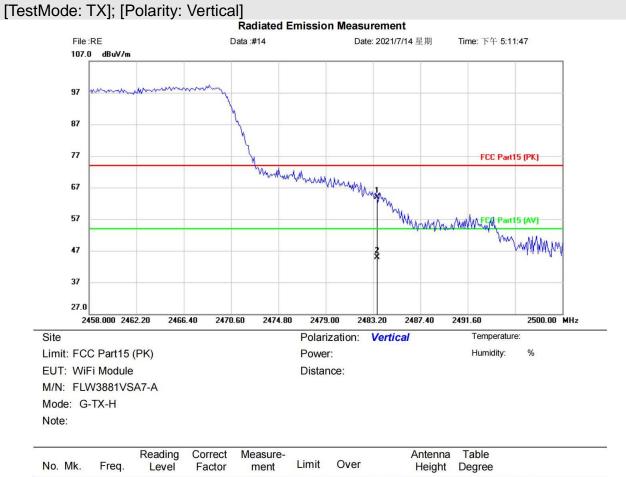


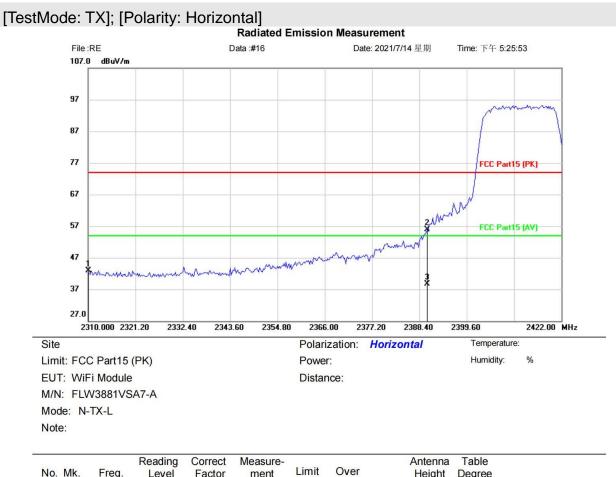
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		2310.000	46.07	-4.61	41.46	74.00	-32.54	peak			
2	*	2390.000	64.00	-4.27	59.73	74.00	-14.27	peak			
3		2390.000	40.36	-4.27	36.09	54.00	-17.91	AVG			

(Reference Only



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	2483.500	72.69	-3.84	68.85	74.00	- <mark>5.15</mark>	peak			
2		2483.500	51.44	-3.84	47.60	54.00	-6.40	AVG			
3		2500.000	51.57	-3.78	47.79	74.00	-26.21	peak			

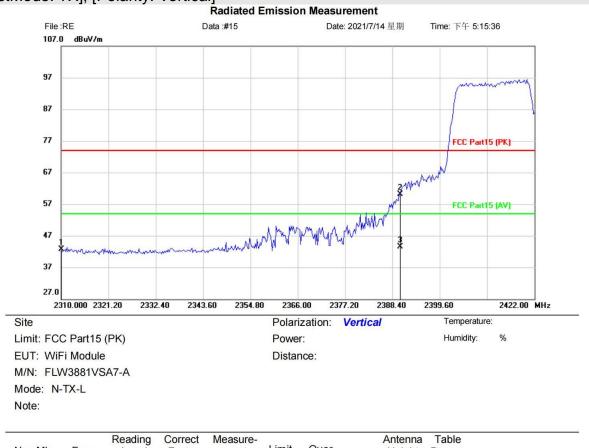
(Reference Only



No.	Mk.	Freq.	Level	Factor	ment	Limit	Over		Height	Degree	
-		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		2483.500	67.81	-3.84	63.97	74.00	-10.03	peak			
2	*	2483.500	48.80	-3.84	44.96	54.00	-9.04	AVG			

(Reference Only

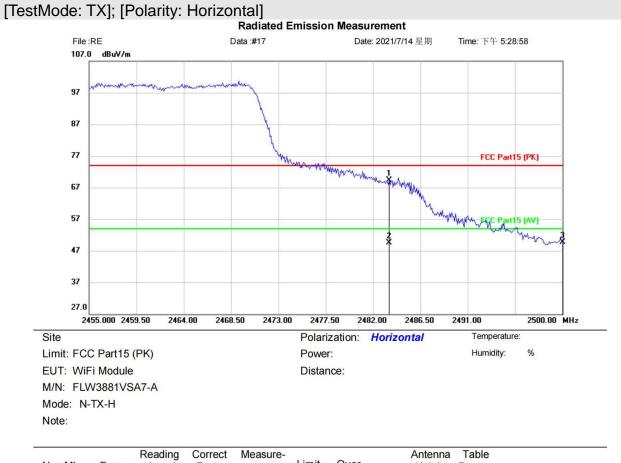
802.11n20:



No.	Mk.	Freq.	Level	Factor	ment	Limit	Over		Height	Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		2310.000	47.46	-4.61	42.85	74.00	-31.15	peak			
2		2390.000	60.25	-4.27	55.98	74.00	-18.02	peak			
3	*	2390.000	43.06	-4.27	38.79	54.00	-15.21	AVG			

*:Maximum data x:Over limit !:over margin

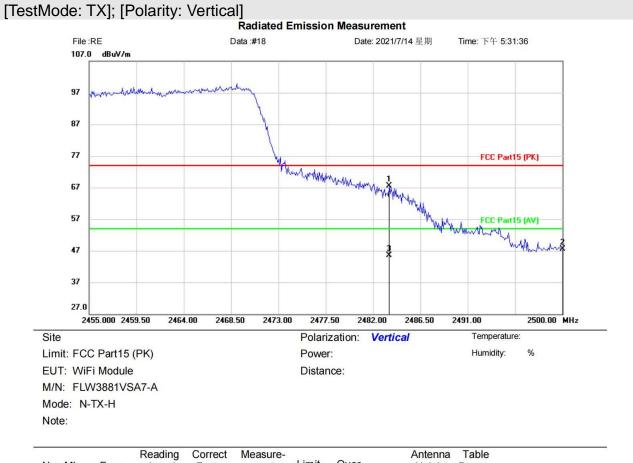
(Reference Only


[TestMode: TX]; [Polarity: Vertical]

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		2310.000	47.25	-4.61	42.64	74.00	-31.36	peak			
2		2390.000	64.28	-4.27	60.01	74.00	-13.99	peak			
3	*	2390.000	47.79	-4.27	43.52	54.00	-10.48	AVG			

*:Maximum data x:Over limit !:over margin

(Reference Only

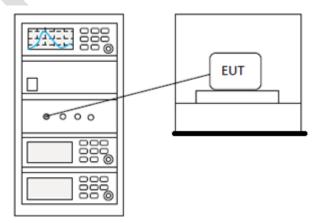


No.	Mk.	Freq.	Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		2483.500	73.19	-3.84	69.35	74.00	-4.65	peak			
2	*	2483.500	53.34	-3.84	49.50	54.00	-4.50	AVG			
3		2500.000	53.40	-3.78	49.62	74.00	-24.38	peak			

(Reference Only

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	2483.500	71.24	-3.84	67.40	74.00	-6.60	peak			
2		2500.000	51.19	-3.78	47.41	74.00	-26.59	peak			
3		2483.500	49.30	-3.84	45.46	54.00	-8.54	AVG			

(Reference Only


Test Standard47 CFR Part 15, Subpart C 15.247Test MethodANSI C63.10 (2013) Section 7.8.6 & Section 11.11Test Mode (Pre-Scan)TXTest Mode (Final Test)TXTesterEasonTemperature25 °CHumidity52%

12 CONDUCTED SPURIOUS EMISSIONS

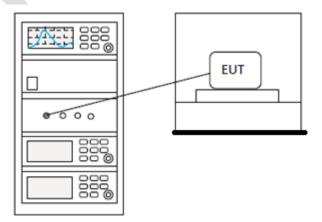
12.1 LIMITS

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.209(a) (see §15.205(c)).

12.2 BLOCK DIAGRAM OF TEST SETUP

Report No.: BLA-EMC-202106-A4501 Page 39 of92

12.3 TEST DATA


Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 7.8.8 & Section 11.13.3.2
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ
Tester	Eason
Temperature	25 ℃
Humidity	52%

13 CONDUCTED BAND EDGES MEASUREMENT

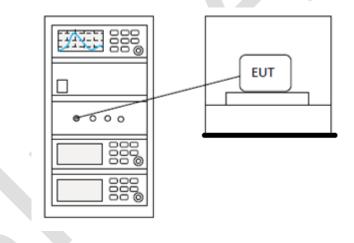
13.1 LIMITS

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.209(a) (see §15.205(c)).

13.2 BLOCK DIAGRAM OF TEST SETUP

Report No.: BLA-EMC-202106-A4501 Page 41 of92

13.3 TEST DATA


14 POWER SPECTRUM DENSITY

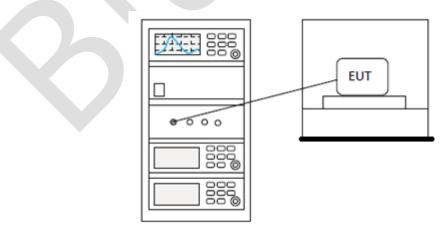
Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 11.10.2
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ
Tester	Eason
Temperature	25°C
Humidity	52%

14.1 LIMITS

Limit: \leq 8dBm in any 3 kHz band during any time interval of continuous transmission

14.2 BLOCK DIAGRAM OF TEST SETUP

14.3 TEST DATA


15 CONDUCTED PEAK OUTPUT POWER

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 7.8.5 & Section 11.9.1
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ
Tester	Eason
Temperature	25℃
Humidity	52%
15.1 LIMITS	

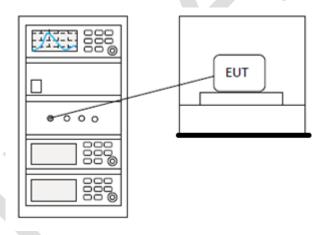
15.1 LIMITS

Frequency range(MHz)	Output power of the intentional radiator(watt)
	1 for \geq 50 hopping channels
902-928	0.25 for $25 \le$ hopping channels < 50
	1 for digital modulation
	1 for \geq 75 non-overlapping hopping channels
2400-2483.5	0.125 for all other frequency hopping systems
	1 for digital modulation
5725 5050	1 for frequency hopping systems and digital
5725-5850	modulation

15.2 BLOCK DIAGRAM OF TEST SETUP

Report No.: BLA-EMC-202106-A4501 Page 44 of92

15.3 TEST DATA


16 MINIMUM 6DB BANDWIDTH

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 11.8.1
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ
Tester	Eason
Temperature	25 ℃
Humidity	52%

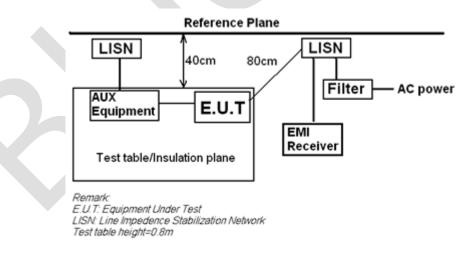
16.1 LIMITS

Limit: \geq 500 kHz

16.2 BLOCK DIAGRAM OF TEST SETUP

16.3 TEST DATA

17 CONDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ)


Test Standard	47 CFR Part 15, Subpart C 15.247					
Test Method	ANSI C63.10 (2013) Section 6.2					
Test Mode (Pre-Scan)	ТХ					
Test Mode (Final Test)	ТХ					
Tester	Eason					
Temperature	25°C					
Humidity	52%					

17.1 LIMITS

Frequency of	Conducted limit(dBµV)				
emission(MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

*Decreases with the logarithm of the frequency.

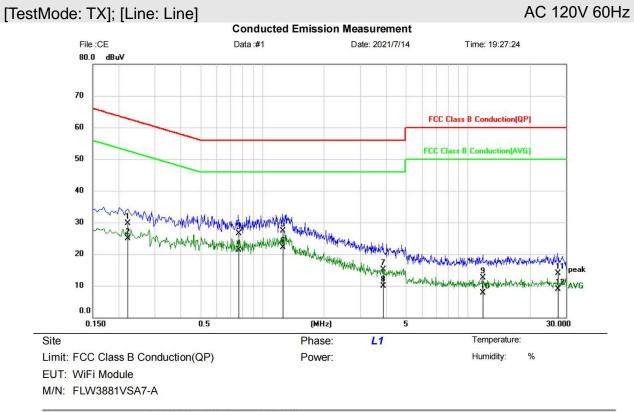
17.2 BLOCK DIAGRAM OF TEST SETUP

17.3 PROCEDURE

1) The mains terminal disturbance voltage test was conducted in a shielded room.

2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50ohm/50H + 5ohm linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.

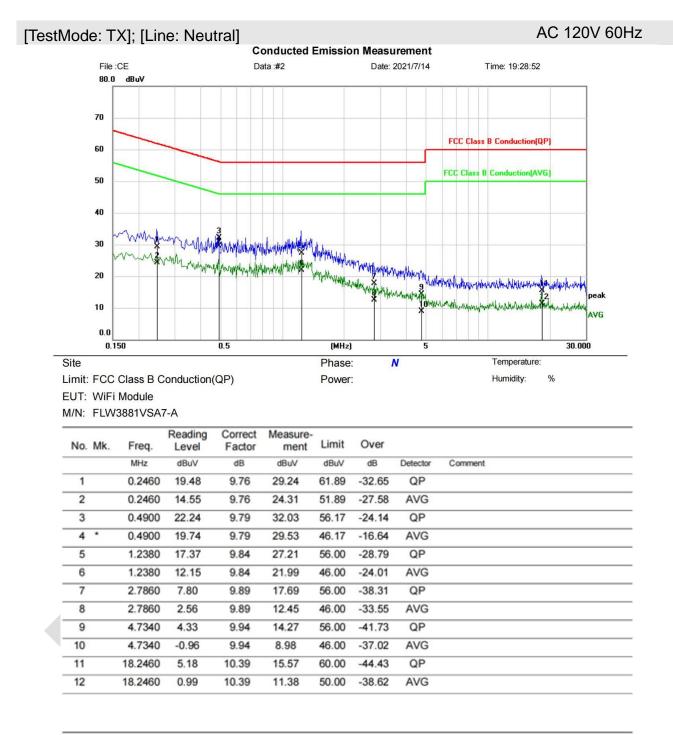
3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,


4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.

5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Remark: LISN=Read Level+ Cable Loss+ LISN Factor

17.4 TEST DATA



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.2220	19.97	9.83	29.80	62.74	-32.94	QP	
2		0.2220	14.98	9.83	24.81	52.74	-27.93	AVG	
3	ð.	0.7660	16.62	9.89	26.51	56.00	-29.49	QP	
4	8	0.7660	11.36	9.89	21.25	46.00	-24.75	AVG	
5		1.2620	17.43	9.93	27.36	56.00	-28.64	QP	
6	•	1.2620	12.16	9.93	22.09	46.00	-23.91	AVG	
7	8	3.8740	5.08	9.98	15.06	56.00	-40.94	QP	
8	1	3.8740	-0.12	9.98	9.86	46.00	-36.14	AVG	
9	5	11.8180	2.26	10.27	12.53	60.00	-47.47	QP	
10	0	11.8180	-2.66	10.27	7.61	50.00	-42.39	AVG	
11		27.3420	3.45	10.46	13.91	60.00	-46.09	QP	
12		27.3420	-1.63	10.46	8.83	50.00	-41.17	AVG	

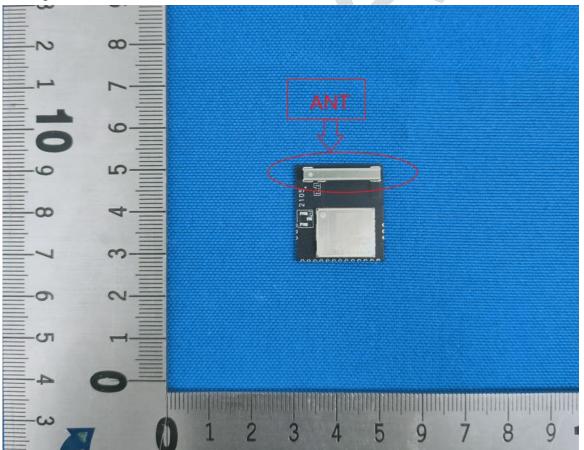
*:Maximum data x:Over limit !:over margin

(Reference Only

(Reference Only

18 ANTENNA REQUIREMENT

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	N/A


18.1 CONCLUSION

Standard Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit permanently attached antenna or of an so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 1.0 dBi.

