5180           | 20.040         | 5170.120 | 5190.160 |            |         |



**Test Report** 

| (1) 1001 1110 | <b>A</b> | 5000         | 00.010 | 5000 /00 | 5000 000 |      |
|---------------|----------|--------------|--------|----------|----------|------|
| 11N20MIMO     | Ant1     | 5220         | 20.840 | 5209.480 | 5230.320 | <br> |
| 11N20MIMO     | Ant2     | 5220         | 22.240 | 5209.280 | 5231.520 | <br> |
| 11N20MIMO     | Ant1     | 5240         | 20.640 | 5229.520 | 5250.160 | <br> |
| 11N20MIMO     | Ant2     | 5240         | 20.280 | 5229.400 | 5249.680 | <br> |
| 11N20MIMO     | Ant1     | 5260         | 20.280 | 5249.640 | 5269.920 | <br> |
| 11N20MIMO     | Ant2     | 5260         | 20.960 | 5248.960 | 5269.920 | <br> |
| 11N20MIMO     | Ant1     | 5300         | 19.960 | 5289.760 | 5309.720 | <br> |
| 11N20MIMO     | Ant2     | 5300         | 20.360 | 5289.720 | 5310.080 | <br> |
| 11N20MIMO     | Ant1     | 5320         | 20.480 | 5309.600 | 5330.080 | <br> |
| 11N20MIMO     | Ant2     | 5320         | 20.120 | 5309.880 | 5330.000 | <br> |
| 11N20MIMO     | Ant1     | 5500         | 20.000 | 5489.960 | 5509.960 | <br> |
| 11N20MIMO     | Ant2     | 5500         | 22.240 | 5489.800 | 5512.040 | <br> |
| 11N20MIMO     | Ant1     | 5580         | 21.520 | 5569.160 | 5590.680 | <br> |
| 11N20MIMO     | Ant2     | 5580         | 21.960 | 5568.120 | 5590.080 | <br> |
| 11N20MIMO     | Ant1     | 5700         | 20.400 | 5689.520 | 5709.920 | <br> |
| 11N20MIMO     | Ant2     | 5700         | 20.400 | 5689.520 | 5709.920 | <br> |
| 11N20MIMO     | Ant1     | 5720         | 20.040 | 5709.760 | 5729.800 | <br> |
| 11N20MIMO     | Ant2     | 5720         | 20.080 | 5709.880 | 5729.960 | <br> |
| 11N20MIMO     | Ant1     | 5720_UNII-2C | 15.24  | 5709.760 | 5725     | <br> |
| 11N20MIMO     | Ant2     | 5720_UNII-2C | 15.12  | 5709.880 | 5725     | <br> |
| 11N20MIMO     | Ant1     | 5720_UNII-3  | 4.8    | 5725     | 5729.800 | <br> |
| 11N20MIMO     | Ant2     | 5720_UNII-3  | 4.96   | 5725     | 5729.960 | <br> |
| 11N20MIMO     | Ant1     | 5745         | 20.000 | 5734.920 | 5754.920 | <br> |
| 11N20MIMO     | Ant2     | 5745         | 19.880 | 5734.920 | 5754.800 | <br> |
| 11N20MIMO     | Ant1     | 5785         | 20.040 | 5774.920 | 5794.960 | <br> |
| 11N20MIMO     | Ant2     | 5785         | 20.440 | 5774.800 | 5795.240 | <br> |
| 11N20MIMO     | Ant1     | 5825         | 21.280 | 5814.080 | 5835.360 | <br> |
| 11N20MIMO     | Ant2     | 5825         | 20.840 | 5815.080 | 5835.920 | <br> |
| 11N40MIMO     | Ant1     | 5190         | 39.120 | 5170.240 | 5209.360 | <br> |
| 11N40MIMO     | Ant2     | 5190         | 38.880 | 5170.720 | 5209.600 | <br> |
| 11N40MIMO     | Ant1     | 5230         | 39.360 | 5210.320 | 5249.680 | <br> |
| 11N40MIMO     | Ant2     | 5230         | 38.880 | 5210.320 | 5249.200 | <br> |
| 11N40MIMO     | Ant1     | 5270         | 39.520 | 5250.160 | 5289.680 | <br> |
| 11N40MIMO     | Ant2     | 5270         | 38.880 | 5250.240 | 5289.120 | <br> |
| 11N40MIMO     | Ant1     | 5310         | 40.000 | 5289.920 | 5329.920 | <br> |
| 11N40MIMO     | Ant2     | 5310         | 52.880 | 5284.400 | 5337.280 | <br> |
| 11N40MIMO     | Ant1     | 5510         | 40.000 | 5489.840 | 5529.840 | <br> |
| 11N40MIMO     | Ant2     | 5510         | 39.600 | 5490.480 | 5530.080 | <br> |
| 11N40MIMO     | Ant1     | 5550         | 39.280 | 5530.240 | 5569.520 | <br> |