Intermec Technologies Corporation

Simultaneous Transmission - FCC Part 15.247

Testing for Class II Permissive Change of FCC ID: EHABTS080 to authorize co-location with FCC ID: EHA2610CF and EHASMC46

700C configured with three internal radio modules: CDMA (FCC ID: EHAEM3420) or GSM (FCC ID: EHASMC46) 802.11b/g (FCC ID: EHA2610CF) Bluetooth (FCC ID: EHABTS080)

March 30, 2005

Report No. ITRM0073.2

Report Prepared By

www.nwemc.com 1-888-EMI-CERT

© 2004 Northwest EMC, Inc

Certificate of Test

Issue Date: March 30, 2005 Intermec Technologies Corporation

700C configured with three internal radio modules:

CDMA (FCC ID: EHAEM3420) or GSM (FCC ID: EHASMC46) 802.11b/g (FCC ID: EHA2610CF) Bluetooth (FCC ID: EHABTS080)

	Emissions		
Specification	Test Method	Pass	Fail
FCC 15.247(d) Spurious Radiated Emissions:2004 (Simultaneous Transmit)	ANSI C63.4:2003	\boxtimes	

Modifications made to the product See the Modifications section of this report

Test Facility

• The measurement facility used to collect the data is located at:

Northwest EMC, Inc 22975 NW Evergreen Parkway, Suite 400 Hillsboro, OR 97124

Phone: (503) 844-4066 Fax: 844-3826

This site has been fully described in a report filed with and accepted by the FCC (Federal Communications Commission) and Industry Canada.

Approved By:
Donald Michilan
Don Facteau, IS Manager

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested, the specific description is noted in each of the individual sections of the test report supporting this certificate of test.

Revision Number	Description	Date	Page Number
00	None		

FCC: Accredited by NVLAP for performance of FCC radio, digital, and ISM device testing. Our Open Area Test Sites, certification chambers, and conducted measurement facilities, have been fully described in reports filed with the FCC and accepted by the FCC in letters maintained in our files. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by the FCC as a Telecommunications Certification Body (TCB). This allows Northwest EMC to certify transmitters to FCC specifications in accordance with 47 CFR 2.960 and 2.962.

NVLAP: Northwest EMC, Inc. is recognized under the United States Department of Commerce, National Institute of Standards and Technology, National Voluntary Laboratory Accreditation Program for satisfactory compliance with the requirements of ISO/IEC 17025 for Testing Laboratories. The NVLAP accreditation encompasses Electromagnetic Compatibility Testing in accordance with the European Union EMC Directive 89/336/EEC, ANSI C63.4, MIL-STD 461E, DO-160D and SAE J1113. Additionally, Northwest EMC is accredited by NVLAP to perform radio testing in accordance with the European Union R&TTE Directive 1999/5/EEC, the requirements of FCC, and the RSS radio standards for Industry Canada. Accreditation has been granted to Northwest EMC, Inc. under Certificate Numbers: 200629-0, 200630-0, and 200676-0.

Industry Canada: Accredited by NVLAP for performance of Industry Canada RSS and ICES testing. Our Open Area Test Sites and certification chambers comply with RSS 212, Issue 1 (Provisional) and have been filed with Industry Canada and accepted. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by NIST and recognized by Industry Canada as a Certification Body (CB) per the APEC Mutual Recognition Arrangement (MRA). This allows Northwest EMC to certify transmitters to Industry Canada technical requirements.

CAB: Designated by NIST and validated by the European Commission as a Conformity Assessment Body (CAB) to conduct tests and approve products to the EMC directive and transmitters to the R&TTE directive, as described in the U.S. - EU Mutual Recognition Agreement

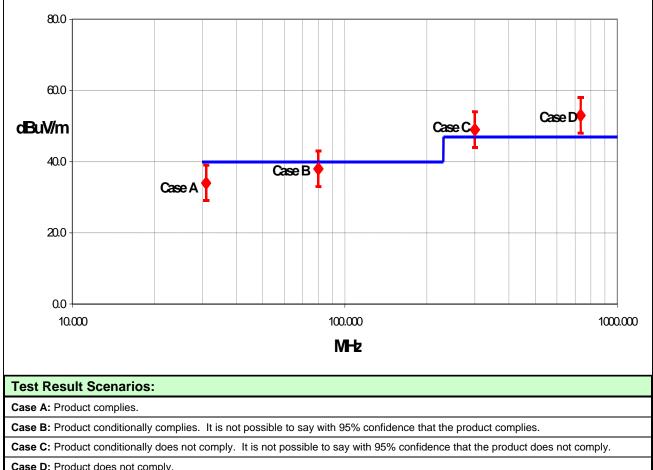
TÜV Product Service: Included in TUV Product Service Group's Listing of Recognized Laboratories. It qualifies in connection with the TUV Certification after Recognition of Agent's Testing Program for the product categories and/or standards shown in TUV's current Listing of CARAT Laboratories available from TUV. A certificate was issued to represent that this laboratory continues to meet TUV's CARAT Program requirements. Certificate No. USA0401C

Accreditations and Authorizations

TÜV Rheinland: Authorized to carryout EMC tests by order and under supervision of TÜV Rheinland. This authorization is based on "Conditions for EMC-Subcontractors" of November 1992. TUV Rheinland **NEMKO:** Assessed and accredited by NEMKO (Norwegian testing and certification body) for European emissions and immunity testing. As a result of NEMKO's laboratory NEMKO assessment, they will accept test results from Northwest EMC, Inc. for product certification (Authorization No. ELA 119). Technology International: Assessed in accordance with ISO Guide 25 defining the general international requirements for the competence of calibration and testing laboratories and with ITI assessment criteria LACO196. Based upon that assessment Interference Technology International, Ltd., has granted approval for specifications implementing the EU Directive on EMC (89/336/EEC and amendments). The scope of the approval was provided on a Schedule of Assessment supplied with the certificate and is available upon request. Australia/New Zealand: The National Association of Testing Authorities (NATA). Australia has been appointed by the ACA as an accreditation body to accredit test laboratories and competent bodies for EMC standards. Accredited test reports or assessments by competent bodies must carry the NATA logo. Test reports made by an overseas laboratory that has been accredited for the relevant standards by an overseas accreditation body that has a Mutual Recognition Agreement (MRA) with NATA are also accepted as technical grounds for product conformity. The report should be endorsed with the respective logo of the accreditation body. (NVLAP) VCCI: Accepted as an Associate Member to the VCCI, Acceptance No. 564. Conducted and radiated measurement facilities have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. (Registration Nos. -Evergreen: C-1071 and R-1025, Trails End: C-1877 and R-1760, Sultan: R-871, C-1784 and R-1761) **BSMI:** Northwest EMC has been designated by NIST and validated by C-Taipei BSMI (BSMI) as a CAB to conduct tests as described in the APEC Mutual Recognition Agreement. License No.SL2-IN-E-1017. GOST: Northwest EMC, Inc. has been assessed and accredited by the Russian Certification bodies Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC, to perform EMC and Hygienic testing for Information Technology Products. As a result of their laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification

> SCOPE For details on the Scopes of our Accreditations, please visit: <u>http://www.nwemc.com/scope.asp</u>

What is measurement uncertainty?


When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. The following statement of measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" value. In the case of transient tests (ESD, EFT, Surge, Voltage Dips and Interruptions), the test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements.

The following documents were the basis for determining the uncertainty levels of our measurements:

- "ISO Guide to the Expression of Uncertainty in Measurements", October 1993
- "NIS81: The Treatment of Uncertainty in EMC Measurements", May 1994
- "IEC CISPR 16-3 A1 f1 Ed.1: Radio-interference measurements and statistical techniques", December 2000

How might measurement uncertainty be applied to test results?

If the diamond marks the measured value for the test and the vertical bars bracket the range of + and measurement uncertainty, then test results can be interpreted from the diagram below.

Case D: Product does not comply.

Radiated Emissions ≤ 1 GHz		Value (dB)				
	Probability	Bico	nical	Log Pe	eriodic	D	ipole
	Distribution	Ante	enna	Ante	enna	An	tenna
Test Distance		3m	10m	3m	10m	3m	10m
Combined standard	normal	+ 1.86	+ 1.82	+ 2.23	+ 1.29	+ 1.31	+ 1.25
uncertainty <i>u_c(y)</i>		- 1.88	- 1.87	- 1.41	- 1.26	- 1.27	- 1.25
Expanded uncertainty U	normal (k=2)	+ 3.72	+ 3.64	+ 4.46	+ 2.59	+ 2.61	+ 2.49
(level of confidence \approx 95%)		- 3.77	- 3.73	-2.81	- 2.52	- 2.55	- 2.49

Radiated Emissions > 1 GHz	Value (dB)		
	Probability	Without High	With High
	Distribution	Pass Filter	Pass Filter
Combined standard uncertainty <i>u_c(y)</i>	normal	+ 1.29 - 1.25	+ 1.38 - 1.35
Expanded uncertainty U	normal (k=2)	+ 2.57	+ 2.76
(level of confidence $\approx 95\%$)		- 2.51	2.70

Conducted Emissions		
	Probability	Value
	Distribution	(+/- dB)
Combined standard uncertainty <i>uc(y)</i>	normal	1.48
Expanded uncertainty <i>U</i> (level of confidence ≈ 95 %)	normal (k = 2)	2.97

Radiated Immunity		
	Probability	Value
	Distribution	(+/- dB)
Combined standard uncertainty <i>uc(y)</i>	normal	1.05
Expanded uncertainty U (level of confidence ≈ 95 %)	normal (k = 2)	2.11

Conducted Immunity		
	Probability	Value
	Distribution	(+/- dB)
Combined standard uncertainty <i>uc(y</i>)	normal	1.05
Expanded uncertainty U (level of confidence ≈ 95 %)	normal (k = 2)	2.10

Legend

 $u_c(y)$ = square root of the sum of squares of the individual standard uncertainties

U = combined standard uncertainty multiplied by the coverage factor: **k**. This defines an interval about the measured result that will encompass the true value with a confidence level of approximately 95%. If a higher level of confidence is required, then k=3 (CL of 99.7%) can be used. Please note that with a coverage factor of one, uc(y) yields a confidence level of only 68%.

Facilities

California

Orange County Facility

41 Tesla Ave. Irvine, CA 92618 (888) 364-2378 FAX (503) 844-3826

Oregon

Evergreen Facility 22975 NW Evergreen Pkwy., Suite 400 Hillsboro, OR 97124 (503) 844-4066 FAX (503) 844-3826

Oregon

Trails End Facility 30475 NE Trails End Lane Newberg, OR 97132 (503) 844-4066 FAX (503) 537-0735

Washington

Sultan Facility

14128 339th Ave. SE Sultan, WA 98294 (888) 364-2378 FAX (360) 793-2536

Party Requesting the Test	
Company Name:	Intermec Technologies Corporation
Address:	550 Second St. SE
City, State, Zip:	Cedar Rapids, IA 52401-2023
Test Requested By:	Scott Holub
Model:	700C configured with three internal radio modules: CDMA (FCC ID: EHAEM3420) or GSM (FCC ID: EHASMC46) 802.11b/g (FCC ID: EHA2610CF) Bluetooth (FCC ID: EHABTS080)
First Date of Test:	2-2-2005
Last Date of Test:	3-16-2005
Receipt Date of Samples:	2-2-2005
Equipment Design Stage:	Production
Equipment Condition:	No visual damage.

Information Provided by the Party Requesting the Test

Clocks/Oscillators:	Not provided at the time of test.
I/O Ports:	Serial

Functional Description of the EUT (Equipment Under Test):

Intermec's Handheld Computer, Model 700C was configured with three co-located radios. The 700C contained a CDMA radio (FCC ID: EHAEM3420) or GSM radio (FCC ID: EHASMC46), an 802.11(b)/(g) radio (FCC ID: EHA2610CF), and a Bluetooth radio (FCC ID: EHABTS080). The CDMA and GSM radios are never installed in the same 700C.

Client Justification for EUT Selection:

Not Provided

Client Justification for Test Selection:

This test demonstrated compliance with FCC Part 15.247 emissions limits while the co-located radios were transmitting simultaneously. Each radio transmits through its own antenna. This report will be used as part of a Class II Permissive Change to authorize the co-location of the 802.11b/g radio and GSM radio with the Bluetooth radio.

EUT Photo

Modifications

	Equipment modifications				
Item	Test	Date	Modification	Note	Disposition of EUT
	Spurious	02/02/2005	No EMI suppression	Same	EUT remained at
1	Radiated	to	devices were added or	configuration as	Northwest EMC.
	Emissions	03/16/2005	modified during this test.	delivered.	NORTHWEST LINC.

Justification

Intermec's Handheld Computer, Model 700C was configured with three co-located radios. The 700C contained a CDMA radio (FCC ID: EHAEM3420), an 802.11(b)/(g) radio (FCC ID: EHA2610CF), and a Bluetooth radio (FCC ID: EHABTS080). This test demonstrated compliance with FCC Part 15.247 emissions limits while the co-located radios were transmitting simultaneously. Each radio transmits through its own antenna.

All possible combinations of harmonic emissions from the CDMA, 802.11(b)/(g), and Bluetooth radios were compared numerically. It was determined that there were no possible coincidental harmonics below 1 GHz. All the radios were configured for simultaneous transmission at the channels specified below.

Channels in Specif	Channels in Specified Band Investigated:		
802.11(b):	1,11		
CDMA (Cellular):	54, 55, 395, 467		
CDMA (PCS):	1, 35, 1153		
Bluetooth:	5, 11, 62, 68, 79		

Operating Modes Investigated:
Bluetooth Radio in PW40 with 700C in cradle:
Simultaneous transmission of Bluetooth Channel 11, 802.11(b) Channel 1, & CDMA PCS Channel 1
Simultaneous transmission of Bluetooth Channel 11, 802.11(b) Channel 1, & CDMA PCS Channel 1153
Simultaneous transmission of Bluetooth Channel 68, 802.11(b) Channel 11, & CDMA PCS Channel 35
Simultaneous transmission of Bluetooth Channel 62, 802.11(b) Channel 11, & CDMA PCS Channel 1153
Simultaneous transmission of Bluetooth Channel 11, 802.11(b) Channel 1, & CDMA Cellular Channel 467
Simultaneous transmission of Bluetooth Channel 5, 802.11(b) Channel 1, & CDMA Cellular Channel 395
Simultaneous transmission of Bluetooth Channel 79, 802.11(b) Channel 11, & CDMA Cellular Channel 55
Simultaneous transmission of Bluetooth Channel 79, 802.11(b) Channel 11, & CDMA Cellular Channel 54

Antennas Investiga	ated:
802.11(b):	Folded Monopole internal to 700C, P/N 805-608-104
CDMA:	Tri-band Antenna external to 700C, P/N 805-624-001
Bluetooth:	Chip antenna integral to Bluetooth module inside 700C

Data Rates Investigated:

Maximum

Power Input Settings Investigated:

120 VAC, 60 Hz.

Frequency Range Invest	igated		
Start Frequency	1 GHz	Stop Frequency	25 GHz

Software\Firmware Appli	ied During Test		
Exercise software	FCC Tests Blue Test	Version	Unknown Unknown
Exercise soltware	Test Utility	Version	0.4
Description	<u> </u>		
This system was tested us	ing special test software to	exercise the functions of the	ne device during the
testing such as channels,	power, and modulation dur	ing simultaneous transmiss	ion.

EUT and Peripherals			
Description	Manufacturer	Model/Part Number	Serial Number
Handheld Computer	Intermec Technologies Corporation	700C	13790400011
AC Adapter	Elpac Power Systems	FW1812	011025

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
DC Leads	PA	1.3	PA	Handheld Computer	AC Adapter
AC Power	No	2.0	No	AC Adapter	AC Mains
PA = Cable is pe	ermanently	attached to the de	evice. Shie	Iding and/or presence of ferrite ma	y be unknown.

Measurement Equipme	nt				
Description	Manufacturer	Model	Identifier	Last Cal	Interval
Antenna, Horn	EMCO	3160-09	AHG	NCR	NA
Pre-Amplifier	Miteq	JSD4-18002600-26- 8P	APU	10/08/2003	24 mo
Antenna, Biconilog	EMCO	3141	AXE	12/03/2003	24 mo
Pre-Amplifier	Amplifier Research	LN1000A	APS	02/05/2004	13 mo
Antenna, Horn	EMCO	3115	AHC	09/07/2004	12 mo
Pre-Amplifier	Miteq	AMF-4D-005180-24- 10P	APJ	01/05/2004	13 mo
High Pass Filter	Micro-Tronics	HPM50111	HFO	04/13/2004	13 mo
Attenuator		2082-6148-20	ATE	02/03/2004	13 mo
Quasi-Peak Adapter	Hewlett-Packard	85650A	AQF	12/02/2004	13 mo
Spectrum Analyzer	Hewlett-Packard	8566B	AAL	12/02/2004	13 mo
Spectrum Analyzer Display	Hewlett Packard	85662A	AALD	12/02/2004	13 mo
Spectrum Analyzer	Tektronix	2784	AAO	01/02/2005	12 mo
Antenna, Horn	EMCO	3160-08	AHK	NCR	NA
Pre-Amplifier	Miteq	AMF-4D-005180-24- 10P	APC	10/08/2003	15 mo

Test Description

<u>Requirement</u>: Per 15.247(d), the field strength of any spurious emissions or modulation products that fall in a restricted band, as defined in 47 CFR 15.205, is measured. The peak level must comply with the limits specified in 47 CFR 15.35(b). The average level (taken with a 10Hz VBW) must comply with the limits specified in 15.209.

<u>Configuration</u>: Intermec's Handheld Computer, Model 700C was configured with three co-located radios. The 700C contained a CDMA radio (FCC ID: EHAEM3420), an 802.11(b)/(g) radio (FCC ID: EHA2610CF), and a Bluetooth radio (FCC ID: EHABTS080). This test demonstrated compliance with FCC Part 15.247 emissions limits while the co-located radios were transmitting simultaneously. Each radio transmits through its own antenna.

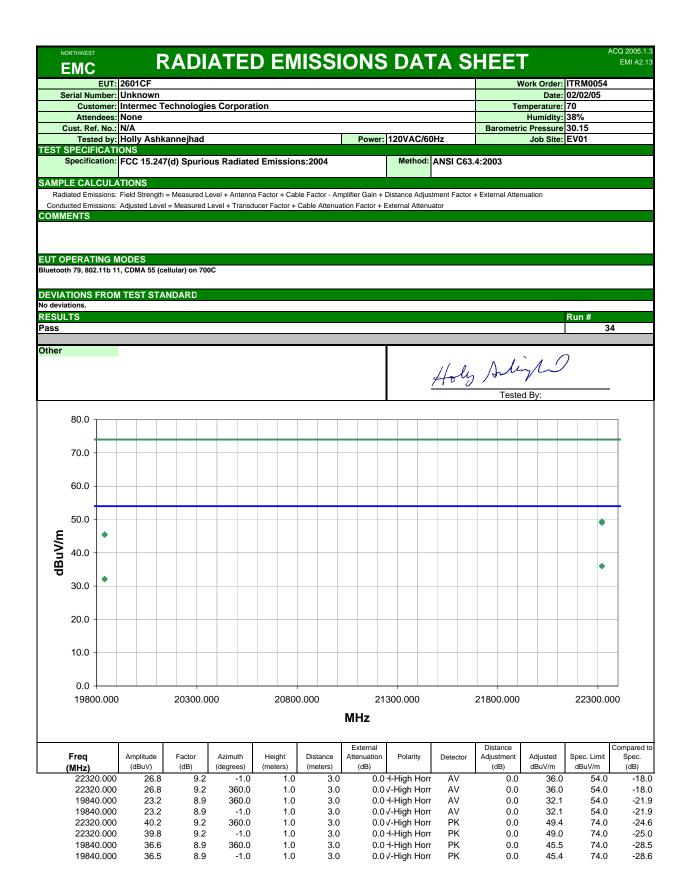
Simultaneous Transmission: For co-located radios, it is necessary to measure the field strength of spurious emissions, while co-located radios are transmitting simultaneously. The following is an excerpt from the FCC/TCB training Q & A, October 2002, Day 2, Question 7:

Assuming that the radios do not share an antenna, only radiated tests for simultaneous transmission is required. If the radios share an antenna, antenna conducted measurements would also be required. Only one set of worst case simultaneous transmission data is going to be requested to be submitted at this time. The test engineer should indicate the worst case condition and provide justification as to why the worst case condition was chosen. The grantee should be reminded that even if the FCC requests one set of data, they are responsible for compliance for all modes of simultaneous transmission.

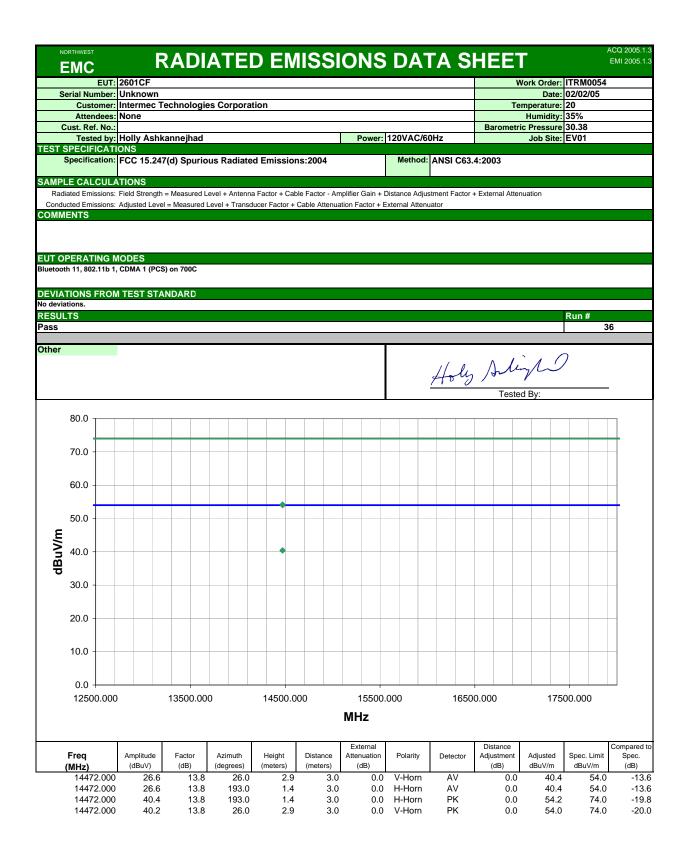
All possible combinations of harmonic emissions from the CDMA, 802.11(b), and Bluetooth radios were compared numerically. It was determined that there were no possible coincidental harmonics below 1 GHz. The frequency range from 1 GHZ to 25 GHz was investigated for channel combinations that would produce coincidental harmonics. Compliance with the restricted band at 2483.5 – 2500 MHz was also measured.

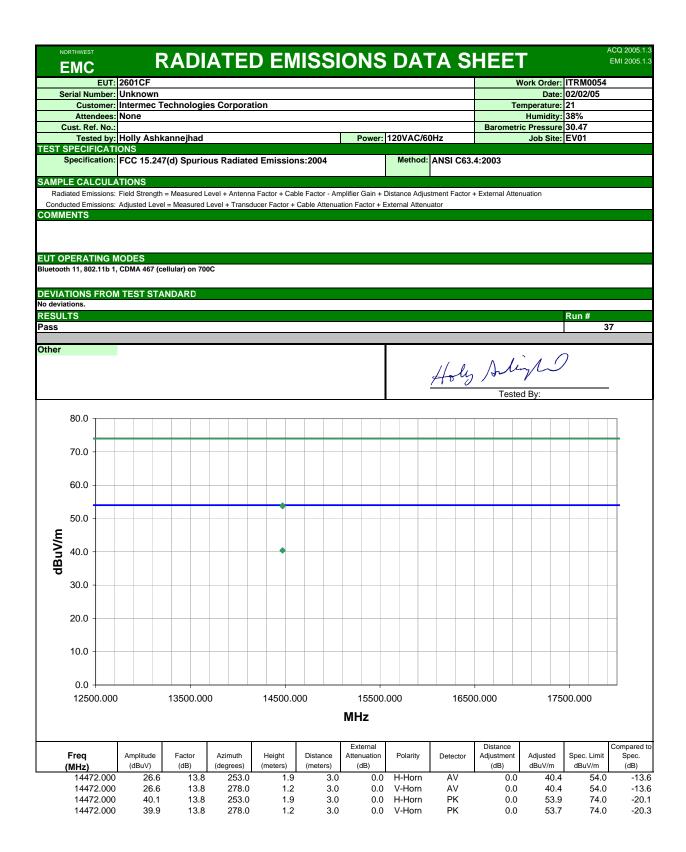
All the radios were configured for simultaneous transmission at the channels specified in the previous pages. The highest gain antennas to be used with the radios were tested. The spectrum was scanned throughout the specified range. While scanning, emissions from the radios were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antennas in three orthogonal axes, and adjusting the measurement antenna height and polarization (per ANSI C63.4:2003). A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.

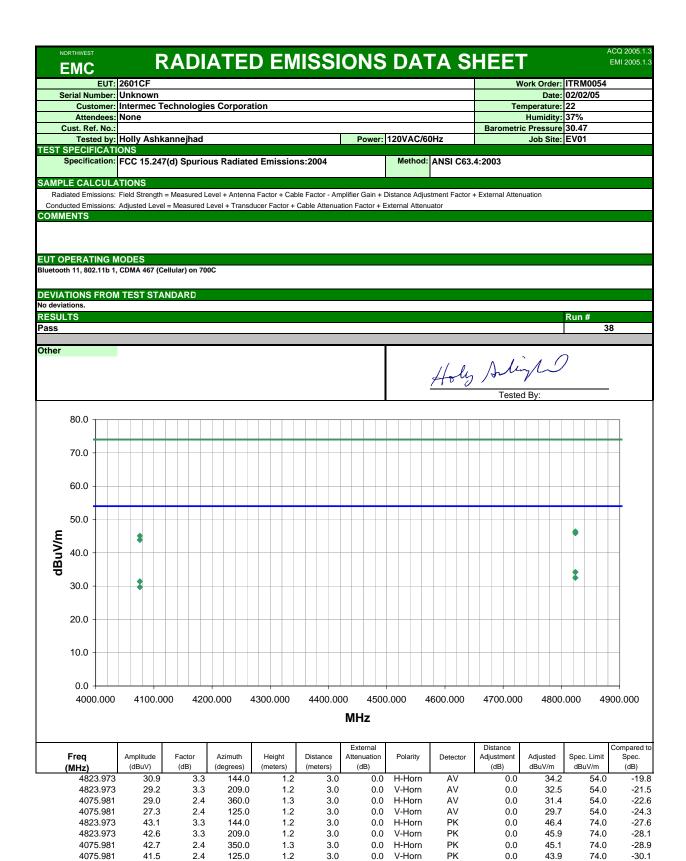
Bandwidths Used for Me	asurements		
Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
Above 1000	1000.0	N/A	1000.0
Measurements were n	nade using the bandwidths	and detectors specified. No	video filter was used.

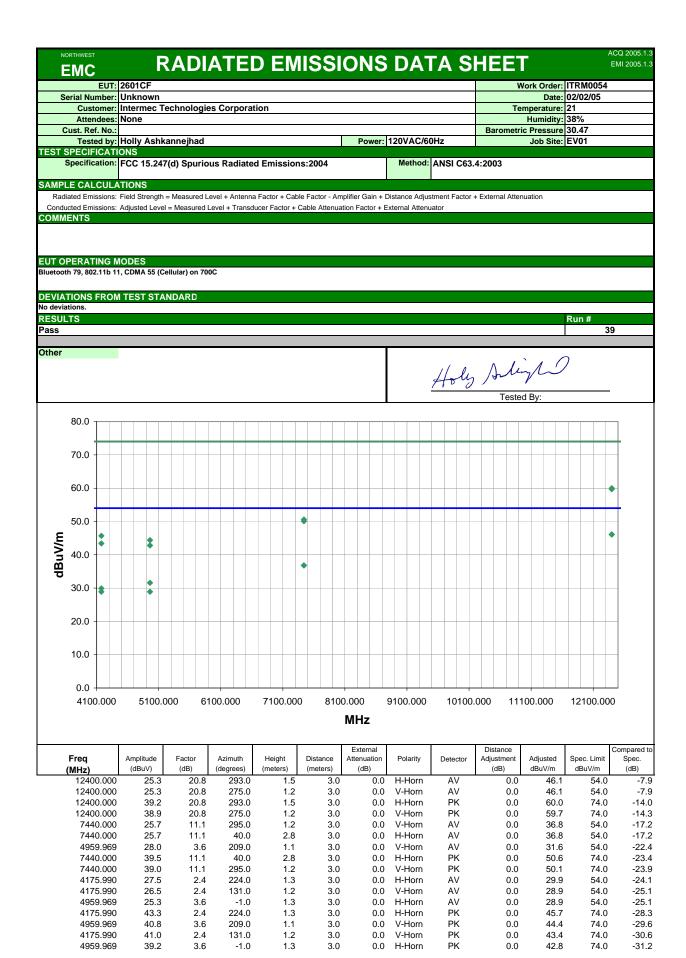

Completed by: Holy Alight

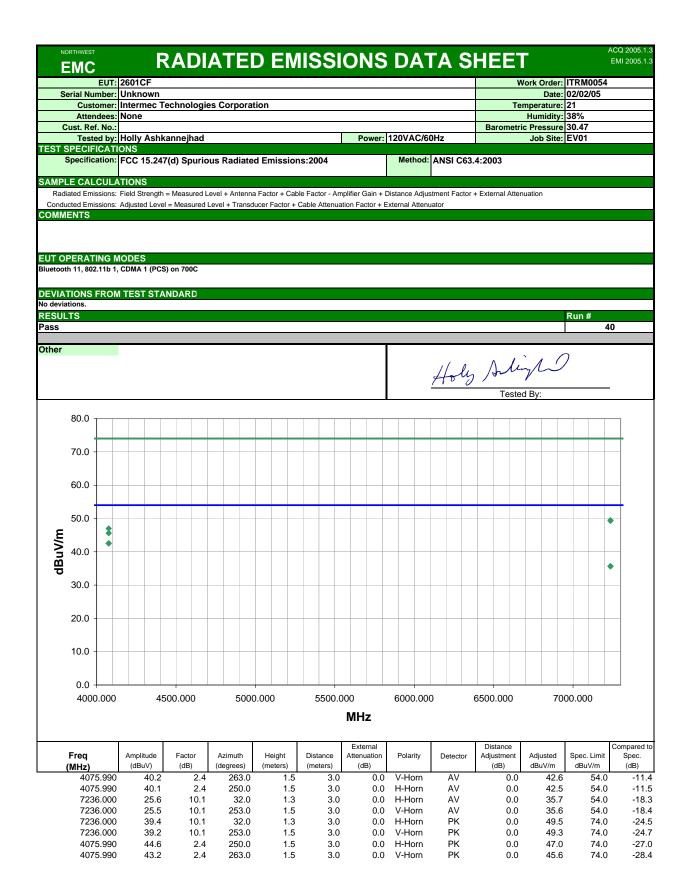
	orthwest					R	A	D	/	/.	Γ	Ξ	D	ł		M	K	S	S		D	N	S	D	A		Ά	S	51	łE	Ε	Т							2 2005.1. EMI A2.1
		EUT	: 26	01C	F																											Wo	ork C	Orde	r: 11	FRM	0054		
S	erial Nu																																	Date	_				
		tomer			ec .	Тес	hno	olog	gies	s Co	orp	ora	tioı	1																				ature					
		ndees																																nidity					
C	Cust. Re																			_									_	Bar	ome	tric		ssur					
тгот (ed by			Ash	kar	nej	had	d												P	ow	er:	120\	AC	/60	Hz						Job	o Site	e: E	V01	_		_
TEST S	Specific				5.24	17(c	I) S	pur	iou	s R	adi	iate	d E	mi	ssi	on	s:2	004	1					M	etho	d:	ANS	I C6	3.4	200	3								
	LE CAL					h = I	Леаs	surec	d Lev	vel +	- Ant	tenna	a Fa	ctor	+ C	able	e Fa	ictor	· - A	mpl	ifier	Gair	۱+ I	Distan	ce Ad	djust	ment	Facto	or + I	Exterr	nal At	tenua	ation	1					
	ucted Em				-																					-													
L																																							
	PERAT th 11, 80				1153	3 (P	CS) (on 7	00C																														
DEVIA No devia	TIONS ations.	FRO	МΤΙ	EST	ST	AN	DAF	۲D																															
RESUL Pass																																			R	lun		30	
Other																								r –															
other																										2	4	l	5	A	J Tes				2			_	
	80.0																														103		Uy.						
		Ļ																																					
	70.0																																						
	60.0	+																																					
_	50.0																																						
dBuV/m	40.0	-																																					
dВ	30.0																																				•		
	20.0																																						
	10.0																																						
	0.0 1920	00.00	0 1	921	0.0	00	19)22(0.0	00	19	9230	0.0	00	19	924	40.0	000) -		250. MH		0	1926	60.0	00	19	270	.000) 1	9280	0.00	00	192	90.	.000	193	Щ 300	.000
	Freq (MHz)			mpliti (dBu'			Fac (dE				imuti gree			Heig				stan		,	Atten	erna nuati dB)		Po	larity			tector		Adjus	ance tmeni B)	t		usted IV/m	ç		. Limit IV/m	Co	mpared t Spec. (dB)
	1929	6.000		2	24.5	i		8.	0		360	0.0			1.	0			3.0)		(0.0	V-Hig	hΗ	orr		٩V			0.	0		32.	5		54.0	ì	-21.
		6.000			24.4			8.				1.0			1.				3.0					H-Hig				٩V			0.			32.			54.0		-21.
		6.000			38.2			8.			360				1.				3.0					V-Hig				PK			0.			46.			74.0		-27.
	1929	6.000)	:	37.6			8.	0		-'	1.0			1.	0			3.0	C		(0.0	H-Hig	hΗ	orr	1	ΡK			0.	0		45.	6		74.0)	-28.

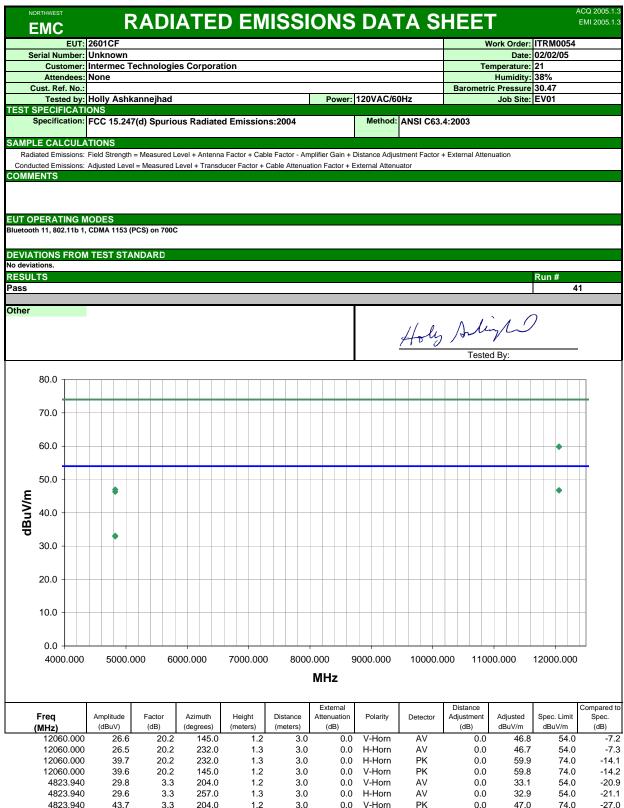

	orthwest				R	Α	D	1/	1	1	- [)	E	N		S	S		D	N	S)/	47	Α		Sł	16			Γ					ļ		2005.1.3 MI A2.13
		EUT:	2601	CF																										V	/ork	Orc	ler:	ITR	MO	054		
S	erial Nu	mber:	Unk	now	n																											Da	ate:	02/	02/0)5		
		omer:			: Teo	chno	olog	gies	s Co	orpo	rati	on															Ţ			Те	mpe							
		idees:		е																								_						38%				
	Cust. Re	t. No.: ed by:		v / / e	hka	nno	ihad	4										T			or	120	N/A	C/60				ва	rom	letri				30. ⁻ EV(
TEST S	SPECIF			y AS	пка	me	jna													000	er.	120	VA	0/00							JU	003	nte.		,			
;	Specific	ation:	FCC		247(d) S	pur	iou	s R	adia	ated	l En	niss	sior	ns:2	200	4					N	/leth	nod:	ANS	SI Ce	63.4	:200)3									
Rad	LE CAL liated Emi ucted Emi	issions:	Field	Stren	-																			-		Fact	or +	Exter	nal A	Atter	nuatio	n						
COMM		13310113.	Aujus		ever =	· Wee	isure	u Le	Well 4	- TTa	1300	Cerri	acti	51 +	Cab		llen	uan	5111 8	actor	ΤL	_Xten		allenia	ator													
	PERAT th 68, 80				(PCS	S) on	700	c																														
	TIONS							Ũ																														
No devia																																				_		
RESUL	LTS																																	Rui	n #			
Pass																																				3	1	
Other																						Γ								,	、	,	7	7				
																									H	ł	'n				√ d By		') 	, 				
	80.0																						_															
	70.0					-					-	-		-					+	+			+				_		+	-		+				++	+	
	70.0																																					
	60.0						-					-							-				+														-	
	50.0							•															-														1	
dBuV/m	40.0																																				_	
Вb	30.0							•																														
	20.0																																				_	
	10.0					_	-					-							-				+														-	
	0.0										_								_																			
	2220	0.000	22:	210.	000	22	2220	0.00	00	222	230	.000	5 2	222	40.	.00	0		250 MH		0	222	60.	.000	22	270	.00	02	228	30.0	000	22	229	0.00	00	223	:00.	.000
			1		_			-			-							-	Fvt	erna	ul.	1					-1	Die	tance	e 1							Cor	npared to
	Freq (MHz)			olitude BuV)		Fac (dl	B)			muth rees)		eight eters	5)		ista mete	ers)		Atter	nuati dB)	on		olari	-		tecto	r	Adju	stme dB)	ent		ljuste BuV/r	m		ec. L BuV/	/m		Spec. (dB)
		1.000		26			9.			-1 260				1.0			3.							Horr		AV				0.0			5.9			54.0		-18.1
		1.000		26 39			9. 9.			360 360				1.0 1.0			3. 3.							Horr Horr		AV PK				0.0).0			5.7 8.6			54.0 74.0		-18.3 -25.4
		1.000		39. 39.			9. 9.			-1				1.0			з. З.							Horr		PK).0).0			o.o 8.6			74.0 74.0		-25.4 -25.4


	RTHWES ^T	;				R	A	D		\ T	Έ	D		ΞN	И	IS	S	31	0	N	S	D		ra s	H								2 200 EMI /
			_	601	-																						Worl				M0054	1	
Se	rial Nu																														2/05		
		tome				: Те	chn	olog	jies	Coi	rpora	atic	n													T	emp						
		ndee	-		•																				_					38%			
C	ust. Re																					001/4	0.00		В	arome							
тs	Test PECIF	ed by			AS	hka	nne	jhad	1										Р	owe	r: 1	20VA	C/60	JHZ			J	ob S	ite:	EV0	1		
	pecific		_		15.2	247(d) S	puri	ious	s Ra	idiat	ed	Emi	issi	ons	:20	04					Meth	nod:	ANSI C63	8.4:20	003							
Radia nduo	E CAL ated Em cted Em ENTS	ission	s: F	ield S	streng	-																		tment Factor	+ Ext	ernal Att	enuati	ion					
	PERAT					(cell	ular)	on 7	2000																								
						-	-		000																						_		
	IONS ions.	FRU	VIVI	IE9	13	IAN	IDA	Rυ																									
UL																														Run	#		
s																																32	
er																					T								-	<u> </u>			
																								Holi		Λ		1					
																								Holi	7 /	fr	\sim						
																								110 0		T						_	
																										rest	ted B	y:					
	00.0																																
	80.0																																
	70.0																																-
	70.0																																
	60.0																																
	60.0																																
		\downarrow																													\perp		
	50.0																																
_	50.0																																
ulivnan																															₹		
S	40.0																																
2	10.0																																
5																																	
	30.0	$\downarrow \downarrow$	_				_		_	_							_	_													+		
	20.0	++	-	+			_	+		-	$\left \cdot \right $	-						-	$\left \cdot \right $		-						_				+	+	
	10.0	++	-	+			-	+	-	+		+					-	+			-										+	+	
	0.0																																
	0.0									_		1																					
	1920	0.00	00	192	210.	000	19	9220	0.00	0	1923	30.0	000	19)24(0.0	00	19	250.	.000	1	9260.	000	19270.0	000	19280	0.000) 19	9290	0.00	0 19	300	0.00
																			мн	7													
																		I		~													
	_											Γ								ernal		_				stance						Co	ompa
	Freq			Ampl				tor		Azim			Hei				ance			uatio	n	Polari	ty	Detector	Adj	ustment		djuste			c. Limit		Spe
_(MHz)	0.00		(dB	uV)	_	(d				ees)		(met			(me	ters)		(0	dB)	<u> </u>	11:	L Le ::	A1/		(dB)		BuV/i		dB	BuV/m	<u> </u>	(dl
	1929				24.			8.0		3	360.0			1.0				8.0				-High				0.0			2.7		54.0		
	1929				24.			8.0		~	-1.0			1.0				8.0				-High				0.0			2.6		54.0		-
	1929				38.			8.0		3	360.0			1.0				8.0				-High				0.0			6.7		74.0		-
	1020	96.00	0		37.	8		8.0	n		-1.0	۱ ۱		1.0	n		2	3.0		0	L 0	-High	Lorr	PK		0.0	٦.	1	5.8		74.0	`	


		*				R	A	D	1/		E)	E	N		S	S		0	Ν	S	6 D)/		A	S	5	E	E								CQ 2 EM	11 A2.
		EUT	-																												Wo	ork (Orde	_			4		
Se	erial Nu																																		2/02	2/05			
		omer			iec	Тес	hn	olog	gies	Co	rpo	rati	on																				ature	_					
		ndees																															nidity						
С	ust. Re																		-				1400						Bar	ome	tric		ssur	_					
е те	Test PECIF	ed by			Ash	ikai	nne	jhao	ł												Pov	/er:	120	VAC	;/60	Hz						Job	o Site	e: E	V01		_		
	Specific		_		5.24	47(o	l) S	pur	iou	s R	adia	ated	En	nis	sio	ns:	200)4					N	letho	od:	ANS	I C6	3.4:	200	3									
	E CAL					th =	Mea	surec	d Lev	rel +	Ante	nna	Fact	tor +	Cal	ble F	act	or	Amp	olifie	r Gai	in +	Distar	ice A	djust	tment	Facto	or + E	xterr	al At	tenu	atior	ı						
	cted Em ENTS	issions	: Ad	juste	d Lev	/el =	Mea	sure	d Le	vel 1	Tra	nsdu	cer I	Fact	or +	Cat	ole A	Atter	nuati	ion F	acto	or +	Extern	al Att	tenu	ator													
	PERAT h 5, 802					ellu	ar) o	on 70	00C																														
	TIONS tions.	FRO	МΤ	EST	ST	AN	DAI	RD																															
SUL	TS																																	F	lun	#			
S																																					33	_	_
er																																		~			_		-
																									<u>:</u>	4	l	5	A	J Tes	Ling ted	A Bv		9					
	80.0												_		1					1 1		_																	
													_				_					_															+	Ļ	
	70.0																																				-		
	60.0			_								_	-				_				_	_				_						_					_	-	
	50.0																																				_	t	
dBuV/m	40.0																		1																				
dBu	40.0																																						
	30.0																																					-	
	20.0			_						_			+									-				_						_					+	-	
	10.0																																				_		
	0.0																																						
	0.0 1920	0.00	0 1	1921	0.0	000	19	9220	0.00	00	192	230	.00	0	192	240	.00	00		250 Mł		00	192	60.0	000	19	270.	000	19	9280	0.00	00	192	290	.000) 19) 30	- 10.0	00
						1			1			Т				1			Т	F۱	tern	al			-				Dista	ance	1			-			Tr	Comp	are
	Freq MHz)			mplit (dBu	V)		Fac (dl	B)			nuth)		eigh eter:	s)	(ance ers)		Atte	nuat (dB)	ion		plarity			ector			tmen B)			usted uV/m			. Limi ıV/m	it	Sp	pec. dB)
		8.000			24.7			7.			-1				1.0				.0				H-Hi				١V			0.			32.			54.			-2
		8.000			24.6			7.			360				1.0				.0				V-Hi				٩V			0.			32.			54.			-2
		8.000			37.8			7.			360				1.0				.0				V-Hi				٩K			0.			45.			74.			-2
	1924	8.000)		37.1			7.	8		-1	.0			1.0			- 3	.0			0.0	H-Hig	nh⊢	lorr	F	Ϋ́			0.0	0		44.	9		74.	0		-2




	orthwest				R	A	D	1/)	E	N	I	S	S	10	D	N	S	D	A	T	A	S	Η	E	E	Т					A		2005.1.3 MI A2.13
		EUT:	260	1CF																										Wor	'k O	rder	ITF	RMO	054		
S	erial Nu	mber:	Unk	now	n																											Date	: 02/	/02/()5		
		omer:			с Те	chn	olo	gies	s Co	orpc	rati	on																	Т			ture					
		dees:	Non	e																							_					idity					
	Cust. Re				hka		iha	4											_			120V		201	_		E	Baro	met			sure					
TEST	SPECIF	ed by:			пка	nne	jna	a											P	owe	r:	1200	40/	DUH	z						dor	Site		01			
;	Specific	ation:	FCC	: 15.:	247(d) S	pur	iou	s R	adia	ated	En	niss	sior	ns:2	200	4					Me	thod	I: AI	NSI	C63	.4:2	003								_	
Rad	liated Emi ucted Emi	ssions:	Field	Stren																						actor	+ Ex	terna	al Atte	enua	tion					_	
COMM	ILINIO																																				
	PERAT th 62, 802				53 (F	PCS)	on 7	00C																													
DEVIA No devia	TIONS ations.	FROM	I TES	ST S	TAN	IDAI	RD																														
RESUL	LTS																																Ru	n #			
Pass																																	Γ		3	5	
Other																					Т									~						_	
																								Ŧ	4	lį) /	ۍ ۱	Л Fest	سم ed E	Л Зу:	~					
	80.0																																				
	70.0																																				
	10.0																																				
	60.0																																				
	50.0												-		_															:	*						
dBuV/m	40.0																																				
В	30.0																													4	•						
	20.0																																				
	20.0																																				
	10.0																																				
	0.0														_				_														-			Ц	
	240	0.000	24	410.0	000	2	420	0.00	00	24	30.	000)	244	40.(000)		50. MH	.000 47		2460	0.00	0	24	70.0	000	24	480	.000	0	249	90.0	00	25	00.	000
																		1	WII	12																	
	Freq (MHz)			plitude BuV)		Fac (dl	B)		(deg	muth grees)		eight eters	i)		istar nete	ers)		Atter	ternal nuatio dB)		Pola			Dete			Distar djustr (dB	nent)	0	\djus dBu\	//m	c	ec. L IBuV/	.imit /m	5	npared to Spec. (dB)
		3.500		12			32.			165				1.2			1.0			0.		V-H			A				-9.5			35.1			54.0		-18.9
		3.500		12			32.			327				1.2			1.0			0.		H-H			A				-9.5			34.7			54.0		-19.3
		3.500 3.500		27 26			32. 32.			165 327				1.2 1.2			1.(1.(0. 0.		V-H H-H			P P				-9.5 -9.5			49.5 48.5			74.0 74.0		-24.5 -25.5



4823.940

43.0

3.3

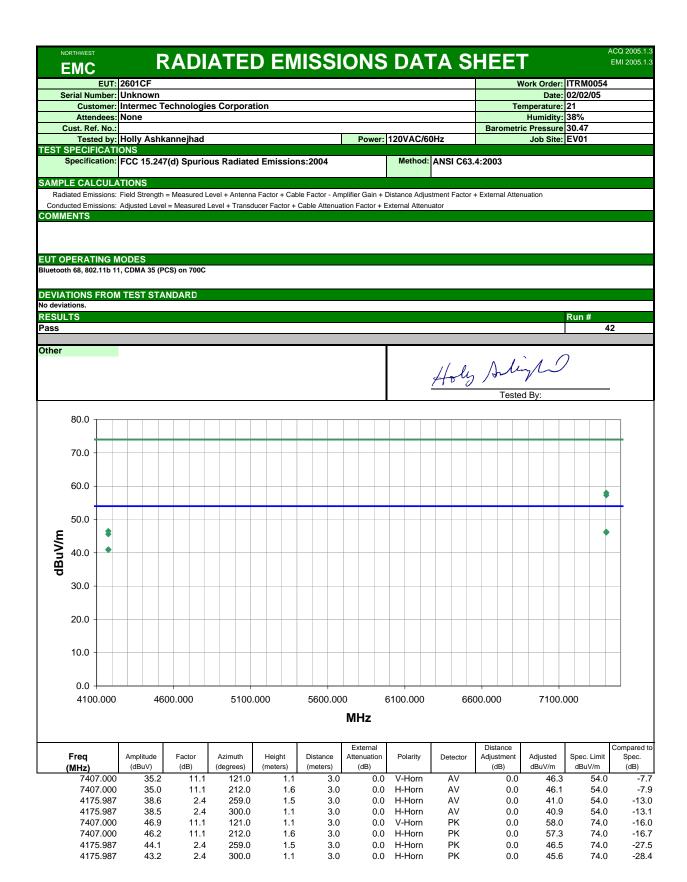
257.0

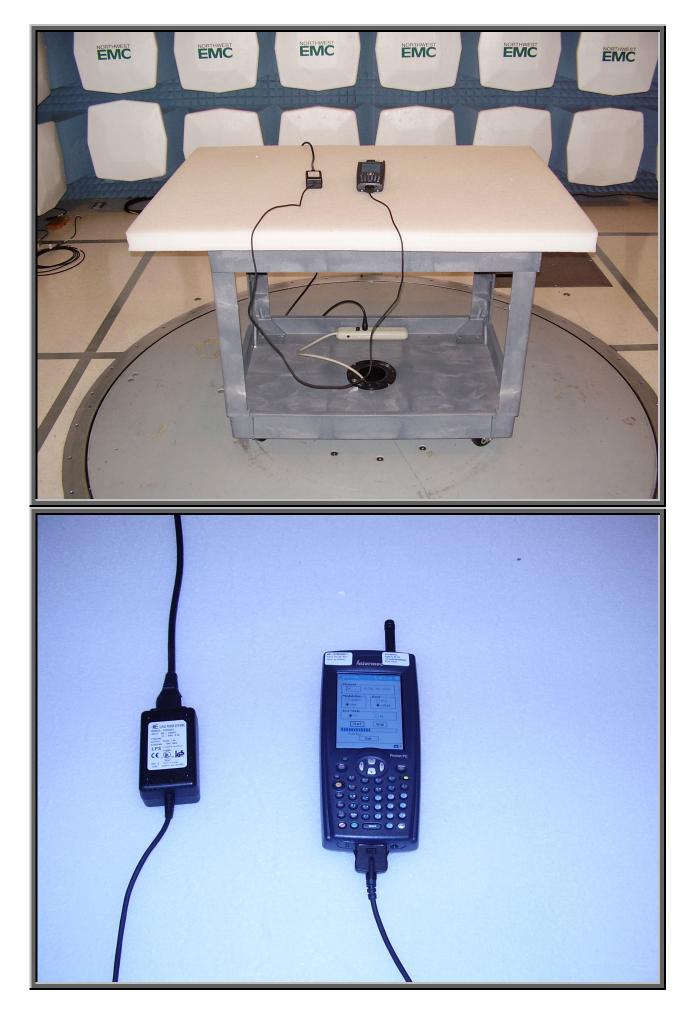
1.3

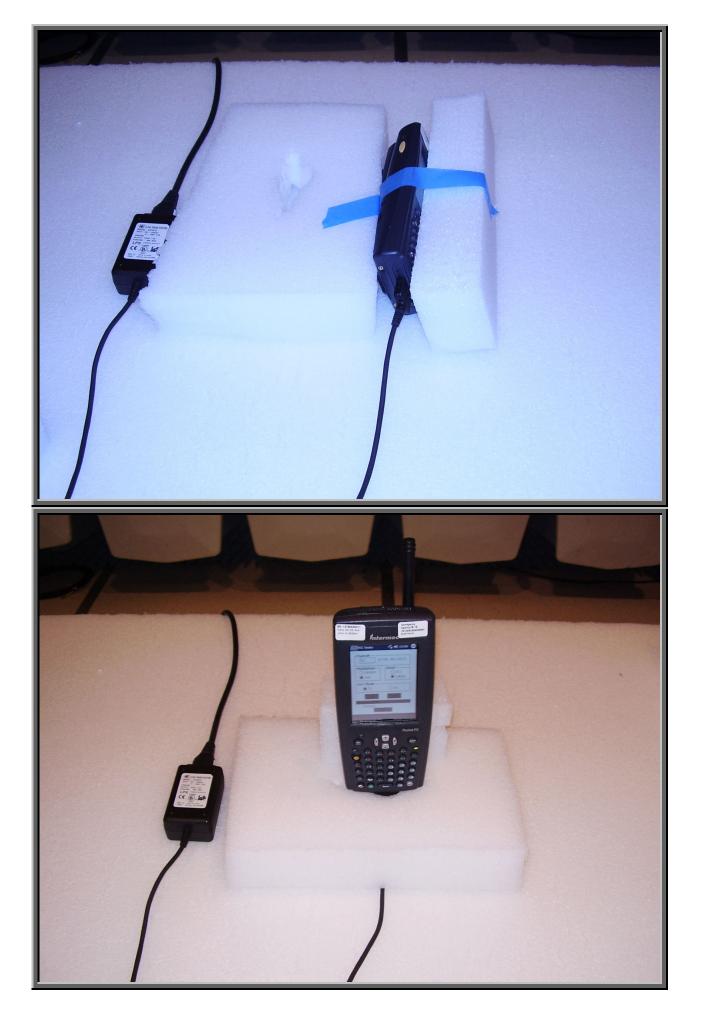
3.0

0.0

H-Horn


ΡK


0.0


46.3

74.0

-27.7

Justification

Intermec's Handheld Computer, Model 700C was configured with three co-located radios. The 700C contained a GSM radio (FCC ID: EHASMC46), an 802.11(b)/(g) radio (FCC ID: EHA2610CF), and a Bluetooth radio (FCC ID: EHABTS080). This test demonstrated compliance with FCC Part 15.247 emissions limits while the co-located radios were transmitting simultaneously. Each radio transmits through its own antenna.

All possible combinations of harmonic emissions from the GSM, 802.11(b)/(g), and Bluetooth radios were compared numerically. It was determined that there were no possible coincidental harmonics below 1 GHz. All the radios were configured for simultaneous transmission at the channels specified below.

Channels in Specif	ied Band Investigated:
802.11(b):	1,11
GSM (Cellular):	140, 141, 191, 202
GSM (PCS):	516, 606
Bluetooth:	2, 11, 67, 80

Operating Modes Investigated:
Bluetooth Radio in PW40 with 700C in cradle:
Simultaneous transmission of Bluetooth Channel 11, 802.11(b) Channel 1, & GSM PCS Channel 516
Simultaneous transmission of Bluetooth Channel 67, 802.11(b) Channel 11, & GSM PCS Channel 516
Simultaneous transmission of Bluetooth Channel 2, 802.11(b) Channel 1, & GSM PCS Channel 606
Simultaneous transmission of Bluetooth Channel 80, 802.11(b) Channel 11, & GSM PCS Channel 606
Simultaneous transmission of Bluetooth Channel 11, 802.11(b) Channel 1, & GSM cellular Channel 202
Simulteneous transmission of Bluetooth Channel 5, 802.11(b) Channel 1, & GSM cellular Channel 191
Simultaneous transmission of Bluetooth Channel 79, 802.11(b) Channel 11, & GSM cellular Channel 141
Simultaneous transmission of Bluetooth Channel 79, 802.11(b) Channel 11, & GSM cellular Channel 140

Antennas Investiga	ated:					
802.11(b):	2.11(b): Folded Monopole internal to 700C, P/N 805-608-104					
GSM:	Tri-band Antenna external to 700C, P/N 805-624-001					
Bluetooth: Chip antenna integral to Bluetooth module inside 700C						

Data Rates Investigated:

Maximum

Power Input Settings Investigated:

120 VAC, 60 Hz.

Frequency Range Invest	igated		
Start Frequency	1 GHz	Stop Frequency	25 GHz

Software\Firmware Applied During Test							
Exercise software	Phone Blue Test Test Utility	Version	Unknown Unknown 0.4				
Description							
This system was tested using special test software to exercise the functions of the device during the testing such as channels, power, and modulation during simultaneous transmission.							

EUT and Peripherals			
Description	Manufacturer	Model/Part Number	Serial Number
Handheld Computer	Intermec Technologies Corporation	700C	18190400041
AC Adapter	Elpac Power Systems	FW1812	014868
GSM Radio in 700C	Intermec Technologies Corporation	SMC46	Unknown
Bluetooth Radio in 700C	Intermec Technologies Corporation	BTS080	Unknown
802.11(b)/(g) radio in 700C	Intermec Technologies Corporation	2601CF	Unknown

Remote Equipment Outside of Test Setup Boundary								
Description	Manufacturer	Model/Part Number	Serial Number					
GSM/DCS/PCS MS Test Set	Hewlett Packard	8922M	3829U02903					
GSM/DCS/PCS RF Interface	Hewlett Packard	83220E	3842U05679					
Wireless Communications Test Set	Agilent	8960 Series 10 E5515C	QB44051960					
Equipment isolated from the EUT so as not to cont	Equipment isolated from the EUT so as not to contribute to the measurement result is considered to be outside the test setup boundary							

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
DC Leads	PA	1.3	PA	Handheld Computer	AC Adapter
AC Power	No	2.0	No	AC Adapter	AC Mains

Measurement Equipme	nt				
Description	Manufacturer	Model	Identifier	Last Cal	Interval
Antenna, Horn	EMCO	3160-09	AHG	NCR	NA
Pre-Amplifier	Miteq	JSD4-18002600-26- 8P	APU	10/08/2003	24 mo
Antenna, Biconilog	EMCO	3141	AXE	12/03/2003	24 mo
Pre-Amplifier	Amplifier Research	LN1000A	APS	02/05/2004	13 mo
Antenna, Horn	EMCO	3115	AHC	09/07/2004	12 mo
Pre-Amplifier	Miteq	AMF-4D-005180-24- 10P	APJ	01/05/2004	13 mo
High Pass Filter	Micro-Tronics	HPM50111	HFO	04/13/2004	13 mo
Attenuator		2082-6148-20	ATE	02/03/2004	13 mo
Quasi-Peak Adapter	Hewlett-Packard	85650A	AQF	12/02/2004	13 mo
Spectrum Analyzer	Hewlett-Packard	8566B	AAL	12/02/2004	13 mo
Spectrum Analyzer Display	Hewlett Packard	85662A	AALD	12/02/2004	13 mo
Spectrum Analyzer	Tektronix	2784	AAO	01/02/2005	12 mo
Antenna, Horn	EMCO	3160-08	AHK	NCR	NA
Pre-Amplifier	Miteq	AMF-4D-005180-24- 10P	APC	10/08/2003	15 mo

Test Description

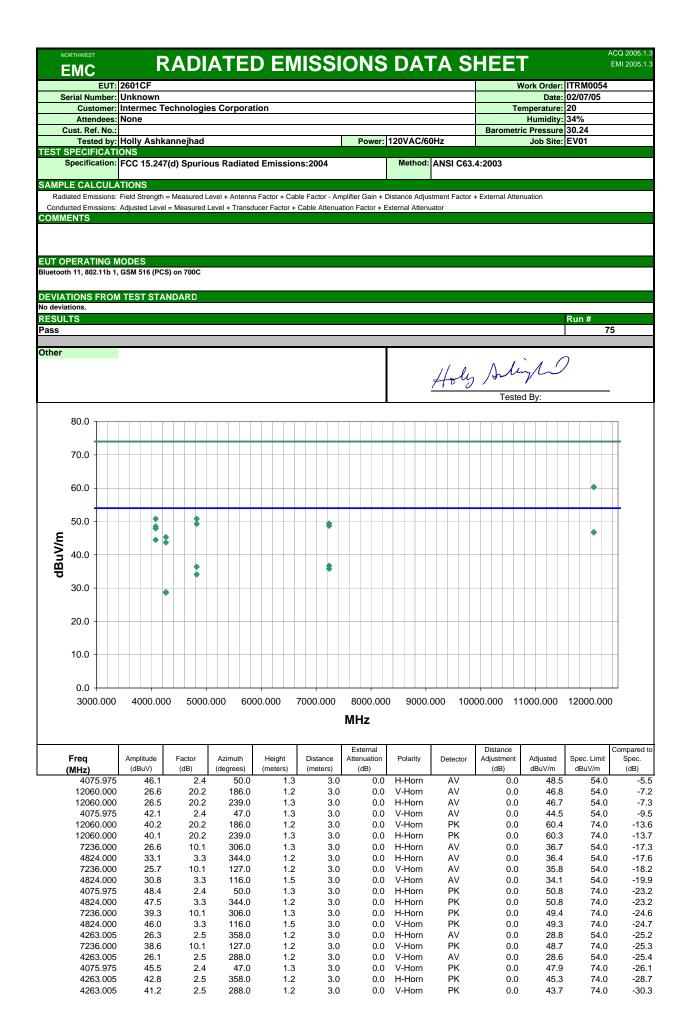
<u>Requirement</u>: Per 15.247(d), the field strength of any spurious emissions or modulation products that fall in a restricted band, as defined in 47 CFR 15.205, is measured. The peak level must comply with the limits specified in 47 CFR 15.35(b). The average level (taken with a 10Hz VBW) must comply with the limits specified in 15.209.

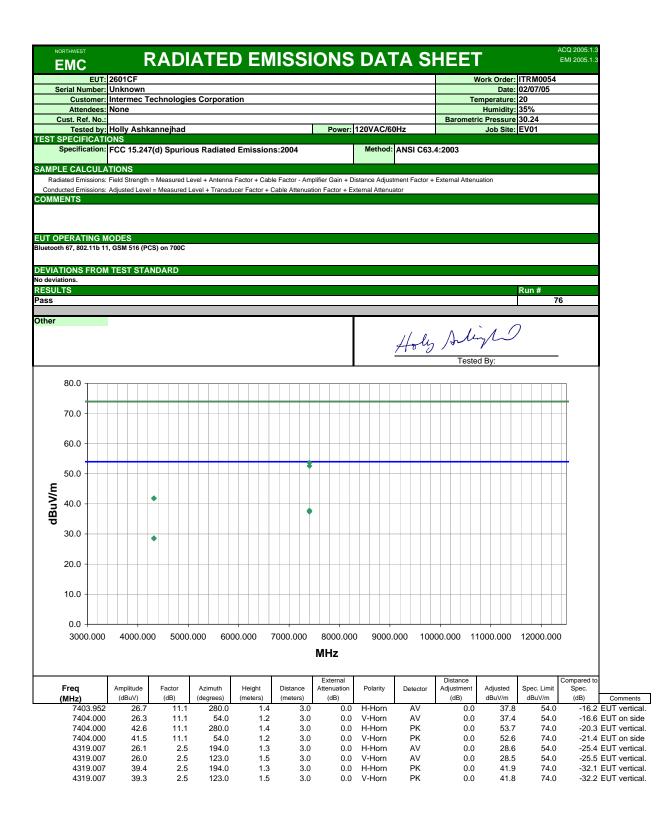
<u>Configuration</u>: Intermec's Handheld Computer, Model 700C was configured with three co-located radios. The 700C contained a GSM radio (FCC ID: EHASMC46), an 802.11(b)/(g) radio (FCC ID: EHA2610CF), and a Bluetooth radio (FCC ID: EHABTS080). This test demonstrated compliance with FCC Part 15.247 emissions limits while the co-located radios were transmitting simultaneously. Each radio transmits through its own antenna.

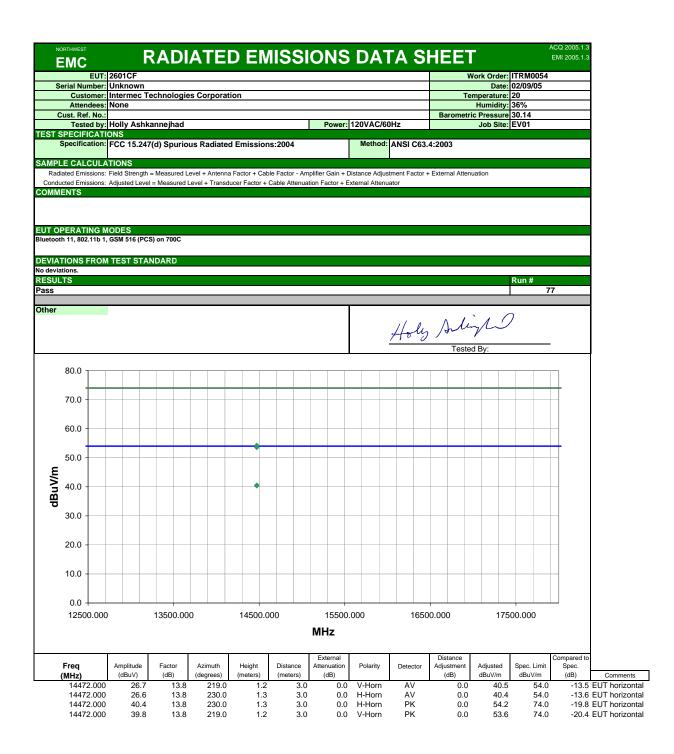
Simultaneous Transmission: For co-located radios, it is necessary to measure the field strength of spurious emissions, while co-located radios are transmitting simultaneously. The following is an excerpt from the FCC/TCB training Q & A, October 2002, Day 2, Question 7:

Assuming that the radios do not share an antenna, only radiated tests for simultaneous transmission is required. If the radios share an antenna, antenna conducted measurements would also be required. Only one set of worst case simultaneous transmission data is going to be requested to be submitted at this time. The test engineer should indicate the worst case condition and provide justification as to why the worst case condition was chosen. The grantee should be reminded that even if the FCC requests one set of data, they are responsible for compliance for all modes of simultaneous transmission.

All possible combinations of harmonic emissions from the GSM, 802.11(b), and Bluetooth radios were compared numerically. It was determined that there were no possible coincidental harmonics below 1 GHz. The frequency range from 1 GHZ to 25 GHz was investigated for channel combinations that would

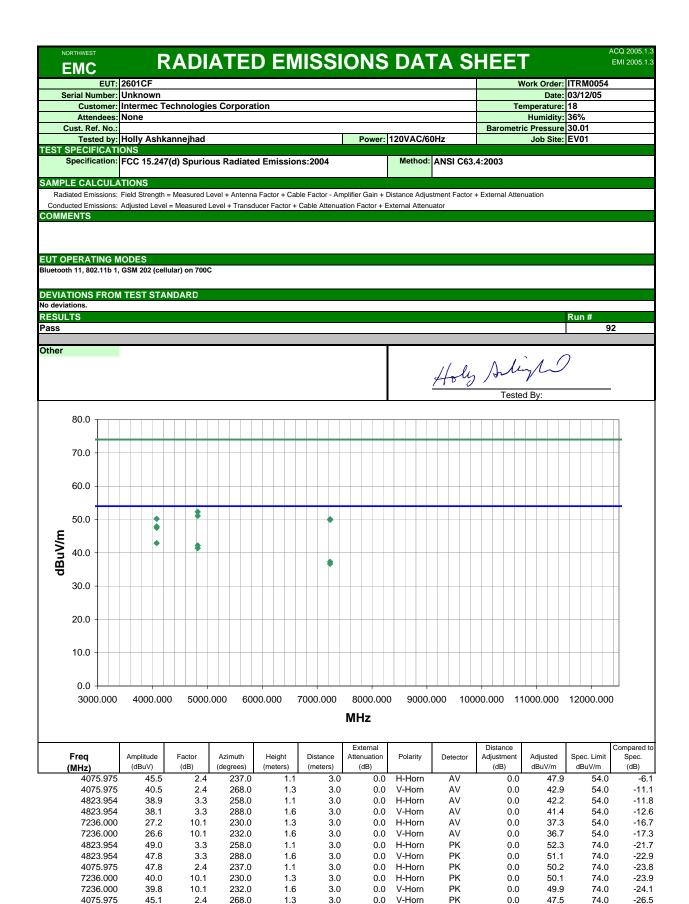


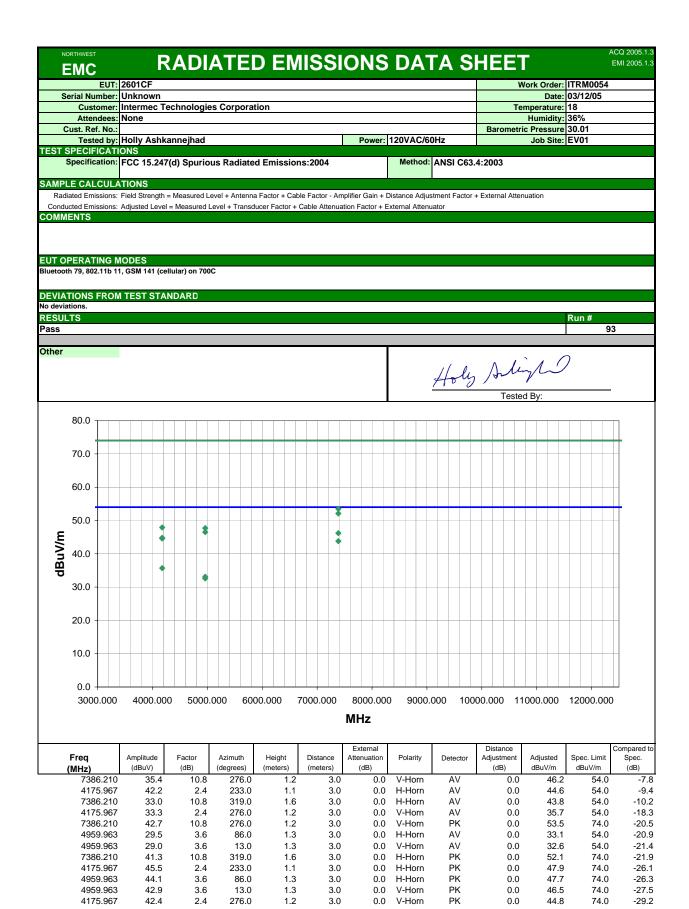

produce coincidental harmonics. Compliance with the restricted band at 2483.5 – 2500 MHz was also measured.

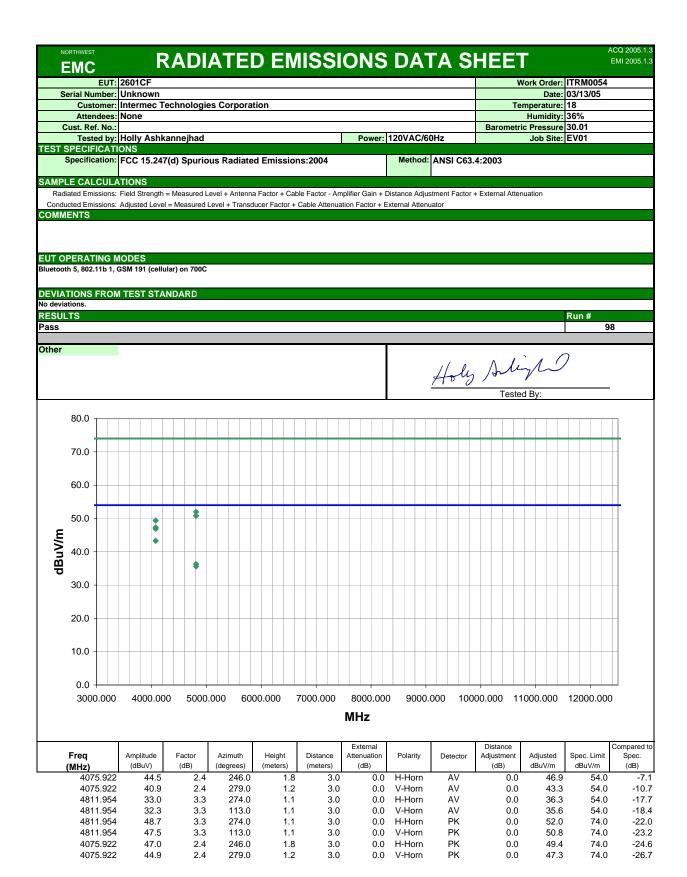

All the radios were configured for simultaneous transmission at the channels specified in the previous pages. The highest gain antennas to be used with the radios were tested. The spectrum was scanned throughout the specified range. While scanning, emissions from the radios were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antennas in three orthogonal axes, and adjusting the measurement antenna height and polarization (per ANSI C63.4:2003). A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.

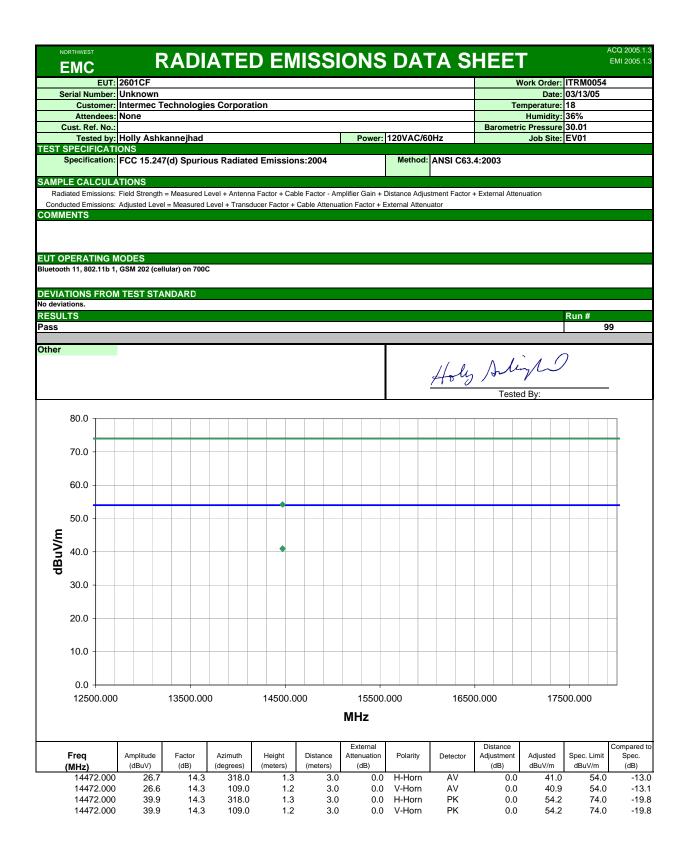
Bandwidths Used for Me	asurements		
Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
Above 1000	1000.0	N/A	1000.0
Measurements were n	nade using the bandwidths	and detectors specified. No	video filter was used.

Completed by:							
Holy Arlingh	7						

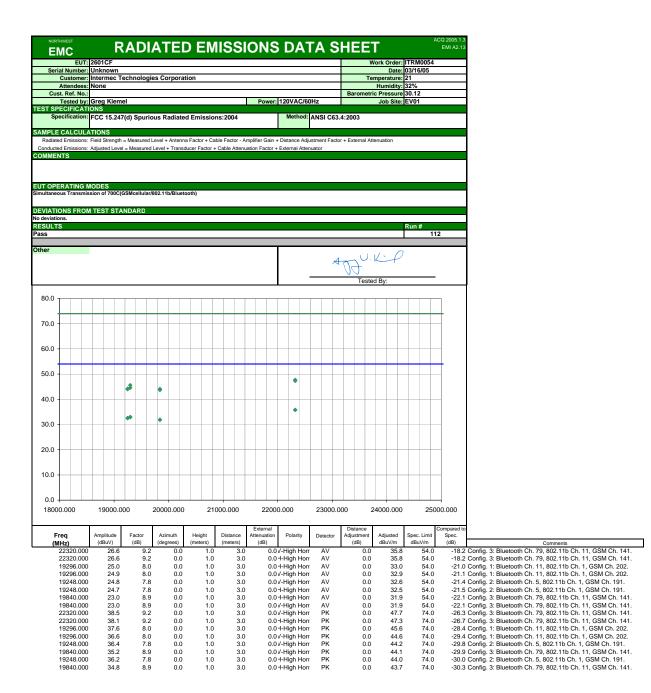


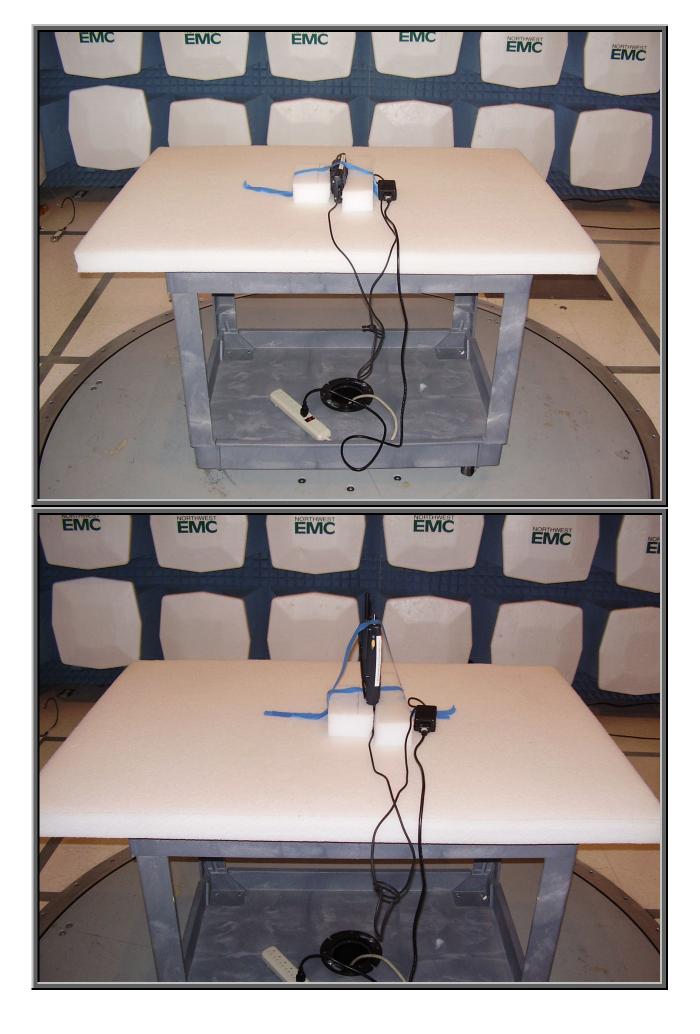



	THWEST		RADI	ATE	D EN	IISS	IONS	S DA	TA S	HEE1	Γ		ACQ 2005.1.3 EMI 2005.1.3					
	-	: 2601CF								V	Vork Order:	ITRM0054						
Ser	ial Number	: Unknown					02/09/05											
			Technologi	es Corpora	Te													
	Attendees				-	Humidity:												
Cu	st. Ref. No.		kannejhad		Barometr	ic Pressure Job Site:												
TEST SE	PECIFICAT		Kannejnau				Power	: 120VAC/6	0082		Job Site:	EVUI						
Sp		FCC 15.2	47(d) Spuric	ous Radiate	ed Emissio	ns:2004		Method	ANSI C63	.4:2003								
-			h = Measured L	_evel + Antenr	na Factor + Cat	le Factor - A	mplifier Gain +	 Distance Adju 	stment Factor	+ External Atter	nuation							
Conduct	ed Emissions		el = Measured															
COMME	NTS																	
	ERATING 67, 802.11b 1		PCS) on 700C															
		M TEST ST	ANDARD															
No deviation RESULT												Run #						
Pass	3												'9					
								-										
Other									Holy	Tested By:								
											· · · · ·							
80.0																		
													-					
70.0	-												_					
60.0	+												-					
						•												
50.0	1												-					
40.0						•												
40.0																		
30.0	-												_					
20.0	1												_					
10.0																		
10.0																		
0.0																		
1250	00.000	1:	3500.000		14500.000		15500.0	000	16500	0.000	1750	00.000						
_			_				External		_	Distance		a	Compared to					
	req	Amplitude (dBuV)	Factor (dB)	Azimuth (degrees)	Height (meters)	Distance (meters)	Attenuation (dB)	Polarity	Detector	Adjustment (dB)	Adjusted dBuV/m	Spec. Limit dBuV/m	Spec. (dB)					
(N	/Hz) 14808.000					(meters) 3.0) V-Horn	AV	(uв) 0.0	40.7	ави V/III 54.0	(ub) -13.3					
	14808.000					3.0			AV	0.0	40.7	54.0	-13.3					
	14808.000	40.1				3.0) H-Horn	PK	0.0	54.1	74.0	-19.9					
	14808.000) 39.9	9 14.0	31.0	1.2	3.0	0 0.) V-Horn	PK	0.0	53.9	74.0	-20.1					


	RTHWEST		RAD	ATE	D EN	IISS	IONS	DA'	TA S	HEET	[ACQ 2005.1.3 EMI 2005.1.3
	EUT:	2601CF								V	/ork Order:	ITRM0054	
Se	rial Number:	Unknown	1									02/09/05	
			Technolog	ies Corpora	ation					Te	mperature:		
0	Attendees:				Humidity: 33% Barometric Pressure 30.14								
	Ist. Ref. No.: Tested by:		nkannejhad				Power	120VAC/6	0Hz	Barometri	Job Site:		
TEST S	PECIFICAT		mannejnaa				TOWER	11201710/0			000 0110.	2001	
			47(d) Spuri	ous Radiate	ed Emissior	ns:2004		Method	ANSI C63	.4:2003			
	E CALCULA		th - Measured		na Factor + Cat	le Factor - A	mplifier Gain +	Distance Adju	etment Eactor	+ External Atter	wation		
					ducer Factor +					+ External Atter	luation		
COMME													
	ERATING N 2, 802.11b 1,		CS) on 700C										
	IONS FROM	N TEST ST	ANDARD										
No deviat												D	
RESULT Pass	3											Run # 8	0
		_						7					-
Other											/	7	
									11 li	All	n'		
									Hoy	, Ale	r		_
										Teste	d By:		
80.0													
00.0													
													-
70.0	-												_
60.0													-
50.0													
50.0													
40.0	-									•			_
30.0	+												_
20.0													
20.0													
10.0													_
0.0	+												
125	00.000	1	3500.000		14500.000		15500.0	00	16500	0.000	1750	00.000	
		T					-		•				
.	Freq	Amplitude	Factor	Azimuth	Height	Distance	External Attenuation	Polarity	Detector	Distance Adjustment	Adjusted	Spec. Limit	Compared to Spec.
	MHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)	rolanty	Delector	(dB)	dBuV/m	dBuV/m	(dB)
<u> </u>	16821.000			-		3.0		H-Horn	AV	0.0	41.1	54.0	-12.9
	16821.000					3.0			AV	0.0	41.1	54.0	-12.9
	16821.000					3.0			PK	0.0	55.0		-19.0
	16821.000	39.1	7 14.9	160.0) 1.2	3.0	0.0	V-Horn	PK	0.0	54.6	74.0	-19.4

	THWEST MC		RA	DI	ATE	D EN	IISS	IONS	D)A1	ΓA S	HEE	T		ACQ 2005.1.3 EMI A2.13					
		2601CF										1	Work Order:							
Ser	ial Number:													02/09/05						
	Customer: Attendees:	Intermec	Techr	nologie	es Corpor	ation			Temperature: 20 Humidity: 34%											
Cu	st. Ref. No.:	None										Baromet	ric Pressure							
		Holly Ash	kann	ejhad				Power:	120\	VAC/60)Hz		Job Site:							
	PECIFICATI																			
Sp	ecification:	FCC 15.24	47(d) :	Spurio	us Radiat	ed Emissio	ns:2004		м	ethod:	ANSI C63	.4:2003								
SAMPLE		TIONS																		
			h = Mea	asured L	evel + Anten	na Factor + Ca	ble Factor - A	mplifier Gain +	Distan	ce Adjus	tment Factor	+ External Atte	enuation							
		Adjusted Lev	el = Me	easured I	_evel + Trans	ducer Factor +	Cable Attenu	ation Factor +	Externa	al Attenu	ator									
COMME	NTS																			
			00)	7000																
Bluetooth	11, 802.11b 1,	, GSM 516 (P	CS) on	700C																
	ONS FROM	I TEST ST.	ANDA	ARD																
No deviatio																				
RESULT Pass	S													Run #	31					
Pass														<u> </u>	51					
Other			-							-										
											. 1 . 0	, Al	11	2						
											Holi	, An	yu	, 						
											1100				-					
												leste	ed By:							
80.0																				
00.0																				
			_												-					
70.0																				
60.0 ·															_					
50.0																				
50.0																				
			•	•																
40.0																				
10.0												•								
30.0				· ·																
20.0															_					
10.0																				
10.0																				
0.0															_					
1800	0.000	19000.	000		20000.00	0 21	000.000	2200	0.000)	23000.0	000	24000.000	250	000.000					
								External				Distance			Compared to					
	req	Amplitude		actor	Azimuth	Height	Distance	Attenuation	Po	larity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.					
(N	<u>/Hz)</u>	(dBuV)		dB)	(degrees)	(meters)	(meters)	(dB)			A) ((dB)	dBuV/m	dBuV/m	(dB)					
	23612.000 23612.000	27.3 27.0		10.3 10.3	239.0 281.0		3.0 3.0			gh Horr gh Horr		0.0 0.0								
	19310.000	26.1		8.0	281.0		3.0			gh Horr		0.0		54.0 54.0						
	19310.000	25.8		8.0	306.0		3.0			gh Horr		0.0								
								0.0	H-Hig	gh Horr	AV	0.0	33.4	54.0	-20.6					
	19296.000 25.3 8.0 360.0 1.0 3.0									gh Horr		0.0								
	19674.000	24.3		8.6	299.0		3.0			gh Horr		0.0								
	19674.000 23612.000	24.3 41.3		8.6 10 3	245.0 239.0		3.0 3.0			gh Horr gh Horr		0.0 0.0								
	23612.000	41.3		10.3 10.3	239.0		3.0			gn Horr gh Horr		0.0								
	19310.000	40.7		8.0	281.0		3.0			gh Horr		0.0								
	19310.000	39.3		8.0	306.0		3.0			gh Horr		0.0								
	19674.000	37.6		8.6	299.0					gh Horr		0.0								
	19296.000	37.9		8.0	360.0					gh Horr		0.0								
	19674.000 19296.000	37.2 37.4		8.6 8.0	245.0 -1.0		3.0 3.0			gh Horr gh Horr		0.0 0.0								
		57.4		0.0	-1.0	, 1.0	3.0	, 0.0	1110	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1 13	0.0	40.4	74.0	-20.0					





EMC RADIATED EMISSIONS DATA SHEET															ACQ 2005.1.3 EMI A2.13																	
	EUT: 2601CF															Work Order: ITRM0054																
Seri			er: Unknown																			_	03/16	3/05								
			: Intermec Technologies Corporation																empe													
Cur	Attende st. Ref.	_	None															Humidity: 32% Barometric Pressure 30.12														
Cu			C Greg Kiemel Power: 120VAC/60Hz															Job Site: EV01														
TEST SP	ECIFIC	ATIC																														
					7(d) \$	Spur	ious	s Ra	diate	ed E	Emis	sio	ns:2	2004	4				Me	ethod	I: AN	SI C	63.4:	2003								
SAMPLE	ed Emiss				- Mo	asurad		۵ ـــ ۵	ntenr	a Ea	actor	+ Ca	ble E	actor	r - Δr	nnlifi	vr Gai	n + D	Vietano	o Adi	ustmor	t Eac	tor + l	vtorn		onuati	20					
Conducte				-																-						maan	511					
COMME	NTS																															
EUT OPE																																
Bluetooth	79, 802.1	1b 11,	GSM 1	40 (ce	ellular) on 7	00C																									
			TEST	CT A		BD																								_		
DEVIATI No deviatio			IESI	STA	NDA	ARD																										
RESULT																													Run	#		
Pass																														_	111	
011																														_	_	
Other																								. /		\cap						
																					A	5		. K	-							
																						70	J									
																								-	Test	ed By	y:					
80.0 -]
70.0 -																																
10.0																																
60.0 -			_						_	_						_		-					-							+	_	
																																1
50.0 -																															-	
40.0 -																																-
30.0 -			_						-	_			_	-		_		-											_	+-+-	_	
00.0																																
20.0 -																																
10.0 -					_					_				-		_	+										_	$\left \cdot \right $	_	++	_	
0.0 -									+							-									-							4
1000	0.000	120	00.00	0	1400	0.000)	160	0.00	00	1	800	.000)	20	00.0	000	2	200.	000	24	100.0	000	26	00.0	000	28	800.	.000	3	3000	0.000
-			A	I.	-			a	41.								xtern		<u> </u>	14				Dista			P		0.			ompared to
	req IHz)		Amplit (dBu			actor dB)		Azim degre			Heig mete			istan neter		Att	enuat (dB)	ion	Pol	arity	D	etecto	or -	Adjustı (dE			djusteo BuV/m			:. Limi [:] uV/m	۱	Spec. (dB)
	2483.	500		12.3	(30.4		-	68.0			1.7		2101	3.0	 		0.0	H-F	lorn		AV		(01	,, 0.0			2.7	200	54.	0	-11.3
	2483.	500		12.0		30.		1	30.0			1.6			3.0			0.0	V-H	lorn		AV			0.0		42	2.4		54.	0	-11.6
	2483.			30.0		30.			68.0			1.7			3.0			0.0		lorn		PK			0.0			0.4		74.		-13.6
	2483.	500		26.0		30.	4	1	30.0			1.6			3.0			0.0	V-F	lorn		ΡK			0.0		56	5.4		74.	0	-17.6

