

Tel

Fax

Web

Mail

Date of Test

Date of Report

Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg Č, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity

May 24, 2024 ~ June 20, 2024

June 24, 2024

÷

	FCC Part 22H/Part 27			
Report Reference No:				
•CC ID				
Date of Issue	June 24, 2024			
Testing Laboratory Name	Shenzhen LCS Compliance Testi	• •		
	101, 201 Bldg A & 301 Bldg C, Juji Industrial Park			
\ddress:	Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China			
Applicant's name	South Surveying & Mapping Tech	nology Co., Ltd.		
Address	No.39, Sicheng Road, Tianhe Distri	ct. Guangzhou		
Address:				
Test specification:				
	FCC CFR Title 47 Part 2, Part 22	H, Part 27		
Standard				
	KDB971168 D01 Power Meas License Digital Systems v03r01			
Fest Report Form No	LCSEMC-1.0	unline - Testine I shouther I fil		
	Shanzhan I CS Camplianaa Taating	l abaratan () ta		
-	Shenzhen LCS Compliance Testing	J Laboratory Ltd.		
Master TRF Shenzhen LCS Compliance Testing This publication may be reproduced i Shenzhen LCS Compliance Testing L naterial. Shenzhen LCS Compliance	Dated 2011-03 g Laboratory Ltd. All rights reserved n whole or in part for non-commercial aboratory Ltd. is acknowledged as co Testing Laboratory Ltd. takes no resp	I. purposes as long as the pyright owner and source of the onsibility for and will not assume		
Master TRF Shenzhen LCS Compliance Testing This publication may be reproduced i Shenzhen LCS Compliance Testing I naterial. Shenzhen LCS Compliance iability for damages resulting from the placement and context.	Dated 2011-03 g Laboratory Ltd. All rights reserved n whole or in part for non-commercial aboratory Ltd. is acknowledged as co Testing Laboratory Ltd. takes no resp e reader's interpretation of the reprodu	I. purposes as long as the pyright owner and source of the onsibility for and will not assume		
Master TRF Shenzhen LCS Compliance Testing This publication may be reproduced i Shenzhen LCS Compliance Testing L naterial. Shenzhen LCS Compliance ability for damages resulting from the placement and context.	Dated 2011-03 g Laboratory Ltd. All rights reserved n whole or in part for non-commercial aboratory Ltd. is acknowledged as co Testing Laboratory Ltd. takes no resp e reader's interpretation of the reprodu- GNSS RECEIVER	I. purposes as long as the pyright owner and source of the onsibility for and will not assume iced material due to its		
Master TRF Shenzhen LCS Compliance Testing This publication may be reproduced i Shenzhen LCS Compliance Testing L naterial. Shenzhen LCS Compliance ability for damages resulting from the placement and context. Test item description	Dated 2011-03 g Laboratory Ltd. All rights reserved n whole or in part for non-commercial aboratory Ltd. is acknowledged as co Testing Laboratory Ltd. takes no resp e reader's interpretation of the reprodu GNSS RECEIVER SOUTH, KOLIDA, SANDING, RUIE	I. purposes as long as the pyright owner and source of the onsibility for and will not assume iced material due to its		
Master TRF Shenzhen LCS Compliance Testing This publication may be reproduced i Shenzhen LCS Compliance Testing L naterial. Shenzhen LCS Compliance ability for damages resulting from the placement and context.	Dated 2011-03 g Laboratory Ltd. All rights reserved n whole or in part for non-commercial aboratory Ltd. is acknowledged as co Testing Laboratory Ltd. takes no resp e reader's interpretation of the reprodu GNSS RECEIVER SOUTH, KOLIDA, SANDING, RUIE	I. purposes as long as the pyright owner and source of the onsibility for and will not assume iced material due to its		
Master TRF Shenzhen LCS Compliance Testing This publication may be reproduced i Shenzhen LCS Compliance Testing L naterial. Shenzhen LCS Compliance ability for damages resulting from the placement and context. Test item description	Dated 2011-03 g Laboratory Ltd. All rights reserved in whole or in part for non-commercial aboratory Ltd. is acknowledged as co Testing Laboratory Ltd. takes no resp e reader's interpretation of the reprodu GNSS RECEIVER SOUTH, KOLIDA, SANDING, RUID INNO8	I. purposes as long as the pyright owner and source of the onsibility for and will not assume iced material due to its		
Master TRF Shenzhen LCS Compliance Testing This publication may be reproduced i Shenzhen LCS Compliance Testing L naterial. Shenzhen LCS Compliance iability for damages resulting from the blacement and context. Test item description	Dated 2011-03 g Laboratory Ltd. All rights reserved n whole or in part for non-commercial aboratory Ltd. is acknowledged as co Testing Laboratory Ltd. takes no resp e reader's interpretation of the reprodu GNSS RECEIVER SOUTH, KOLIDA, SANDING, RUID INNO8 QPSK, 16QAM	I. purposes as long as the pyright owner and source of the onsibility for and will not assume iced material due to its		
Master TRF	Dated 2011-03 g Laboratory Ltd. All rights reserved n whole or in part for non-commercial aboratory Ltd. is acknowledged as co Testing Laboratory Ltd. takes no resp e reader's interpretation of the reprodu GNSS RECEIVER SOUTH, KOLIDA, SANDING, RUIE INNO8 QPSK, 16QAM	I. purposes as long as the pyright owner and source of the onsibility for and will not assume iced material due to its		
Master TRF	Dated 2011-03 g Laboratory Ltd. All rights reserved n whole or in part for non-commercial aboratory Ltd. is acknowledged as co Testing Laboratory Ltd. takes no resp e reader's interpretation of the reprodu GNSS RECEIVER SOUTH, KOLIDA, SANDING, RUID INNO8 QPSK, 16QAM Please Refer to Page 7	I. purposes as long as the pyright owner and source of the onsibility for and will not assume iced material due to its		
Master TRF	Dated 2011-03 g Laboratory Ltd. All rights reserved n whole or in part for non-commercial aboratory Ltd. is acknowledged as co Testing Laboratory Ltd. takes no resp e reader's interpretation of the reprodu GNSS RECEIVER SOUTH, KOLIDA, SANDING, RUID INNO8 QPSK, 16QAM Please Refer to Page 7	I. purposes as long as the pyright owner and source of the onsibility for and will not assume iced material due to its		
Master TRF	Dated 2011-03 g Laboratory Ltd. All rights reserved n whole or in part for non-commercial aboratory Ltd. is acknowledged as co Testing Laboratory Ltd. takes no resp e reader's interpretation of the reprodu GNSS RECEIVER SOUTH, KOLIDA, SANDING, RUIE INNO8 QPSK, 16QAM Please Refer to Page 7 PASS Supervised by:	I. purposes as long as the pyright owner and source of the onsibility for and will not assume iced material due to its DE, TIANYU		
Master TRF	Dated 2011-03 g Laboratory Ltd. All rights reserved n whole or in part for non-commercial aboratory Ltd. is acknowledged as co Testing Laboratory Ltd. takes no resp e reader's interpretation of the reprodu GNSS RECEIVER SOUTH, KOLIDA, SANDING, RUIE INNO8 QPSK, 16QAM Please Refer to Page 7 PASS Supervised by:	I. purposes as long as the pyright owner and source of the onsibility for and will not assume iced material due to its DE, TIANYU		
Master TRF	Dated 2011-03 g Laboratory Ltd. All rights reserved n whole or in part for non-commercial aboratory Ltd. is acknowledged as co Testing Laboratory Ltd. takes no resp e reader's interpretation of the reprodu GNSS RECEIVER SOUTH, KOLIDA, SANDING, RUIE INNO8 QPSK, 16QAM Please Refer to Page 7 PASS	I. purposes as long as the pyright owner and source of the onsibility for and will not assume iced material due to its DE, TIANYU		
Master TRF	Dated 2011-03 g Laboratory Ltd. All rights reserved n whole or in part for non-commercial aboratory Ltd. is acknowledged as co Testing Laboratory Ltd. takes no resp e reader's interpretation of the reprodu GNSS RECEIVER SOUTH, KOLIDA, SANDING, RUIE INNO8 QPSK, 16QAM Please Refer to Page 7 PASS Supervised by:	I. purposes as long as the pyright owner and source of the onsibility for and will not assume iced material due to its DE, TIANYU		

- FILER C. LAP	A HILL MALLAND	- ATT Lab	11 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Test Report No. :	LCSA05164163EI	June 24, 2024	LCS Test
	EC3A03104103E1	Date of issue	ß
EUT	: GNSS RECEIVER		
Test Model	: INNO8		
Applicant	: South Surveying & Map	ping Technology Co., Ltd.	
Address	: No.39, Sicheng Road, Tia	anhe District, Guangzhou	
Telephone	: /		
Fax	: /		
			8-4H
Manufacturer	: South Surveying & Map	ping Technology Co., Ltd.	9 Lab
Address	: No.39, Sicheng Road, Tia	anhe District, Guangzhou	
Telephone	:/		
Fax	: /		
Factory	:/		
1 actor y			
Address	: /		
	: / : /		

Test Result: PASS

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

			to a lab	
Repor	t Version	Issue Date	Revision Content	Revised By
	000	June 24, 2024	Initial Issue	

	Conter	nts	
1LCS TO	TEST STANDARDS	VST ICS Testins	
2	SUMMARY		7
2.1	Product Description		7
2.2	Equipment under Test		10
2.3	Short description of the Equipment under Tes	t (EUT)	10
2.4	Support equipment List		10
2.5	External I/O Cable		10
2.6	Normal Accessory setting		10
2.7	Test Sample		10
2.8	EUT configuration		till and Lab 10
2.9	Related Submittal(s) / Grant (s)		11 In the state of
2.10	Modifications		11
2.11	General Test Conditions/Configurations		11
3	TEST ENVIRONMENT		
3.1	Address of the test laboratory		12
3.2	Test Facility		12
3.3	Environmental conditions		12
3.4	Test Description		12
3.5	Equipments Used during the Test 💮		15
3.6	Measurement uncertainty		16
	ting the string the		
TC2	TEAT CONDITIONS AND DEGULTS		- Contraction
4	TEST CONDITIONS AND RESULTS		
4.1	Output Power		17
4.2	Peak-to-Average Ratio (PAR)		24
4.3	Occupied Bandwidth and Emission Bandwidth	า	25
4.4	Band Edge compliance		26
4.5	Spurious Emssion on Antenna Port		28
4.6	Radiated Spurious Emssion		30
4.7	Frequency Stability under Temperature & Volt	age Variations	36
5	TEST SETUP PHOTOS OF THE EU	T	
-{	En real		- Car
6	EXTERNAL PHOTOS OF THE EUT.		
7	INTERNAL PHOTOS OF THE EUT		40

1 <u>TEST STANDARDS</u>

The tests were performed according to following standards: <u>FCC Part 22H:</u> Cellular Radiotelephone Service <u>FCC Part 27:</u> MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES <u>TIA-603-E March 2016:</u> Land Mobile FM or PM Communications Equipment Measurement and Performance Standards. <u>47 CFR FCC Part 15 Subpart B</u>: Unintentional Radiators

FCC Part 2: FREQUENCY ALLOCA-TIONS AND RADIO TREATY MAT-TERS; GENERAL RULES AND REG-ULATIONS

ANSI C63.4:2014: Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

FCC KDB971168 D01 Power Meas License Digital Systems v03r01

2.1 Product Description

The South Surveying & Mapping Technology Co., Ltd.'s Model: INNO8 or the "EUT" as referred to in this report; more general information as follows, for more details, refer to the user's manual of the EUT. : GNSS RECEIVER EUT Test Model : INNO8 Additional Model No. : ALPS1, ALPS2, ALPS3, ALPS4, ALPS5, ALPS6, INNO9, INNO6, INNO5, INNO3, INNO8 Pro, K60 Pro, K60, K2, KR1, KR2, KR3, T7, T7 Pro, T6, T6 Pro, T5, T5 Pro, RENO2S, RENO1 Pro, ROVA3, RAMA1, RAMA2, RAMA3, RAMA4, K50, K9S, T14, T15, RENO2, RENO3, ROVA2, Insight V3, V1 : PCB board, structure and internal of these model(s) are the same, So no Model Declaration additional models were tested Ratings : For AC Adapter Input: 100-240V~, 50/60Hz, 1.4A MAX Adapter Output: PD3.0: 5V-3A/9V-3A/15V-3A/20V-2.25A PPS: 3.3-11.0V-3A QC: 5V-3A/9V-3A/12V-3A DC 7.4V by Rechargeable Li-ion Battery, 10000mAh Hardware Version : H0X0DY0N0210008063135G048C12 Software Version : PurpleCowY_RTK-V20231019 Bluetooth **Frequency Range** : 2402MHz~2480MHz **Channel Number** : 79 channels for Bluetooth V4.2 (DSS) 40 channels for Bluetooth V4.2 (DTS) **Channel Spacing** : 1MHz for Bluetooth V4.2 (DSS) 2MHz for Bluetooth V4.2 (DTS) : GFSK, π/4-DQPSK, 8-DPSK for Bluetooth V4.2 (DSS) Modulation Type GFSK for Bluetooth V4.2 (DTS) **Bluetooth Version** : V4.2 Antenna Description : Internal Antenna, 2.70dBi(Max.) WIFI(2.4G Band) : 2412MHz~2462MHz Frequency Range **Channel Spacing** : 5MHz **Channel Number** : 11 Channels for 20MHz bandwidth (2412~2462MHz) 7 Channels for 40MHz bandwidth (2422~2452MHz) Modulation Type : IEEE 802.11b: DSSS (CCK, DQPSK, DBPSK) IEEE 802.11g: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n: OFDM (64QAM, 16QAM, QPSK, BPSK) Antenna Description : Internal Antenna, 2.70dBi(Max.) WIFI(5.2G Band) • : 5180MHz~5240MHz **Frequency Range Channel Number** : 4 Channels for 20MHz bandwidth(5180MHz~5240MHz) 2 channels for 40MHz bandwidth(5190MHz~5230MHz) Modulation Type : IEEE 802.11a/n: OFDM (64QAM, 16QAM, QPSK, BPSK) Antenna Description : Internal Antenna, 8.07dBi(Max.) WIFI(5.3G Band) :

-	Page	8 of 40 FCC ID: 2AJTU-INNO8 Report No.: LCSA05164163EI
	Frequency Range	: 5260MHz~5320MHz
	Channel Number Modulation Type	: 4 Channels for 20MHz bandwidth(5260MHz~5320MHz) 2 channels for 40MHz bandwidth(5270MHz~5310MHz) : IEEE 802.11a/n: OFDM (64QAM, 16QAM, QPSK, BPSK)
	Antenna Description	: Internal Antenna, 6.95dBi(Max.)
	WIFI(5.5G Band)	
	Frequency Range	: 5500MHz~5700MHz
	Channel Number	: 11 Channels for 20MHz bandwidth(5500MHz~5700MHz) 5 Channels for 40MHz bandwidth(5510MHz~5670MHz)
	Modulation Type	: IEEE 802.11a/n: OFDM (64QAM, 16QAM, QPSK, BPSK)
	Antenna Description	: Internal Antenna, 6.95dBi(Max.)
	2G	
	Support Band	: ⊠ GSM 850 (U.SBand) ⊠ PCS 1900 (U.SBand)
	Release Version	: R99
	GPRS Class	: Class 12
	EGPRS Class	: Class 12
	Type Of Modulation	: GMSK for GSM/GPRS; GMSK/8PSK for EGPRS
	Antenna Description	: Internal Antenna 0.63dBi (max.) For GSM 850 1.54dBi (max.) For PCS 1900
	3G	
	Support Band	: : I WCDMA Band V (U.SBand)
	Release Version	: R9
	Type Of Modulation	: QPSK,16QAM
	Antenna Description	: Internal Antenna 0.63dBi (max.) For WCDMA Band V
	LTE	:
	Support Band	: ⊠ E-UTRA Band 5(U.SBand) ⊠ E-UTRA Band 7(U.SBand) ⊠ E-UTRA Band 41(U.SBand)
	LTE Release Version	: R9 : QPSK/16QAM
	Type Of Modulation	: QPSK/16QAM
	Antenna Description	: Internal Antenna 0.63dBi (max.) For E-UTRA Band 5 1.78dBi (max.) For E-UTRA Band 7 2.55dBi (max.) For E-UTRA Band 41
	Power Class	: Class 3
	NFC	:
	Frequency Range	: 13.56MHz
	Modulation Type	: ASK
	Antenna Description	: Internal Antenna, 0dBi(Max.)
	PMR	

- <u>/s</u> -	Page 9 of 40	FCC ID: 2AJT	U-INNO8 F	Report No.: LCSA05	164163EI
Operating Freque Channel Separati Modulation Type rated power Antenna Descript Extreme temp. Tolerance Extreme vol. Limi	on : 12.5KHz : GMSK : 3W ion : External A : -30°C to +	ntenna, 2.14dBi(I			

Equipment under Test 2.2

Power supply system utilised

Power supply system u	tilised						
Power supply voltage	1 Et iopi	•	120V/ 60 Hz	Ter Los	0	115V/60Hz	
		0	12 V DC		0	24 V DC	land the second s
		0	Other (specified	d in blank be	low	· · · · · · · · · · · · · · · · · · ·	

2.3 Short description of the Equipment under Test (EUT)

2.4.1 GeneralDescription

GNSS RECEIVER is subscriber equipment in the

BT/BLE/2.4GWIFI/5.2GWIFI/5.3GWIFI/5.5GWIFI/GSM/WCDMA/LTE/NFC/PMR system. GSM/GPRS/EGPRS frequency band is Band II//V. The HSPA/UMTS frequency band is Band V. LTE frequency band is band 5/7/41.The HSPA/UMTS frequency Band V test data included in this report. The GNSS RECEIVER implements such functions as RF signal receiving/transmitting, GSM/GPRS/EGPRS HSPA/UMTS/LTE protocol processing, video MMS service and etc. Externally it provides SIM card interface.

2.4 Support equipment List

Manufacturer	Description	Model	Serial Number	Certificate
Diwen Enterprise Co., Ltd	SWITCHING POWER SUPPLY	S045SU2000225		FCC

2.5 External I/O Cable

I/O Port Description	Quantity	Cable
UHF Antenna Port	1	N/A
Type-C USB Port	1	USB Cable: 0.8m, unshielded
SIM Card Slot	1	N/A

2.6 Normal Accessory setting

Fully charged battery was used during the test.

2.7 Test Sample 🗠

Т	he application provides 2 samples to	meet requirement;
	Sample Number	Description
	Sample 1(A240511060-1)	Engineer sample – continuous transmit
	Sample 2(A240511060-2)	Normal sample – Intermittent transmit

2.8 EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- supplied by the manufacturer
- supplied by the lab

0	Power Cable	IL IL MALEST	Length (m) :	I Testing Lan	15	
	00	- Contraction	Shield :	1 200	-15	
		Sec.	Detachable :	1		

Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: 101, 201 Bldg A & 301 Bldg Č, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity

立讯检测

Manufacturer : Model No. :

2.9 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for FCC ID: 2AJTU-INNO8 filing to comply with FCC Part 22 and Part 27 Rules

2.10 **Modifications**

No modifications were implemented to meet testing criteria.

2.11 General Test Conditions/Configurations LCS Testing Lab

2.10.1 Test Environment

2.11 General Test Conditions/Configurations				
2.10.1 Test Environment				
EnvironmentParameter	SelectedValue	esDuringTests		
Relative Humidity	Amt	pient		
Temperature	TN	Ambient		
	VL	DC 6.7V		
Voltage	VN	DC 7.4V		
	VH	DC 8.4V		

NOTE:VL=lower extreme testvoltage VN=nominal voltage VH=upper extreme testvoltage TN=normal temperature

立讯检测

LCS Testing

3 TEST ENVIRONMENT

3.1 Address of the test laboratory

Shenzhen LCS Compliance Testing Laboratory Ltd

101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China The sites are constructed in conformance with the requirements of ANSI C63.4 (2014) and CISPR

The sites are constructed in conformance with the requirements of ANSI C63.4 (2014) and CISPR Publication 22.

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

NVLAP Accreditation Code is 600167-0. FCC Designation Number is CN5024. CAB identifier is CN0071. CNAS Registration Number is L4595.

3.3 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15-35 ° C			
Humidity:	30-60 %			
and the second s	11 241 Mile the			
Atmospheric pressure:	950-1050mbar			
MS/FICS TOTAL	MSAL CS 1			

Band 5 (824-849MHz pairedwith 869-894MHz)

Test Item	FCC Rule No.	Requirements	Verdict			
Effective(Isotropic) Radiated Output Power	§2.1046, §22.913	FCC: ERP ≤ 7W.	Pass			
Modulation Characteristics						
Bandwidth	§2.1049	OBW: No limit. EBW: No limit.	Pass			
Band Edges Compliance	§2.1051, §22.917	≤-≤ -13dBm/1%*EBW, In 1MHz bands immediately outside and adjacent to The frequency block.				
Spurious Emission at Antenna Terminals§2.1057 §22.917		FCC: ≤ -13dBm/100kHz, from 9kHz to 10th harmonics but outside authorized operating frequency ranges.	Pass			
Field Strength of Spurious Radiation		FCC: ≤ -13dBm/100kHz.	Pass			
Frequency Stability	§2.1055, §22.355	≤ ±2.5ppm.	Pass			

NOTE 1:For the verdict, the "N/A" denotes "not applicable", the "N/T" de notes "not tested".

Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

Band 7 (2500-2570MHz pairedwith 2620-2690MHz)

Test Item	FCC Rule No.	Requirements	Verdict
Effective(Isotropic) Radiated Output Power	§2.1046, §27.50(h)	FCC: EIRP ≤ 2W.	Pass
Peak-AverageRatio	§2.1046, §27.50(a)	Limit≤13dB	Pass
Modulation Characteristics	§2.1047	Digital modulation	N/A
Bandwidth	§2.1049	OBW: No limit. EBW: No limit.	Pass
Band Edges Compliance	§2.1051, §27.53(m)	More details specified in §27.53(m)(4)	Pass
Spurious Emission at Antenna Terminals	§2.1051, §27.53(m)	More details specified in §27.53(m)(4)	Pass
Field Strength of Spurious Radiation	§2.1053, §27.53(m)	More details specified in §27.53(m)(4)	Pass
Frequency Stability	§2.1055, §27.54	≤ ±2.5ppm.	Pass
NOTE 1:For the verdict, the	ne"N/A"denotes"i	not applicable",the"N/T"de notes "not tested".	

TDD Band 41(2496-2690MHz)

FCC Rule No.	Requirements	Verdict	
§2.1046, §27.50(h)	ERP ≤ 2W;	PASS	
§2.1046, §27.50	Limit≤13dB	PASS	
§2.1047	Digitalmodulation	N/A	
§2.1049	OBW: Nolimit. EBW: Nolimit.	PASS	
§2.1051, §27.53(m)	≤ -13dBm/1%*EBW,in1 MHz bands immediately outside and adjacent to The frequency block.	PASS	
§2.1051, §27.53(m)	≤ -13dBm/1MHz, from 9kHz to10th harmonics but outside authorized Operating frequency ranges.	PASS	
§2.1055, §27.54	Within authorized bands of operation/frequency block.	PASS	
§2.1053, §27.53(m)	≤ -25dBm/1MHz.	PASS	
	No. §2.1046, §27.50(h) §2.1046, §27.50 §2.1047 §2.1047 §2.1051, §27.53(m) §2.1051, §27.53(m) §2.1055, §27.54 §2.1053,	No.ERP $\leq 2W$;§2.1046, §27.50(h)ERP $\leq 2W$;§2.1046, §27.50Limit $\leq 13dB$ §2.1047Digitalmodulation§2.1049OBW: Nolimit. EBW: Nolimit.§2.1051, §27.53(m) $\leq -13dBm/1\%^*EBW$,in1 MHz bands immediately outside and adjacent to The frequency block.§2.1051, §27.53(m) $\leq -13dBm/1MHz$, from 9kHz to10th harmonics but outside authorized Operating frequency ranges.§2.1055, §27.54 $\leq -13dBm/1MHz$, from 9kHz to10th harmonics but outside authorized Operation frequency block.	

3.5 Equipments Used during the Test

ltem	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
105	Dower Motor	R&S	NIDV/S	100444	2023-06-09	2024-06-08
T.	Power Meter	KØS	NRVS	100444	2024-06-06	2025-06-05
2	Power Sensor	R&S	NRV-Z81	100458	2023-06-09	2024-06-08
-			11117 201	100130	2024-06-06	2025-06-05
3	Power Sensor	R&S	NRV-Z32	10057	2023-06-09	2024-06-08
4	LTE Test Software	Tonscend	JS1120-1	N/A	2024-06-06 N/A	2025-06-05 N/A
5	RF Control Unit	Tonscend		158060009	2023-10-18	2024-10-17
6	MXA Signal Analyzer	Agilent	N9020A	MY51250905	2023-10-18	2024-10-17
7		R&S	CMW 500	103818	2023-06-09	2024-06-08
	COMMUNICATION TESTER	Arilant	526424	N1/A	2024-06-06	2025-06-05
8	DC Power Supply	Agilent	E3642A	N/A	2023-10-18	2024-10-17
9	EMI Test Software	AUDIX	C5 165 E3	/	N/A	N/A
10	3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	2023-06-09	2024-06-08
					2024-06-06	2025-06-05
11	Positioning Controller	Max-Full	MF7802BS	MF780208586	N/A	N/A
12	Active Loop Antenna	SCHWARZBECK	FMZB 1519B	00005	2021-08-29	2024-08-28
13	By-log Antenna	SCHWARZBECK	VULB9163	9163-470	2021-09-12	2024-09-11
14	By-log Antenna	SCHWARZBECK	VULB9163	9163-471	2021-09-12	2024-09-11
15	Horn Antenna	SCHWARZBECK	BBHA 9120D	9120D-1925	2021-09-05	2024-09-04
16	Horn Antenna	SCHWARZBECK BBHA		9120D-1926	2021-09-05	2024-09-04
17	Broadband Horn Antenna	SCHWARZBECK	BBHA 9170	791	2021-08-29	2024-08-28
18	Broadband Horn Antenna	SCHWARZBECK	BBHA 9170	792	2021-08-29	2024-08-28
19	Broadband Preamplifier	SCHWARZBECK	BBV9719	9719-025	2021-08-29	2024-08-28
20	EMI Test Receiver	R&S	ESR 7	101181	2023-08-15	2024-08-14
21	RS SPECTRUM ANALYZER	R&S	FSP40	100503	2023-07-17	2024-07-16
22	Low-frequency amplifier	SchwarzZBECK	BBV9745	00253	2023-10-18	2024-10-17
23	High-frequency amplifier	JS Denki Pte	PA0118-43	JSPA21009	2023-10-18	2024-10-17
24	6dB Attenuator	1	100W/6dB	1172040	2023-06-09	2024-06-08
24		/	10000/008	1172040	2024-06-06	2025-06-05
26	3dB Attenuator	/	2N-3dB	/	2023-10-18	2024-10-17
27	Temperature & Humidity Chamber	(1) (1) (1)		70932	2023-10-05	2024-10-04
28	EMI Test Software	Farad	EZ	/	N/A	N/A
29	RADIO COMMUNICATION TESTER	R&S	CMU 200	105988	2023-06-09 2024-06-06	2024-06-08 2025-06-05

Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com

Scan code to check authenticity

3.6 Measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to ETSI TR 100 028"Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics" and is documented in the Shenzhen LCS Compliance Testing Laboratory Ltd.quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen LCS Compliance Testing Laboratory Ltd. is reported:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	3.10 dB	(1)
Radiated Emission	1~18GHz	3.80 dB	(1)
Radiated Emission	18-40GHz	3.90 dB	(1)
Conducted Disturbance	0.15~30MHz	1.63 dB	(1)
Conducted Power	9KHz~18GHz	0.61 dB	(1)
Spurious RF Conducted Emission	9KHz~40GHz	1.22 dB	(1)
Band Edge Compliance of RF Emission	9KHz~40GHz	1.22 dB	(1)
Occuiped Bandwidth	9KHz~40GHz	-	(1)

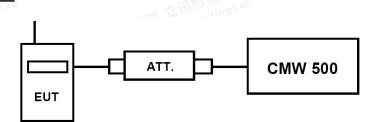
(1)This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com

Scan code to check authenticity

4 TEST CONDITIONS AND RESULTS

4.1 Output Power



TEST APPLICABLE

During the process of testing, the EUT was controlled via R&S Digital Radio Communication tester (CMW 500) to ensure max power transmission and proper modulation. This result contains output power and EIRP measurements for the EUT. In all cases, output power is within the specified limits.

4.1.1. Conducted Output Power

TEST CONFIGURATION

TEST PROCEDURE

Conducted Power Measurement:

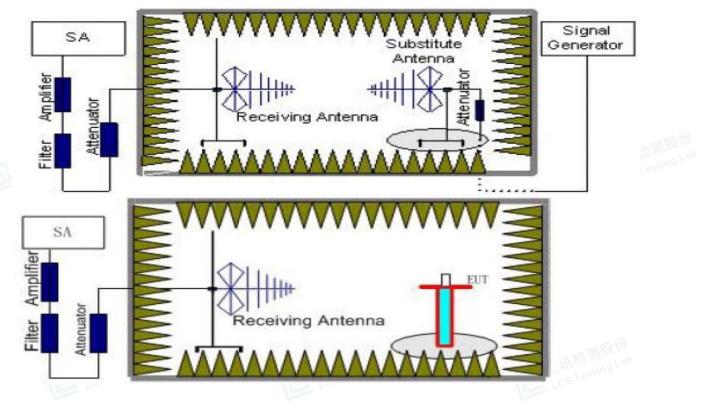
- a) Place the EUT on a bench and set it in transmitting mode.
- b) Connect a low loss RF cable from the antenna port to a CMW 500 by an Att.
- c) EUT Communicate with CMW 500 then selects a channel for testing.
- d) Add a correction factor to the display CMW 500, and then test.

E 在派检测器的 LCS Testing Lab

TEST RESULTS

Remark:

- We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 5, LTE FDD Band 7, LTE FDD Band 41; recorded worst case for each Channel Bandwidth of LTE FDD Band 5, LTE FDD Band 7, LTE FDD Band 41.
- 2. For E-UTRA Band 5, please refer to Appendix G: Section G.1
- 3. For E-UTRA Band 7, please refer to Appendix H: Section H.1
- 4. For E-UTRA Band 41, please refer to Appendix I: Section I.1


4.1.2. Radiated Output Power

LIMIT

This is the test for the maximum radiated power from the EUT.

Per §22.913(2) Extend coverage on a secondary basis into cellular unserved areas, as those areas are defined in §22.949, the ERP of base transmitters and cellular repeaters of such systems must not exceed 1000 Watts. The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts. Per Part 27.50(d) (4) specifies, Fixed, mobile, and portable (hand-held) stations operating in the 1710-1755MHz band are limited to 1W EIRP. Fixed stations operating in this band are limited to a maximum antenna height of 10 meters above ground. Mobile and portable stations operating in this band must employ a means for limiting power to the minimum necessary for successful communications. Per Part 27.50(c) (10)specifies, Portable stations (hand-held devices) in the 600 MHz uplink band and the 698-746 MHz band, and fixed and mobile stations in the 600 MHz uplink band are limited to 3 watts ERP. Per Part 27.50(h) (2)specifies Mobile and other user stations. Mobile stations are limited to 2.0 watts EIRP. All user stations are limited to 2.0 watts transmitter output power.

TEST CONFIGURATION

TEST PROCEDURE

- EUT was placed on a 1.50 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.50m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector.
- 2. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.

- 3. The EUT is then put into continuously transmitting mode at its maximum power level during the test.Set Test Receiver or Spectrum RBW=1MHz,VBW=3MHz, And the maximum value of the receiver should be recorded as (P_r).
- 4. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (P_r). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.
- 5. A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (P_{cl}), the Substitution Antenna Gain (G_a) and the Amplifier Gain (P_{Ag}) should be recorded after test. The measurement results are obtained as described below: Power(EIRP)=P_{Mea}+ P_{Ag} - P_{cl} + G_a
- 6. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
- 7. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP-2.15dBi.

TEST RESULTS

Radiated Measurement:

Remark:

- 1. We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 5, LTE FDD Band 7, LTE FDD Band 41; recorded worst case for each Channel Bandwidth of LTE FDD Band 5, LTE FDD Band 7, LTE FDD Band 41.
- 2. $EIRP=P_{Mea}(dBm)-P_{cl}(dB)+P_{Ag}(dB)+G_{a}(dBi)$
- 3. ERP = EIRP 2.15 dBi as EIRP by subtracting the gain of the dipole.
- 4. Margin = Emission Level Limit
- We tested the worst-case records for H and V directions, and only the worst-case records for V direction were recorded in the report.

FCC ID: 2AJTU-INNO8

LTE FDD Band 5_Channel Bandwidth 1.4MHz_QPSK

	Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	Peak ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization
	824.70	-15.50	3.45	8.45	2.15	33.79	21.14	38.45	-17.31	V
-	836.50	-16.12	3.49 颎	8.45	2.15	33.85	20.54	38.45	-17.91	V
ĺ	848.30	-16.44	3.55	8.36	2.15	33.88	20.10	38.45	-18.35	V

LTE FDD Band 5_Channel Bandwidth 3MHz_QPSK

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G₂ Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	Peak ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization		
825.50	-15.67	3.45	8.45	2.15	33.79	20.97	38.45	-17.48	V		
836.50	-16.38	3.49	8.45	2.15	33.85	20.28	38.45	-18.17	V		
847.50	-15.55	3.55	8.36	2.15	33.88	20.99	38.45	-17.46	V		
LTE FDD Band 5_Channel Bandwidth 5MHz_QPSK											
			G			Peak					

LTE FDD Band 5_Channel Bandwidth 5MHz_QPSK

LTE FDD Band 5_Channel Bandwidth 5MHz_QPSK											
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	Peak ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization		
826.50	-15.91	3.45	8.45	2.15	33.79	20.73	38.45	-17.72	V		
836.50	-15.51	3.49	8.45	2.15	33.85	21.15	38.45	-17.30	V		
846.50	-15.64	3.55	8.36	2.15	33.88	20.90	38.45	-17.55	V		

LTE FDD Band 5_Channel Bandwidth 10MHz_QPSK

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	Peak ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization
829.00	-16.34	3.45	8.45	2.15	33.79	20.30	38.45	-18.15	V
836.50	-15.72	3.49	8.45	2.15	33.85	20.94	38.45	-17.51	V
844.00	-15.85	3.55	8.36	2.15	33.88	20.69	38.45	-17.76	V

LTE FDD Band 5_Channel Bandwidth 1.4MHz_16QAM

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	Peak ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization
824.70	-16.64	3.45	8.45	2.15	33.79	20.00	38.45	-18.45	V
836.50	-16.62	3.49	8.45	2.15	33.85	20.04	38.45	-18.41	V
848.30	-16.94	3.55	8.36	2.15	33.88	19.60	38.45	-18.85	V

LTE FDD Band 5_Channel Bandwidth 3MHz_16QAM

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G₃ Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	Peak ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization
825.50	-16.64	3.45	8.45	2.15	33.79	20.00	38.45	-18.45	V
836.50	-17.00	3.49	8.45	2.15	33.85	19.66	38.45	-18.79	V
847.50	-17.30	3.55	8.36	2.15	33.88	19.24	38.45	-19.21	V

LTE FDD Band 5_Channel Bandwidth 5MHz_16QAM

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	Peak ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization	
826.50	-16.87	3.45	8.45	2.15	33.79	19.77	38.45	-18.68	V	
836.50	-17.17	3.49	8.45	2.15	33.85	19.49	38.45	-18.96	V	
846.50	-17.24	3.55	8.36	2.15	33.88	19.30	38.45	-19.15	V	343
LCS Testing	Lap	1	立间和 CS Test	Ing Lab	E	LC5 Test	ing Lab	Y	ET LCS Testin	g Lab

Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

LTE FDD Band 5 Channel Bandwidth 10MHz 16QAM

	Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	Peak ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization
	829.00	-17.41	3.45	8.45	2.15	33.79	19.23	38.45	-19.22	V
-	836.50	-16.97	3.49 颎	8.45	2.15	33.85	19.69	38.45	-18.76	V
	844.00	-16.91	3.55	8.36	2.15	33.88	19.63	38.45	-18.82	V

LTE FDD Band 7_Channel Bandwidth 5MHz_QPSK

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization		
2502.5	-18.15	4.32	6.80	36.14	20.47	33.01	-12.54	V		
2535.0	-18.66	4.32	6.61	36.17	19.80	33.01	-13.21	V		
2567.5	-18.77	4.33	6.57	36.22	19.69	33.01	-13.32	V		
LTE FDD B	LTE FDD Band 7_Channel Bandwidth 10MHz_QPSK									
			G		Peak					

2001.0	10.11		0.01	00.22	10.00	00.01	10.02	and Mark
LTE FDD Ba	and 7_Chan	nel Bandwid	th 10MHz_C	QPSK	9 Lab		立 证书检	ating Lab
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
2505.0	-18.10	4.32	6.80	36.14	20.52	33.01	-12.49	V
2535.0	-18.51	4.32	6.61	36.17	19.95	33.01	-13.06	V
2565.0	-18.33	4.33	6.57	36.22	20.13	33.01	-12.88	V

LTE FDD Band 7 Channel Bandwidth 15MHz QPSK

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
2507.5	-18.58	4.32	6.80	36.14	20.04	33.01	-12.97	V
2535.0	-18.47	4.32	6.61	36.17	19.99	33.01	-13.02	V
2562.5	-18.65	4.33	6.57	36.22	19.81	33.01	-13.20	V

LTE FDD Band 7_Channel Bandwidth 20MHz_QPSK

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
2510.0	-18.45	4.32	6.80	36.14	20.17	33.01	-12.84	V
2535.0	-18.37	4.32	6.61	36.17	20.09	33.01	-12.92	V
2560.0	-18.84	4.33	6.57	36.22	19.62	33.01	-13.39	V

LTE FDD Band 7_Channel Bandwidth 5MHz_16QAM

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G₂ Antenna Gain(dB)	P _{Ag} (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
2502.5	-19.58	4.32	6.80	36.14	19.04	33.01	-13.97	V
2535.0	-19.80	4.32	6.61	36.17	18.66	33.01	-14.35	V
2567.5	-19.36	4.33	6.57	36.22	19.10	33.01	-13.91	V

LTE FDD Band 7_Channel Bandwidth 10MHz_16QAM

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization	
2505.0	-19.89	4.32	6.80	36.14	18.73	33.01	-14.28	V	
2535.0	-19.53	4.32	6.61	36.17	18.93	33.01	-14.08	V	
2565.0	⁰⁰ -19.89	4.33	6.57	36.22	18.57	33.01	-14.44	V	544
LCS Testing			CS Testing Lat			resting Lab		LCS Testin	ig Lab

Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

FCC ID: 2AJTU-INNO8

LTE FDD Band 7 Channel Bandwidth 15MHz 16QAM

-	Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
5	2507.5	-19.59	4.32	6.80	36.14	19.03	33.01	-13.98	V
-	2535.0	-19.24	4.32	6.61	36.17	19.22	33.01	-13.79	V
	2562.5	-19.68	4.33	6.57	36.22	18.78	33.01	-14.23	V

LTE FDD Band 7_Channel Bandwidth 20MHz_16QAM

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G₂ Antenna Gain(dB)	P _{Ag} (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization		
2510.0	-19.18	4.32	6.80	36.14	19.44	33.01	-13.57	V		
2535.0	-19.46	4.32	6.61	36.17	19.00	33.01	-14.01	V		
2560.0	-19.56	4.33	6.57	36.22	18.90	33.01	-14.11	V		
LTE TDD Band 41_Channel Bandwidth 5MHz_QPSK										
					Burst					

2000.0	10.00	1.00	0.01	00.22	10.00	00.01		and the second
LTE TDD B	and 41_Cha	annel Bandv	vidth 5MHz_	QPSK	ing Lab		甘油	合词则 版 Lab
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Burst Average EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
2498.5	-18.16	4.32	6.8	36.13	20.45	33.01	-12.56	V
2593.0	-18.38	4.36	6.55	36.26	20.07	33.01	-12.94	V
2687.5	-18.99	4.51	6.37	36.54	19.41	33.01	-13.60	V

LTE TDD Band 41_Channel Bandwidth 10MHz_QPSK

	Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Burst Average EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
8	2501.0	-18.20	4.32	6.8	36.13	20.41	33.01	-12.60	Ves Ves
-	2593.0	-18.96	4.36	6.55	36.26	19.49	33.01	-13.52	V
	2685.0	-18.75	4.51	6.37	36.54	19.65	33.01	-13.36	V

LTE TDD Band 41_Channel Bandwidth 15MHz_QPSK

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Burst Average EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
2503.5	-18.15	4.32	6.8	36.13	20.46	33.01	-12.55	V
2593.0	-18.56	4.36	6.55	36.26	19.89	33.01	-13.12	V
2682.5	-18.14	4.51	6.37	36.54	20.26	33.01	-12.75	V

LTE TDD Band 41_Channel Bandwidth 20MHz_QPSK

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Burst Average EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
2506.0	-18.92	4.32	6.8	36.13	19.69	33.01	-13.32	V
2593.0	-18.45	4.36	6.55	36.26	20.00	33.01	-13.01	V
2680.0	-18.79	4.51	6.37	36.54	19.61	33.01	-13.40	V

LTE TDD Band 41_Channel Bandwidth 5MHz_16QAM

	LTE TDD Ba	and 41_Cha	nnel Bandv	vidth 5MHz_	16QAM		Sec. 11			Aller
LA CO L	Frequency (MHz)	Р _{меа} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Burst Average EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization	ng Lab
	2498.5	-19.62	4.32	6.8	36.13	18.99	33.01	-14.02	V	
	2593.0	-19.85	4.36	6.55	36.26	18.60	33.01	-14.41	V	
	2687.5	-19.25	4.51	6.37	36.54	19.15	33.01	-13.86	V	

LTE TDD Band 41_Channel Bandwidth 10MHz_16QAM

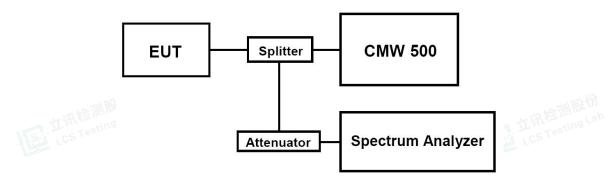
Frequency (MHz)	Р _{меа} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Burst Average EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
2501.0	-19.75	4.32	6.8	36.13	18.86	33.01	-14.15	V
2593.0	-19.29	4.36	6.55	36.26	19.16	33.01	-13.85	esting V
2685.0	-19.62	4.51	6.37	36.54	18.78	33.01	-14.23	V

LTE TDD Band 41_Channel Bandwidth 15MHz_16QAM

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Burst Average EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
2503.5	-19.52	4.32	6.8	36.13	19.09	33.01	-13.92	V
2593.0	-19.26	4.36	6.55	36.26	19.19	33.01	-13.82	V
2682.5	-19.62	4.51	6.37	36.54	18.78	33.01	-14.23	V
LTE TDD B	and 41_Cha	nnel Bandv	vidth 20MHz			No FILL BE (1)		Mint and

LTE TDD Band 41_Channel Bandwidth 20MHz_16QAM

LTE TDD Ba	and 41_Cha	nnel Bandw	vidth 20MHz	16QAM	T.	检测版份		Test me	IBE H
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Burst Average EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization	ng L
2506.0	-19.66	4.32	6.8	36.13	18.95	33.01	-14.06	V	
2593.0	-19.37	4.36	6.55	36.26	19.08	33.01	-13.93	V]
2680.0	-19.77	4.51	6.37	36.54	18.63	33.01	-14.38	V]



4.2 Peak-to-Average Ratio (PAR)

LIMIT

The Peak-to-Average Ratio (PAR) of the transmission may not exceed 13 dB.

TEST CONFIGURATION

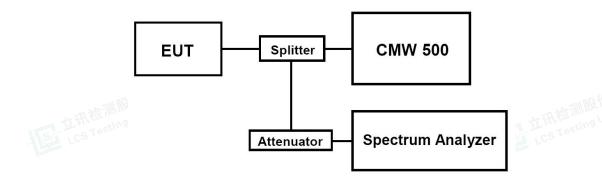
TEST PROCEDURE

- 1. Refer to instrument's analyzer instruction manual for details on how to use the power statistics/CCDF function;
- 2. Set resolution/measurement bandwidth ≥ signal's occupied bandwidth;
- 3. Set the number of counts to a value that stabilizes the measured CCDF curve;
- 4. Set the measurement interval as follows:
 - 1). for continuous transmissions, set to 1 ms,
 - 2). for burst transmissions, employ an external trigger that is synchronized with the EUT burst timing sequence, or use the internal burst trigger with a trigger level that allows the burst to stabilize and set the measurement interval to a time that is less than or equal to the burst duration.
- 5. Record the maximum PAPR level associated with a probability of 0.1%.

TEST RESULTS

Remark:

- We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 5, LTE FDD Band 7, LTE FDD Band 41; recorded worst case for each Channel Bandwidth of LTE FDD Band 5, LTE FDD Band 7, LTE FDD Band 41.
- 2. For E-UTRA Band 5, please refer to Appendix G: Section G.2
- 3. For E-UTRA Band 7, please refer to Appendix H: Section H.2
- 4. For E-UTRA Band 41, please refer to Appendix I: Section I.2



4.3 Occupied Bandwidth and Emission Bandwidth 立讯检测服带

LIMIT

N/A

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to a calibrated coaxial cable and coupler, the other end of which was connected to a spectrum analyzer. The occupied bandwidth was measured with the spectrum analyzer at low, middle and high channel in each band. The -26dBc Emission bandwidth was also measured and recorded. Set RBW was set to about 1% of emission BW, VBW≥3 times RBW.

-26dBc display line was placed on the screen (or 99% bandwidth), the occupied bandwidth is the delta 立讯检测股份 frequency between the two points where the display line intersects the signal trace.

TEST RESULTS

Remark:

- 1. We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 5, LTE FDD Band 7, LTE FDD Band 41; recorded worst case for each Channel Bandwidth of LTE FDD Band 5, LTE FDD Band 7, LTE FDD Band 41.
- 2. For E-UTRA Band 5, please refer to Appendix G: Section G.3
- For E-UTRA Band 7, please refer to Appendix H: Section H.3 З.
- For E-UTRA Band 41, please refer to Appendix I: Section I.3 4

4.4 Band Edge compliance

LIMIT

For LTE FDD Band 5:Per FCC §22.917 the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10log(P) dB.

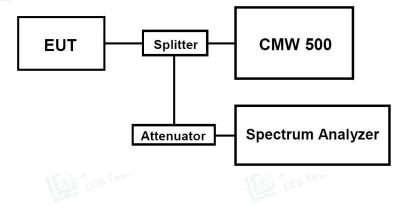
For LTE FDD Band 7: Per FCC §27.53 (m)(4): For mobile digital stations, the attenuation factor shall be not less than:

 \circ 40+10logP dB (-10 dBm, 100 nW) on all frequencies between the channel edge and 5 MHz from the channel edge,

 \circ 43+10logP dB (-13 dBm, 50 nW) on all frequencies between 5 MHz and X MHz from the channel edge, and \circ 55+10logP dB (-25 dBm, 3 nW) on all frequencies more than X MHz from the channel edge, where X is the greater of 6 MHz or the actual emission bandwidth (26 dB). [§ 27.53(m)(4)]

In addition, the attenuation factor (fixed limit) shall not be less than:

o43+10logP dB on all frequencies between 2490.5 MHz and 2496 MHz, and


o55+10logP dB at or below 2490.5 MHz. [§ 27.53(m)(4)]

For LTE TDD Band 41: Per §27.53 (m)(6) Measurement procedure. Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 1 megahertz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed; for mobile digital stations, in the 1 megahertz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least two percent may be employed, except when the 1 megahertz band is 2495-2496 MHz, in which case a resolution bandwidth of at least one percent may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (i.e. 1 megahertz or

1 percent of emission bandwidth, as specified; or 1 megahertz or 2 percent for mobile digital stations, except in the band 2495-2496 MHz). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power. With respect to television operations, measurements must be made of the separate visual and aural operating powers at sufficiently frequent intervals to ensure compliance with the rules.

(m)(4) For mobile digital stations, the attenuation factor shall be not less than 40 + 10 log (P) dB on all frequencies between the channel edge and 5 megahertz from the channel edge, 43 + 10 log (P) dB on all frequencies between 5 megahertz and X megahertz from the channel edge, and 55 + 10 log (P) dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition, the attenuation factor shall not be less that 43 + 10 log (P) dB on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees. Show citation box.

TEST CONFIGURATION

Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity

Page 27 of 40

FCC ID: 2AJTU-INNO8

TEST PROCEDURE

- 1. The transmitter output port was connected to base station.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator, the path loss was LCS compensated to the results for each measurement.
- 3. Set EUT at maximum power through base station.
- Select lowestand highest channels for each band and different modulation. 4.
- Measure Band edge using RMS (Average) detector by spectrum 5.

TEST RESULTS

Remark:

- 1. We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 5, LTE FDD Band 7, LTE FDD Band 41; recorded worst case for each Channel Bandwidth of LTE FDD Band 5, LTE FDD Band 7, LTE FDD Band 41.
- 2. For E-UTRA Band 5, please refer to Appendix G: Section G.4
- 3. For E-UTRA Band 7, please refer to Appendix H: Section H.4
- 4. For E-UTRA Band 41, please refer to Appendix I: Section I.4

4.5 Spurious Emssion on Antenna Port

LIMIT

For LTE FDD Band 5:Per FCC §22.917 the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10log(P) dB.

For LTE FDD Band 7: Per FCC §27.53 (m)(4): For mobile digital stations, the attenuation factor shall be not less than:

 \circ 40+10logP dB (-10 dBm, 100 nW) on all frequencies between the channel edge and 5 MHz from the channel edge,

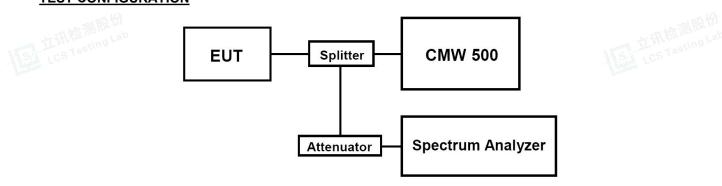
 \circ 43+10logP dB (-13 dBm, 50 nW) on all frequencies between 5 MHz and X MHz from the channel edge, and \circ 55+10logP dB (-25 dBm, 3 nW) on all frequencies more than X MHz from the channel edge, where X is the greater of 6 MHz or the actual emission bandwidth (26 dB). [§ 27.53(m)(4)]

In addition, the attenuation factor (fixed limit) shall not be less than:

o43+10logP dB on all frequencies between 2490.5 MHz and 2496 MHz, and

o55+10logP dB at or below 2490.5 MHz. [§ 27.53(m)(4)]

For LTE TDD Band 41: Per §27.53 (m)(6) Measurement procedure. Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 1 megahertz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed; for mobile digital stations, in the 1 megahertz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least two percent may be employed, except when the 1 megahertz band is 2495-2496 MHz, in which case a resolution bandwidth of at least one percent may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (i.e. 1 megahertz or 1 percent of emission bandwidth, as specified; or 1 megahertz or 2 percent for mobile digital stations, except in the band 2495-2496 MHz). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power. With respect to television operations, measurements must be made of the separate visual and aural operating powers at sufficiently frequent intervals to ensure compliance with the rules.


(m)(4) For mobile digital stations, the attenuation factor shall be not less than 40 + 10 log (P) dB on all frequencies between the channel edge and 5 megahertz from the channel edge, 43 + 10 log (P) dB on all frequencies between 5 megahertz and X megahertz from the channel edge, and 55 + 10 log (P) dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition, the attenuation factor shall not be less that 43 + 10 log (P) dB on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS Channel 1 on the same terms and conditions as adjacent channel BRS or EBS licensees. Show citation box. For LTE FDD Band 66: Per §27.53(h): For operations in the 1710–1780 MHz and 2110–2200 MHz bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) by at least 43 + 10 log10(P) dB.

Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com

I el: +(86) 0755-82591330 | E-mail: webmaster@ics-cert.com | Web: www.ics-c Scan code to check authenticity Page 29 of 40

ST CONFIGURATION

TEST PROCEDURE

The EUT was setup according to TIA-603-E

- a. Place the EUT on a bench and set it in transmitting mode.
- b. Connect a low loss RF cable from the antenna port to a spectrum analyzer and CMW 500 by a Directional Couple.
- c. EUT Communicate with CMW 500, then select a channel for testing.
- d. Add a correction factor to the display of spectrum, and then test.
- e. The resolution bandwidth of the spectrum analyzer was setsufficient scans were taken to show the out of band Emission if any up to10th harmonic.
- f. Please refer to following tables for test antenna conducted emissions.

Working Frequency	Sub range (GHz)	RBW	VBW	Sweep time (s)
a set all the true	0.000009~0.000015	1KHz	3KHz	Auto
LTE FDD Band 5	0.000015~0.03	10KHz 🗾 🕥	30KHz	Auto
	0.03~26	1 MHz	ି 🎽 3 MHz	Auto
	0.000009~0.000015	1KHz	3KHz	Auto
LTE FDD Band 7	0.000015~0.03	10KHz	30KHz	Auto
	0.03~26	1 MHz	3 MHz	Auto
	0.000009~0.000015	1KHz	3KHz	Auto
LTE FDD Band 41	0.000015~0.03	10KHz	30KHz	Auto
	0.03~26	1 MHz	3 MHz	Auto

TEST RESULTS

Remark:

- 1. We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 5, LTE FDD Band 7, LTE FDD Band 41; recorded worst case for each Channel Bandwidth of LTE FDD Band 5, LTE FDD Band 7, LTE FDD Band 41.
- 2. For E-UTRA Band 5, please refer to Appendix G: Section G.5
- 3. For E-UTRA Band 7, please refer to Appendix H: Section H.5
- 4. For E-UTRA Band 41, please refer to Appendix I: Section I.5

Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-Scan code to check authenticity

4.6 Radiated Spurious Emssion

LIMIT

For LTE FDD Band 5:Per FCC §22.917 the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10log(P) dB.

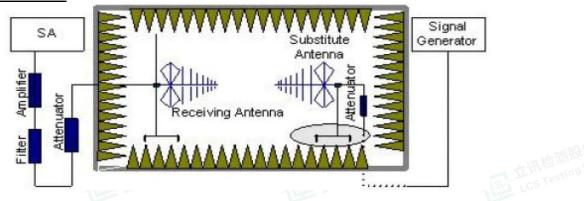
For LTE FDD Band 7: Per FCC §27.53 (m)(4): For mobile digital stations, the attenuation factor shall be not less than:

 \circ 40+10logP dB (-10 dBm, 100 nW) on all frequencies between the channel edge and 5 MHz from the channel edge,

 \circ 43+10logP dB (-13 dBm, 50 nW) on all frequencies between 5 MHz and X MHz from the channel edge, and \circ 55+10logP dB (-25 dBm, 3 nW) on all frequencies more than X MHz from the channel edge, where X is the greater of 6 MHz or the actual emission bandwidth (26 dB). [§ 27.53(m)(4)]

In addition, the attenuation factor (fixed limit) shall not be less than:

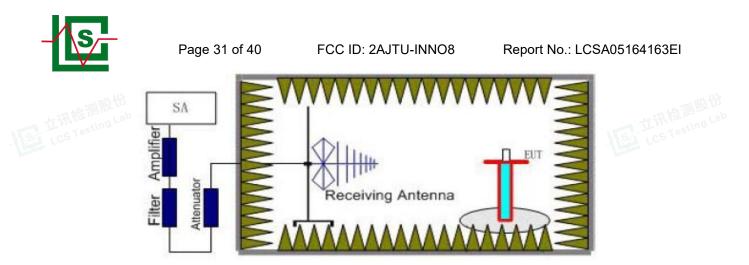
o43+10logP dB on all frequencies between 2490.5 MHz and 2496 MHz, and


o55+10logP dB at or below 2490.5 MHz. [§ 27.53(m)(4)]

For LTE TDD Band 41: Per §27.53 (m)(6) Measurement procedure. Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 1 megahertz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed; for mobile digital stations, in the 1 megahertz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least two percent may be employed, except when the 1 megahertz band is 2495-2496 MHz, in which case a resolution bandwidth of at least one percent may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (i.e. 1 megahertz or

1 percent of emission bandwidth, as specified; or 1 megahertz or 2 percent for mobile digital stations, except in the band 2495-2496 MHz). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power. With respect to television operations, measurements must be made of the separate visual and aural operating powers at sufficiently frequent intervals to ensure compliance with the rules.

(m)(4) For mobile digital stations, the attenuation factor shall be not less than 40 + 10 log (P) dB on all frequencies between the channel edge and 5 megahertz from the channel edge, 43 + 10 log (P) dB on all frequencies between 5 megahertz and X megahertz from the channel edge, and 55 + 10 log (P) dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition, the attenuation factor shall not be less that 43 + 10 log (P) dB on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees. Show citation box.


TEST CONFIGURATION

Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity

TEST PROCEDURE

- EUT was placed on a 1.50 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.50m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector.
- 2. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
- The EUT is then put into continuously transmitting mode at its maximum power level during the test.Set Test Receiver or Spectrum RBW=1MHz,VBW=3MHz, And the maximum value of the receiver should be recorded as (P_r).
- 4. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (P_r). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.
- A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (P_{cl}), the Substitution Antenna Gain (G_a) and the Amplifier Gain (P_{Ag}) should be recorded after test. The measurement results are obtained as described below: Power(EIRP)=P_{Mea}+ P_{Ag} - P_{cl} + G_a
- 6. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
- 7. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.15dBi.
- 8. In order to make sure test results more clearly, we set frequency range and sweep time for difference frequency range as follows table:

Working Frequency	Subrange (GHz)	RBW	VBW	Sweep time (s)
	0.00009~0.15	1KHz	3KHz	30
	0.00015~0.03	10KHz	30KHz	10
	0.03~1	100KHz	300KHz	10
LTE FDD Band 5	1~2	1 MHz	3 MHz	2
	2~5	1 MHz	3 MHz	3
. 115	5~8	1 MHz	3 MHz	3
THE TO SHE WE AND	8~9	1 MHz	3 MHz	3
Man Lang Lan	0.00009~0.15	1KHz	3KHz	30
LTE FDD Band 7	0.00015~0.03	10KHz	30KHz	10 10
	0.03~1	100KHz	300KHz	10

Shenzhen LCS Compliance Testing Laboratory Ltd.

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity

Add: 101, 201 Bldg Á & 301 Bldg Č, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

	1~2	1 MHz	3 MHz	2	
an thi	2~5	1 MHz	3 MHz	3	
T HAT THE BEAL	5~8	1 MHz	3 MHz	3	
R Manuelab S Testing Lab	8~11	1 MHz	3 MHz	311	
5	11~14	1 MHz	3 MHz	3 100	
	14~18	1 MHz	3 MHz	3	
	18~20	1 MHz	3 MHz	2	
	20~26	1 MHz	3 MHz	2	
	0.00009~0.15	1KHz	3KHz	30	
	0.00015~0.03	10KHz	30KHz	10	
	0.03~1	100KHz	300KHz	10	
	1~2	1 MHz	3 MHz	2	
	2~5	1 MHz	3 MHz	3	
LTE TDD Band 41	5~8	1 MHz	3 MHz	3	
A day	8~11	1 MHz	3 MHz	3	
The second second	11~14	1 MHz	3 MHz	3	
L L L Testing L	14~18	1 MHz	3 MHz	Test 3	
LCS Testing La	18~20	1 MHz	3 MHz	2	
	20~26	1 MHz	3 MHz	2	

Frequency	Channel	Frequency Range	Verdict
	Low	9KHz -9GHz	PASS
LTE FDD Band 5	Middle	9KHz -9GHz	PASS
	High	9KHz -9GHz	PASS
	Low	9KHz -26GHz	PASS
LTE FDD Band 7	Middle	9KHz -26GHz	PASS
-miteth	High	9KHz -26GHz	PASS
mar th	Low	9KHz -26GHz	PASS
LTE TDD Band 41	Middle	9KHz -26GHz	PASS
L Mit esting "	High	9KHz -26GHz	PASS

TEST RESULTS

Remark:

1. We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 5, LTE FDD Band 7, LTE FDD Band 41; recorded worst case for each Channel Bandwidth of LTE FDD Band 5, LTE FDD Band 7, LTE FDD Band 41.

- 3. We were not recorded other points as values lower than limits.
- 4. Power(EIRP)= P_{Mea} + P_{Ag} P_{cl} + G_a
- 5. Margin = EIRP Limit

LTE FDD Band 5 Channel Bandwidth 10MHz QPSK Low Channel

	Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
	1658.00	-38.30	3.86	3.00	8.56	-33.60	-13.00	-20.60	VH V
-	2487.00	-45.71	4.29	3.00	6.98	-43.02	-13.00	-30.02	Н
	1658.00	-35.39	3.86	3.00	8.56	-30.69	-13.00	-17.69	V
	2487.00	-38.03	4.29	3.00	6.98	-35.34	-13.00	-22.34	V

LTE FDD Band 5_Channel Bandwidth 10MHz_QPSK_ Middle Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G₂ Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1673.00	-41.83	3.90	3.00	8.58	-37.15	-13.00	-24.15	H
2509.50	-46.70	4.32	3.00	6.80	-44.22	-13.00	-31.22	H
1673.00	-33.73	3.90	3.00	8.58	-29.05	-13.00	-16.05	V
2509.50	-37.42	4.32	3.00	6.80	-34.94	-13.00	-21.94	Sting V
182	ostand 5. Chan			LCS 1	Channel		Ba real	1.02

LTE FDD Band 5_Channel Bandwidth 10MHz_QPSK_ High Channel

Frequency (MHz)	Р _{меа} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1688.00	-39.53	3.91	3.00	9.06	-34.38	-13.00	-21.38	Н
2532.00	-44.37	4.32	3.00	6.65	-42.04	-13.00	-29.04	Н
1688.00	-34.58	3.91	3.00	9.06	-29.43	-13.00	-16.43	V
2532.00	-37.38	4.32	3.00	6.65	-35.05	-13.00	-22.05	V

LTE FDD Band 5 Channel Bandwidth 10MHz 16QAM Low Channel

N AND	Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
	1658.00	-41.91	3.86	3.00	8.56	-37.21	-13.00	-24.21	Н
	2487.00	-48.07	4.29	3.00	6.98	-45.38	-13.00	-32.38	Н
	1658.00	-36.82	3.86	3.00	8.56	-32.12	-13.00	-19.12	V
	2487.00	-42.26	4.29	3.00	6.98	-39.57	-13.00	-26.57	V

LTE FDD Band 5_Channel Bandwidth 10MHz_16QAM _ Middle Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1673.00	-42.17	3.90	3.00	8.58	-37.49	-13.00	-24.49	Н
2509.50	-46.02	4.32	3.00	6.80	-43.54	-13.00	-30.54	HUBLIN
1673.00	-36.42	3.90	3.00	8.58	-31.74	-13.00	-18.74	V
2509.50	-39.27	4.32	3.00	6.80	-36.79	-13.00	-23.79	V

LTE FDD Band 5_Channel Bandwidth 10MHz_16QAM _ High Channel

Frequency (MHz)	Р _{меа} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1688.00	-41.93	3.91	3.00	9.06	-36.78	-13.00	-23.78	H
2532.00	-47.58	4.32	3.00	6.65	-45.25	-13.00	-32.25	H
1688.00	-36.66	3.91	3.00	9.06	-31.51	-13.00	-18.51	V
2532.00	-42.99	4.32	3.00	6.65	-40.66	-13.00	-27.66	V

LTE FDD Band 7_Channel Bandwidth 20MHz_QPSK_ Low Channel

-	Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
	5020.0	-41.23	5.88	3.00	10.77	-36.34	-25.00	-11.34	VA VH
<i>~</i>	7530.0	-46.83	7.12	3.00	12.26	-41.69	-25.00	-16.69	Н
	5020.0	-34.33	5.88	3.00	10.77	-29.44	-25.00	-4.44	V
	7530.0	-39.69	7.12	3.00	12.26	-34.55	-25.00	-9.55	V

LTE FDD Band 7_Channel Bandwidth 20MHz_QPSK_ Middle Channel

Frequency (MHz)	Р _{меа} (dBm)	P _{cl} (dB)	Diatance	G₂ Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
5070.0	-40.38	5.90	3.00	10.81	-35.47	-25.00	-10.47	Н
7605.0	-45.19	7.19	3.00	12.32	-40.06	-25.00	-15.06	H
5070.0	-36.80	5.90	3.00	10.81	-31.89	-25.00	-6.89	V
7605.0	-36.12	7.19	3.00	12.32	-30.99	-25.00	-5.99	sting V
	Channel De	n duuidth 001		High Chon		-	PSJ rcs	

LTE FDD 7_Channel Bandwidth 20MHz_QPSK_ High Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
5120.0	-41.43	5.94	3.00	10.86	-36.51	-25.00	-11.51	Н
7680.0	-45.69	7.25	3.00	12.98	-39.96	-25.00	-14.96	Н
5120.0	-36.75	5.94	3.00	10.86	-31.83	-25.00	-6.83	V
7680.0	-38.97	7.25	3.00	12.98	-33.24	-25.00	-8.24	V

LTE FDD Band 7_Channel Bandwidth 20MHz_16QAM _ Low Channel

1 CP 1	Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
	5020.0	-42.74	5.88	3.00	10.77	-37.85	-25.00	-12.85	Н
	7530.0	-46.66	7.12	3.00	12.26	-41.52	-25.00	-16.52	Н
	5020.0	-37.22	5.88	3.00	10.77	-32.33	-25.00	-7.33	V
	7530.0	-41.57	7.12	3.00	12.26	-36.43	-25.00	-11.43	V

LTE FDD Band 7_Channel Bandwidth 20MHz_16QAM _ Middle Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
5070.0	-44.14	5.90	3.00	10.81	-39.23	-25.00	-14.23	Н
7605.0	-47.56	7.19	3.00	12.32	-42.43	-25.00	-17.43	M.Br. H
5070.0	-37.33	5.90	3.00	10.81	-32.42	-25.00	-7.42	sting V
7605.0	-42.61	7.19	3.00	12.32	-37.48	-25.00	-12.48	V

LTE FDD Band 7_Channel Bandwidth 20MHz_16QAM _ High Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
5120.0	-42.57	5.94	3.00	10.86	-37.65	-25.00	-12.65	Н
7680.0	-49.94	7.25	3.00	12.98	-44.21	-25.00	-19.21	Н
5120.0	-37.42	5.94	3.00	10.86	-32.50	-25.00	-7.50	V
7680.0	-40.70	7.25	3.00	12.98	-34.97	-25.00	-9.97	V

LTE TDD Band 41 Channel Bandwidth 20MHz QPSK Low Channel

-	Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
	5012.0	-41.42	7.15	3.00	9.88	-38.69	-25.00	-13.69	VH 🐪
	7518.0	-45.15	8.36	3.00	11.36	-42.15	-25.00	-17.15	Н
	5012.0	-44.98	7.15	3.00	9.88	-42.25	-25.00	-17.25	V
	7518.0	-42.11	8.36	3.00	11.36	-39.11	-25.00	-14.11	V

LTE TDD Band 41_Channel Bandwidth 20MHz_QPSK_ Middle Channel

Frequency (MHz)	Р _{меа} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
5186.0	-38.05	7.26	3.00	10.03	-35.28	-25.00	-10.28	Н
7779.0	-46.77	8.48	3.00	11.41	-43.84	-25.00	-18.84	HAN WE
5186.0	-46.37	» 7.26	3.00	10.03	-43.60	-25.00	-18.60	V
7779.0	-41.50	8.48	3.00	11.41	-38.57	-25.00	-13.57	stens A
199	Los		1	Loc		,	They read	

LTE TDD Band 41_Channel Bandwidth 20MHz_QPSK_ High Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
5360.0	-40.52	7.17	3.00	9.62	-38.07	-25.00	-13.07	Н
8040.0	-46.49	8.39	3.00	11.46	-43.42	-25.00	-18.42	Н
5360.0	-47.62	7.17	3.00	9.62	-45.17	-25.00	-20.17	V
8040.0	-42.03	8.39	3.00	11.46	-38.96	-25.00	-13.96	V

LTE TDD Band 41_Channel Bandwidth 20MHz_16QAM_ Low Channel

	LTE TDD Ba	and 41_Cha	nnel Bandwi	idth 20MHz	16QAM_ Lo	w Channel	th Statute		ine .	后街
N CO XI	Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization	gLat
	5012.0	-42.80	7.15	3.00	9.88	-40.07	-25.00	-15.07	Н	
	7518.0	-48.72	8.36	3.00	11.36	-45.72	-25.00	-20.72	H]
	5012.0	-44.86	7.15	3.00	9.88	-42.13	-25.00	-17.13	V]
	7518.0	-40.91	8.36	3.00	11.36	-37.91	-25.00	-12.91	V]

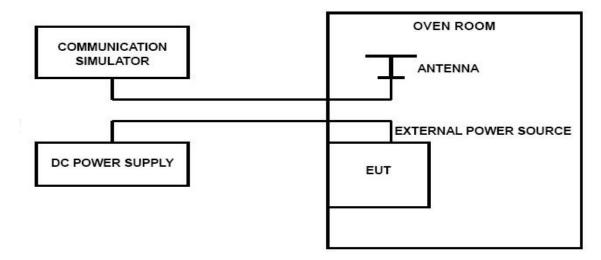
LTE TDD Band 41 Channel Bandwidth 20MHz 16QAM Middle Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
5186.0	-42.54	7.26	3.00	10.03	-39.77	-25.00	-14.77	HI) SHAME
7779.0	-46.50	^{©©} 8.48	3.00	11.41	-43.57	-25.00	-18.57	HUBUN
5186.0	-47.05	7.26	3.00	10.03	-44.28	-25.00	-19.28	V
7779.0	-43.83	8.48	3.00	11.41	-40.90	-25.00	-15.90	V

LTE TDD Band 41 Channel Bandwidth 20MHz 16QAM High Channel

requency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
5360.0	-42.13	7.17	3.00	9.62	-39.68	-25.00	-14.68	Н
8040.0	-46.29	8.39	3.00	11.46	-43.22	-25.00	-18.22	Н
5360.0	-44.21	7.17	3.00	9.62	-41.76	-25.00	-16.76	V
8040.0	-42.65	8.39	3.00	11.46	-39.58	-25.00	-14.58	V

Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China



4.7 Frequency Stability under Temperature & Voltage Variations

LIMIT and the

According to FCC §2.1055,§22.355, §27.54 requirement, the frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation and should not exceed 2.5ppm.

TEST CONFIGURATION

TEST PROCEDURE

The EUT was setup according to TIA-603-E

Frequency Stability Under Temperature Variations:

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the EUT in a "call mode". This is accomplished with the use of R&S CMW 500 DIGITAL RADIO COMMUNICATION TESTER.

1. Measure the carrier frequency at room temperature.

2. Subject the EUT to overnight soak at -30°C.

3. With the EUT, powered via nominal voltage, connected to the CMW 500 and in a simulated call on middle channel for LTE band 5, LTE band 7, LTE band 41; measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.

4. Repeat the above measurements at 10° increments from -30° to $+50^{\circ}$. Allow at least 1.5 hours at each temperature, unpowered, before making measurements.

5. Re-measure carrier frequency at room temperature with nominal voltage. Vary supply voltage from minimum voltage to maximum voltage, in 0.1Volt increments re-measuring carrier frequency at each voltage. Pause at nominal voltage for 1.5 hours unpowered, to allow any self-heating to stabilize, before continuing. 6. Subject the EUT to overnight soak at +50 ℃.

7. With the EUT, powered via nominal voltage, connected to the CMW 500 and in a simulated call on the centre channel, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.

8. Repeat the above measurements at 10 $^{\circ}$ C increments from +50 $^{\circ}$ C to -30 $^{\circ}$ C. Allow at least 1.5 hours at each temperature, unpowered, before making measurements

9. At all temperature levels hold the temperature to +/- 0.5° during the measurement procedure.

Frequency Stability Under Voltage Variations:

Set chamber temperature to 20°C. Use a variable AC power supply / DC power source to power the EUT and set the voltage to rated voltage. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and recorded the frequency.

Reduce the input voltage to specify extreme voltage variation (±15%) and endpoint, record the maximum frequency change.

Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity

TEST RESULTS

Remark:

We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 5, LTE FDD Band 7, LTE FDD Band 41; recorded worst case for each Channel Bandwidth of LTE FDD Band 5, LTE FDD Band 7, LTE FDD Band 41.

LTE Band 5, QPSK, 1.4MHz bandwidth(worst case of all bandwidths)
-------------------------------------	-------------------------------

	LTE FDD Band 5						
DC Power	Temperature (℃)	Frequency error(Hz)	Frequency error(ppm)	Limit (ppm)	Verdict		
VL	20	0	0.000	±2.50	PASS		
VN	20	-30	-0.036	±2.50	PASS		
VH	20	-22	-0.027	±2.50	PASS		
VN	-30	19	0.023	±2.50	PASS		
VN	-20	48	0.058	±2.50	PASS		
VN	-10	-49	-0.059	±2.50	PASS		
VN	0	21	0.025	±2.50	PASS		
VN	10	-3	-0.004	±2.50	PASS		
VN	20	27	0.033	±2.50	PASS		
VN	30	-37	-0.045	±2.50	PASS		
VN	40	15	0.018	±2.50	PASS		
VN	50	50	0.061	±2.50	PASS		

LTE Band 5, 16QAM, 1.4MHz bandwidth(worst case of all bandwidths)

		LTE FD	D Band 5		
DC Power	Temperature (℃)	Frequency error(Hz)	Frequency error(ppm)	Limit (ppm)	Verdict
CS ¹ VL	20	42	0.051	±2.50	PASS
VN	20	-31	-0.038	±2.50	PASS
VH	20	49	0.059	±2.50	PASS
VN	-30	-2	-0.002	±2.50	PASS
VN	-20	-16	-0.019	±2.50	PASS
VN	-10	48	0.058	±2.50	PASS
VN	0	3	0.004	±2.50	PASS
VN	10	10	0.012	±2.50	PASS
VN	20	44	0.053	±2.50	PASS
VN	30	48	0.058	±2.50	PASS
VN	40	1	0.001	±2.50	PASS
VN	50	20	0.024	±2.50	PASS

Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com

Scan code to check authenticity

LTE Band 7, QPSK, 5MHz bandwidth (worst case of all bandwidths and modulation type)

DC Power	Temperature (℃)	Frequency error(Hz)	Frequency error(ppm)	Limit (ppm)	Verdict
VC ^{S 1} VL	20	0	0.000	±2.50	PASS
VN	20	19	0.007	±2.50	PASS
VH	20	-2	-0.001	±2.50	PASS
VN	-30	-18	-0.007	±2.50	PASS
VN	-20	-2	-0.001	±2.50	PASS
VN	-10	16	0.006	±2.50	PASS
VN	0	14	0.006	±2.50	PASS
VN	10	-8	-0.003	±2.50	PASS
VN	20	2	0.001	±2.50	PASS
VN	30	20	0.008	±2.50	PASS
VN	40	-6	-0.002	±2.50	PASS
VN TH	50	19	0.007	±2.50	PASS

		• ··· · · · · · ·	
LTE Band 7, 16QAM, 5MH	iz handwidth (worst case o	ht all handwidths and r	nodulation type)
			nouulullon type)

		LTE FDI	D Band 7		
DC Power	Temperature (℃)	Frequency error(Hz)	Frequency error(ppm)	Limit (ppm)	Verdict
VL	20	-10	-0.004	±2.50	PASS
VN	20	-19	-0.007	±2.50	PASS
VH	20	-20	-0.008	±2.50	PASS
VN	-30	-1	0.000	±2.50	PASS
VN	-20	11	0.004	±2.50	PASS
VN	-10	-3	-0.001	±2.50	PASS
VN	0	3 b	0.001	±2.50	PASS
VN	10	STESTIN 7	0.003	±2.50	PASS
VN	20	-13	-0.005	±2.50	PASS
VN	30	7	0.003	±2.50	PASS
VN	40	-9	-0.004	±2.50	PASS
VN	50	-11	-0.004	±2.50	PASS

LTE Band 41, 5MHz bandwidth, QPSK (worst case of all bandwidths)

	LTE TDD Band 41						
DC Power	Temperature (℃)	Frequency error(Hz)	Frequency error(ppm)	Limit (ppm)	Verdict		
VL	20	91	0.043	2.50	PASS		
VN	20	93	0.044	2.50	PASS		
VH	20	32 🚽	0.015	2.50 🚽 対	PASS		
VN LCS	-30	15 💁 🔎	0.007	2.50	PASS		
VN	-20	74	0.035	2.50	PASS		
VN	-10	43	0.021	2.50	PASS		
VN	0	3	0.001	2.50	PASS		
VN	10	84	0.040	2.50	PASS		
VN	20	41	0.020	2.50	PASS		
VN	30	27	0.013	2.50	PASS		
VN	40	41	0.020	2.50	PASS		
VN	50	85	0.041	2.50	PASS		

LTE Band 41, 5MHz bandwidth, 16QAM	(worst case of all bandwidths)
------------------------------------	--------------------------------

LTE TDD Band 41					
DC Power	Temperature (℃)	Frequency error(Hz)	Frequency error(ppm)	Limit (ppm)	Verdict
VL	20	84	0.040	2.50	PASS
VN	20	46	0.022	2.50	PASS
VH	20	16	0.008	2.50	PASS
VN	-30	15	0.007	2.50	PASS
VN	-20	39	0.019	2.50	PASS
VN	-10	21	0.010	2.50	PASS
VN	0	83	0.040	2.50	PASS
VN	10	69	0.033	2.50	PASS
VN	20	57	0.027	2.50	PASS
VN	30	23	0.011	2.50	PASS
VN	40	49	0.023	2.50	PASS
VN	50	70	0.033	2.50	PASS

立讯检测版份

5 <u>Test Setup Photos of the EUT</u>

Pleaserefer to separated files for Test Setup Photos of the EUT.

6 External Photos of the EUT

Pleaserefer to separated files for External Photos of the EUT.

7 Internal Photos of the EUT

Pleaserefer to separated files for Internal Photos of the EUT.

-----THE END OF TEST REPORT------

