

FCC PART 15C TEST REPORT

No. 24T04Z103042-009

for

TCL Communication Ltd.

GSM/UMTS/LTE mobile phone

Model Name: T626K

FCC ID: 2ACCJB232

with

Hardware Version: 05

Software Version: v3LA8

Issued Date: 2025-2-24

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of CTTL.

Test Laboratory:

CTTL, Telecommunication Technology Labs, CAICT

No.52, HuayuanNorth Road, Haidian District, Beijing, P. R. China 100191.

Tel:+86(0)10-62304633-2512,Fax:+86(0)10-62304633-2504

Email: cttl_terminals@caict.ac.cn, website: www.chinattl.com

REPORT HISTORY

Report Number	Revision	Description	Issue Date
24T04Z103042-009	Rev.0	1 st edition	2025-2-14
24T04Z103042-009	Rev.1	Update Antenna gain and result of E.I.R.P.	2025-2-24

Note: the latest revision of the test report supersedes all previous version.

CONTENTS

1.	TE	EST LABORATORY	5
1	.1.	Introduction & Accreditation	5
1	.2.	TESTING LOCATION	5
1	.3.	TESTING ENVIRONMENT	6
1	.4.	Project data	6
1	.5.	Signature	6
2.	CI	LIENT INFORMATION	7
2	2.1.	APPLICANT INFORMATION	7
2	2.2.	MANUFACTURER INFORMATION	7
3.	EÇ	QUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	8
3	3.1.	ABOUT EUT	8
3	3.2.	INTERNAL IDENTIFICATION OF EUT	8
3	3.3.	INTERNAL IDENTIFICATION OF AE	8
3	3.4.	NORMAL ACCESSORY SETTING	8
3	3.5.	GENERAL DESCRIPTION	8
4.	RF	EFERENCE DOCUMENTS	9
4	l.1.	DOCUMENTS SUPPLIED BY APPLICANT	9
4	1.2.	REFERENCE DOCUMENTS FOR TESTING	
5.	TE	EST RESULTS	. 10
5	5.1.	SUMMARY OF TEST RESULTS	. 10
5	5.2.	STATEMENTS	. 10
6.	TE	EST FACILITIES UTILIZED	11
7.	Ml	EASUREMENT UNCERTAINTY	. 12
7	7.1.	PEAK OUTPUT POWER - CONDUCTED	. 12
7	7.2.	FREQUENCY BAND EDGES - CONDUCTED	. 12
7	⁷ .3.	Transmitter Spurious Emission - Conducted	. 12
7	<i>'</i> .4.	Transmitter Spurious Emission - Radiated	. 12
7	7.5.	TIME OF OCCUPANCY (DWELL TIME)	. 12
7	<i>'</i> .6.	20dB Bandwidth	. 12
7	7.7.	CARRIER FREQUENCY SEPARATION	. 13
7	7.8.	AC POWERLINE CONDUCTED EMISSION	. 13
AN	NEX	X A: EUT PARAMETERS	. 14
AN	NEX	X B: DETAILED TEST RESULTS	. 15
F	3.1. N	Measurement Method	. 15
I	3.2. I	PEAK OUTPUT POWER	. 16
F	3.3. F	FREQUENCY BAND EDGES - CONDUCTED	. 18

	B.4. Transmitter Spurious Emission - Conducted	25
	B.5. RADIATED UNWANTED EMISSION	50
	B.6. TIME OF OCCUPANCY (DWELL TIME)	61
	B.7. 20dB Bandwidth	72
	B.8. CARRIER FREQUENCY SEPARATION	78
	B.9. NUMBER OF HOPPING CHANNELS	81
	B.10. AC POWERLINE CONDUCTED EMISSION	85
	B.11. ANTENNA REQUIREMENT	89
Δ	NNEX C: ACCREDITATION CERTIFICATE	90

1. Test Laboratory

1.1. Introduction & Accreditation

Telecommunication Technology Labs, CAICT is an ISO/IEC 17025:2017 accredited test laboratory under American Association for Laboratory Accreditation (A2LA) with lab code 7049.01, and is also an FCC accredited test laboratory (CN1349), and ISED accredited test laboratory (CAB identifier:CN0066). The detail accreditation scope can be found on A2LA website

1.2. Testing Location

Conducted testing Location: CTTL(huayuan North Road)

Address: No. 52, Huayuan North Road, Haidian District, Beijing,

P. R. China100191

Radiated testing Location: CTTL(BDA)

Address: No.18A, Kangding Street, Beijing Economic-Technology

Development Area, Beijing, P. R. China 100176

1.3. Testing Environment

Normal Temperature: $20-27^{\circ}$ C Relative Humidity: 20-50%

1.4. Project data

Testing Start Date: 2024-12-25 Testing End Date: 2025-2-14

1.5. Signature

Wu Le

(Prepared this test report)

Sun Zhenyu

(Reviewed this test report)

Hu Xiaoyu

(Approved this test report)

2. Client Information

2.1. Applicant Information

Company Name: TCL Communication Ltd.

Address/Post: 5/F, Building 22E, 22 Science Park East Avenue, Hong Kong Science

Park, Shatin, NT, Hong Kong

Contact Person: Ting Wang

Contact Email: ting.wang.hz@tcl.com
Telephone: +86 752 2639091

Fax: +86 755 36612000-81722

2.2. Manufacturer Information

Company Name: TCL Communication Ltd.

Address/Post: 5/F, Building 22E, 22 Science Park East Avenue, Hong Kong Science

Park, Shatin, NT, Hong Kong

Contact Person: Ting Wang

Contact Email: ting.wang.hz@tcl.com
Telephone: +86 752 2639091

Fax: +86 755 36612000-81722

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1. About EUT

Description GSM/UMTS/LTE mobile phone

Model Name T626K

FCC ID 2ACCJB232

Frequency Band ISM 2400MHz~2483.5MHz Type of Modulation GFSK/π/4 DQPSK/8DPSK

Number of Channels 79

Power Supply 3.91V DC by Battery

Antenna gain -5dBi

3.2. Internal Identification of EUT

EUT ID*	SN or IMEI	HW Version	SW Version	Date of receipt
UT25a	355077160000971/	05	v3LA8	2025-01-17
	355077160001045			
UT26a	355077160000989/	05	v3LA8	2025-01-17
	355077160001052			
UT10a	355077160000286/	05	v3LA8	2024-12-25
	355077160000351			

^{*}EUT ID: is used to identify the test sample in the lab internally.

3.3. Internal Identification of AE

AE ID*	Description	Model	Manufacturer
AE1	Battery1	TLp050B9	Guangdong Fenghua New Energy Co.,Ltd.
AE2	Battery2	TLp050B7	Veken Technology Co.,Ltd.
AE3	Charger1	QC16US-N	ShenZhenBaiJunDaElectronicsCO.,LTD.
AE4	USB Cable1	01.07.11.00162	Guangdong Wivtak Technology Co., Ltd.

^{*}AE ID: is used to identify the test sample in the lab internally.

3.4. Normal Accessory setting

Fully charged battery should be used during the test.

3.5. General Description

The Equipment Under Test (EUT) is a model of GSM/UMTS/LTE mobile phone with integrated antenna. It consists of normal options: lithium battery, charger. Manual and specifications of the EUT were provided to fulfill the test. Samples undergoing test were selected by the Client.

4. Reference Documents

4.1. Documents supplied by applicant

EUT parameters, referring to Annex A for detailed information, is supplied by the client or manufacturer, which is the basis of testing.

4.2. Reference Documents for testing

The following documents listed in this section are referred for testing.

Reference	Title	Version
	FCC CFR 47, Part 15, Subpart C:	
	15.205 Restricted bands of operation;	
FCC Part15	15.209 Radiated emission limits, general requirements;	2024
	15.247 Operation within the bands 902–928MHz,	
	2400-2483.5 MHz, and 5725-5850 MHz.	
ANCI 062 10	American National Standard of Procedures for	luna 2012
ANSI C63.10	Compliance Testing of Unlicensed Wireless Devices	June,2013

5. Test Results

5.1. Summary of Test Results

Abbreviations used in this clause:

- **P** Pass, The EUT complies with the essential requirements in the standard.
- F Fail, The EUT does not comply with the essential requirements in the standard
- NA Not Applicable, The test was not applicable
- NP Not Performed, The test was not performed by CTTL

SUMMARY OF MEASUREMENT RESULTS	Sub-clause	Verdict
Peak Output Power	15.247 (b)(1)	Р
Frequency Band Edges- Conducted	15.247 (d)	Р
Transmitter Spurious Emission - Conducted	15.247 (d)	Р
Radiated Unwanted Emission	15.247, 15.205, 15.209	Р
Time of Occupancy (Dwell Time)	15.247 (a) (1)(iii)	Р
20dB Bandwidth	15.247 (a)(1)	NA
Carrier Frequency Separation	15.247 (a)(1)	Р
Number of hopping channels	15.247 (a)(iii)	Р
AC Powerline Conducted Emission	15.107, 15.207	Р
Antenna Requirement	15.203	Р

Please refer to ANNEX A for detail.

The measurement is made according to ANSI C63.10.

5.2. Statements

CTTL has evaluated the test cases requested by the applicant /manufacturer as listed in section 5.1 of this report for the EUT specified in section 3 according to the standards or reference documents listed in section 4.2

6. Test Facilities Utilized

Conducted test system

No.	Equipment	Model	Serial Number	Manufacturer	Calibration Period	Calibration Due date
1	Vector Signal Analyzer	FSQ26	100024	R&S	1 year	2025-03-09
2	Bluetooth Tester	CBT	100315	R&S	1 year	2025-03-08
3	Test Receiver	ESCI	100766	R&S	1 year	2025-04-18
4	LISN	ENV216	101459	R&S	1 year	2025-05-16
5	Shielding Room	S81	/	ETS-Lindgren	/	/

Radiated emission test system

- ''	National Control of System					
No.	Equipment	Model	Serial	Manufacturer Manufacturer	Calibration	Calibration
140.	Equipment	Wiodei	Number	Manuacture	Period	Due date
1	Test Receiver	ESU26	100376	R&S	1 year	2025-06-06
0	ENAL Austrian	VULB	04477	001114/4 DZDEOK	1 year	2025-11-19
2	EMI Antenna	9163	01177	SCHWARZBECK		
3	EMI Antenna	3117	00119021	ETS-Lindgren	1 year	2025-09-18
4	EMI Antenna	FSV40	101047	R&S	1 year	2025-07-18
	ENAL A reterence	LB-180400	211008400	A INICO	4	2025 05 45
5	EMI Antenna	-25-C-KF	0006	A-INFO	1 year	2025-05-15
	Universal					
6	Communication	CMW500	159408	R&S	1 year	2025-03-26
	Tester					

7. Measurement Uncertainty

7.1. Peak Output Power - Conducted

Measurement Uncertainty:

7.2. Frequency Band Edges - Conducted

Measurement Uncertainty:

Measurement Uncertainty (k=2)	0.66dB
-------------------------------	--------

7.3. Transmitter Spurious Emission - Conducted

Measurement Uncertainty:

Frequency Range	Uncertainty (k=2)
30 MHz ~ 8 GHz	1.22dB
8 GHz ~ 12.75 GHz	1.51dB
12.7GHz ~ 26 GHz	1.51dB

7.4. Transmitter Spurious Emission - Radiated

Measurement Uncertainty:

modean official officer tarity.	
Frequency Range	Uncertainty(dBm) (k=2)
9kHz-30MHz	/
30MHz ≤ f ≤ 1GHz	5.73
1GHz ≤ f ≤18GHz	5.58
18GHz ≤ f ≤40GHz	3.37

7.5. Time of Occupancy (Dwell Time)

Measurement Uncertainty:

Measurement Uncertainty (k=2)	0.88ms
-------------------------------	--------

7.6. 20dB Bandwidth

Measurement Uncertainty:

Measurement Uncertainty (k=2)	61.936Hz
-------------------------------	----------

7.7. Carrier Frequency Separation

Measurement Uncertainty:

Measurement Uncertainty (k=2)	61.936Hz
-------------------------------	----------

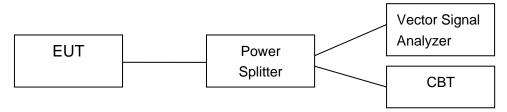
7.8. AC Powerline Conducted Emission

Measurement Uncertainty:

Measurement Uncertainty (k=2)	3.10dB
-------------------------------	--------

ANNEX A: EUT parameters

Disclaimer: The antenna gain provided by the client may affect the validity of the measurement results in this report, and the client shall bear the impact and consequences arising therefrom.


ANNEX B: Detailed Test Results

B.1. Measurement Method

B.1.1. Conducted Measurements

The measurement is made according to ANSI C63.10.

- 1). Connect the EUT to the test system correctly.
- 2). Set the EUT to the required work mode (Transmitter, receiver or transmitter & receiver).
- 3). Set the EUT to the required channel.
- 4). Set the EUT hopping mode (hopping or hopping off).
- 5). Set the spectrum analyzer to start measurement.
- 6). Record the values. Vector Signal Analyzer

B.1.2. Radiated Emission Measurements

The measurement is made according to ANSI C63.10

The radiated emission test is performed in semi-anechoic chamber. The EUT was placed on a non-conductive table with 80cm above the ground plane for measurement below 1GHz and 1.5m above the ground plane for measurement above 1GHz. The measurement antenna was placed at a distance of 3 meters from the EUT. The test is carried out on both vertical and horizontal polarization and only maximization result of both polarizations is kept. During the test, the turntable is rotated from 0° to 360°and the measurement antenna is moved from 1m to 4m to get the maximization result. The maximization process was repeated with the EUT positioned in each of its three orthogonal orientations.

B.2. Peak Output Power

B.2.1. Peak Output Power - Conducted

Method of Measurement: See ANSI C63.10-clause 7.8.5

a) Use the following spectrum analyzer settings:

Span: 6MHzRBW: 3MHzVBW: 3MHz

Sweep time: 2.5msDetector function: peak

• Trace: max hold

b) Allow trace to stabilize.

- c) Use the marker-to-peak function to set the marker to the peak of the emission.
- d) The indicated level is the peak output power.

Measurement Limit:

Standard	Limits				
FCC Part 15.247 (b)(1)	Bandwidth≤1MHz	30dBm (1W)			
	Bandwidth>1MHz	21dBm (125mW)			

Measurement Results:

For GFSK

Channel	Ch 0	Ch 39	Ch 78	Conclusion
Channel	2402 MHz	2441 MHz	2480 MHz	Conclusion
Peak Conducted	10.88	10.39	10.82	P
Output Power (dBm)	10.66	10.39	10.62	F

For π/4 DQPSK

Channel	Ch 0	Ch 39	Ch 78	Conclusion
Charmer	2402 MHz	2441 MHz	2480 MHz	Conclusion
Peak Conducted	9.45	9.56	9.59	Þ
Output Power (dBm)	9.40	9.50	9.59	Г

For 8DPSK

Channel	Ch 0 2402 MHz	Ch 39 2441 MHz	Ch 78 2480 MHz	Conclusion
Peak Conducted Output Power (dBm)	9.92	9.56	9.66	Р

Conclusion: PASS

B.2.2. E.I.R.P.

The radiated E.I.R.P. is listed below:

Antenna gain = -5dBi

For GFSK

Channel	Ch 0 2402 MHz	Ch 39 2441 MHz	Ch 78 2480 MHz	Conclusion
E.I.R.P (dBm)	5.88	5.39	5.82	Р

Forπ/4 DQPSK

Channel	Ch 0 2402 MHz	Ch 39 2441 MHz	Ch 78 2480 MHz	Conclusion
E.I.R.P (dBm)	4.45	4.56	4.59	Р

For 8DPSK

Channel	Ch 0	Ch 39	Ch 78	Conclusion
	2402 MHz	2441 MHz	2480 MHz	Conclusion
E.I.R.P (dBm)	4.92	4.56	4.66	Р

Note: E.I.R.P. are calculated with the antenna gain.

Conclusion: PASS

B.3. Frequency Band Edges – Conducted

Method of Measurement: See ANSI C63.10-clause 7.8.6

Connect the spectrum analyzer to the EUT using an appropriate RF cable connected to the EUT output. Configure the spectrum analyzer settings as described below (be sure to enter all losses between the unlicensed wireless device output and the spectrum analyzer).

- Span: 10 MHz

Resolution Bandwidth: 100 kHzVideo Bandwidth: 300 kHz

Sweep Time:AutoDetector: PeakTrace: max hold

Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel.

Observe the stored trace and measure the amplitude delta between the peak of the fundamental and the peak of the band-edge emission. This is not an absolute field strength measurement; it is only a relative measurement to determine the amount by which the emission drops at the band edge relative to the highest fundamental emission level.

Measurement Limit:

Standard	Limit (dBc)
FCC 47 CFR Part 15.247 (d)	< -20

Measurement Result:

For GFSK

Channel	Hopping	Band Edge Power (dBc)		Conclusion
0	Hopping OFF	Fig.1	-62.26	Р
0	Hopping ON	Fig.2	-65.94	Р
70	Hopping OFF	Fig.3	-66.46	Р
78	Hopping ON	Fig.4	-66.94	Р

For π/4 DQPSK

Channel	Hopping	Band Edge Power (dBc)		Conclusion
0	Hopping OFF	Fig.5	-59.55	Р
0	Hopping ON	Fig.6	-61.68	Р
78	Hopping OFF	Fig.7	-65.48	Р
	Hopping ON	Fig.8	-66.20	Р

For 8DPSK

Channel	Hopping	Band Edge Power (dBc)		Conclusion
0	Hopping OFF	Fig.9	-61.50	Р
0	Hopping ON	Fig.10	-66.43	Р

78	Hopping OFF	Fig.11	-65.59	Р
70	Hopping ON	Fig.12	-64.16	Р

Conclusion: PASS
Test graphs as below

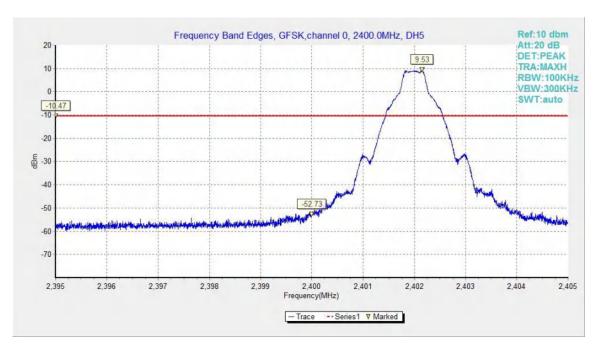


Fig.1. Frequency Band Edges: GFSK, Channel 0, Hopping Off

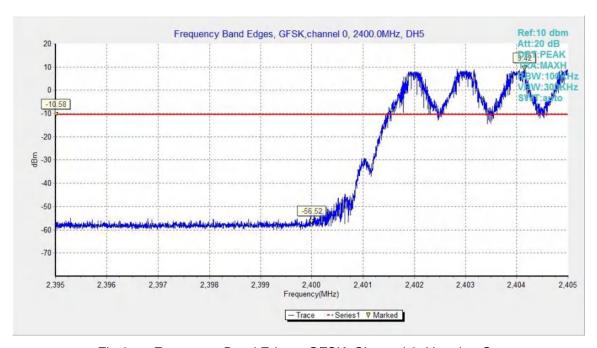


Fig.2. Frequency Band Edges: GFSK, Channel 0, Hopping On

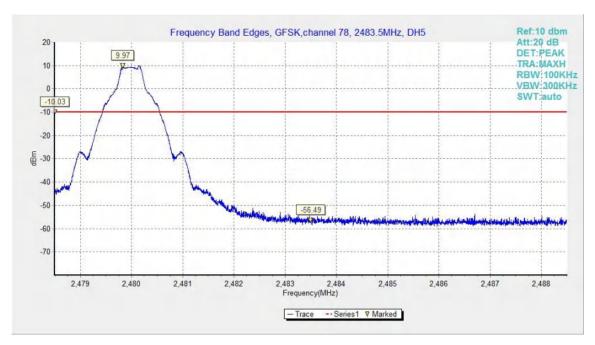


Fig.3. Frequency Band Edges: GFSK, Channel 78, Hopping Off

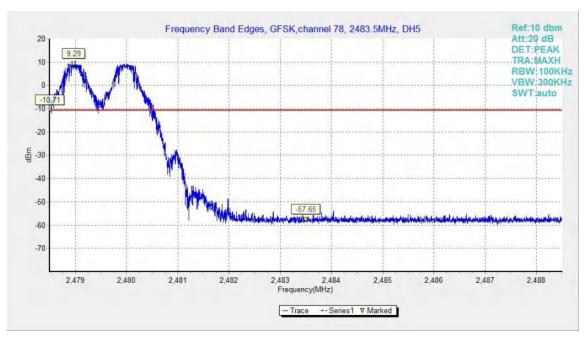


Fig.4. Frequency Band Edges: GFSK, Channel 78, Hopping On

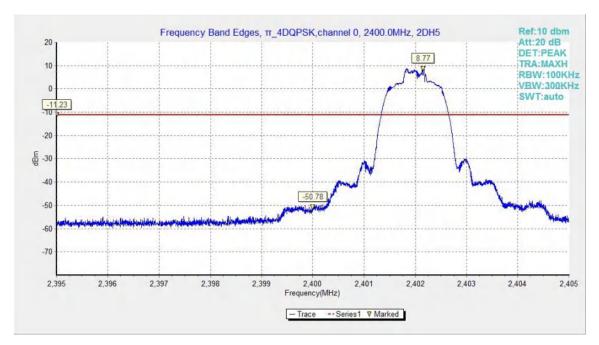


Fig.5. Frequency Band Edges: $\pi/4$ DQPSK, Channel 0, Hopping Off

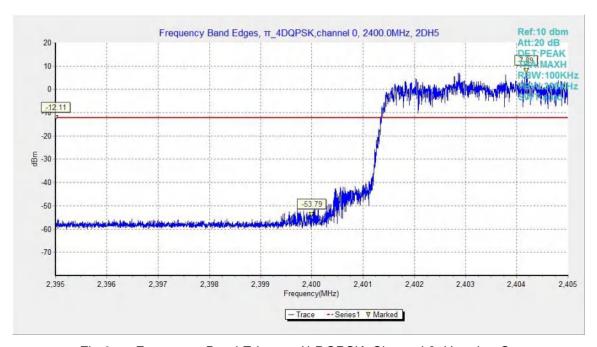


Fig.6. Frequency Band Edges: π/4 DQPSK, Channel 0, Hopping On

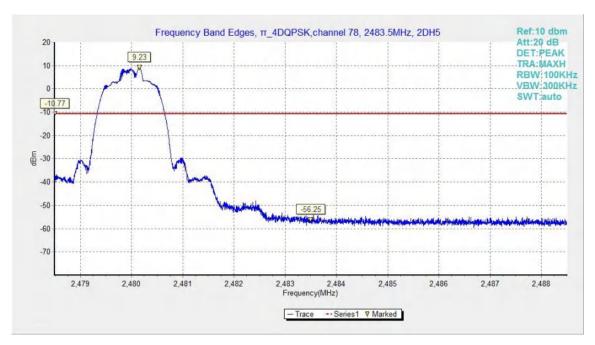


Fig.7. Frequency Band Edges: $\pi/4$ DQPSK, Channel 78, Hopping Off

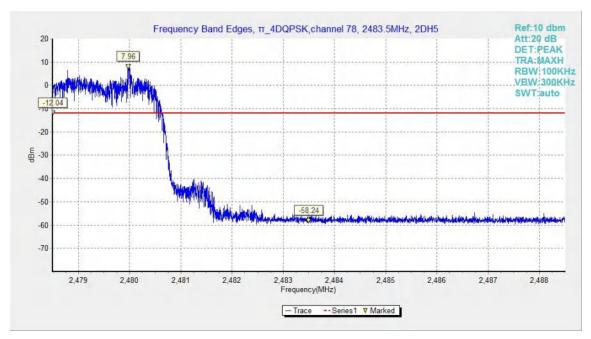


Fig.8. Frequency Band Edges: π/4 DQPSK, Channel 78, Hopping On

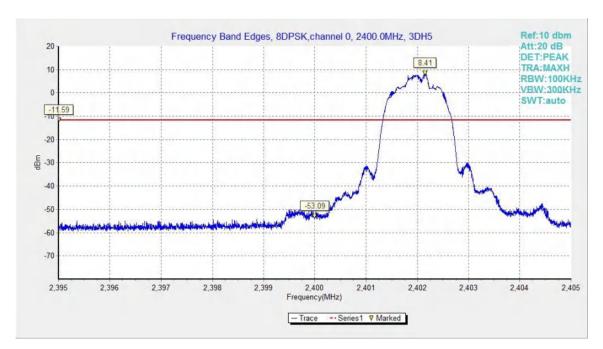


Fig.9. Frequency Band Edges: 8DPSK, Channel 0, Hopping Off

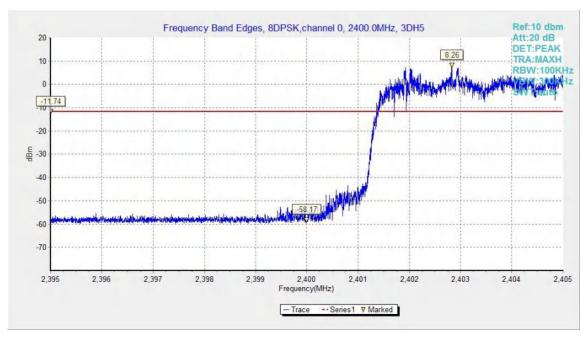


Fig.10. Frequency Band Edges: 8DPSK, Channel 0, Hopping On

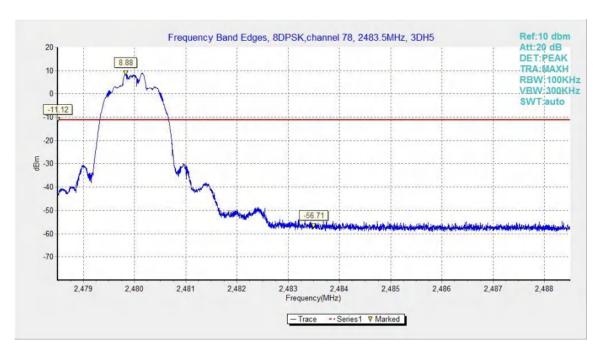


Fig.11. Frequency Band Edges: 8DPSK, Channel 78, Hopping Off

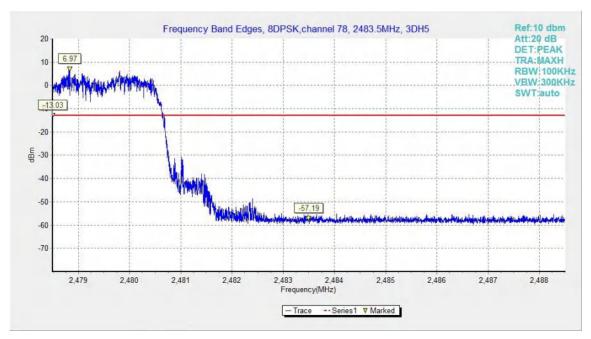


Fig.12. Frequency Band Edges: 8DPSK, Channel 78, Hopping On

B.4. Transmitter Spurious Emission - Conducted

Method of Measurement: See ANSI C63.10-clause 7.8.8

Measurement Procedure - Reference Level

- 1. Set the RBW = 100 kHz.
- 2. Set the VBW = 300 kHz.
- 3. Set the span to 5-30 % greater than the EBW.
- 4. Detector = peak.
- 5. Sweep time = auto couple.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.
- 8. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW. Next, determine the power in 100 kHz band segments outside of the authorized frequency band using the following measurement:

Measurement Procedure - Unwanted Emissions

- 1. Set RBW = 100 kHz.
- 2. Set VBW = 300 kHz.
- 3. Set span to encompass the spectrum to be examined.
- 4. Detector = peak.
- 5. Trace Mode = max hold.
- 6. Sweep = auto couple.
- 7. Allow the trace to stabilize (this may take some time, depending on the extent of the span).

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified above.

Measurement Limit:

Standard	Limit
FCC 47 CFR Part 15.247 (d)	20dB below peak output power in 100 kHz
	bandwidth

Measurement Results:

For GFSK

Channel	Frequency Range	Test Results	Conclusion
Ch 0	Center Frequency	Fig.13	Р

2402 MHz	30 MHz ~ 1 GHz	Fig.14	Р
	1 GHz ~ 3 GHz	Fig.15	Р
	3 GHz ~ 10 GHz	Fig.16	Р
	10 GHz ~ 26 GHz	Fig.17	Р
	Center Frequency	Fig.18	Р
Ch 39	30 MHz ~ 1 GHz	Fig.19	Р
2441 MHz	1 GHz ~ 3 GHz	Fig.20	Р
211111112	3 GHz ~ 10 GHz	Fig.21	Р
	10 GHz ~ 26 GHz	Fig.22	Р
	Center Frequency	Fig.23	Р
Ch 70	30 MHz ~ 1 GHz	Fig.24	Р
Ch 78 2480 MHz	1 GHz ~ 3 GHz	Fig.25	Р
	3 GHz ~ 10 GHz	Fig.26	Р
	10 GHz ~ 26 GHz	Fig.27	Р

For $\pi/4$ DQPSK

Channel	Frequency Range	Test Results	Conclusion
	Center Frequency	Fig.28	Р
Ch O	30 MHz ~ 1 GHz	Fig.29	Р
Ch 0 2402 MHz	1 GHz ~ 3 GHz	Fig.30	Р
2402 1411 12	3 GHz ~ 10 GHz	Fig.31	Р
	10 GHz ~ 26 GHz	Fig.32	Р
	Center Frequency	Fig.33	Р
Ch 20	30 MHz ~ 1 GHz	Fig.34	Р
Ch 39 2441 MHz	1 GHz ~ 3 GHz	Fig.35	Р
211111112	3 GHz ~ 10 GHz	Fig.36	Р
	10 GHz ~ 26 GHz	Fig.37	Р
	Center Frequency	Fig.38	Р
Ch 70	30 MHz ~ 1 GHz	Fig.39	Р
Ch 78 2480 MHz	1 GHz ~ 3 GHz	Fig.40	Р
	3 GHz ~ 10 GHz	Fig.41	Р
	10 GHz ~ 26 GHz	Fig.42	Р

For 8DPSK

Channel	Frequency Range	Test Results	Conclusion
	Center Frequency	Fig.43	Р
Cho	30 MHz ~ 1 GHz	Fig.44	Р
Ch 0 2402 MHz	1 GHz ~ 3 GHz	Fig.45	Р
	3 GHz ~ 10 GHz	Fig.46	Р
	10 GHz ~ 26 GHz	Fig.47	Р

01.00	Center Frequency	Fig.48	Р
	30 MHz ~ 1 GHz	Fig.49	Р
Ch 39 2441 MHz	1 GHz ~ 3 GHz	Fig.50	Р
211111112	3 GHz ~ 10 GHz	Fig.51	Р
	10 GHz ~ 26 GHz	Fig.52	Р
	Center Frequency	Fig.53	Р
Ch 78 2480 MHz	30 MHz ~ 1 GHz	Fig.54	Р
	1 GHz ~ 3 GHz	Fig.55	Р
	3 GHz ~ 10 GHz	Fig.56	Р
	10 GHz ~ 26 GHz	Fig.57	Р

Conclusion: PASS
Test graphs as below

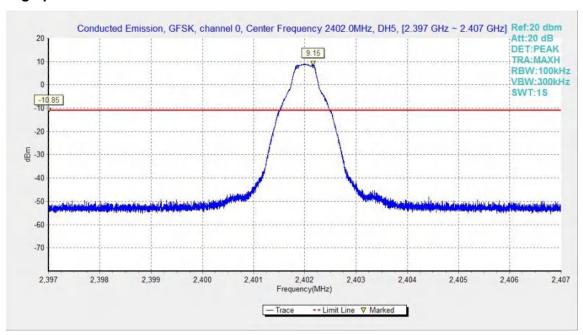


Fig.13. Conducted spurious emission: GFSK, Channel 0,2402MHz

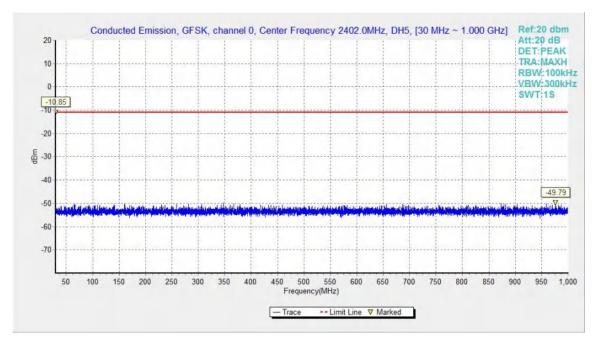


Fig.14. Conducted spurious emission: GFSK, Channel 0, 30MHz - 1GHz

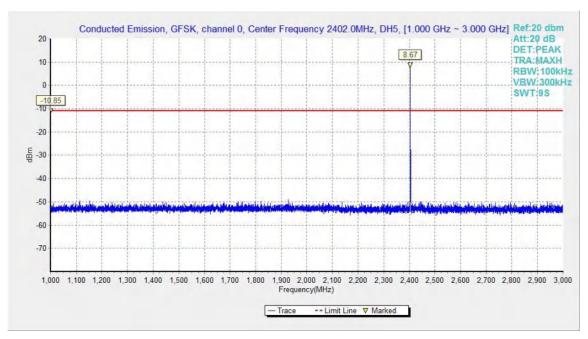


Fig.15. Conducted spurious emission: GFSK, Channel 0, 1GHz - 3GHz

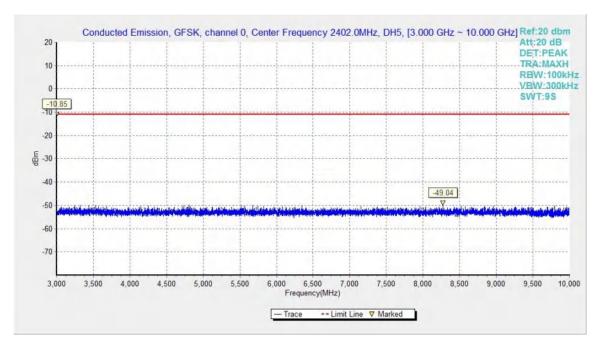


Fig.16. Conducted spurious emission: GFSK, Channel 0, 3GHz - 10GHz

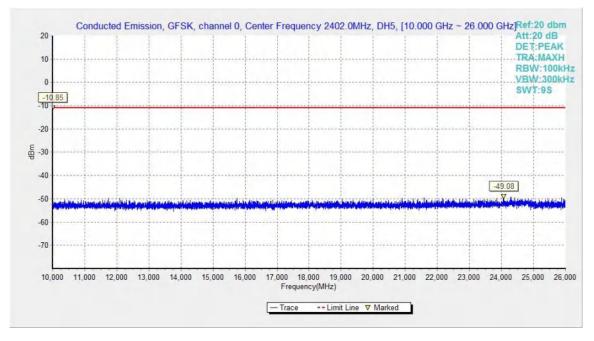


Fig.17. Conducted spurious emission: GFSK, Channel 0,10GHz - 26GHz

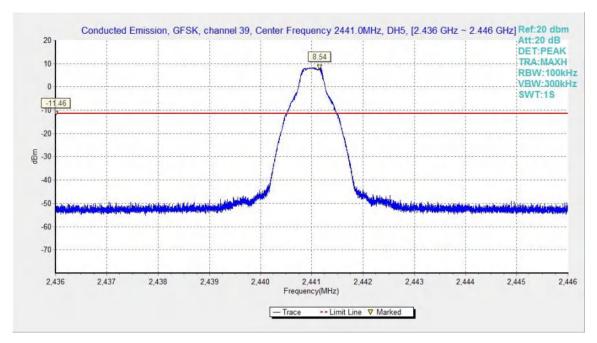


Fig.18. Conducted spurious emission: GFSK, Channel 39, 2441MHz

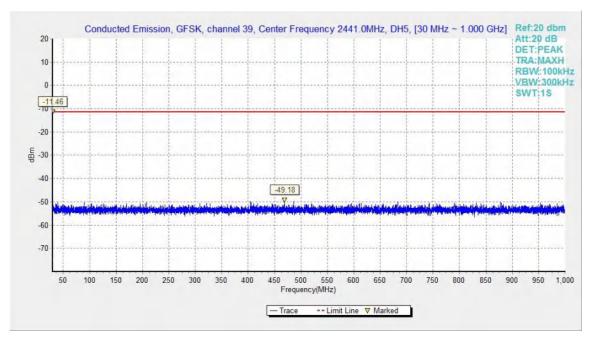


Fig.19. Conducted spurious emission: GFSK, Channel 39, 30MHz - 1GHz

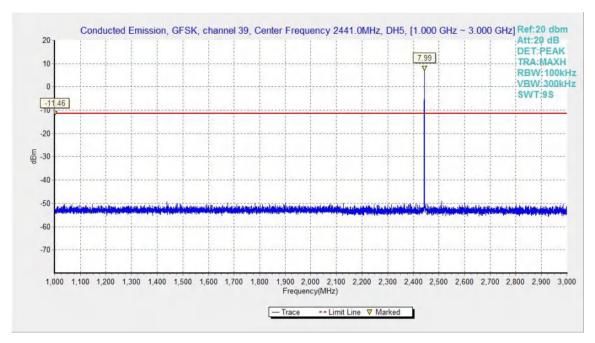


Fig.20. Conducted spurious emission: GFSK, Channel 39, 1GHz – 3GHz

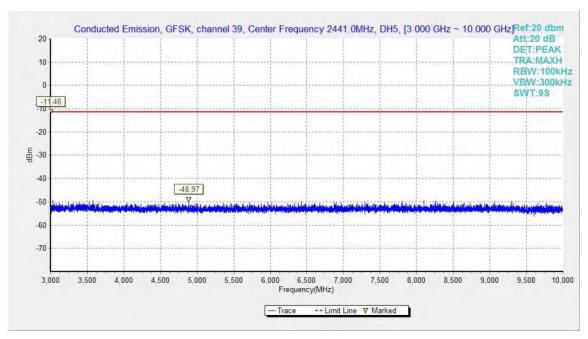


Fig.21. Conducted spurious emission: GFSK, Channel 39, 3GHz - 10GHz

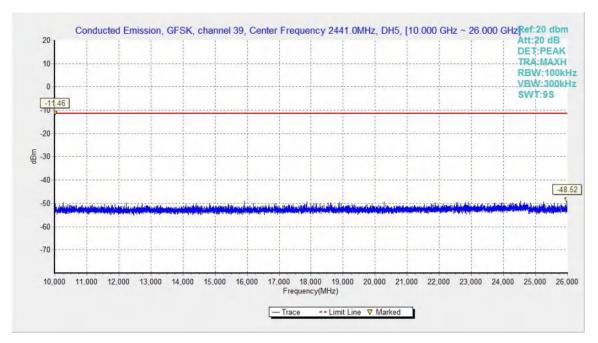


Fig.22. Conducted spurious emission: GFSK, Channel 39, 10GHz – 26GHz

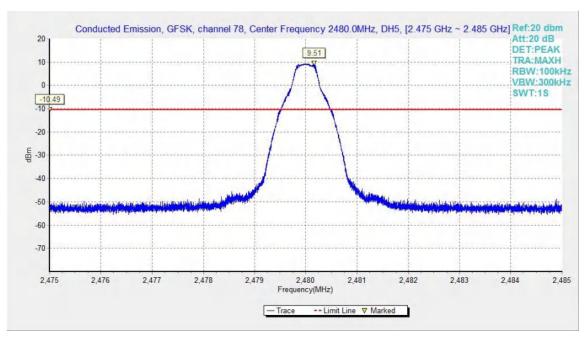


Fig.23. Conducted spurious emission: GFSK, Channel 78, 2480MHz

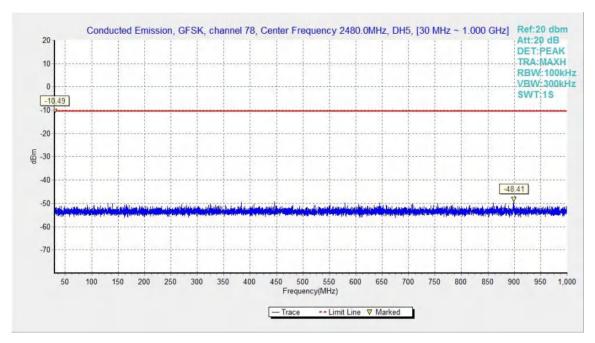


Fig.24. Conducted spurious emission: GFSK, Channel 78, 30MHz - 1GHz

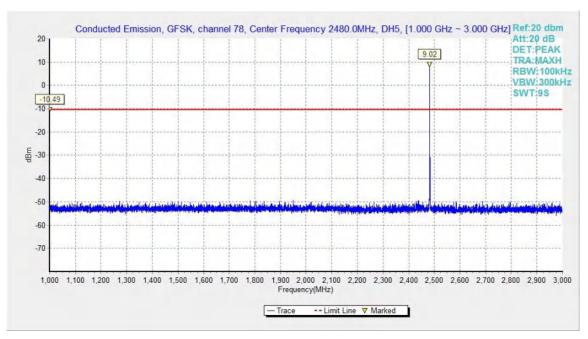


Fig.25. Conducted spurious emission: GFSK, Channel 78, 1GHz - 3GHz

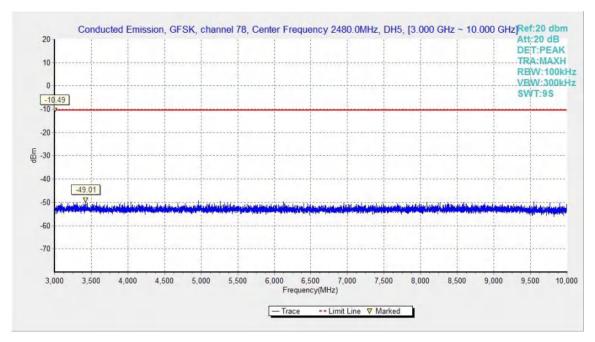


Fig.26. Conducted spurious emission: GFSK, Channel 78, 3GHz - 10GHz

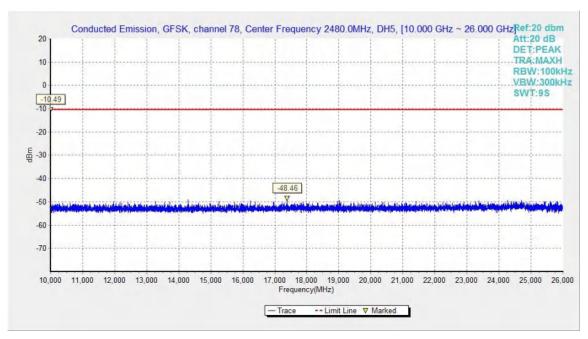


Fig.27. Conducted spurious emission: GFSK, Channel 78, 10GHz - 26GHz

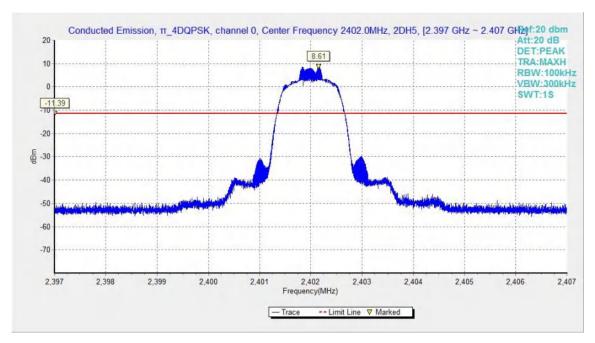


Fig.28. Conducted spurious emission: π/4 DQPSK, Channel 0,2402MHz

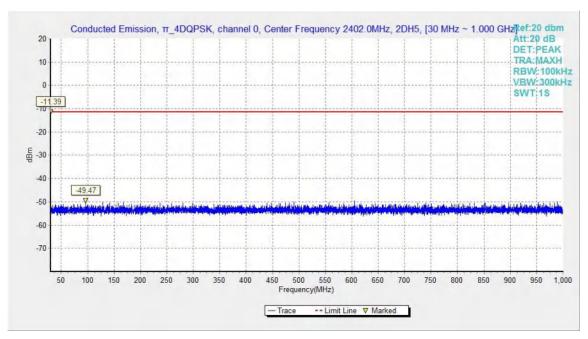


Fig.29. Conducted spurious emission: $\pi/4$ DQPSK, Channel 0, 30MHz - 1GHz

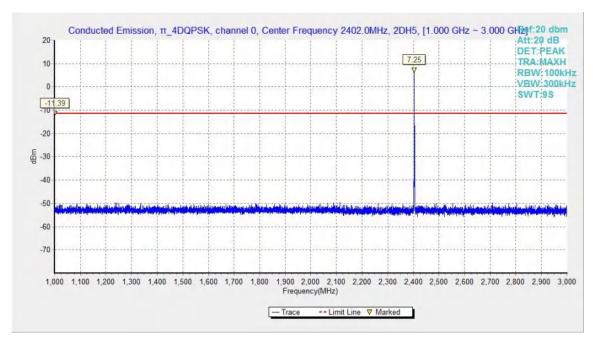


Fig.30. Conducted spurious emission: π/4 DQPSK, Channel 0, 1GHz - 3GHz

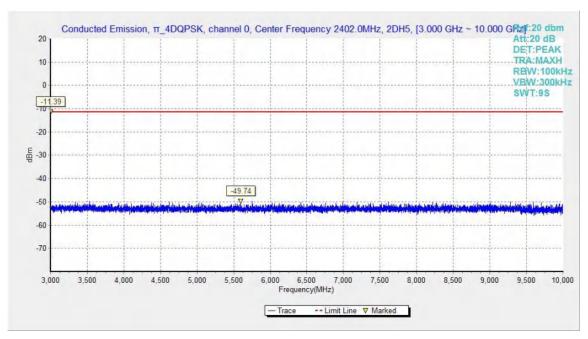


Fig.31. Conducted spurious emission: π/4 DQPSK, Channel 0, 3GHz - 10GHz

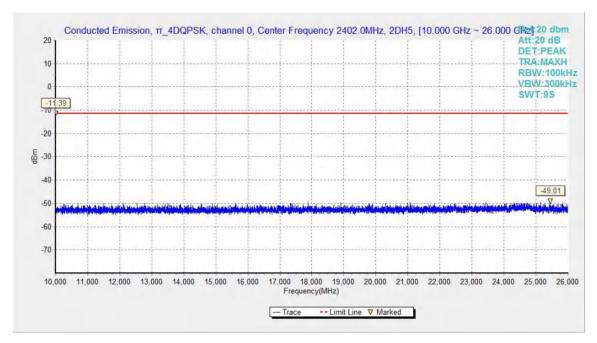


Fig.32. Conducted spurious emission: π/4 DQPSK, Channel 0,10GHz - 26GHz

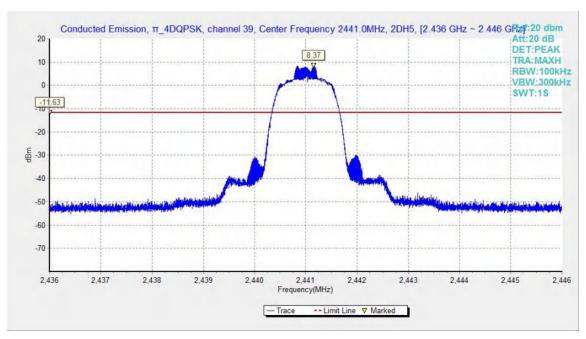


Fig.33. Conducted spurious emission: π/4 DQPSK, Channel 39, 2441MHz

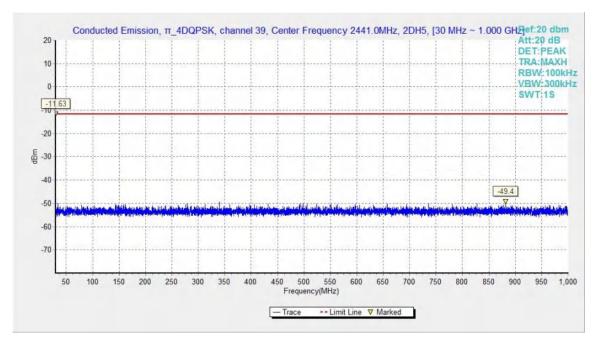


Fig.34. Conducted spurious emission: π/4 DQPSK, Channel 39, 30MHz - 1GHz

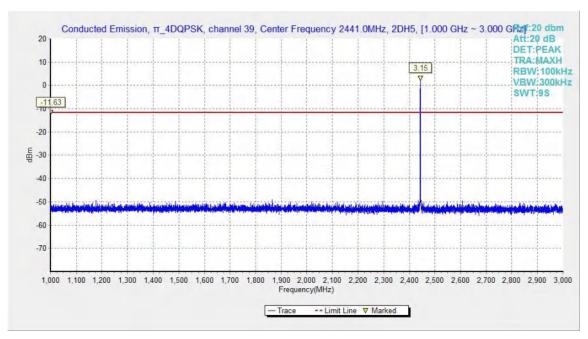


Fig.35. Conducted spurious emission: $\pi/4$ DQPSK, Channel 39, 1GHz - 3GHz

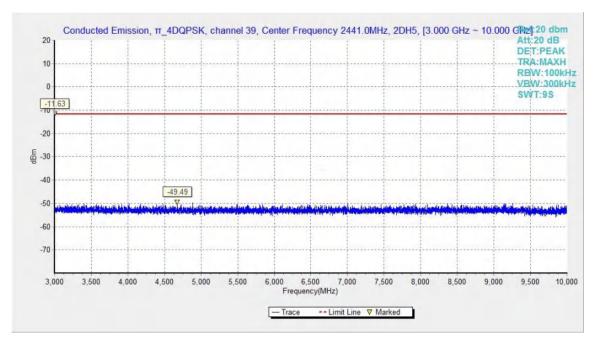


Fig.36. Conducted spurious emission: π/4 DQPSK, Channel 39, 3GHz - 10GHz

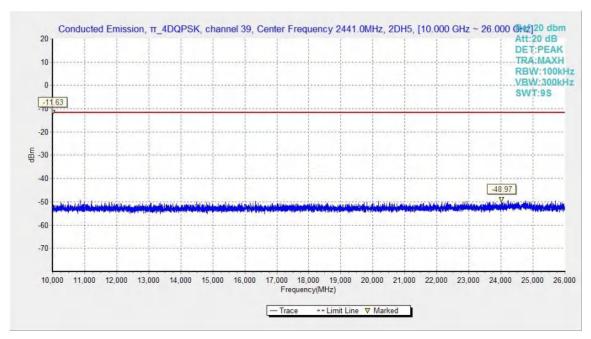


Fig.37. Conducted spurious emission: π/4 DQPSK, Channel 39, 10GHz – 26GHz

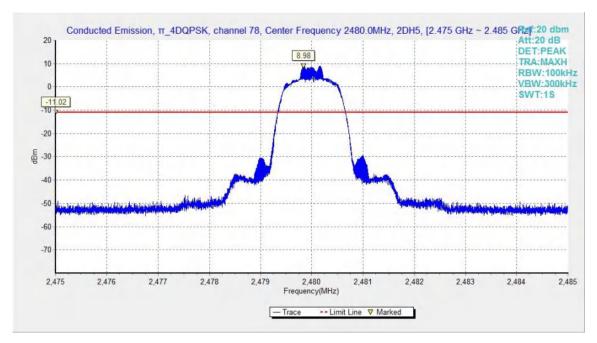


Fig.38. Conducted spurious emission: π/4 DQPSK, Channel 78, 2480MHz

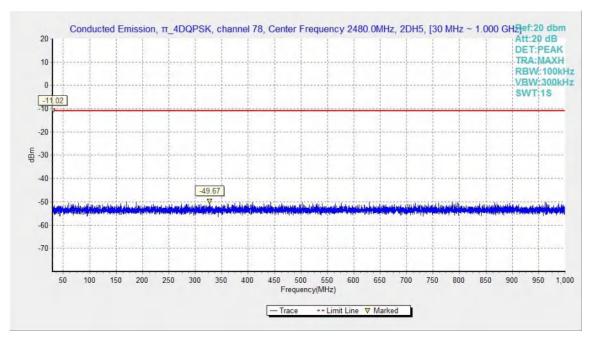


Fig.39. Conducted spurious emission: π/4 DQPSK, Channel 78, 30MHz - 1GHz

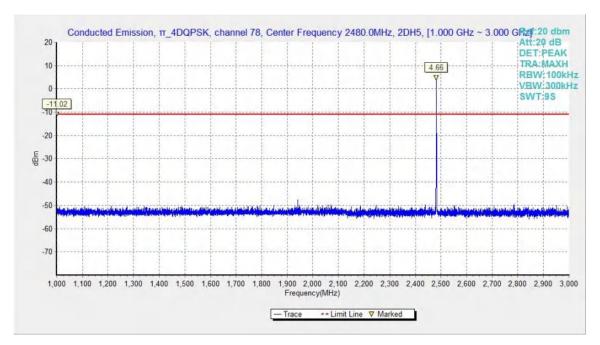


Fig.40. Conducted spurious emission: π/4 DQPSK, Channel 78, 1GHz - 3GHz

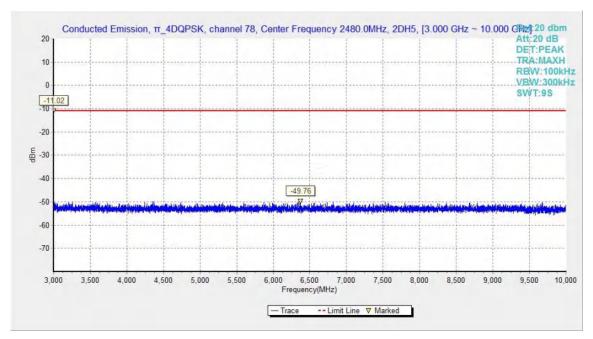


Fig.41. Conducted spurious emission: π/4 DQPSK, Channel 78, 3GHz - 10GHz

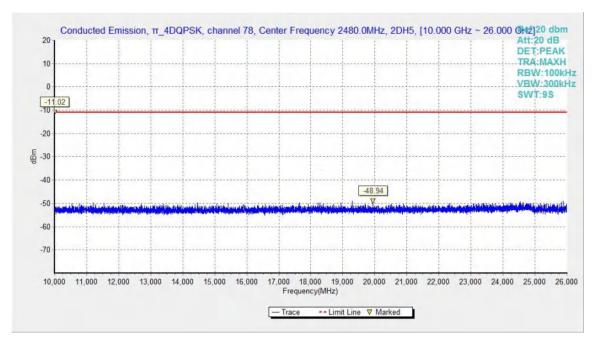


Fig.42. Conducted spurious emission: π/4 DQPSK, Channel 78, 10GHz - 26GHz

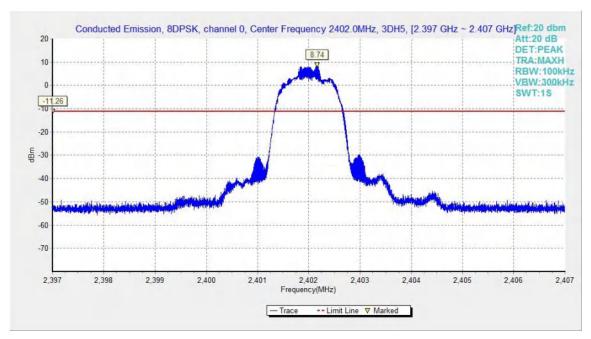


Fig.43. Conducted spurious emission: 8DPSK, Channel 0,2402MHz

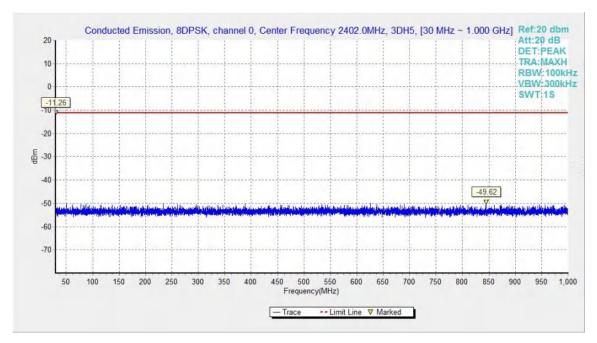


Fig.44. Conducted spurious emission: 8DPSK, Channel 0, 30MHz - 1GHz

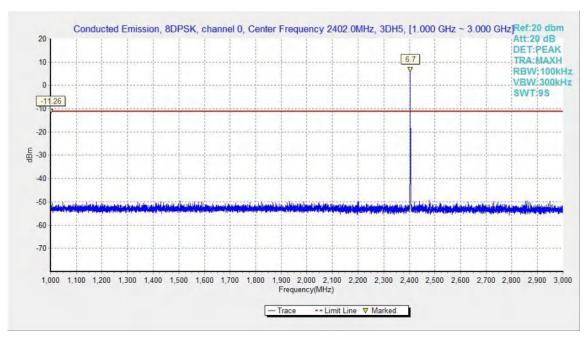


Fig.45. Conducted spurious emission: 8DPSK, Channel 0, 1GHz - 3GHz

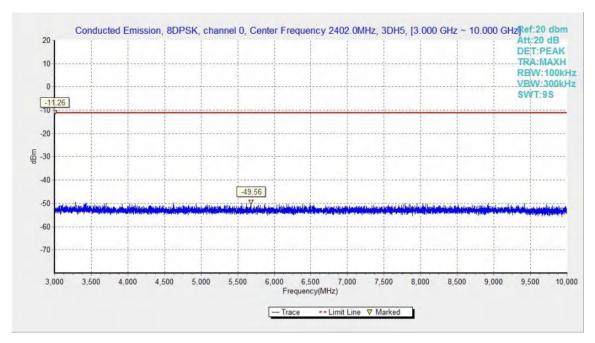


Fig.46. Conducted spurious emission: 8DPSK, Channel 0, 3GHz - 10GHz

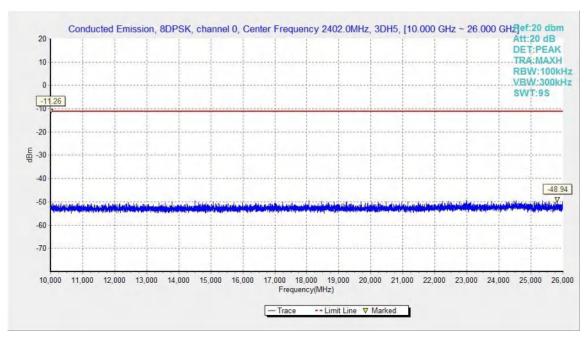


Fig.47. Conducted spurious emission: 8DPSK, Channel 0,10GHz - 26GHz

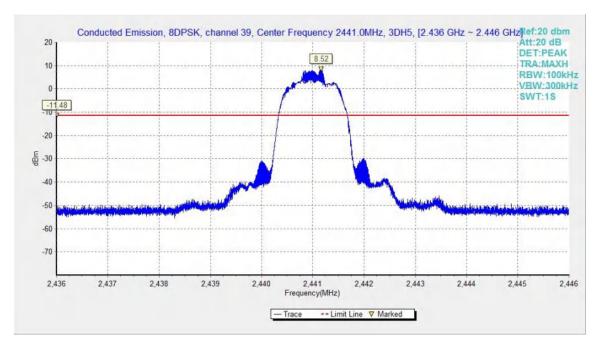


Fig.48. Conducted spurious emission: 8DPSK, Channel 39, 2441MHz

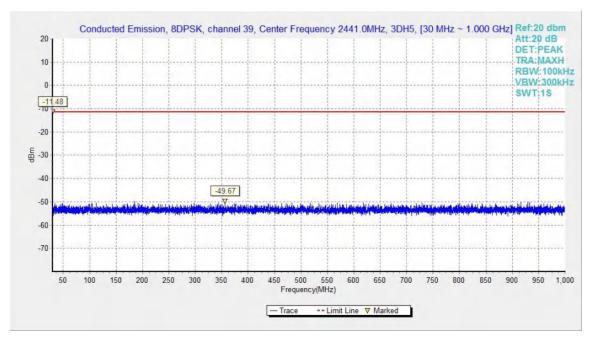


Fig.49. Conducted spurious emission: 8DPSK, Channel 39, 30MHz - 1GHz

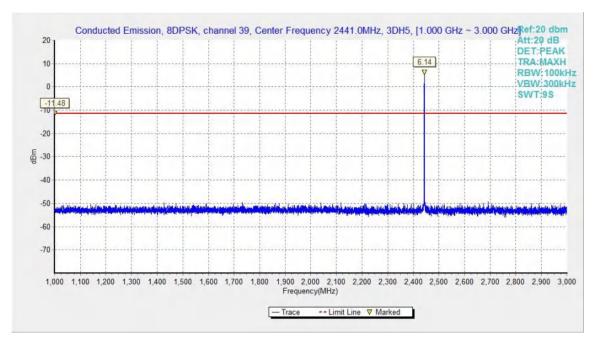


Fig.50. Conducted spurious emission: 8DPSK, Channel 39, 1GHz - 3GHz

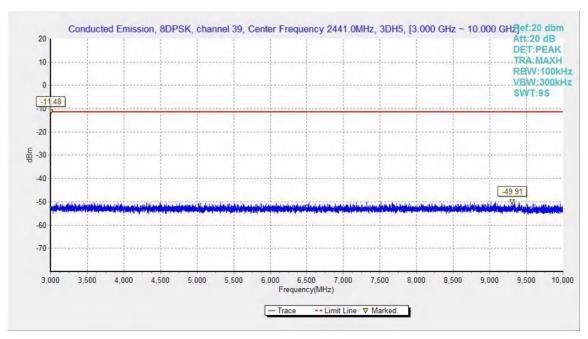


Fig.51. Conducted spurious emission: 8DPSK, Channel 39, 3GHz - 10GHz

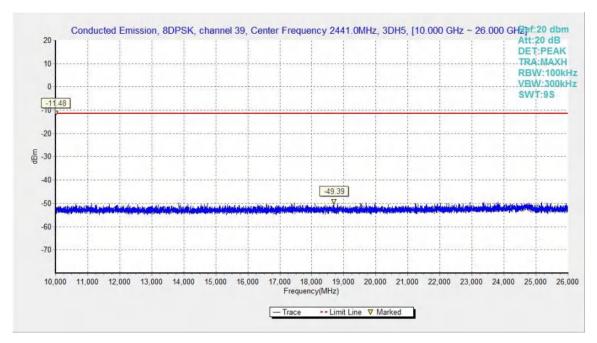


Fig.52. Conducted spurious emission: 8DPSK, Channel 39, 10GHz – 26GHz

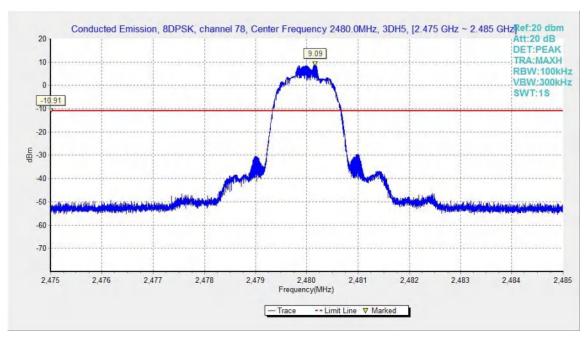


Fig.53. Conducted spurious emission: 8DPSK, Channel 78, 2480MHz

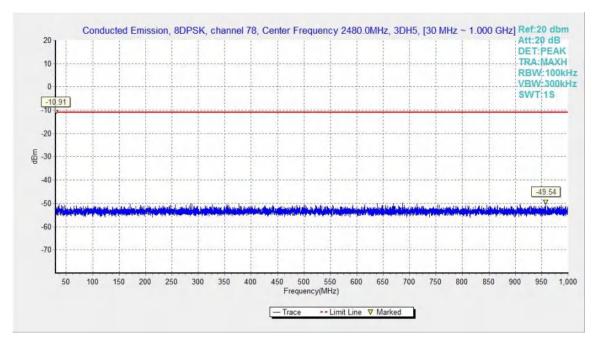


Fig.54. Conducted spurious emission: 8DPSK, Channel 78, 30MHz - 1GHz

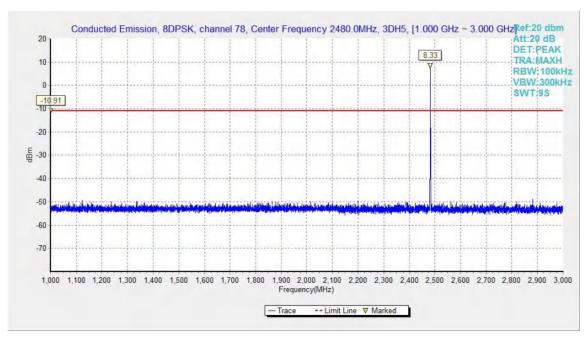


Fig.55. Conducted spurious emission: 8DPSK, Channel 78, 1GHz - 3GHz

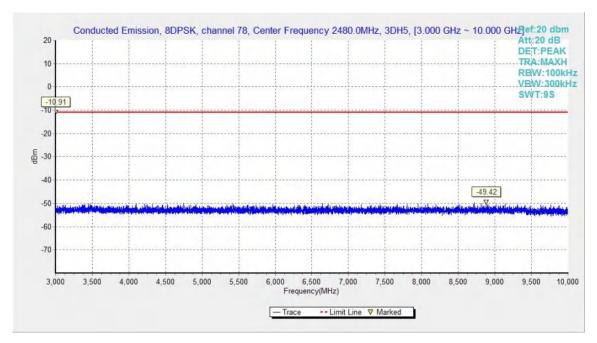


Fig.56. Conducted spurious emission: 8DPSK, Channel 78, 3GHz - 10GHz

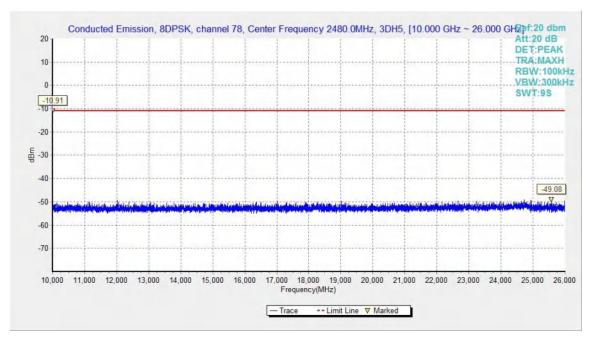


Fig.57. Conducted spurious emission: 8DPSK, Channel 78, 10GHz - 26GHz

B.5. Radiated Unwanted Emission

Limits

Measurement Limit

Standard	Limit
FCC 47 CFR Part 15.247, 15.205, 15.209	20dB below peak output power

In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

Limit in restricted band

Frequency (MHz)	Field strength(µV/m)	Measurement distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30

Frequency of emission	Field strength	Field strength	Measurement distance
(MHz)	(uV/m)	(dBuV/m)	(m)
30-88	100	40	3
88-216	150	43.5	3
216-960 200		46	3
Above 960	500	54	3

Note: When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor.

Test setup

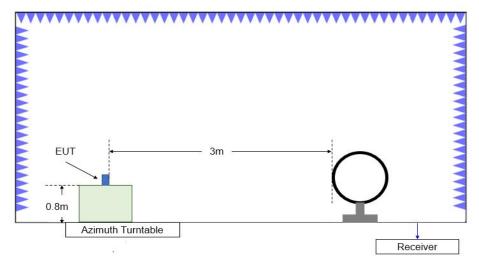


Figure B.5.1. Test Site Diagram (9kHz-30MHz)

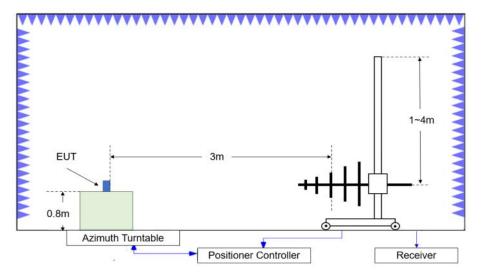


Figure B.5.2. Test Site Diagram (30MHz-1GHz)

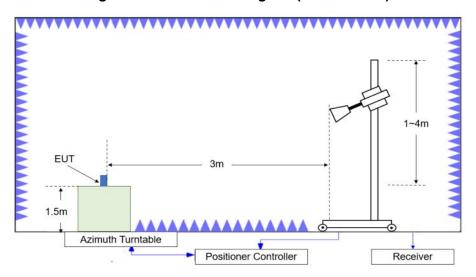


Figure B.5.3. Test Site Diagram (1GHz-40GHz)

Test Procedures

Radiated unwanted emissions from the EUT were measured according to ANSI C63.10-2013 (ANSI C63.10-2020).

Test setting

Frequency of emission	RBW/VBW	Sweep Time(s)
(MHz)		
30-1000	100kHz/300kHz	5
1000-3000	1MHz/3MHz	15
3000-18000	1MHz/3MHz	40
18000-26500	1MHz/3MHz	20

Sample Calculation

A "reference path loss" is established and the A_{Rpl} is the attenuation of "reference path loss", and including the gain of receive antenna, the gain of the preamplifier, the cable loss.

 P_{Mea} is the field strength recorded from the instrument.

The measurement results are obtained as described below:

Result=P_{Mea}+A_{Rpl=} P_{Mea}+Cable Loss+Antenna Factor

Test note

- 1. Investigation has been done on all modes and modulations/data rates. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.
- 2. Spurious emissions for all channels were investigated and almost the same below 1GHz. According to FCC 47 CFR §15.31, emission levels are not report much lower than the limit by over 20dB
- 3. Measurement frequencies were performed from 9 kHz to the 10th harmonic of highest fundamental frequency or 40GHz, whichever is lower.

Test Result

EUT ID: UT25a/UT26a

Radiated Spurious Emission

GFSK Ch 0

Frequency	Measurement	Cable	Antenna	Receiver	Limit	Margin	Antenna
(MHz)	Result	Loss	Factor	Reading	(dBuV/m)	(dB)	Pol.
	(dBuV/m)	(dB)	(dB/m)	(dBuV)			(H/V)
2382.109	60.80	4.59	27.59	28.61	74.00	13.20	Н
2386.020	61.21	4.60	27.62	28.98	74.00	12.79	V
4804.000	43.48	-32.88	33.89	42.47	74.00	30.52	Н
7206.000	44.72	-32.05	35.66	41.11	74.00	29.28	V
9608.000	45.98	-30.34	36.60	39.72	74.00	28.02	V
12010.000	49.66	-27.95	38.91	38.71	74.00	24.34	V

GFSK Ch 39

Frequency	Measurement	Cable	Antenna	Receiver	Limit	Margin	Antenna
(MHz)	Result	Loss	Factor	Reading	(dBuV/m)	(dB)	Pol.
	(dBuV/m)	(dB)	(dB/m)	(dBuV)			(H/V)
2372.000	45.05	-35.53	31.90	48.67	74.00	28.95	V
2500.000	46.26	-35.32	32.10	49.48	74.00	27.74	Н
4882.000	44.73	-33.18	33.86	44.04	74.00	29.27	Н
7323.000	44.81	-31.34	35.59	40.56	74.00	29.20	Н
9764.000	45.58	-30.10	36.83	38.85	74.00	28.42	Н
12205.000	48.15	-27.55	38.81	36.89	74.00	25.85	V

GFSK Ch 78

Frequency	Measurement	Cable	Antenna	Receiver	Limit	Margin	Antenna
(MHz)	Result	Loss	Factor	Reading	(dBuV/m)	(dB)	Pol.
	(dBuV/m)	(dB)	(dB/m)	(dBuV)			(H/V)
2483.628	61.55	4.65	27.97	28.94	74.00	12.45	Н
2488.831	61.65	4.64	27.94	29.07	74.00	12.35	V
4960.000	44.28	-33.08	33.90	43.46	74.00	29.73	Н

7440.000	44.95	-30.78	35.62	40.11	74.00	29.05	V
9920.000	46.59	-29.88	36.94	39.53	74.00	27.41	V
12400.000	48.75	-27.48	38.90	37.33	74.00	25.25	Н

$\pi/4$ DQPSK Ch 0

Frequency	Measurement	Cable	Antenna	Receiver	Limit	Margin	Antenna
(MHz)	Result	Loss	Factor	Reading	(dBuV/m)	(dB)	Pol.
	(dBuV/m)	(dB)	(dB/m)	(dBuV)			(H/V)
2379.703	60.58	4.59	27.58	28.42	74.00	13.42	V
2389.459	60.40	4.61	27.64	28.15	74.00	13.60	V
4804.500	46.10	-32.89	33.89	45.10	74.00	27.90	Н
7206.000	43.29	-32.05	35.66	39.68	74.00	30.71	Н
9608.000	45.63	-30.34	36.60	39.36	74.00	28.38	V
12010.000	47.75	-27.95	38.91	36.79	74.00	26.25	V

$\pi/4$ DQPSK Ch 39

Frequency	Measurement	Cable	Antenna	Receiver	Limit	Margin	Antenna
(MHz)	Result	Loss	Factor	Reading	(dBuV/m)	(dB)	Pol.
	(dBuV/m)	(dB)	(dB/m)	(dBuV)			(H/V)
2373.400	45.52	-35.50	31.90	49.12	74.00	28.48	Н
2502.000	45.49	-35.41	32.11	48.80	74.00	28.51	V
4882.000	45.03	-33.18	33.86	44.35	74.00	28.97	V
7323.000	46.31	-31.34	35.59	42.07	74.00	27.69	٧
9764.000	45.51	-30.10	36.83	38.78	74.00	28.49	V
12205.000	49.58	-27.55	38.81	38.32	74.00	24.42	V

π/4 DQPSK Ch 78

Frequency	Measurement	Cable	Antenna	Receiver	Limit	Margin	Antenna
(MHz)	Result	Loss	Factor	Reading	(dBuV/m)	(dB)	Pol.
	(dBuV/m)	(dB)	(dB/m)	(dBuV)			(H/V)
2484.172	61.61	4.65	27.96	28.99	74.00	12.40	V
2485.003	61.30	4.65	27.96	28.69	74.00	12.71	V
4960.000	45.44	-33.08	33.90	44.62	74.00	28.57	V
7440.000	44.28	-30.78	35.62	39.43	74.00	29.72	V
9920.000	46.21	-29.88	36.94	39.15	74.00	27.79	V
12400.000	47.82	-27.48	38.90	36.40	74.00	26.18	Н

8DPSK Ch 0

Frequency	Measurement	Cable	Antenna	Receiver	Limit	Margin	Antenna
(MHz)	Result	Loss	Factor	Reading	(dBuV/m)	(dB)	Pol.
	(dBuV/m)	(dB)	(dB/m)	(dBuV)			(H/V)
2329.661	61.13	4.51	27.36	29.26	74.00	12.87	V
2382.266	61.08	4.59	27.59	28.89	74.00	12.92	Н
4803.500	46.40	-32.87	33.89	45.37	74.00	27.60	Н
7206.000	43.32	-32.05	35.66	39.71	74.00	30.68	Н
9608.000	45.66	-30.34	36.60	39.40	74.00	28.34	V
12010.000	48.80	-27.95	38.91	37.84	74.00	25.20	V

8DPSK Ch 39

Frequency	Measurement	Cable	Antenna	Receiver	Limit	Margin	Antenna
(MHz)	Result	Loss	Factor	Reading	(dBuV/m)	(dB)	Pol.
	(dBuV/m)	(dB)	(dB/m)	(dBuV)			(H/V)
2365.600	45.44	-35.66	31.90	49.20	74.00	28.56	Н
2530.600	45.25	-36.21	32.22	49.23	74.00	28.75	V
4882.000	44.78	-33.18	33.86	44.10	74.00	29.22	V
7323.000	45.85	-31.34	35.59	41.60	74.00	28.15	V
9764.000	46.09	-30.10	36.83	39.36	74.00	27.91	Н
12205.000	48.48	-27.55	38.81	37.22	74.00	25.52	V

8DPSK Ch 78

Frequency	Measurement	Cable	Antenna	Receiver	Limit	Margin	Antenna
(MHz)	Result	Loss	Factor	Reading	(dBuV/m)	(dB)	Pol.
	(dBuV/m)	(dB)	(dB/m)	(dBuV)			(H/V)
2486.022	61.74	4.65	27.96	29.14	74.00	12.26	V
2488.963	62.24	4.64	27.94	29.65	74.00	11.76	Н
4960.000	42.25	-33.08	33.90	41.43	74.00	31.75	V
7440.000	44.32	-30.78	35.62	39.47	74.00	29.69	V
9920.000	47.35	-29.88	36.94	40.29	74.00	26.65	V
12400.000	49.00	-27.48	38.90	37.58	74.00	25.00	Н

Average Measurement results

GFSK Ch 0

Frequency	Measurement	Cable	Antenna	Receiver	Limit	Margin	Antenna
(MHz)	Result	Loss	Factor	Reading	(dBuV/m)	(dB)	Pol.
	(dBuV/m)	(dB)	(dB/m)	(dBuV)			(H/V)
2384.325	46.14	4.60	27.61	13.93	54.00	7.86	V
2388.244	46.08	4.61	27.63	13.84	54.00	7.92	V
4803.667	33.82	-32.87	33.89	32.79	54.00	20.19	V
7206.000	31.63	-32.05	35.66	28.02	54.00	22.37	V
9608.000	33.46	-30.34	36.60	27.20	54.00	20.54	V
12010.000	36.30	-27.95	38.91	25.34	54.00	17.70	V

GFSK Ch 39

Frequency	Measurement	Cable	Antenna	Receiver	Limit	Margin	Antenna
(MHz)	Result	Loss	Factor	Reading	(dBuV/m)	(dB)	Pol.
	(dBuV/m)	(dB)	(dB/m)	(dBuV)			(H/V)
2376.731	46.17	4.58	27.56	14.03	54.00	7.83	V
2486.231	47.10	4.65	27.95	14.50	54.00	6.90	V
4881.667	32.92	-33.18	33.86	32.24	54.00	21.08	V
7323.000	32.29	-31.34	35.59	28.04	54.00	21.71	V
9764.000	33.82	-30.10	36.83	27.09	54.00	20.18	Н
12205.000	36.26	-27.55	38.81	25.00	54.00	17.74	Н

GFSK Ch 78

Frequency	Measurement	Cable	Antenna	Receiver	Limit	Margin	Antenna
(MHz)	Result	Loss	Factor	Reading	(dBuV/m)	(dB)	Pol.
	(dBuV/m)	(dB)	(dB/m)	(dBuV)			(H/V)
2483.813	46.95	4.65	27.96	14.33	54.00	7.05	V
2490.488	46.91	4.63	27.94	14.34	54.00	7.09	V
4960.000	31.33	-33.08	33.90	30.52	54.00	22.67	Н
7440.000	32.30	-30.78	35.62	27.45	54.00	21.71	Н
9920.000	33.95	-29.88	36.94	26.89	54.00	20.06	V
12400.000	36.38	-27.48	38.90	24.96	54.00	17.62	V

π/4 DQPSK Ch 0

Frequency	Measurement	Cable	Antenna	Receiver	Limit	Margin	Antenna
(MHz)	Result	Loss	Factor	Reading	(dBuV/m)	(dB)	Pol.
	(dBuV/m)	(dB)	(dB/m)	(dBuV)			(H/V)
2378.063	46.11	4.58	27.57	13.96	54.00	7.89	V
2389.575	46.01	4.61	27.64	13.76	54.00	7.99	V
4803.667	35.92	-32.87	33.89	34.90	54.00	18.08	Н
7206.000	31.50	-32.05	35.66	27.89	54.00	22.50	Н
9608.000	33.31	-30.34	36.60	27.04	54.00	20.70	V
12010.000	36.04	-27.95	38.91	25.08	54.00	17.96	Н

π/4 DQPSK Ch 39

Frequency	Measurement	Cable	Antenna	Receiver	Limit	Margin	Antenna
(MHz)	Result	Loss	Factor	Reading	(dBuV/m)	(dB)	Pol.
	(dBuV/m)	(dB)	(dB/m)	(dBuV)			(H/V)
2489.313	46.06	4.64	27.94	13.48	54.00	7.94	V
2485.931	47.06	4.65	27.96	14.46	54.00	6.94	V
4882.000	34.41	-33.18	33.86	33.73	54.00	19.59	Н
7323.000	32.12	-31.34	35.59	27.87	54.00	21.88	V
9764.000	33.51	-30.10	36.83	26.79	54.00	20.49	V
12205.000	35.91	-27.55	38.81	24.65	54.00	18.09	Н

$\pi/4$ DQPSK Ch 78

Frequency	Measurement	Cable	Antenna	Receiver	Limit	Margin	Antenna
(MHz)	Result	Loss	Factor	Reading	(dBuV/m)	(dB)	Pol.
	(dBuV/m)	(dB)	(dB/m)	(dBuV)			(H/V)
2485.256	46.91	4.65	27.96	14.30	54.00	7.09	V
2493.938	46.89	4.63	27.92	14.34	54.00	7.11	V
4960.000	31.28	-33.08	33.90	30.46	54.00	22.72	Н
7440.000	32.43	-30.78	35.62	27.58	54.00	21.57	Н
9920.000	33.93	-29.88	36.94	26.87	54.00	20.07	V
12400.000	36.41	-27.48	38.90	24.99	54.00	17.59	V

8DPSK Ch 0

Frequency	Measurement	Cable	Antenna	Receiver	Limit	Margin	Antenna
(MHz)	Result	Loss	Factor	Reading	(dBuV/m)	(dB)	Pol.
	(dBuV/m)	(dB)	(dB/m)	(dBuV)			(H/V)
2382.731	46.15	4.60	27.60	13.96	54.00	7.85	V
2385.863	46.06	4.60	27.62	13.84	54.00	7.94	V
4804.000	35.43	-32.88	33.89	34.42	54.00	18.57	Н
7206.000	31.47	-32.05	35.66	27.86	54.00	22.53	Н
9608.000	33.25	-30.34	36.60	26.98	54.00	20.76	V
12010.000	35.94	-27.95	38.91	24.98	54.00	18.06	Н

8DPSK Ch 39

Frequency	Measurement	Cable	Antenna	Receiver	Limit	Margin	Antenna
(MHz)	Result	Loss	Factor	Reading	(dBuV/m)	(dB)	Pol.
	(dBuV/m)	(dB)	(dB/m)	(dBuV)			(H/V)
2385.150	46.05	4.60	27.61	13.83	54.00	7.95	V
2386.344	47.00	4.61	27.62	14.78	54.00	7.00	V
4882.000	34.57	-33.18	33.86	33.88	54.00	19.44	Н
7323.000	32.18	-31.34	35.59	27.94	54.00	21.82	Н
9764.000	33.59	-30.10	36.83	26.86	54.00	20.41	Н
12205.000	36.15	-27.55	38.81	24.89	54.00	17.85	V

8DPSK Ch 78

Frequency	Measurement	Cable	Antenna	Receiver	Limit	Margin	Antenna
(MHz)	Result	Loss	Factor	Reading	(dBuV/m)	(dB)	Pol.
	(dBuV/m)	(dB)	(dB/m)	(dBuV)			(H/V)
2483.681	47.09	4.65	27.96	14.47	54.00	6.92	V
2487.169	47.02	4.64	27.95	14.43	54.00	6.98	V
4960.000	32.01	-33.08	33.90	31.19	54.00	21.99	V
7440.000	32.17	-30.78	35.62	27.32	54.00	21.83	V
9920.000	33.68	-29.88	36.94	26.63	54.00	20.32	Н
12400.000	36.13	-27.48	38.90	24.71	54.00	17.87	Н

Conclusion: Pass

Note: the spurious emission above 18G is noise only and did not show on the report.

Band edge compliance

Mode	Channel	Frequency Range	Test Results	Conclusion
GFSK	0	2.31GHz ~2.43GHz	Fig.58	Р
GFSK	78	2.45GHz ~2.5GHz	Fig.59	Р

Mode	Channel	Frequency Range	Test Results	Conclusion
-/4 DODSK	0	2.31GHz ~2.43GHz	Fig.60	Р
π/4 DQPSK	78	2.45GHz ~2.5GHz	Fig.61	Р

Mode	Channel	Frequency Range	Test Results	Conclusion
ODDEK	0	2.31GHz ~2.43GHz	Fig.62	Р
8DPSK	78	2.45GHz ~2.5GHz	Fig.63	Р

Conclusion: PASS
Test graphs as below

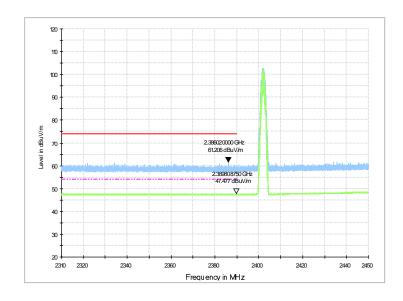


Fig.58. Frequency Band Edges: GFSK, Channel 0, Hopping Off, 2.31 GHz – 2.45GHz

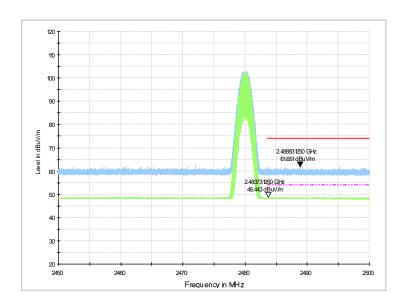


Fig.59. Frequency Band Edges: GFSK, Channel 78, Hopping Off, ch11, 2.45 GHz - 2.50GHz

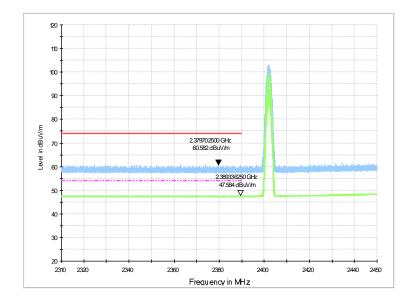


Fig.60. Frequency Band Edges: $\pi/4$ DQPSK, Channel 0, Hopping Off, 2.31 GHz - 2.45GHz

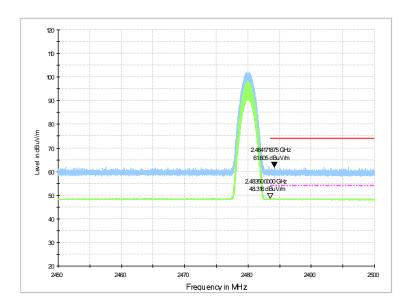


Fig.61. Frequency Band Edges: π/4 DQPSK, Channel 78, Hopping Off, 2.45 GHz - 2.50GHz

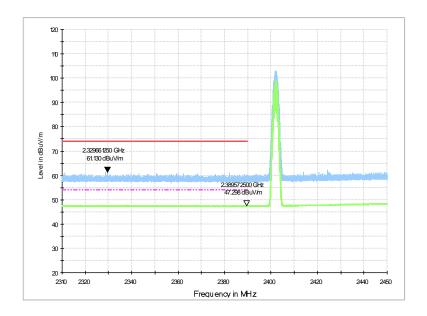


Fig.62. Frequency Band Edges: 8DPSK, Channel 0, 2.31 GHz - 2.45GHz

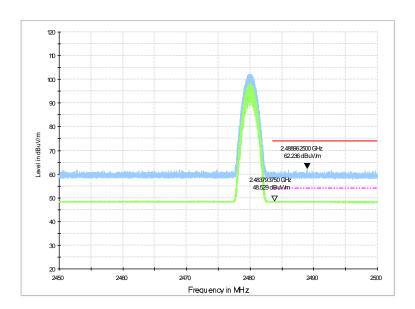


Fig.63. Frequency Band Edges: 8DPSK, Channel 78, 2.45 GHz - 2.50GHz

B.6. Time of Occupancy (Dwell Time)

Method of Measurement: See ANSI C63.10-clause 7.8.4

The EUT must have its hopping function enabled. Use the following spectrum analyzer settings:

- Span = zero span, centered on a hopping channel
- RBW = 1 MHz
- VBW ≥ RBW
- Sweep = as necessary to capture the entire dwell time per hopping channel
- Detector function = peak
- Trace = max hold

Measure a pulse time in time domain at middle frequency and then count the hopping number in 31.6s(which equals with 0.4 multiply 79) of middle frequency ,then multiply the pulse time and hopping number and record them.

Measurement Limit:

Standard	Limit (ms)
FCC 47 CFR Part 15.247(a) (1)(iii)	< 400

Measurement Result:

For GFSK

Channel	Packet	Pulse time (ms)		Pulse time (ms) Number of Transmissions		Dwell Time (ms)	Conclusion
	DH1	Fig.64	0.38	Fig.65	319	121.22	Р
39	DH3	Fig.66	1.63	Fig.67	97	158.11	Р
	DH5	Fig.68	2.88	Fig.69	67	192.96	Р

For π/4 DQPSK

Channel	Packet	Pulse time (ms)		Numb Transm		Dwell Time (ms)	Conclusion
	2DH1	Fig.70	0.38	Fig.71	319	121.22	Р
39	2DH3	Fig.72	1.64	Fig.73	109	178.76	Р
	2DH5	Fig.74	2.88	Fig.75	58	167.04	Р

For 8DPSK

Channel	Packet	Pulse time (ms)		Number of Transmissions		Dwell Time (ms)	Conclusion
	3DH1	Fig.76	0.39	Fig.77	319	124.41	Р
39	3DH3	Fig.78	1.63	Fig.79	101	164.63	Р
	3DH5	Fig.80	2.89	Fig.81	78	225.42	Р

Conclusion: PASS
Test graphs as below:

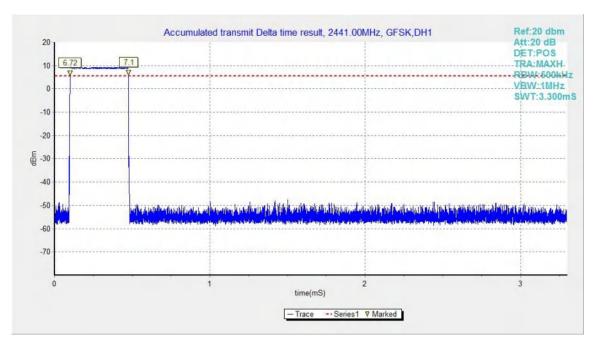


Fig.64. Time of occupancy (Dwell Time): Channel 39, Packet DH1

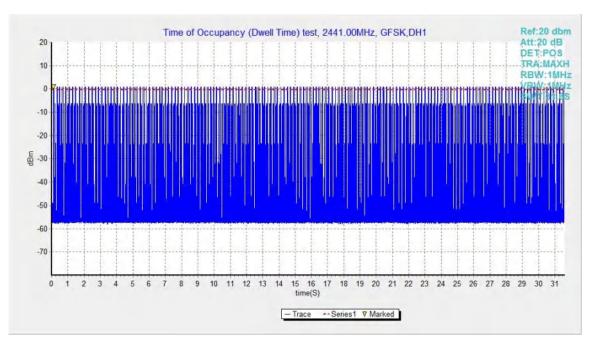


Fig.65. Number of Transmissions Measurement: Channel 39, Packet DH1

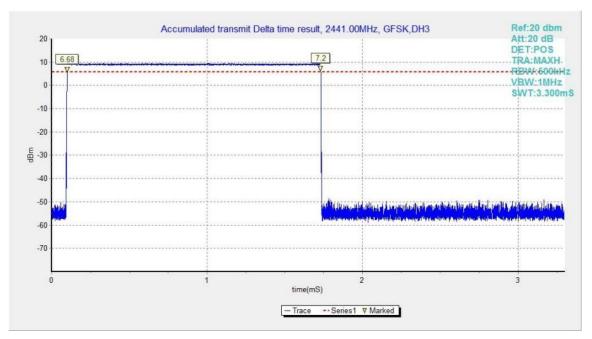


Fig.66. Time of occupancy (Dwell Time): Channel 39, Packet DH3

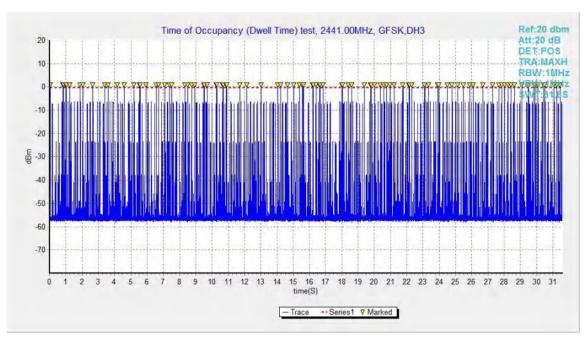


Fig.67. Number of Transmissions Measurement: Channel 39, Packet DH3

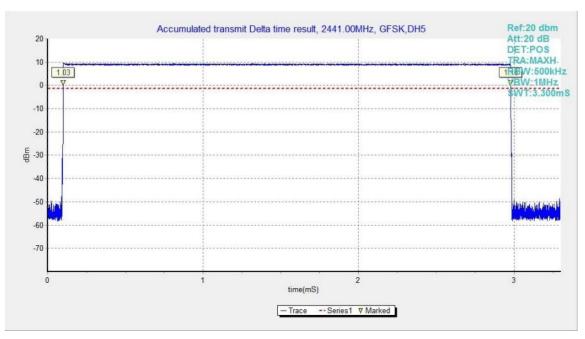


Fig.68. Time of occupancy (Dwell Time): Channel 39, Packet DH5

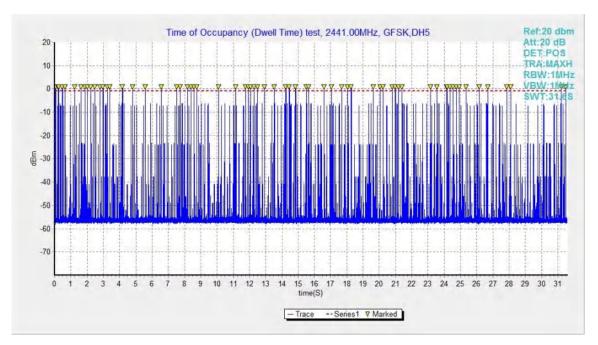


Fig.69. Number of Transmissions Measurement: Channel 39, Packet DH5

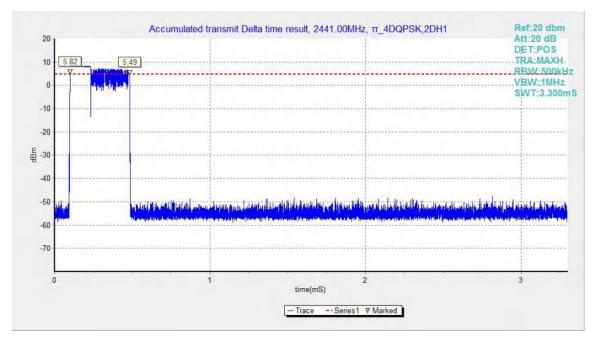


Fig.70. Time of occupancy (Dwell Time): Channel 39, Packet 2-DH1

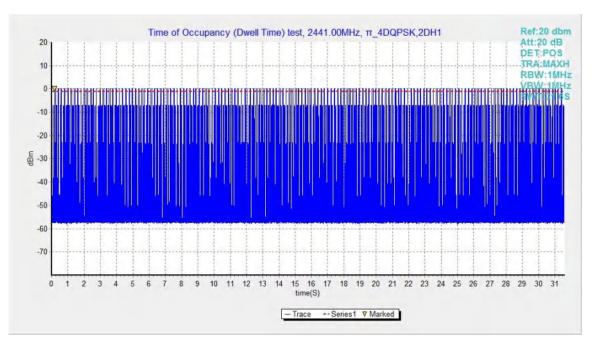


Fig.71. Number of Transmissions Measurement: Channel 39, Packet 2-DH1

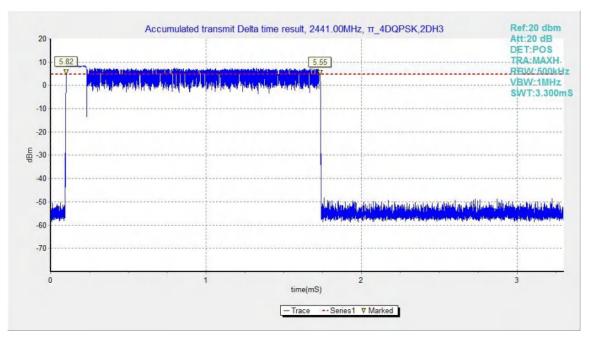


Fig.72. Time of occupancy (Dwell Time): Channel 39, Packet 2-DH3



Fig.73. Number of Transmissions Measurement: Channel 39, Packet 2-DH3

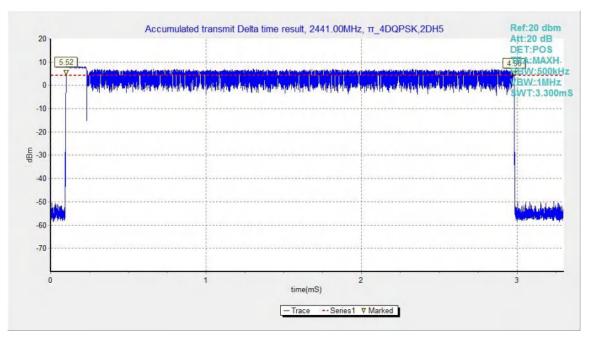


Fig.74. Time of occupancy (Dwell Time): Channel 39, Packet 2-DH5

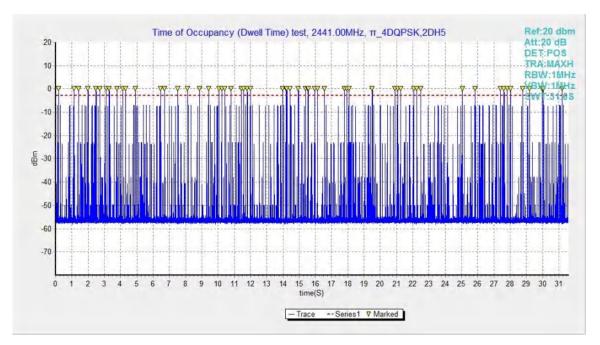


Fig.75. Number of Transmissions Measurement: Channel 39, Packet 2-DH5

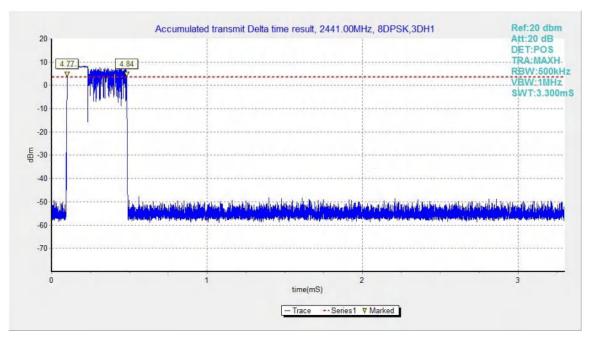


Fig.76. Time of occupancy (Dwell Time): Channel 39, Packet 3-DH1

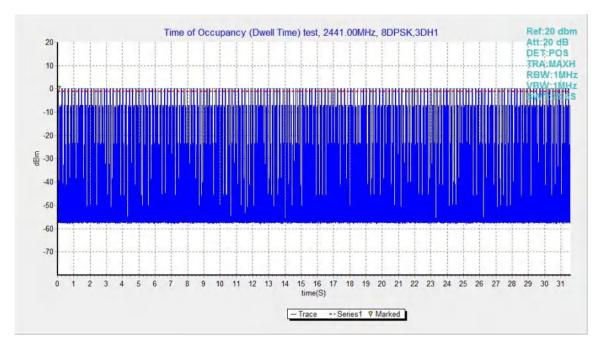


Fig.77. Number of Transmissions Measurement: Channel 39, Packet 3-DH1

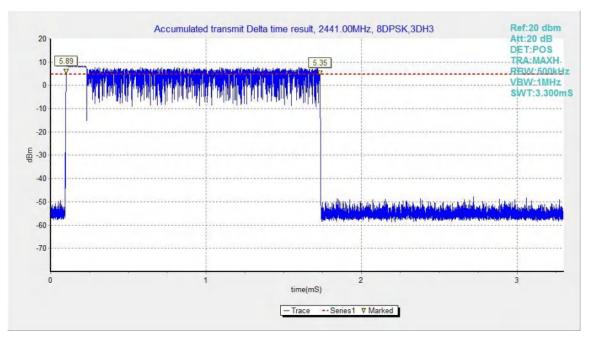


Fig.78. Time of occupancy (Dwell Time): Channel 39, Packet 3-DH3

Fig.79. Number of Transmissions Measurement: Channel 39, Packet 3-DH3

Fig.80. Time of occupancy (Dwell Time): Channel 39, Packet 3-DH5

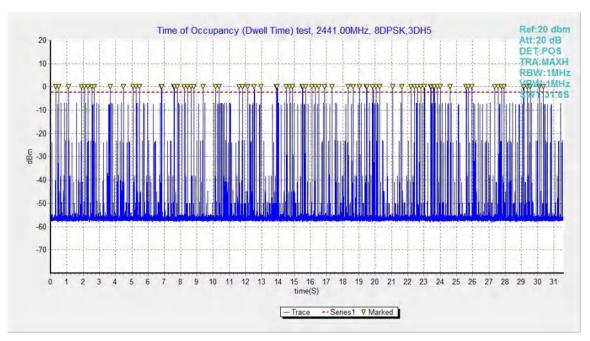


Fig.81. Number of Transmissions Measurement: Channel 39, Packet 3-DH5

B.7. 20dB Bandwidth

Method of Measurement: See ANSI C63.10-clause 6.9.2

Measurement Procedure - Unwanted Emissions

- 1. Set RBW = 30kHz.
- 2. Set VBW = 100 kHz.
- 3. Set span to 3MHz
- 4. Detector = peak.
- 5. Trace Mode = max hold.
- 6. Sweep = auto couple.
- 7. Allow the trace to stabilize (this may take some time, depending on the extent of the span).

Measurement Limit:

Standard	Limit
FCC 47 CFR Part 15.247(a)(1)	NA *

Use NdB Down function of the SA to measure the 20dB Bandwidth

* Comment: This test case is not required according to the latest FCC 47 CFR Part 15.247. But the test results are necessary for "carrier frequency separation" test case, in Annex A.8.

Measurement Results:

For GFSK

Channel	20dB Band	Conclusion	
0	Fig.82 942.75		NA
39	Fig.83	941.25	NA
78	Fig.84	941.25	NA

For π/4 DQPSK

Channel	20dB Band	Conclusion	
0	Fig.85 1224.75		NA
39	Fig.86	1258.50	NA
78	Fig.87	1227.75	NA

For 8DPSK

Channel	20dB Band	Conclusion	
0	Fig.88 1205.25		NA
39	Fig.89	1262.25	NA
78	Fig.90	1263.75	NA

Conclusion: NA

Test graphs as below:

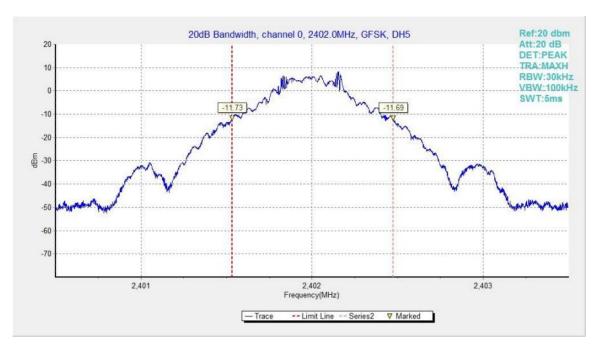


Fig.82. 20dB Bandwidth: GFSK, Channel 0

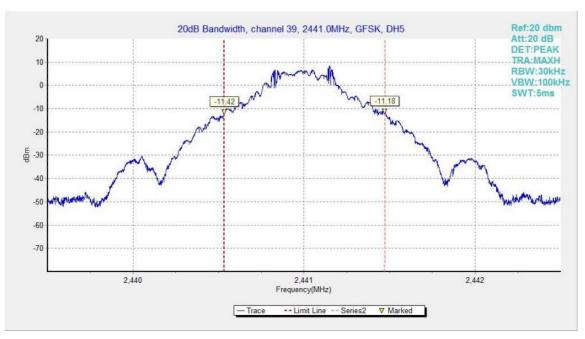


Fig.83. 20dB Bandwidth: GFSK, Channel 39

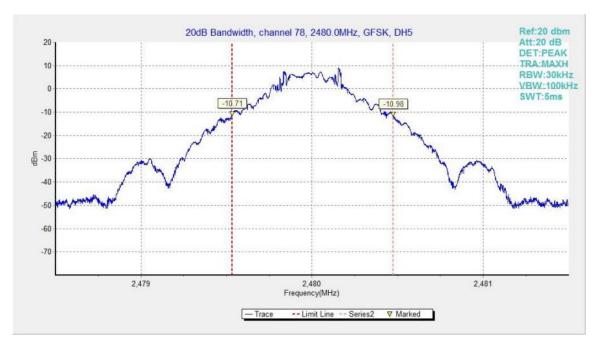


Fig.84. 20dB Bandwidth: GFSK, Channel 78

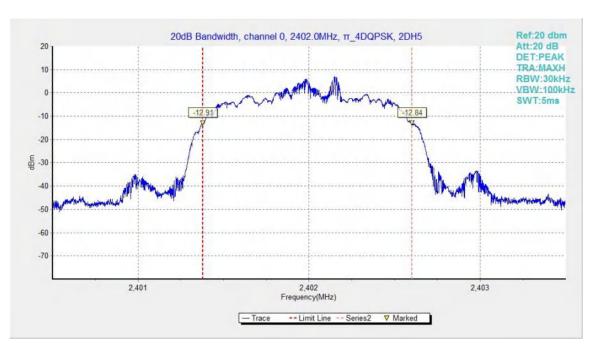


Fig.85. 20dB Bandwidth: $\pi/4$ DQPSK, Channel 0

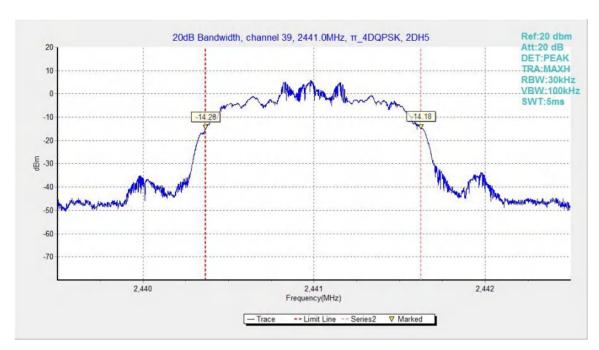


Fig.86. 20dB Bandwidth: π/4 DQPSK, Channel 39

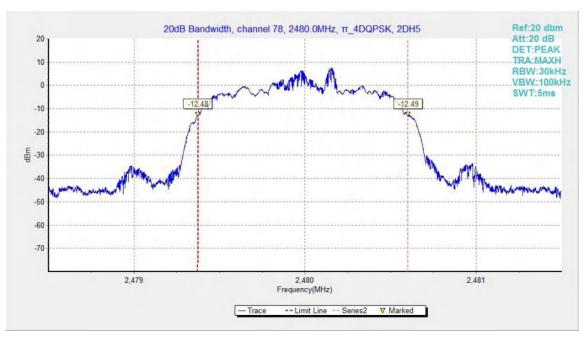


Fig.87. 20dB Bandwidth: π/4 DQPSK, Channel 78

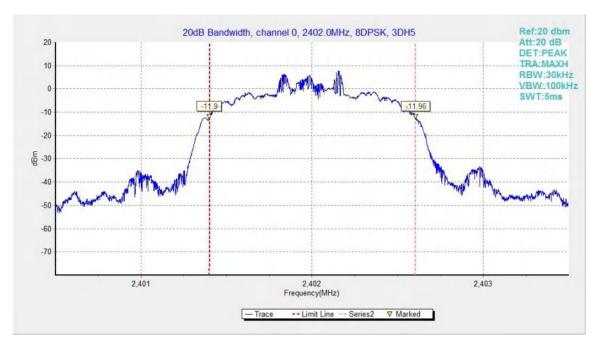


Fig.88. 20dB Bandwidth: 8DPSK, Channel 0

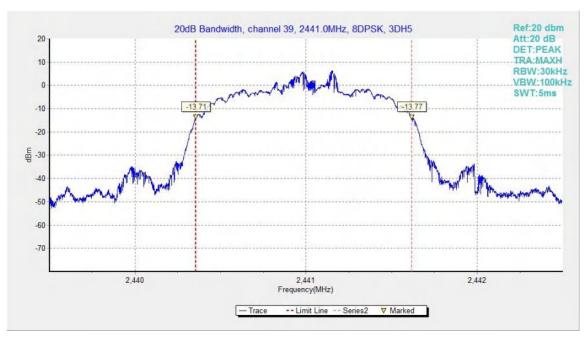


Fig.89. 20dB Bandwidth: 8DPSK, Channel 39

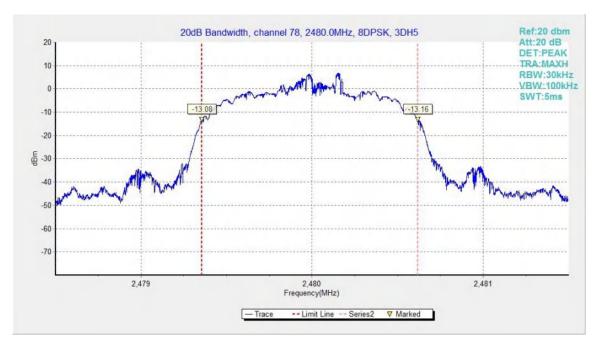


Fig.90. 20dB Bandwidth: 8DPSK, Channel 78

B.8. Carrier Frequency Separation

Method of Measurement: See ANSI C63.10-clause 7.8.2

The EUT must have its hopping function enabled. Use the following spectrum analyzer settings:

- Span = 3MHz
- RBW=300kHz
- VBW=300kHz
- Sweep = auto
- Detector function = peak
- Trace = max hold
- Allow the trace to stabilize

Search the peak marks of the middle frequency and adjacent channel, then record the separation between them.

* Comment: This limit should be over 25 kHz or (2/3) * 20dB bandwidth, whichever is greater.

Measurement Limit:

Standard	Limit(kHz)	
FCC 47 CFR Part 15.247(a)(1)	over 25 kHz or (2/3) * 20dB bandwidth	

Measurement Result:

For GFSK

Channel	Carrier frequency separation (kHz)		Conclusion
39	Fig.91 1006.50		Р

For π/4 DQPSK

Channel	Carrier frequency separation (kHz)		Conclusion
39	Fig.92 962.25		Р

For 8DPSK

Channel	Carrier frequency	Conclusion	
39	Fig.93	1017.75	Р

Conclusion: PASS

Test graphs as below:

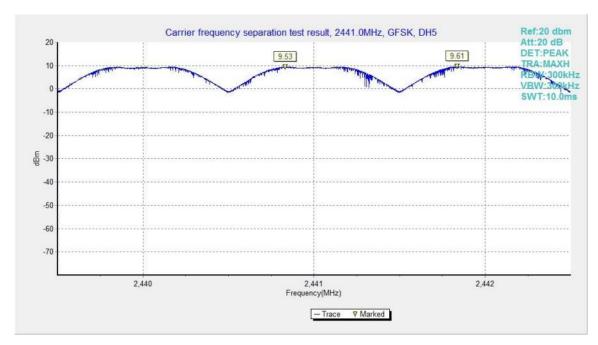


Fig.91. Carrier frequency separation measurement: GFSK, Channel 39



Fig.92. Carrier frequency separation measurement: π/4 DQPSK, Channel 39

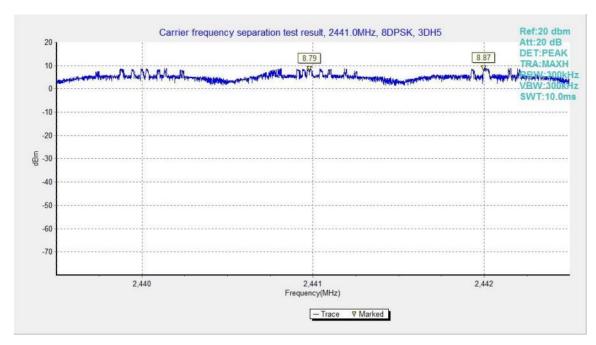


Fig.93. Carrier frequency separation measurement: 8DPSK, Channel 39

B.9. Number of Hopping Channels

Method of Measurement: See ANSI C63.10-clause 7.8.3

The EUT must have its hopping function enabled. Use the following spectrum analyzer settings:

- Span = the frequency band of operation
- RBW = 500kHz
- VBW = 500kHz
- Sweep = auto
- Detector function = peak
- Trace = max hold
- Allow the trace to stabilize

It might prove necessary to break the span up into subranges to show clearly all of the hopping frequencies. Compliance of an EUT with the appropriate regulatory limit shall be determined for the number of hopping channels. A plot of the data shall be included in the test report.

Measurement Limit:

Standard	Limit	
FCC 47 CFR Part 15.247(a) (1)(iii)	At least 15 non-overlapping channels	

Measurement Result:

For GFSK

Channel	Number of hop	Conclusion	
0~39	Fig.94	70	D
40~78	Fig.95	79	P

Forπ/4 DQPSK

Channel	Number of hopping channels		Conclusion
0~39	Fig.96	70	D
40~78	Fig.97	79	٢

For 8DPSK

Channel	Number of hopping channels		Conclusion
0~39	Fig.98	70	D
40~78	Fig.99	79	Р

Conclusion: PASS
Test graphs as below:

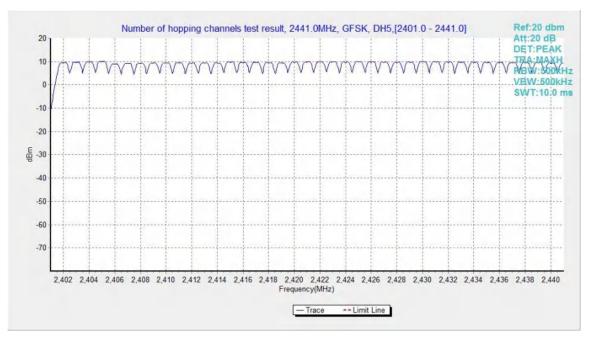


Fig.94. Number of hopping frequencies: GFSK, Channel 0 - 39

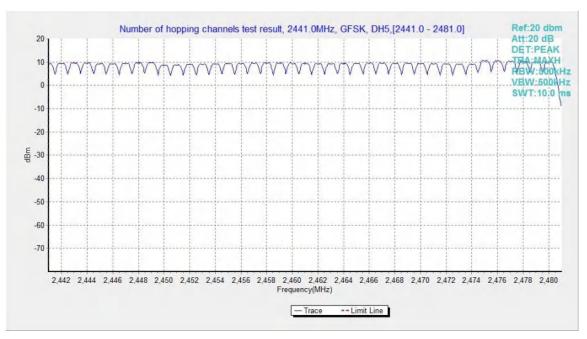


Fig.95. Number of hopping frequencies: GFSK, Channel 40 - 78

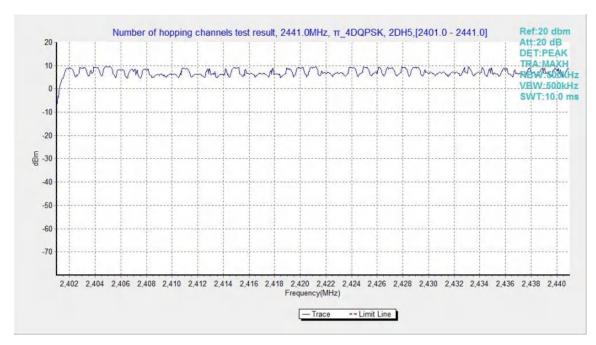


Fig.96. Number of hopping frequencies: $\pi/4$ DQPSK, Channel 0 - 39

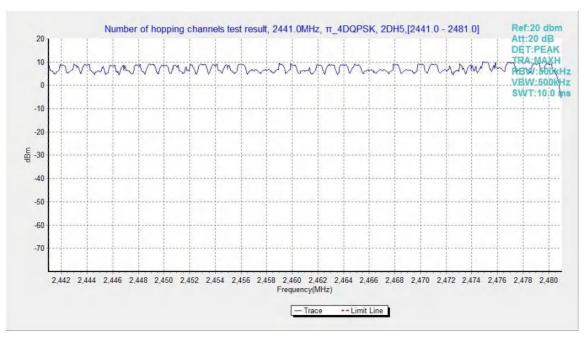


Fig.97. Number of hopping frequencies: π/4 DQPSK, Channel 40 - 78

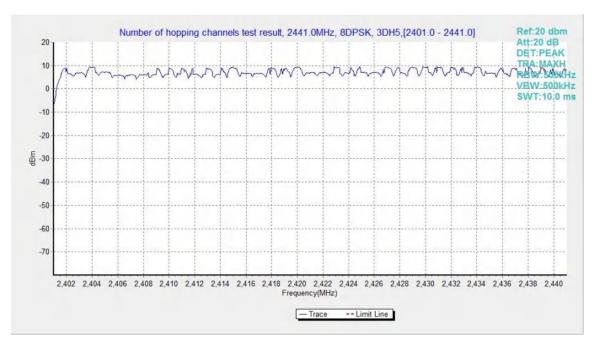


Fig.98. Number of hopping frequencies: 8DPSK, Channel 0 - 39

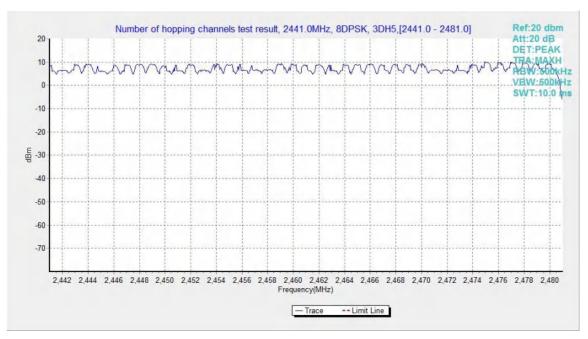


Fig.99. Number of hopping frequencies: 8DPSK, Channel 40 - 78

B.10. AC Powerline Conducted Emission

Summary

All AC line conducted spurious emissions are measured with a receiver connected to a grounded LISN while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for conducted spurious emissions. Only the conducted emissions of the configuration that produced the worst case emissions are reported in this section

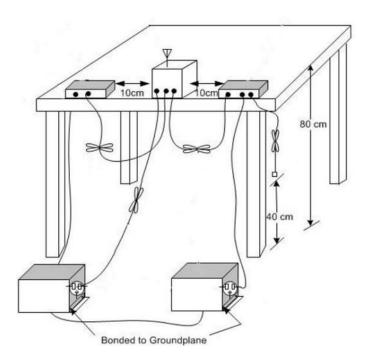
Method of Measurement:

See Clause 6.2 of ANSI C63.10 specifically.

See Clause 4 and Clause 5 of ANSI C63.10 generally.

The conducted emissions from the AC port of the EUT are measured in a shielding room. The EUT is connected to a Line Impedance Stabilization Network (LISN). An overview sweep with peak detection was performed. The measurements were performed with a quasi-peak detector and if required, an average detector.

The conducted emission measurements were made with the following detector of the test receiver: Quasi-Peak / Average Detector.


The measurement bandwidth is:

Frequency of Emission (MHz)	RBW/IF bandwidth
0.15-30	9kHz

Test Condition:

Voltage (V)	Frequency (Hz)
120	60

Test setup

Measurement Result and limit:

Bluetooth (Quasi-peak Limit)

Frequency range (MHz)	Quasi-peak Limit (dB _µ V)	Result (dBμV) With charger		Conclusion
(11112)	Limit (αΒμν)	bluetooth	ldle	
0.15 to 0.5	66 to 56			
0.5 to 5	56	Fig.B.10.1	Fig. B.10.2	Р
5 to 30	60			

NOTE: The limit decreases linearly with the logarithm of the frequency in the range $0.15\,\text{MHz}$ to $0.5\,\text{MHz}$.

Bluetooth (Average Limit)

Frequency range	Average Limit	Result (dBμV) With charger		Conclusion
(MHz)	(dBμV)	bluetooth	Idle	
0.15 to 0.5	56 to 46			
0.5 to 5	46	Fig.B.10.1	Fig. B.10.2	Р
5 to 30	50			

NOTE: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to $0.5\,\mathrm{MHz}$.

Conclusion: Pass Test graphs as below:

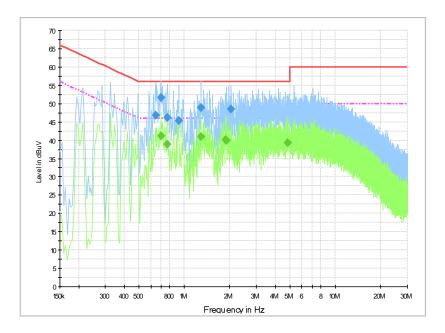


Fig.B.10.1 AC Powerline Conducted Emission- bluetooth

Note: The graphic result above is the maximum of the measurements for both phase line and neutral line.

Final Result 1

That Noode 1									
Frequency	QuasiPeak	Meas.	Bandwidth	Filter	Line	Corr.	Margin	Limit	Comment
(MHz)	(dBuV)	Time	(kHz)			(dB)	(dB)	(dBuV)	
		(ms)							
0.645000	46.8	2000.0	9.000	On	N	20.1	9.2	56.0	
0.699000	51.7	2000.0	9.000	On	L1	20.0	4.3	56.0	
0.775500	46.1	2000.0	9.000	On	L1	20.0	9.9	56.0	
0.919500	45.3	2000.0	9.000	On	L1	19.9	10.7	56.0	
1.293000	49.0	2000.0	9.000	On	L1	19.9	7.0	56.0	
2.044500	48.5	2000.0	9.000	On	L1	19.8	7.5	56.0	

Final Result 2

Frequency	CAverage	Meas.	Bandwidth	Filter	Line	Corr.	Margin	Limit	Comment
(MHz)	(dBuV)	Time	(kHz)			(dB)	(dB)	(dBuV)	
		(ms)							
0.699000	41.2	2000.0	9.000	On	L1	20.0	4.8	46.0	
0.771000	38.9	2000.0	9.000	On	L1	20.0	7.1	46.0	
1.293000	41.0	2000.0	9.000	On	L1	19.9	5.0	46.0	
1.869000	40.2	2000.0	9.000	On	L1	19.8	5.8	46.0	
1.905000	39.9	2000.0	9.000	On	L1	19.8	6.1	46.0	
4.866000	39.3	2000.0	9.000	On	L1	19.9	6.7	46.0	

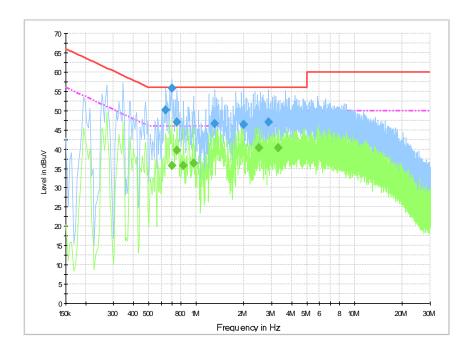


Fig.B.10.2 AC Powerline Conducted Emission-Idle

Note: The graphic result above is the maximum of the measurements for both phase line and neutral line.

Final Result 1

Frequency	QuasiPeak	Meas.	Bandwidth	Filter	Line	Corr.	Margin	Limit	Comment
(MHz)	(dBuV)	Time	(kHz)			(dB)	(dB)	(dBuV)	
		(ms)							
0.640500	50.2	2000.0	9.000	On	L1	20.0	5.8	56.0	
0.699000	55.7	2000.0	9.000	On	L1	20.0	0.3	56.0	
0.753000	47.0	2000.0	9.000	On	L1	20.0	9.0	56.0	
1.311000	46.6	2000.0	9.000	On	L1	19.9	9.4	56.0	
1.999500	46.4	2000.0	9.000	On	L1	19.8	9.6	56.0	
2.868000	47.0	2000.0	9.000	On	L1	19.9	9.0	56.0	

Final Result 2

Frequency	CAverage	Meas.	Bandwidth	Filter	Line	Corr.	Margin	Limit	Comment
(MHz)	(dBuV)	Time	(kHz)			(dB)	(dB)	(dBuV)	
		(ms)							
0.699000	35.7	2000.0	9.000	On	N	20.1	10.3	46.0	
0.757500	39.6	2000.0	9.000	On	L1	20.0	6.4	46.0	
0.829500	35.6	2000.0	9.000	On	L1	20.0	10.4	46.0	
0.960000	36.4	2000.0	9.000	On	L1	19.9	9.6	46.0	
2.481000	40.3	2000.0	9.000	On	L1	19.8	5.7	46.0	
3.304500	40.4	2000.0	9.000	On	L1	19.8	5.6	46.0	

B.11. Antenna Requirement

The antenna of the device is permanently attached. There are no provisions for connection to an external antenna.

The unit complies with the requirement of FCC Part 15.203.

ANNEX C: Accreditation Certificate

Accredited Laboratory

A2LA has accredited

TELECOMMUNICATION TECHNOLOGY LABS, CAICT

Beijing, People's Republic of China

for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017

General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Presented this 23rd day of July 2024.

Mr. Trace McInturff, Vice President, Accreditation Services For the Accreditation Council Certificate Number 7049.01 Valid to July 31, 2026

For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.

END OF REPORT