

from the PC 2 through the master and the client device to the PC 1 and played in full motion video using Media Player Classic Ver. 6.4.8.6 in order to properly load the network for the entire period of the test. 5) When radar burst with a level equal to the DFS Detection Threshold +1dB is generated on the

operating channel of the U-NII device. At time T0 the radar waveform generator sends a burst of pulse of the radar waveform at Detection Threshold +1dB.

6) Observe the transmissions of the EUT at the end of the radar Burst on the Operating Channel. Measure and record the transmissions from the UUT during the observation time (Channel Move Time). One 15 seconds plot is reported for the Short Pulse Radar Type 0. The plot for the Short Pulse Radar Types start at the end of the radar burst. The Channel Move Time will be calculated based on the zoom in 600ms plot of the Short Pulse Radar Type.

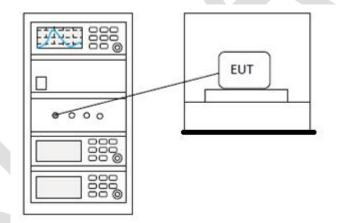
7) Measurement of the aggregate duration of the Channel Closed Transmission Time method. With the spectrum analyzer set to zero span tuned to the center frequency of the EUT operating channel at the radar simulated frequency, peak detection, and max hold, the dwell time per bin is given by: Dwell (0.3ms) =S (12000ms) / B (4000); where Dwell is the dwell time per spectrum analyzer sampling bin, S is sweep time and B is the number of spectrum analyzer sampling bins. An upper bound of the aggregate duration of the intermittent control signals of Channel Closing Transmission Time is calculated by: C (ms)= N X Dwell (0.3ms); where C is the Closing Time, N is the number of spectrum analyzer sampling bins (intermittent control signals) showing a U-NII transmission and Dwell is the dwell time per bin.

8) Measurement the EUT for more than 30 minutes following the channel move time to verify that no transmission or beacons occur on this channel.

Report No.: BLA-EMC-202306-A5105 Page 42 of254

13.4 TEST DATA

Not Applicable


14 DFS: NON-OCCUPANCY PERIOD

Test Standard	47 CFR Part 15, Subpart E 15.407
Test Method	KDB 905462 D02 Section 7.8.3
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ
Tester	Charlie
Temperature	25°C
Humidity	60%

14.1 LIMITS

Limit: Minimum 30 minutes

14.2 BLOCK DIAGRAM OF TEST SETUP

14.3 PROCEDURE

1) The radar pulse generator is setup to provide a pulse at frequency that the master and client are operating. A type 0 radar pulse with a 1us pulse width and a 1428us PRI is used for the testing.

2) The vector signal generator is adjusted to provide the radar burst (18 pulses) at the level of approximately -61dBm at the antenna port of the master device.

3) A trigger is provided from the pulse generator to the DFS monitoring system in order to capture the traffic and the occurrence of the radar pulse.

4) EUT will associate with the master at channel. The file i° iperf.exe i^{\pm} specified by the FCC is streamed from the PC 2 through the master and the client device to the PC 1 and played in full motion video using Media Player Classic Ver. 6.4.8.6 in order to properly load the network for the entire period of the test.

5) When radar burst with a level equal to the DFS Detection Threshold +1dB is generated on the operating channel of the U-NII device. At time T0 the radar waveform generator sends a burst of pulse of the radar waveform at Detection Threshold +1dB.

6) Observe the transmissions of the EUT at the end of the radar Burst on the Operating Channel.

Measure and record the transmissions from the UUT during the observation time (Channel Move Time). One 15 seconds plot is reported for the Short Pulse Radar Type 0. The plot for the Short Pulse Radar Types start at the end of the radar burst. The Channel Move Time will be calculated based on the zoom in 600ms plot of the Short Pulse Radar Type.

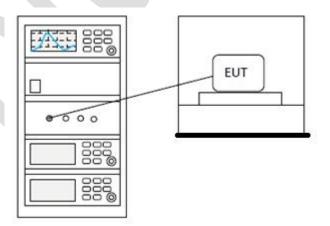
7) Measurement of the aggregate duration of the Channel Closed Transmission Time method. With the spectrum analyzer set to zero span tuned to the center frequency of the EUT operating channel at the radar simulated frequency, peak detection, and max hold, the dwell time per bin is given by: Dwell (0.3ms) =S (12000ms) / B (4000); where Dwell is the dwell time per spectrum analyzer sampling bin, S is sweep time and B is the number of spectrum analyzer sampling bins. An upper bound of the aggregate duration of the intermittent control signals of Channel Closing Transmission Time is calculated by: C (ms)= N X Dwell (0.3ms); where C is the Closing Time, N is the number of spectrum analyzer sampling bins (intermittent control signals) showing a U-NII transmission and Dwell is the dwell time per bin.

8) Measurement the EUT for more than 30 minutes following the channel move time to verify that no transmission or beacons occur on this channel.

Report No.: BLA-EMC-202306-A5105 Page 45 of254

14.4 TEST DATA

Not Applicable


15 PEAK POWER SPECTRUM DENSITY

Test Standard	47 CFR Part 15, Subpart E 15.407
Test Method	KDB 789033 D02 II F
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ
Tester	Charlie
Temperature	25°C
Humidity	60%

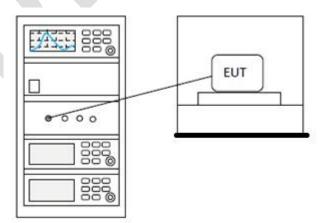
15.1 LIMITS

Free band(M	quency IHz)	Limit				
5150.5	250	\leq 17dBm in 1MHz for master device				
5150-5	5250	≤11dBm in 1MHz for client device				
5250-5	350	≤11dBm in 1MHz for client device				
5470-5	5725	≤11dBm in 1MHz for client device				
5725-5	5850 ≤30dBm in 500 kHz					
Remark:	The maximum	m power spectral density is measured as a conducted emission by				
	direct connection of a calibrated test instrument to the equipment under test.					

15.2 BLOCK DIAGRAM OF TEST SETUP

Report No.: BLA-EMC-202306-A5105 Page 47 of254

15.3 TEST DATA


16 MAXIMUM CONDUCTED OUTPUT POWER

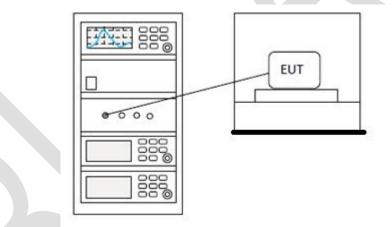
Test Standard	47 CFR Part 15, Subpart E 15.407
Test Method	KDB 789033 D02 II E
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ
Tester	Charlie
Temperature	25°C
Humidity	60%

16.1 LIMITS

Free band(M	quency IHz)	Limit					
5150.5	250	\leq 1W(30dBm) for master device					
5150-5	230	≤250mW(24dBm) for client device					
5250-5	$\leq 250 \text{mW}(24 \text{dBm})$ for client device or $11 \text{dBm}+10 \log B^*$						
5470-5	5725	≤250mW(24dBm) for client device or 11dBm+10logB*					
5725-5	850	≤1W(30dBm)					
Remark:	* Where B is	the 26dB emission bandwidth in MHz.					
	The maximu	m conducted output power must be measured over any interval of					
	continuous	transmission using instrumentation calibrated in terms of an					
	rms-equivalent voltage.						

16.2 BLOCK DIAGRAM OF TEST SETUP

16.3 TEST DATA

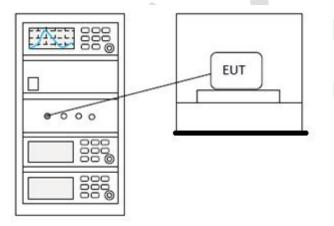

17 MINIMUM 6 DB BANDWIDTH (5.725-5.85 GHZ BAND)

Test Standard	47 CFR Part 15, Subpart E 15.407
Test Method	KDB 789033 D02 II C 2
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ
Tester	Charlie
Temperature	25°C
Humidity	60%

17.1 LIMITS

Limit: $\geq 500 \text{ kHz}$

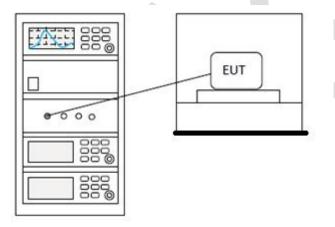
17.2 BLOCK DIAGRAM OF TEST SETUP


17.3 TEST DATA

18 26DB EMISSION BANDWIDTH

Test Standard	47 CFR Part 15, Subpart E 15.407
Test Method	KDB 789033 D02 II C 1
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ
Tester	Charlie
Temperature	25 ℃
Humidity	60%

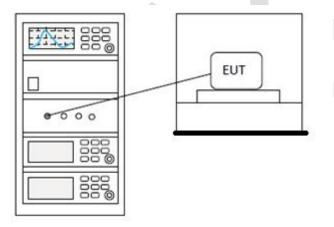
18.1 BLOCK DIAGRAM OF TEST SETUP


18.2 TEST DATA

19 99% BANDWIDTH

Test Standard	47 CFR Part 15, Subpart E 15.407
Test Method	KDB 789033 II D
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ
Tester	Charlie
Temperature	25°C
Humidity	60%

19.1 BLOCK DIAGRAM OF TEST SETUP


19.2 TEST DATA

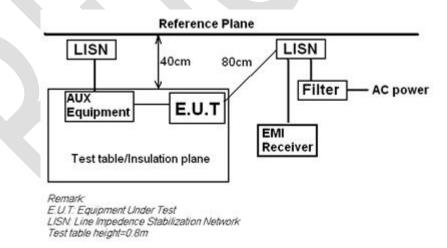
20 DUTY CYCLE

Test Standard	47 CFR Part 15, Subpart E 15.407
Test Method	KDB 789033 II B 1
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ
Tester	Charlie
Temperature	25 ℃
Humidity	60%

20.1 BLOCK DIAGRAM OF TEST SETUP

20.2 TEST DATA

21 CONDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ)


Test Standard	47 CFR Part 15, Subpart E 15.407
Test Method	ANSI C63.10 (2013) Section 6.2
Test Mode (Pre-Scan)	Transmitting mode
Test Mode (Final Test)	Transmitting mode
Tester	Charlie
Temperature	25°C
Humidity	60%

21.1 LIMITS

Frequency of	Conducted limit(dBµV)					
emission(MHz)	Quasi-peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30	-60	50				

*Decreases with the logarithm of the frequency.

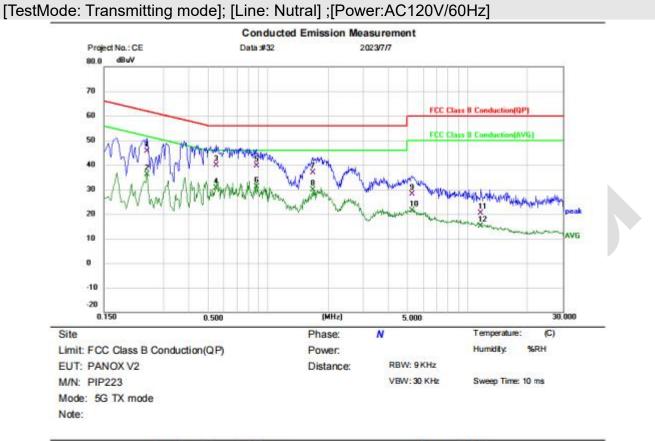
21.2 BLOCK DIAGRAM OF TEST SETUP

21.3 PROCEDURE

1) The mains terminal disturbance voltage test was conducted in a shielded room.

2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50ohm/50H + 5ohm linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.

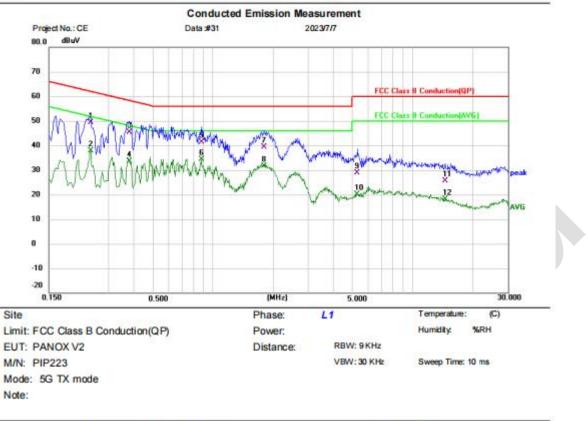
3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,


4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.

5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Remark: LISN=Read Level+ Cable Loss+ LISN Factor

21.4 TEST DATA



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	8	Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	cm	degree	Comment
1		0.2460	34.94	10.57	45.51	61.89	-16.38	QP			
2	1	0.2460	25.50	10.57	36.07	51.89	-15.82	AVG			
3	5	0.5460	29.85	10.04	39.89	56.00	-16.11	QP			
4		0.5460	20.61	10.04	30.65	46.00	-15.35	AVG			
5		0.8740	29.59	10.02	39.61	56.00	-16.39	QP			
6		0.8740	21.02	10.02	31.04	46.00	-14.96	AVG			
7	-	1.6740	26.83	10.08	36.91	56.00	-19.09	QP			
8		1.6740	19.87	10.08	29.95	46.00	-16.05	AVG			
9		5.2580	18.19	9.82	28.01	60.00	-31.99	QP			
10		5.2580	11.50	9.82	21.32	50.00	-28.68	AVG			
11		11.6540	10.30	9.98	20.28	60.00	-39.72	QP			
12	6	11.6540	5.26	9.98	15.24	50.00	-34.76	AVG			

Test Result: Pass

[TestMode: Transmitting mode]; [Line: Line] ;[Power:AC120V/60Hz]

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	cm	degree	Comment
1		0.2420	38.69	10.59	49.28	62.03	-12.75	QP			
2		0.2420	27.22	10.59	37.81	52.03	-14.22	AVG	í.		
3		0.3780	35.37	10.07	45.44	58.32	-12.88	QP			
4		0.3780	23.63	10.07	33.70	48.32	-14.62	AVG			
5		0.8740	31.18	10.10	41.28	56.00	-14.72	QP			
6	•	0.8740	24.26	10.10	34.36	46.00	-11.64	AVG			
7		1.8020	29.03	10.27	39.30	56.00	-16.70	QP			
8		1.8020	21.42	10.27	31.69	46.00	-14.31	AVG			
9		5.2819	18.78	10.02	28.80	60.00	-31.20	QP			
10		5.2819	10.11	10.02	20.13	50.00	-29.87	AVG			
11		14.5940	15.59	9.98	25.57	60.00	-34.43	QP			
12		14.5940	8.05	9.98	18.03	50.00	-31.97	AVG			
_											

Test Result: Pass

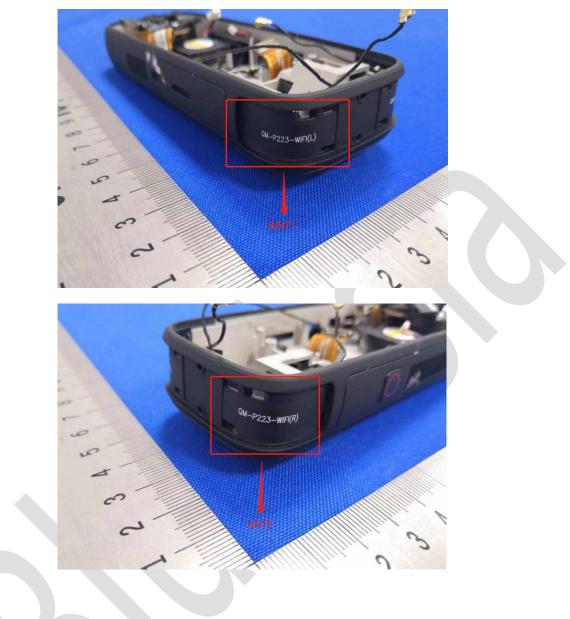
22 ANTENNA REQUIREMENT

Test Standard	47 CFR Part 15, Subpart E 15.407				
Test Method	N/A				


22.1 CONCLUSION

Standard Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit permanently attached antenna or of an so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.


EUT Antenna:

The best case gain of the antenna is Antenna 1:1.89dBi,Antenna 2:0.94dBi

Report No.: BLA-EMC-202306-A5105 Page 59 of254

23 APPENDIX

23.1 BAND1:

23.2 MAXIMUM CONDUCTED OUTPUT POWER

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	а	5180	Ant1	10.616	24	Pass
NVNT	а	5200	Ant1	11.524	24	Pass
NVNT	а	5240	Ant1	11.907	24	Pass
NVNT	а	5180	Ant2	10.677	24	Pass
NVNT	а	5200	Ant2	9.762	24	Pass
NVNT	а	5240	Ant2	8.73	24	Pass
NVNT	ac20	5180	Ant1	10.773	24	Pass
NVNT	ac20	5180	Ant2	10.865	24	Pass
NVNT	ac20	5180	Sum	13.83	24	Pass
NVNT	ac20	5200	Ant1	11.64	24	Pass
NVNT	ac20	5200	Ant2	9.948	24	Pass
NVNT	ac20	5200	Sum	13.886	24	Pass
NVNT	ac20	5240	Ant1	11.975	24	Pass
NVNT	ac20	5240	Ant2	8.86	24	Pass
NVNT	ac20	5240	Sum	13.701	24	Pass
NVNT	ac40	5190	Ant1	11.372	24	Pass
NVNT	ac40	5190	Ant2	11.322	24	Pass
NVNT	ac40	5190	Sum	14.357	24	Pass
NVNT	ac40	5230	Ant1	12.398	24	Pass
NVNT	ac40	5230	Ant2	10.34	24	Pass
NVNT	ac40	5230	Sum	14.5	24	Pass
NVNT	ac80	5210	Ant1	12.194	24	Pass
NVNT	ac80	5210	Ant2	10.466	24	Pass
NVNT	ac80	5210	Sum	14.426	24	Pass
NVNT	n20	5180	Ant1	10.721	24	Pass
NVNT	n20	5180	Ant2	10.941	24	Pass
NVNT	n20	5180	Sum	13.843	24	Pass
NVNT	n20	5200	Ant1	11.664	24	Pass
NVNT	n20	5200	Ant2	9.851	24	Pass
NVNT	n20	5200	Sum	13.862	24	Pass
NVNT	n20	5240	Ant1	11.908	24	Pass
NVNT	n20	5240	Ant2	8.943	24	Pass
NVNT	n20	5240	Sum	13.684	24	Pass
NVNT	n40	5190	Ant1	11.563	24	Pass
NVNT	n40	5190	Ant2	11.382	24	Pass
NVNT	n40	5190	Sum	14.484	24	Pass
NVNT	n40	5230	Ant1	12.448	24	Pass
NVNT	n40	5230	Ant2	10.443	24	Pass
NVNT	n40	5230	Sum	14.57	24	Pass