FCC TEST REPORT For Shenzhen Kean Digital Co., Ltd. ## NETWORK VIDEO RECORDER Test Model: N44WEC Additional Model No.: Please refer to page 6 Prepared for : Shenzhen Kean Digital Co., Ltd. Address : Rujun Building, Floor 4, No.105, the Center Road, Bantian Street, Longgang Zone, Shenzhen, China Prepared by : Shenzhen LCS Compliance Testing Laboratory Ltd. Address : 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue, Bao'an District, Shenzhen, Guangdong, China Tel : (+86)755-82591330 Fax : (+86)755-82591332 Web : www.LCS-cert.com Mail : webmaster@LCS-cert.com Date of receipt of test sample : September 11, 2017 Number of tested samples : 1 Serial number : Prototype Date of Test : September 11, 2017~November 03, 2017 Date of Report : November 03, 2017 ## **FCC TEST REPORT** FCC CFR 47 PART 15 C(15.247): 2016 Report Reference No.: : LCS170911108AE1 Date of Issue : November 03, 2017 Testing Laboratory Name.....: Shenzhen LCS Compliance Testing Laboratory Ltd. Address : 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue, Bao'an District, Shenzhen, Guangdong, China Testing Location/ Procedure: Full application of Harmonised standards ■ Partial application of Harmonised standards Other standard testing method Applicant's Name: Shenzhen Kean Digital Co., Ltd. Address : Rujun Building, Floor 4, No.105, the Center Road, Bantian Street, Longgang Zone, Shenzhen, China **Test Specification** Standard.....: FCC CFR 47 PART 15 C(15.247): 2016 Test Report Form No.: LCSEMC-1.0 TRF Originator.....: Shenzhen LCS Compliance Testing Laboratory Ltd. Master TRF : Dated 2011-03 ### Shenzhen LCS Compliance Testing Laboratory Ltd. All rights reserved. This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen LCS Compliance Testing Laboratory Ltd. is acknowledged as copyright owner and source of the material. Shenzhen LCS Compliance Testing Laboratory Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context. EUT Description.: NETWORK VIDEO RECORDER Trade Mark: N/A Test Model.....: N44WEC Ratings: INPUT: 100-240V~, 50/60Hz, 1.5A Max. OUTPUT: 12Vdc, 2A Result: Positive Compiled by: linda He Supervised by: Approved by: Linda He/ File administrators Dick Su/ Technique principal Gavin Liang/ Manager ### **FCC -- TEST REPORT** Test Report No.: LCS170911108AE1 November 03, 2017 Date of issue EUT..... : NETWORK VIDEO RECORDER Test Model.....: N44WEC Applicant..... : Shenzhen Kean Digital Co., Ltd. Address..... : Rujun Building, Floor 4, No.105, the Center Road, Bantian Street, Longgang Zone, Shenzhen, China Telephone..... Fax..... : / Manufacturer..... : Shenzhen Kean Digital Co., Ltd. Address..... : Rujun Building, Floor 4, No.105, the Center Road, Bantian Street, Longgang Zone, Shenzhen, China Telephone..... : / Fax..... : / : Shenzhen Kean Digital Co., Ltd. Factory..... Address..... : Rujun Building, Floor 4, No.105, the Center Road, Bantian Street, Longgang Zone, Shenzhen, China Telephone..... Fax..... : / Test Result Positive The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory. ## **Revision History** | Revision | Issue Date | Revisions | Revised By | |----------|-------------------|---------------|-------------| | 000 | November 03, 2017 | Initial Issue | Gavin Liang | | | | | | | | | | | # **TABLE OF CONTENTS** | 1. | GENERAL INFORMATION | 6 | |----|---|--------| | | 1.1. DESCRIPTION OF DEVICE (EUT) | 6 | | | 1.4. DESCRIPTION OF TEST FACILITY | /
& | | | 1.5. STATEMENT OF THE MEASUREMENT UNCERTAINTY | 8 | | | 1.6. MEASUREMENT UNCERTAINTY | 8 | | | 1.7. DESCRIPTION OF TEST MODES | 9 | | 2. | TEST METHODOLOGY | . 10 | | | 2.1. EUT CONFIGURATION | . 10 | | | 2.2. EUT EXERCISE | . 10 | | | 2.3. GENERAL TEST PROCEDURES | . 10 | | 3. | SYSTEM TEST CONFIGURATION | .11 | | | 3.1. JUSTIFICATION | | | | 3.2. EUT Exercise Software | | | | 3.3. SPECIAL ACCESSORIES | | | | 3.4. BLOCK DIAGRAM/SCHEMATICS | | | | 3.5. EQUIPMENT MODIFICATIONS | | | | | | | 4. | SUMMARY OF TEST RESULTS | .12 | | 5. | TEST RESULT | .13 | | | 5.1. On Time and Duty Cycle | . 13 | | | 5.2. MAXIMUM CONDUCTED OUTPUT POWER MEASUREMENT | | | | 5.3. POWER SPECTRAL DENSITY MEASUREMENT | | | | 5.4. 6 DB SPECTRUM BANDWIDTH MEASUREMENT | . 22 | | | 5.6. CONDUCTED SPURIOUS EMISSIONS AND BAND EDGES TEST | | | | 5.7. POWER LINE CONDUCTED EMISSIONS AND BAND EDGES TEST | | | | 5.8. BAND-EDGE MEASUREMENTS FOR RADIATED EMISSIONS | .52 | | | 5.9. ANTENNA REQUIREMENTS | . 63 | | 6. | LIST OF MEASURING EQUIPMENTS | .65 | | 7. | TEST SETUP PHOTOGRAPHS OF EUT | .66 | | 8. | EXTERIOR PHOTOGRAPHS OF THE EUT | .66 | | g | INTERIOR PHOTOGRAPHS OF THE FUT | 66 | ## 1. GENERAL INFORMATION ## 1.1. Description of Device (EUT) **EUT** : NETWORK VIDEO RECORDER Additional Model No. : N24WDD, N24WDE, N24WDL, N24WDM, N24WDN, N24WDP, > N24WDQ, N24WDR, N28WEF, N28WEG, N28WEH, N28WEJ, N28WEK, N28WEL, N28WEM, N28WEN, N34WDD, N34WDE, N34WDF, N34WDG, N34WDH, N34WDJ, N34WDK, N34WDL, N34WDM, N34WDN, N38WEE, N38WEF, N44WED, N44WEE, N44WEF, N44WEG, N44WEH, N44WEJ, N44WEK, N44WEL, N44WEM, N44WEN, N44WEP, N44WEQ, N44WER, N44WES, N44WET, N44WEU, N44WEV, N44WEW, N44WEX, N44WEY, N44WEZ, N44WDP, N44WDQ, N44WDR, N44WDS, N44WDT, N44WDU, N44WDV, N44WDW, N44WDX, N44WDY, N44WDZ, N44WBB, N48WHE, N48WHF, N48WHG, N48WHH, N48WHJ, N48WHK, N48WHL, N48WHM, N48WHN, N48WHP, N48WHQ, N48WHR, N48WHS, N48WHT, N48WHU, N48WHV, N48WHW, N48WHX, N48WHY, N48WHZ Model Declaration : PCB board, structure and internal of these model(s) are the same, Only models name is different for these models. Test Model : N44WEC **Power Supply** : INPUT: 100-240V~, 50/60Hz, 1.5A Max. OUTPUT: 12Vdc, 2A : 2.1.0 Hardware version Software version : 2.7.2.9 223222 WLAN : Supported 802.11b/802.11g/802.11n WLAN FCC Operation : IEEE 802.11b:2412-2462MHz IEEE 802.11g:2412-2462MHz Frequency IEEE 802.11n HT20:2412-2462MHz WLAN Channel Number : 11 Channels for WIFI 20MHz Bandwidth(802.11b/g/n-HT20) WLAN Modulation Technology IEEE 802.11b: DSSS(CCK,DQPSK,DBPSK) > IEEE 802.11g: OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n: OFDM (64QAM, 16QAM,QPSK,BPSK) Antenna Type And Gain : External Antenna 0, 0.0dBi(Max.) External Antenna 1, 0.0dBi(Max.) ## 1.2. Host System Configuration List and Details | Manufacturer | Description | Model | Serial
Number | Certificate | |-------------------------|-------------------------|------------|------------------|-------------| | C.SA Electrical Factory | AC/DC Charger
of EUT | CS-1202000 | | FCC | SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID:2AKL2-N44WEC Report No.: LCS170911108AE1 ## 1.3. External I/O Cable | I/O Port Description | Quantity | Cable | |----------------------|----------|-------| | Interface charge | 1 | 0.8m | | HDMI | 1 | N/A | | USB | 1 | N/A | | LAN | 1 | N/A | ## 1.4. Description of Test Facility CNAS Registration Number. is L4595. FCC Registration Number. is 254912. Industry Canada Registration Number. is 9642A-1. ESMD Registration Number. is ARCB0108. UL Registration Number. is 100571-492. TUV SUD Registration Number. is SCN1081. TUV RH Registration Number. is UA 50296516-001 NVLAP Registration Code is 600167-0 The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010 SVSWR requirement for radiated emission above 1GHz. ### 1.5. Statement of the Measurement Uncertainty The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 – 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the LCS quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. ### 1.6. Measurement Uncertainty | Test Item | | Frequency Range | Uncertainty | Note | |----------------------------------|---|-----------------|-------------|------| | | | 9KHz~30MHz | ±3.10dB | (1) | | | | 30MHz~200MHz | ±2.96dB | (1) | | Radiation Uncertainty | : | 200MHz~1000MHz | ±3.10dB | (1) | | | | 1GHz~26.5GHz | ±3.80dB | (1) | | | | 26.5GHz~40GHz | ±3.90dB | (1) | | Conduction Uncertainty: | | 150kHz~30MHz | ±1.63dB | (1) | | Power disturbance : 30MHz~300MHz | | ±1.60dB | (1) | | (1). This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2. ## 1.7. Description of Test Modes The EUT has been tested under operating condition. This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X position. Worst-case mode and channel used for 150kHz-30 MHz power line conducted emissions was the mode and channel with the highest output power, that was determined to be 802.11b mode(High Channel). Worst-case mode and channel used for 9kHz-1000 MHz radiated emissions was the mode and channel with the highest output power, that was determined to be 802.11b mode(High Channel). Worst-Case data rates were utilized from preliminary testing of the Chipset, worst-case data rates used during the testing are as follows: 802.11b Mode: 1 Mbps, DSSS. 802.11g Mode: 6 Mbps, OFDM. 802.11n Mode HT20: MCS0, OFDM. Channel List & Frequency #### 802.11b/g/n(HT20) | Frequency Band | Channel No. | Frequency(MHz) | Channel No. | Frequency(MHz) | |----------------|-------------|----------------|-------------
----------------| | | 1 | 2412 | 7 | 2442 | | | 2 | 2417 | 8 | 2447 | | 2412~2462MHz | 3 | 2422 | 9 | 2452 | | 2412~2402IVITZ | 4 | 2427 | 10 | 2457 | | | 5 | 2432 | 11 | 2462 | | | 6 | 2437 | | | ### 2. TEST METHODOLOGY All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices. The radiated testing was performed at an antenna-to-EUT distance of 3 meters. All radiated and conducted emissions measurement was performed at Shenzhen LCS Compliance Testing Laboratory Ltd.. ## 2.1. EUT Configuration The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application. #### 2.2. EUT Exercise The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements. According to FCC's request, Test Procedure KDB558074 D01 DTS Meas. Guidance v04 are required to be used for this kind of FCC 15.247 digital modulation device. According to its specifications, the EUT must comply with the requirements of the Section 15.203, 15.205, 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C. #### 2.3. General Test Procedures #### 2.3.1 Conducted Emissions The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 6.2.1 of ANSI C63.10-2013 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using Quasi-peak and average detector modes. #### 2.3.2 Radiated Emissions The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 6.3 of ANSI C63.10-2013 ## 3. SYSTEM TEST CONFIGURATION #### 3.1. Justification The system was configured for testing in a continuous transmits condition. ### 3.2. EUT Exercise Software The system was configured for testing in a continuous transmits condition and change test channels by software (Telnet 192.168.168.168) provided by application. ## 3.3. Special Accessories | No. | Equipment | Manufacturer | Model No. | Serial No. | Length | shielded/
unshielded | Notes | |-----|---------------|--------------|-----------|------------|--------|-------------------------|-------| | 1 | PC | Lenovo | Ideapad | A131101550 | / | / | DOC | | 2 | Power adapter | Lenovo | CPA-A090 | 36200414 | 1.00m | unshielded | DOC | ## 3.4. Block Diagram/Schematics Please refer to the related document ### 3.5. Equipment Modifications Shenzhen LCS Compliance Testing Laboratory Ltd. has not done any modification on the EUT. ## 3.6. Test Setup Please refer to the test setup photo. ## 4. SUMMARY OF TEST RESULTS | Aj | Applied Standard: FCC Part 15 Subpart C | | | | | | | |---------------------|---|-----------|--|--|--|--|--| | FCC Rules | Description of Test | Result | | | | | | | §15.247(b) | Maximum Conducted Output Power | Compliant | | | | | | | §15.247(e) | Power Spectral Density | Compliant | | | | | | | §15.247(a)(2) | 6dB Bandwidth | | | | | | | | §15.247(a) | Occupied Bandwidth | Compliant | | | | | | | §15.209, §15.247(d) | Radiated and Conducted Spurious Emissions | Compliant | | | | | | | §15.205 | Emissions at Restricted Band | Compliant | | | | | | | §15.207(a) | Conducted Emissions | Compliant | | | | | | | §15.203 | §15.203 Antenna Requirements | | | | | | | | §15.247(i)§2.1093 | RF Exposure | Compliant | | | | | | ## 5. TEST RESULT ## 5.1. On Time and Duty Cycle ### 5.1.1. Standard Applicable None; for reporting purpose only. ### 5.1.2. Measuring Instruments and Setting Please refer to section 6 of equipments list in this report. The following table is the setting of the spectrum analyser. #### 5.1.3. Test Procedures - 1. Set the centre frequency of the spectrum analyser to the transmitting frequency; - 2. Set the span=0MHz, RBW=8MHz, VBW=50MHz, Sweep time=5ms; - 3. Detector = peak; - 4. Trace mode = Single hold. ### 5.1.4. Test Setup Layout ### 5.1.5. EUT Operation during Test The EUT was programmed to be in continuously transmitting mode. ### 5.1.6. Test result | | On Time | Period | Duty Cycle | Duty | Duty Cycle | 1/B | |---------|---------|--------|------------|-------|-------------|----------| | Mode | В | | x | Cycle | Correction | Minimum | | | (ms) | (ms) | (Linear) | (%) | Factor (dB) | VBW(KHz) | | 802.11b | 5 | 5 | 1 | 100 | 0 | 0.010 | | 802.11g | 5 | 5 | 1 | 100 | 0 | 0.010 | | 802.11n | 5 | 5 | 1 | 100 | 0 | 0.010 | | -HT20 | | , | ı | 100 | O | 0.010 | ### 5.2. Maximum Conducted Output Power Measurement #### 5.2.1. Standard Applicable According to §15.247(b): For systems using digital modulation in the 2400-2483.5 MHz and 5725-5850 MHz band, the limit for maximum peak conducted output power is 30dBm. The limited has to be reduced by the amount in dB that the gain of the antenna exceed 6dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi. Systems operating in the 5725-5850 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi without any corresponding reduction in transmitter peak output power. #### 5.2.2. Measuring Instruments and Setting Please refer to section 6 of equipments list in this report. The following table is the setting of the power meter. #### 5.2.3. Test Procedures The transmitter output (antenna port) was connected to the power meter. #### 5.2.4. Test Setup Layout #### 5.2.5. EUT Operation during Test The EUT was programmed to be in continuously transmitting mode. ## 5.2.6. Test Result of Maximum Conducted Output Power | Temperature | 25.1℃ | Humidity | 52.4% | |---------------|-------------|----------------|-------------| | Test Engineer | Jayden Zhuo | Configurations | 802.11b/g/n | | Test Mode Channel Frequency | | | Measure | d Peak Outpu
(dBm) | Limits | Verdict | | |-----------------------------|----|-------|---------|-----------------------|--------|---------|------| | | | (MHz) | Chain0 | Chain1 | Sum | (dBm) | | | IEEE | 1 | 2412 | 12.31 | 12.23 | / | | | | 802.11b | 6 | 2437 | 12.35 | 12.63 | / | 30 | PASS | | 002.110 | 11 | 2462 | 12.25 | 12.44 | / |] | | | IEEE | 1 | 2412 | 15.43 | 15.31 | / | | | | 802.11g | 6 | 2437 | 17.50 | 17.52 | / | 30 | PASS | | 002.11g | 11 | 2462 | 17.72 | 17.73 | / | | | | IEEE | 1 | 2412 | 15.32 | 15.17 | 18.26 | | | | 802.11n | 6 | 2437 | 17.52 | 17.54 | 20.54 | 30 | PASS | | HT20 | 11 | 2462 | 17.55 | 17.33 | 20.45 | 1 | | #### Remark: - 1. Measured output power at difference data rate for each mode and recorded worst case for each mode. - 2. Test results including cable loss; Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20; ### 5.3. Power Spectral Density Measurement #### 5.3.1. Standard Applicable According to §15.247(e): For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. #### 5.3.2. Measuring Instruments and Setting Please refer to section 6 of equipments list in this report. The following table is the setting of Spectrum Analyzer. #### 5.3.3. Test Procedures - 1. The transmitter was connected directly to a Spectrum Analyzer through a directional couple. - 2. The power was monitored at the coupler port with a Spectrum Analyzer. The power level was set to the maximum level. - 3. Set the RBW = $3 \text{ kHz} \sim 100 \text{ kHz}$. - 4. Set the VBW ≥ 3*RBW - 5. Set the span to 1.5 times the DTS channel bandwidth. - 6. Detector = peak. - 7. Sweep time = auto couple. - 8. Trace mode = max hold. - 9. Allow trace to fully stabilize. - 10. Use the peak marker function to determine the maximum power level in any 3 kHz band segment within the fundamental EBW. ### 5.3.4. Test Setup Layout ### 5.3.5. EUT Operation during Test The EUT was programmed to be in continuously transmitting mode. ### 5.3.6. Test Result of Power Spectral Density | Temperature | 25.1℃ | Humidity | 52.4% | | |---------------|---------------------------|----------|-------------|--| | Test Engineer | Test Engineer Jayden Zhuo | | 802.11b/g/n | | | Test
Mode | Channel | Frequency
(MHz) | Measured Peak Power Spectrum Density (dBm/3KHz) Chain0 Chain1 Sum | | | Limits
(dBm/3KHz) | Verdict | |-----------------|---------|--------------------|---|--------|-------|----------------------|---------| | IEEE | 1 | 2412 | -5.645 | -3.552 | / | | | | IEEE
802.11b | 6 | 2437 | -5.578 | -1.241 | / | 8 | PASS | | 002.110 | 11 | 2462 | -5.625 | 1.149 | / | | | | IEEE | 1 | 2412 | -7.680 | -7.851 | / | | | | 802.11g | 6 | 2437 | -6.070 | -5.624 | / | 8 | PASS | | 002.11g | 11 | 2462 | -5.479 | -5.778 | / | | | | IEEE | 1 | 2412 | -6.864 | -7.294 | -4.06 | | | | 802.11n | 6 | 2437 | -4.358 | -4.288 | -1.31 | 4.990* | PASS | | HT20 | 11 | 2462 | -5.407 | -4.180 | -1.74 | | | #### Remark: - 1. Measured peak power spectrum density at difference data rate for each mode and recorded worst case for each mode. - 2. Test results including cable loss; - 3. Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20; Please refer to following plots; - 4. The PSD limits of IEEE 802.11n HT20 for
MIMO with CDD technology should be reduce (10*log(2) =3.010dBi according to KDB662911D01; - 5. For MIMO with CCD technology device, The Directional Gain= Gain of individual transmit antennas (dBi) + Array gain; - Array gain = 10 log (N_{ant}), where N_{ant} is the number of transmit antennas. #### 802.11b Chain 0-Low channel ### 802.11b Chain 1-Low channel #### 802.11b Chain 0-Middle channel #### 802.11b Chain 1-Middle channel 802.11b Chain 0-High channel 802.11b Chain 1-High channel ## Test plot of Power Spectral Density ### 802.11g Chain 0-Low channel ### 802.11g Chain 1-Low channel ### 802.11g Chain 0-Middle channel ## 802.11g Chain 1-Middle channel 802.11g Chain 0-High channel 802.11g Chain 1-High channel #### Test plot of Power Spectral Density RL RF 50 0 AC enter Freq 2.412000000 GHz PNO: Fast → IFGaint.ow #Atten: 30 dB Frequency Frequency Avg Type: Log-Pwr Avg|Hold: 10/10 Avg Type: Log-Pwr Avg|Hold: 10/10 Mkr1 2.410 74 GHz -6.864 dBm Mkr1 2.410 74 GHz -7.294 dBm Ref Offset 0.7 dB Ref 20.00 dBm Ref Offset 0.7 dB Ref 20.00 dBm Center Fre Center Fre Start Fre 2.427000000 GH 2.427000000 GH hannah (u/w A MANAGAMANA HAMMANAM Marthy House Freq Offset Freq Offse Span 30.00 MH Sweep 31.67 ms (1001 pts Span 30.00 MH Sweep 31.67 ms (1001 pt #VBW 100 kHz #VBW 100 kHz Res BW 30 kHz 802.11n-HT20 Chain 0-Low channel 802.11n-HT20 Chain 1-Low channel Avg Type: Log-Pwr Avg|Hold: 10/10 Avg Type: Log-Pwr Avg|Hold: 10/10 Mkr1 2.435 74 GHz -4.358 dBm Auto Tun Mkr1 2.435 74 GHz -4.288 dBm Auto Tun Ref Offset 0.7 dB Ref 20.00 dBm Ref Offset 0.7 dB Ref 20.00 dBm Center Fre 2.437000000 GH Center Fro Start Free Start Free tare the second and the second Stop Fre Stop Fre opening the property of JUNES AND STREET STREET ANNO MANAGEMENT MANAPHAMANA Freq Offse Freq Offse nter 2.43700 GHz Span 30.00 MH enter 2.43700 GHz Span 30.00 MHz Sweep 31.67 ms (1001 pts) Sweep 31.67 ms (1001 pts #VBW 100 kHz **#VBW** 100 kHz 802.11n-HT20 Chain 1-Middle channel 802.11n-HT20 Chain 0-Middle channel Mkr1 2.460 74 GHz -5.407 dBm Auto Tun Auto Tun Mkr1 2.460 74 GHz -4.180 dBm Ref Offset 0.7 dB Ref 20.00 dBm Ref Offset 0.7 dB Ref 20.00 dBm Center Fre Center Fre Start Fre Start Fre water the second COSTAL MARAMANTA CANADA CASA CANADA C Stop Fre Stop Fre 2.477000000 GH 2 477000000 G CF Step 3.000000 MH: Mai AMMANNAMAN MANNAMAN M THAM HAMANAN CF Ste MANAMANAMA WHITH WAYNAM Freq Offse Freq Offse Span 30.00 MHz Sweep 31.67 ms (1001 pts Span 30.00 MHz Sweep 31.67 ms (1001 pts) #VBW 100 kHz #VBW 100 kHz Res BW 30 kHz 802.11n-HT20 Chain 0-High channel 802.11n-HT20 Chain 1-High channel ## 5.4. 6 dB Spectrum Bandwidth Measurement ### 5.4.1. Standard Applicable According to §15.247(a)(2): For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz. ## 5.4.2. Measuring Instruments and Setting Please refer to section 6 of equipments list in this report. The following table is the setting of the Spectrum Analyzer. | <u>, </u> | | |--|----------| | Spectrum Parameter | Setting | | Attenuation | Auto | | Span Frequency | > RBW | | Detector | Peak | | Trace | Max Hold | | Sweep Time | 100ms | #### 5.4.3. Test Procedures - 1. The transmitter output (antenna port) was connected to the spectrum analyser in peak hold mode. - 2. The resolution bandwidth and the video bandwidth were set according to KDB558074. - 3. Measured the spectrum width with power higher than 6dB below carrier. ### 5.4.4. Test Setup Layout ### 5.4.5. EUT Operation during Test The EUT was programmed to be in continuously transmitting mode. ## 5.4.6. Test Result of 6dB Spectrum Bandwidth | Temperature | 25.1℃ | Humidity | 52.4% | |---------------|-------------|----------------|-------------| | Test Engineer | Jayden Zhuo | Configurations | 802.11b/g/n | | Test Mode | Channel | Frequency
(MHz) | (MI | ndwidth
Hz) | Limits
(MHz) | Verdict | |----------------------|---------|--------------------|---------|----------------|-----------------|---------| | | | (1011 12) | Chain 0 | Chain 1 | (1011 12) | | | | 1 | 2412 | 9.152 | 9.074 | | | | IEEE 802.11b | 6 | 2437 | 9.154 | 9.593 | 0.500 | PASS | | | 11 | 2462 | 9.154 | 9.096 | | | | | 1 | 2412 | 15.15 | 15.16 | | | | IEEE 802.11g | 6 | 2437 | 15.16 | 15.16 | 0.500 | PASS | | | 11 | 2462 | 15.17 | 15.14 | | | | IEEE 002 11n | 1 | 2412 | 15.14 | 15.15 | | | | IEEE 802.11n
HT20 | 6 | 2437 | 15.14 | 15.16 | 0.500 | PASS | | 11120 | 11 | 2462 | 15.14 | 15.15 | | | #### Remark: - 1. Measured 6dB Bandwidth at difference data rate for each mode and recorded worst case for each mode. - 2. Test results including cable loss; - 3. Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20; #### Test plot of 6 dB Bandwidth Center Freq 2.412000000 GHz Center Freq: 2.412000000 GHz Trig: Free Run Avg|Hold: 1/1 #Atten: 30 dB Radio Device: BTS Mkr1 2.41149 GHz -0.26446 dBm Center Fre Span 30 MH CF Step 3.000000 MHz #VBW 300 kHz **Total Power** 16.3 dBm Occupied Bandwidth 12.328 MHz Freq Offse Transmit Freg Error 5.564 kHz **OBW Power** 99.00 % x dB Bandwidth 9.152 MHz x dB -6.00 dB #### 802.11b Chain 0-Low channel #### 802.11b Chain 1-Low channel ### 802.11b Chain 0-Middle channel #### 802.11b Chain 1-Middle channel 802.11b Chain 0-High channel 802.11b Chain 1-High channel ### Test plot of 6 dB Bandwidth ## 802.11g Chain 0-Low channel ## 802.11g Chain 1-Low channel ### 802.11g Chain 0-Middle channel ### 802.11g Chain 1-Middle channel 802.11g Chain 0-High channel 802.11g Chain 1-High channel ### Test plot of 6 dB Bandwidth #### 802.11n-HT20 Chain 0-Low channel ## 802.11n-HT20 Chain 1-Low channel #### 802.11n-HT20 Chain 0-Middle channel ## 802.11n-HT20 Chain 1-Middle channel 802.11n-HT20 Chain 0-High channel 802.11n-HT20 Chain 1-High channel ### 5.5. Radiated Emissions Measurement ## 5.5.1. Standard Applicable 15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below: | MHz | MHz | MHz | GHz | |-------------------|---------------------|---------------|-------------| | 0.090-0.110 | 16.42-16.423 | 399.9-410 | 4.5-5.15 | | \1\ 0.495-0.505 | 16.69475-16.69525 | 608-614 | 5.35-5.46 | | 2.1735-2.1905 | 16.80425-16.80475 | 960-1240 | 7.25-7.75 | | 4.125-4.128 | 25.5-25.67 | 1300-1427 | 8.025-8.5 | | 4.17725-4.17775 | 37.5-38.25 | 1435-1626.5 | 9.0-9.2 | | 4.20725-4.20775 | 73-74.6 | 1645.5-1646.5 | 9.3-9.5 | | 6.215-6.218 | 74.8-75.2 | 1660-1710 | 10.6-12.7 | | 6.26775-6.26825 | 108-121.94 | 1718.8-1722.2 | 13.25-13.4 | | 6.31175-6.31225 | 123-138 | 2200-2300 | 14.47-14.5 | | 8.291-8.294 | 149.9-150.05 | 2310-2390 | 15.35-16.2 | | 8.362-8.366 | 156.52475-156.52525 | 2483.5-2500 | 17.7-21.4 | | 8.37625-8.38675 | 156.7-156.9 | 2690-2900 | 22.01-23.12 | | 8.41425-8.41475 | 162.0125-167.17 | 3260-3267 | 23.6-24.0 | | 12.29-12.293. | 167.72-173.2 | 3332-3339 | 31.2-31.8 | | 12.51975-12.52025 | 240-285 | 3345.8-3358 | 36.43-36.5 | | 12.57675-12.57725 | 322-335.4 | 3600-4400 | (\2\) | | 13.36-13.41 | | | | ^{\1\} Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. According to §15.247 (d): 20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed. | Frequencies | Field Strength | Measurement Distance | |-------------|--------------------|----------------------| | (MHz) | (microvolts/meter) | (meters) | | 0.009~0.490 | 2400/F(KHz) | 300 | | 0.490~1.705 | 24000/F(KHz) | 30 | | 1.705~30.0 | 30 | 30 | | 30~88 | 100 | 3 | | 88~216 | 150 | 3 | | 216~960 | 200 | 3 | | Above 960 | 500 | 3 | ^{\2\} Above 38.6 #### 5.5.2. Measuring Instruments and Setting Please refer to section 6 of equipments list in this report. The following table is the setting of spectrum analyzer and receiver. | Spectrum Parameter | Setting | |---|--| | Attenuation | Auto | | Start Frequency | 1000 MHz | | Stop Frequency | 10th carrier harmonic | | RB / VB (Emission in restricted band) | 1MHz / 1MHz for Peak, 1 MHz / 10Hz for Average | | RB / VB (Emission in non-restricted band) | 1MHz / 1MHz for Peak, 1 MHz / 10Hz for Average | | Receiver Parameter | Setting | |------------------------|--------------------------------------| | Attenuation | Auto | | Start ~ Stop Frequency | 9kHz~150kHz / RB 200Hz for QP/AVG | | Start ~ Stop Frequency | 150kHz~30MHz / RB 9kHz for QP/AVG | | Start ~ Stop Frequency | 30MHz~1000MHz / RB 100kHz for QP/AVG | #### 5.5.3. Test Procedures #### 1) Sequence of testing 9 kHz to 30 MHz #### Setup: - --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer. - --- If the EUT is a tabletop system, a rotatable table with 0.8 m height is used. - --- If the EUT is a floor standing device, it is placed on the ground. - --- Auxiliary equipment and cables were positioned to simulate normal operation conditions. - --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable. - --- The measurement distance is 3 meter. - --- The EUT was set into operation. ## **Premeasurement:** - --- The turntable rotates from 0° to 315° using 45° steps. - --- The antenna height is 1.5 meter. - --- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions #### Final measurement: - --- Identified emissions during the premeasurement the software maximizes by rotating the turntable position (0° to 360°) and by rotating the elevation axes (0° to 360°). - --- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QPK detector. - --- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a
plot with the graph of the premeasurement and the limit will be stored. #### 2) Sequence of testing 30 MHz to 1 GHz #### Setup: - --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer. - --- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane. - --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both. - --- Auxiliary equipment and cables were positioned to simulate normal operation conditions - --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable. - --- The measurement distance is 3 meter. - --- The EUT was set into operation. #### **Premeasurement:** - --- The turntable rotates from 0° to 315° using 45° steps. - --- The antenna is polarized vertical and horizontal. - --- The antenna height changes from 1 to 3 meter. - --- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions. #### **Final measurement:** - --- The final measurement will be performed with minimum the six highest peaks. - --- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (\pm 45°) and antenna movement between 1 and 4 meter. - --- The final measurement will be done with QP detector with an EMI receiver. - --- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored. #### 3) Sequence of testing 1 GHz to 18 GHz #### Setup: - --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer. - --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used. - --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both. - --- Auxiliary equipment and cables were positioned to simulate normal operation conditions - --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable. - --- The measurement distance is 3 meter. - --- The EUT was set into operation. #### **Premeasurement:** - --- The turntable rotates from 0° to 315° using 45° steps. - --- The antenna is polarized vertical and horizontal. - --- The antenna height scan range is 1 meter to 2.5 meter. --- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions. #### **Final measurement:** - --- The final measurement will be performed with minimum the six highest peaks. - --- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (± 45°) and antenna movement between 1 and 4 meter. This procedure is repeated for both antenna polarizations. - --- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and Average detector. - --- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored. ### 4) Sequence of testing above 18 GHz #### Setup: - --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer. - --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used. - --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both. - --- Auxiliary equipment and cables were positioned to simulate normal operation conditions - --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable. - --- The measurement distance is 1 meter. - --- The EUT was set into operation. #### **Premeasurement:** --- The antenna is moved spherical over the EUT in different polarisations of the antenna. #### **Final measurement:** - --- The final measurement will be performed at the position and antenna orientation for all detected emissions that were found during the premeasurements with Peak and Average detector. - --- The final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored. ### 5.5.4. Test Setup Layout For radiated emissions below 30MHz Below 30MHz **Below 1GHz** Above 1GHz Above 10 GHz shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade form 3m to 1.5m. Distance extrapolation factor = 20 log (specific distance [3m] / test distance [1.5m]) (dB); Limit line = specific limits (dBuV) + distance extrapolation factor [6 dB]. ### 5.5.5. EUT Operation during Test The EUT was programmed to be in continuously transmitting mode. ### 5.5.6. Results of Radiated Emissions (9kHz~30MHz) | Temperature | 24.5℃ | Humidity | 56.2% | |---------------|-------------|----------------|-------------| | Test Engineer | Jayden Zhuo | Configurations | 802.11b/g/n | | Freq. | Level | Over Limit | Over Limit | Remark | |-------|--------|------------|------------|----------| | (MHz) | (dBuV) | (dB) | (dBuV) | | | - | - | - | - | See Note | #### Note: The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported. Distance extrapolation factor = 40 log (specific distance / test distance) (dB); Limit line = specific limits (dBuV) + distance extrapolation factor. #### 5.5.7. Results of Radiated Emissions (30MHz~1GHz) | Temperature 24.5°C | | Humidity | 56.2% | | |--------------------|-------------|----------------|-------------------|--| | Test Engineer | Jayden Zhuo | Configurations | 802.11b (High CH) | | Test worst result for 802.11b (High Channel) @Chain 0 | | Freq | Reading | CabLos | Antfac | Measured | Limit | Over | Remark | |---|--------|---------|--------|--------|----------|--------|--------|--------| | | MHz | dBuV | dВ | dB/m | dBuV/m | dBuV/m | dВ | | | 1 | 60.49 | 9.78 | 0.49 | 12.50 | 22.77 | 40.00 | -17.23 | QP | | 2 | 106.01 | 11.17 | 0.68 | 12.61 | 24.46 | 43.50 | -19.04 | QP | | 3 | 196.51 | 21.41 | 0.96 | 10.57 | 32.94 | 43.50 | -10.56 | QP | | 4 | 325.60 | 19.91 | 1.04 | 13.55 | 34.50 | 46.00 | -11.50 | QP | | 5 | 663.47 | 16.38 | 1.67 | 18.68 | 36.73 | 46.00 | -9.27 | QP | | 6 | 975.75 | 13.70 | 1.85 | 21.58 | 37.13 | 54.00 | -16.87 | QP | | | | | | | | | | | Note: 1. All readings are Quasi-peak values. ^{2.} Measured= Reading + Antenna Factor + Cable Loss ^{3.} The emission that ate 20db blow the offficial limit are not reported | | Freq | Reading | CabLos | Antfac | Measured | Limit | Over | Remark | |---|--------|---------|--------|--------|----------|--------|--------|--------| | | MHz | dBuV | dВ | dB/m | dBuV/m | dBuV/m | dВ | | | 1 | 64.89 | 14.38 | 0.52 | 10.75 | 25.65 | 40.00 | -14.35 | QP | | 2 | 129.92 | 16.28 | 0.76 | 8.94 | 25.98 | 43.50 | -17.52 | QP | | 3 | 196.51 | 24.64 | 0.96 | 10.57 | 36.17 | 43.50 | -7.33 | QP | | 4 | 325.60 | 22.89 | 1.04 | 13.55 | 37.48 | 46.00 | -8.52 | QP | | 5 | 492.47 | 12.40 | 1.50 | 16.39 | 30.29 | 46.00 | -15.71 | QP | | 6 | 661.15 | 15.92 | 1.67 | 18.67 | 36.26 | 46.00 | -9.74 | QP | #### Note: Pre-scan all modes and recorded the worst case results in this report (IEEE 802.11b (High Channel) @ Chain 0. Emission level (dBuV/m) = 20 log Emission level (uV/m). Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level. Note: 1. All readings are Quasi-peak values. 2. Measured= Reading + Antenna Factor + Cable Loss 3. The emission that ate 20db blow the offficial limit are not reported ## 5.5.8. Results for Radiated Emissions (Above 1GHz) ## (Worst Case at Antenna Chain 1) 802.11b ## Channel 1 / 2412 MHz | Freq.
MHz | Reading
dBuv | Ant.
Fac.
dB/m | Pre.
Fac.
dB | Cab.
Loss
dB | Measured
dBuv/m | Limit
dBuv/m | Margin
dB | Remark | Pol. | |--------------|-----------------|----------------------|--------------------|--------------------|--------------------|-----------------|--------------|---------|------------| | 4824.00 | 54.52 | 33.06 | 35.04 | 3.94 | 56.48 | 74.00 | -17.52 | Peak | Horizontal | | 4824.00 | 41.95 | 33.06 | 35.04 | 3.94 | 43.91 | 54.00 | -10.09 | Average | Horizontal | | 4824.00 | 56.33 | 33.06 | 35.04 | 3.94 | 58.29 | 74.00 | -15.71 | Peak | Vertical | | 4824.00 | 39.99 | 33.06 | 35.04 | 3.94 | 41.95 | 54.00 | -12.05 | Average | Vertical | ## Channel 6 / 2437 MHz | Freq.
MHz | Reading
dBuv | Ant.
Fac.
dB/m | Pre.
Fac.
dB | Cab.
Loss
dB | Measured
dBuv/m | Limit
dBuv/m | Margin
dB | Remark | Pol. | |--------------|-----------------|----------------------|--------------------|--------------------|--------------------|-----------------|--------------|---------|------------| | 4874.00 | 60.16 | 33.16 | 35.15 | 3.96 | 62.13 | 74.00 | -11.87 | Peak | Horizontal | | 4874.00 | 41.85 | 33.16 | 35.15 | 3.96 | 43.82 | 54.00 | -10.18 | Average | Horizontal | | 4874.00 | 52.63 | 33.16 | 35.15 | 3.96 | 54.60 | 74.00 | -19.40 | Peak | Vertical | | 4874.00 | 39.28 | 33.16 | 35.15 | 3.96 | 41.25 | 54.00 | -12.75 | Average | Vertical | ### Channel 11 / 2462 MHz | Freq.
MHz | Reading
dBuv | Ant.
Fac.
dB/m | Pre.
Fac.
dB | Cab.
Loss
dB | Measured
dBuv/m | Limit
dBuv/m | Margin
dB | Remark | Pol. | |--------------|-----------------|----------------------|--------------------|--------------------|--------------------
-----------------|--------------|---------|------------| | 4924.00 | 58.85 | 33.26 | 35.14 | 3.98 | 60.95 | 74.00 | -13.05 | Peak | Horizontal | | 4924.00 | 43.23 | 33.26 | 35.14 | 3.98 | 45.33 | 54.00 | -8.67 | Average | Horizontal | | 4924.00 | 55.28 | 33.26 | 35.14 | 3.98 | 57.38 | 74.00 | -16.62 | Peak | Vertical | | 4924.00 | 39.22 | 33.26 | 35.14 | 3.98 | 41.32 | 54.00 | -12.68 | Average | Vertical | ## (Worst Case at Antenna Chain 0) 802.11g ## Channel 1 | Freq.
MHz | Reading
dBuv | Ant.
Fac.
dB/m | Pre.
Fac.
dB | Cab.
Loss
dB | Measured
dBuv/m | Limit
dBuv/m | Margin
dB | Remark | Pol. | |--------------|-----------------|----------------------|--------------------|--------------------|--------------------|-----------------|--------------|---------|------------| | 4824.00 | 57.23 | 33.06 | 35.04 | 3.94 | 59.19 | 74.00 | -14.81 | Peak | Horizontal | | 4824.00 | 42.42 | 33.06 | 35.04 | 3.94 | 44.38 | 54.00 | -9.62 | Average | Horizontal | | 4824.00 | 54.05 | 33.06 | 35.04 | 3.94 | 56.01 | 74.00 | -17.99 | Peak | Vertical | | 4824.00 | 40.82 | 33.06 | 35.04 | 3.94 | 42.78 | 54.00 | -11.22 | Average | Vertical | ## Channel 6 | Freq.
MHz | Reading
dBuv | Ant.
Fac.
dB/m | Pre.
Fac.
dB | Cab.
Loss
dB | Measured
dBuv/m | Limit
dBuv/m | Margin
dB | Remark | Pol. | |--------------|-----------------|----------------------|--------------------|--------------------|--------------------|-----------------|--------------|---------|------------| | 4874.00 | 58.58 | 33.16 | 35.15 | 3.96 | 60.55 | 74.00 | -13.45 | Peak | Horizontal | | 4874.00 | 42.23 | 33.16 | 35.15 | 3.96 | 44.20 | 54.00 | -9.80 | Average | Horizontal | | 4874.00 | 54.24 | 33.16 | 35.15 | 3.96 | 56.21 | 74.00 | -17.79 | Peak | Vertical | | 4874.00 | 42.10 | 33.16 | 35.15 | 3.96 | 44.07 | 54.00 | -9.93 | Average | Vertical | ## Channel 11 | Freq.
MHz | Reading
dBuv | Ant.
Fac.
dB/m | Pre.
Fac.
dB | Cab.
Loss
dB | Measured
dBuv/m | Limit
dBuv/m | Margin
dB | Remark | Pol. | |--------------|-----------------|----------------------|--------------------|--------------------|--------------------|-----------------|--------------|---------|------------| | 4924.00 | 58.59 | 33.26 | 35.14 | 3.98 | 60.69 | 74.00 | -13.31 | Peak | Horizontal | | 4924.00 | 43.39 | 33.26 | 35.14 | 3.98 | 45.49 | 54.00 | -8.51 | Average | Horizontal | | 4924.00 | 54.92 | 33.26 | 35.14 | 3.98 | 57.02 | 74.00 | -16.98 | Peak | Vertical | | 4924.00 | 41.17 | 33.26 | 35.14 | 3.98 | 43.27 | 54.00 | -10.73 | Average | Vertical | ### (Combine with Antenna Chain 0 and Antenna Chain 1) 802.11n HT20 #### Channel 1 | Freq.
MHz | Reading
dBuv | Ant.
Fac.
dB/m | Pre.
Fac.
dB | Cab.
Loss
dB | Measured
dBuv/m | Limit
dBuv/m | Margin
dB | Remark | Pol. | |--------------|-----------------|----------------------|--------------------|--------------------|--------------------|-----------------|--------------|---------|------------| | 4824.00 | 55.07 | 33.06 | 35.04 | 3.94 | 57.03 | 74.00 | -16.97 | Peak | Horizontal | | 4824.00 | 43.26 | 33.06 | 35.04 | 3.94 | 45.22 | 54.00 | -8.78 | Average | Horizontal | | 4824.00 | 53.48 | 33.06 | 35.04 | 3.94 | 55.44 | 74.00 | -18.56 | Peak | Vertical | | 4824.00 | 39.09 | 33.06 | 35.04 | 3.94 | 41.05 | 54.00 | -12.95 | Average | Vertical | #### Channel 6 | Freq.
MHz | Reading
dBuv | Ant.
Fac.
dB/m | Pre.
Fac.
dB | Cab.
Loss
dB | Measured
dBuv/m | Limit
dBuv/m | Margin
dB | Remark | Pol. | |--------------|-----------------|----------------------|--------------------|--------------------|--------------------|-----------------|--------------|---------|------------| | 4874.00 | 58.62 | 33.16 | 35.15 | 3.96 | 60.59 | 74.00 | -13.41 | Peak | Horizontal | | 4874.00 | 43.76 | 33.16 | 35.15 | 3.96 | 45.73 | 54.00 | -8.27 | Average | Horizontal | | 4874.00 | 54.92 | 33.16 | 35.15 | 3.96 | 56.89 | 74.00 | -17.11 | Peak | Vertical | | 4874.00 | 41.64 | 33.16 | 35.15 | 3.96 | 43.61 | 54.00 | -10.39 | Average | Vertical | #### Channel 11 | Freq.
MHz | Reading
dBuv | Ant.
Fac.
dB/m | Pre.
Fac.
dB | Cab.
Loss
dB | Measured
dBuv/m | Limit
dBuv/m | Margin
dB | Remark | Pol. | |--------------|-----------------|----------------------|--------------------|--------------------|--------------------|-----------------|--------------|---------|------------| | 4924.00 | 58.82 | 33.26 | 35.14 | 3.98 | 60.92 | 74.00 | -13.08 | Peak | Horizontal | | 4924.00 | 42.37 | 33.26 | 35.14 | 3.98 | 44.47 | 54.00 | -9.53 | Average | Horizontal | | 4924.00 | 52.39 | 33.26 | 35.14 | 3.98 | 54.49 | 74.00 | -19.51 | Peak | Vertical | | 4924.00 | 40.42 | 33.26 | 35.14 | 3.98 | 42.52 | 54.00 | -11.48 | Average | Vertical | ### Notes: - 1. Measuring frequencies from 9 KHz 10th harmonic or 26.5GHz (which is less), No emission found between lowest internal used/generated frequency to 30MHz. - 2. Radiated emissions measured in frequency range from 9k~10th harmonic or 26.5GHz (which is less) were made with an instrument using Peak detector mode. - 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured. - 4. Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20; ### 5.6. Conducted Spurious Emissions and Band Edges Test ### 5.6.1. Standard Applicable According to §15.247 (d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)). ### 5.6.2. Measuring Instruments and Setting Please refer to section 6 of equipments list in this report. The following table is the setting of the spectrum analyzer. | Spectrum Parameter | Setting | |---|---------------| | Detector | Peak | | Attenuation | Auto | | RB / VB (Emission in restricted band) | 100KHz/300KHz | | RB / VB (Emission in non-restricted band) | 100KHz/300KHz | #### 5.6.3. Test Procedures The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz The spectrum from 9 kHz to 26.5GHz is investigated with the transmitter set to the lowest, middle, and highest channels. ### 5.6.4. Test Setup Layout This test setup layout is the same as that shown in section 5.4.4. #### 5.6.5. EUT Operation during Test The EUT was programmed to be in continuously transmitting mode. ## 5.6.6. Test Results of Conducted Spurious Emissions | Temperature | 24.5℃ | Humidity | 56.2% | |---------------|-------------|----------------|-------------| | Test Engineer | Jayden Zhuo | Configurations | 802.11b/g/n | # RF Conducted Spurious Emissions IEEE 802.11b Chain 1 ## 2397 MHz - 2427 MHz ## 2422 MHz - 2452 MHz ### 30 MHz - 26 GHz 2447 MHz - 2477 MHz 30 MHz - 26 GHz #### RF Conducted Spurious Emissions IEEE 802.11g Chain 0 RL SF 500 AC enter Freq 2.412000000 GHz PNO: Fast Trig: Free Run | FGaincle www | FAsten: 30 dB RL RF 500 AC | STOR S #Avg Type: RMS Avg|Hold: 10/10 #Avg Type: RMS Avg|Hold: 1/10 Mkr1 2.413 265 GHz -2.198 dBm Mkr2 25.442 GHz -50.714 dBm Ref Offset 0.7 dB 10 dB/div Ref 20.00 dBm Ref Offset 0.7 dB Ref 20.00 dBm Center Fre Center Fre Start Free Start Fre Stop Fre 2.432000000 GH Stop Fre Marian Market Market State Control of the CF Ste Freq Offse Span 40.00 MHz Sweep 4.267 ms (8001 pts) 2397 MHz - 2427 MHz 30 MHz - 26 GHz #Avg Type: RMS Avg|Hold: 10/10 #Avg Type: RMS Avg|Hold: 1/10 Auto Tun Mkr1 2.435 755 GHz -0.824 dBm Mkr2 25.792 GHz -50.384 dBm Ref Offset 0.7 dB Ref 20.00 dBm Ref Offset 0.7 dB Ref 20.00 dBm Center Fre 2.437000000 GH Center Fre Start Fre Start Fre 2.417000000 GH Stop Fre Stop Fre 2.457000000 GH - White where the state of Freq Offse Freq Offs Span 40.00 MHz Sweep 4.267 ms (8001 pts) Stop 26.00 GHz Sweep 2.482 s (8001 pts #VBW 300 kHz #VBW 300 kHz 2422 MHz - 2452 MHz 30 MHz - 26 GHz RL RF 500 AC | | NTEF | Freq 2.462000000 GHz | PRO: Fast | Free Run | | FGaint.ow | #Atten: 30 dB | #Avg Type: RMS Avg|Hold: 1/10 #Avg Type: RMS Avg|Hold: 10/10 Auto Tun Ref Offset 0.7 dB Ref 20.00 dBm Ref Offset 0.7 dB Ref 20.00 dBm Center Fre 2.462000000 GH Center Fre Start Fre Start Fre Stop Fre Stop Fre AND ALL SHARM SHAR CF Step CF Ste Freq Offse Freq Offs enter 2.46200 GHz Stop 26.00 GHz Sweep 2.482 s (8001 pts #VBW 300 kHz #VBW 300 kHz 2447 MHz - 2477 MHz 30 MHz - 26 GHz #### RF Conducted Spurious Emissions IEEE 802.11g Chain 1 RL SF 500 AC enter Freq 2.412000000 GHz PNO: Fast Trig: Free Run | FGaincle www | FAsten: 30 dB RL RF 500 AC | STOR S #Avg Type: RMS Avg|Hold: 10/10 #Avg Type: RMS Avg|Hold: 1/10 Mkr1 2.413 270 GHz -2.330 dBm Mkr2 25.052 GHz -50.930 dBm Ref Offset 0.7 dB 10 dB/div Ref 20.00 dBm Ref Offset 0.7 dB Ref 20.00 dBm Center Fre Center Fre Start Free Start Fre Stop Fre 2.432000000 GH Stop Fre CF Ste west to the same of the said KALLANINIANAN WATER Freq Offse Span 40.00 MHz Sweep 4.267 ms (8001 pts) 2397 MHz - 2427 MHz 30 MHz - 26 GHz #Avg Type: RMS Avg|Hold: 10/10 #Avg Type: RMS Avg|Hold: 1/10 Auto Tun Mkr1 2.438 285 GHz -0.270 dBm Mkr2 25.705 GHz -50.825 dBm Ref Offset 0.7 dB Ref 20.00 dBm Ref Offset 0.7 dB Ref 20.00 dBm Center Fre 2.437000000 GH Center Fre Start Fre Start Fre 2.417000000 GH Stop Fre Stop Fre Marine Ma HATAMAMA
Freq Offse Freq Offs Span 40.00 MHz Sweep 4.267 ms (8001 pts) Stop 26.00 GHz Sweep 2.482 s (8001 pts #VBW 300 kHz #VBW 300 kHz 2422 MHz - 2452 MHz 30 MHz - 26 GHz RL RF 500 AC | | NTEF | Freq 2.462000000 GHz | PRO: Fast | Free Run | | FGaint.ow | #Atten: 30 dB | #Avg Type: RMS Avg|Hold: 1/10 #Avg Type: RMS Avg|Hold: 10/10 Auto Tun Ref Offset 0.7 dB Ref 20.00 dBm Ref Offset 0.7 dB Ref 20.00 dBm Center Fre 2.462000000 GH Center Fre Start Fre Start Fre Stop Fre Stop Fre CF Step 4.000000 MH: CF Ste Freq Offse Freq Offs enter 2.46200 GHz Stop 26.00 GHz Sweep 2.482 s (8001 pts #VBW 300 kHz #VBW 300 kHz 30 MHz - 26 GHz 2447 MHz - 2477 MHz