

RF Test Report

FCC ID:2A49R-V3

Product(s) Name....... V3 3 in 1 tablet

008, V3-009, V3-010, V3-011, V3-012, V3-013, V3-014, V3-015, V3-

016, V3-017, V3-018, V3-019, V3-020, V3 SE

Trade Mark..... minisfourm

Applicant..... MICRO COMPUTER (HK) TECH LIMITED

Address...... RM 18, 28/F, Shui On Centre, 6-8 Harbour Road, WaterfRont, Wan

Chai, HK

Test Date...... 2024.03.28~2024.04.25

Issued Date...... 2024.05.06

ANSI C63.10:2013

Testing Laboratory.....: Shenzhen Haiyun Standard Technical Co., Ltd.

Prepared By:	Checked By:	Approved By:	Standard
Jason Huang	Tim Zhang	Misue Su	E CH : COM
Jason huang	7 in. zhang	rivsue Su	HAIYUN Report Seal

Table of Contents

1.	. SUMMARY OF TEST RESULTS	6
	1.1 TEST FACILITY	7
	1.2 MEASUREMENT UNCERTAINTY	7
	1.3 TEST ENVIRONMENT CONDITIONS	7
2 .	. GENERAL INFORMATION	8
	2.1 GENERAL DESCRIPTION OF EUT	8
	2.2 DESCRIPTION OF TEST MODES	10
	2.3 PARAMETERS OF TEST SOFTWARE	11
	2.4 SUPPORT UNITS	11
3 .	. AC POWER LINE CONDUCTED EMISSIONS	12
	3.1 LIMIT	12
	3.2 TEST PROCEDURE	12
	3.3 DEVIATION FROM TEST STANDARD	12
	3.4 TEST SETUP	13
	3.5 EUT OPERATING CONDITIONS	13
	3.6 TEST RESULTS	13
4	. RADIATED EMISSIONS	14
	4.1 LIMIT	14
	4.2 TEST PROCEDURE	15
	4.3 DEVIATION FROM TEST STANDARD	16
	4.4 TEST SETUP	16
	4.5 EUT OPERATING CONDITIONS	17
	4.6 TEST RESULTS - 9 KHZ TO 30 MHZ	17
	4.7 TEST RESULTS - 30 MHZ TO 1000 MHZ	17
	4.8 TEST RESULTS - ABOVE 1000 MHZ	17
5 .	NUMBER OF HOPPING FREQUENCY	18
	5.1 LIMIT	18
	5.2 TEST PROCEDURE	18
	5.3 DEVIATION FROM STANDARD	18
	5.4 TEST SETUP	18
	5.5 EUT OPERATION CONDITIONS	18
	5.6 TEST RESULTS	18
6	. AVERAGE TIME OF OCCUPANCY	19
	6.1 LIMIT	19

6.2 TEST PROCEDURE	19
6.3 DEVIATION FROM STANDARD	19
6.4 TEST SETUP	19
6.5 EUT OPERATION CONDITIONS	19
6.6 TEST RESULTS	19
7 . HOPPING CHANNEL SEPARATION	20
7.1 LIMIT	20
7.2 TEST PROCEDURE	20
7.3 DEVIATION FROM STANDARD	20
7.4 TEST SETUP	20
7.5 EUT OPERATION CONDITIONS	20
7.6 TEST RESULTS	20
8 . BANDWIDTH	21
8.1 LIMIT	21
8.2 TEST PROCEDURE	21
8.3 DEVIATION FROM STANDARD	21
8.4 TEST SETUP	21
8.5 EUT OPERATION CONDITIONS	21
8.6 TEST RESULTS	21
9 . MAXIMUM OUTPUT POWER	22
9.1 LIMIT	22
9.2 TEST PROCEDURE	22
9.3 DEVIATION FROM STANDARD	22
9.4 TEST SETUP	22
9.5 EUT OPERATION CONDITIONS	22
9.6 TEST RESULTS	22
10 . CONDUCTED SPURIOUS EMISSION	23
10.1 LIMIT	23
10.2 TEST PROCEDURE	23
10.3 DEVIATION FROM STANDARD	23
10.4 TEST SETUP	23
10.5 EUT OPERATION CONDITIONS	23
10.6 TEST RESULTS	23
11 . MEASUREMENT INSTRUMENTS LIST	24
12 . ANTENNA REQUIREMENT	25
APPENDIX A - AC POWER LINE CONDUCTED EMISSIONS	26

APPENDIX B - RADIATED EMISSION - 9 KHZ TO 30 MHZ	28
APPENDIX C - RADIATED EMISSION - 30 MHZ TO 1000 MHZ	29
APPENDIX D - RADIATED EMISSION - ABOVE 1000 MHZ	31

HISTORY OF THIS TEST REPORT

Original Report Issue Date: 2024.05.06

- No additional attachment
- O Additional attachments were issued following record

Attachment No.	Issue Date	Description
200611-04.TR05	2020.11.03	Module report Module ID: PD9AX210D2
RF240307009-06-005	2024.05.06	Compared to the original report of this module, it was used for MINI PC, with antenna changes and reduced gain. Therefore, the radiation emission, band edge, and AC power conduction emission were tested with reference to the original report.

1.. SUMMARY OF TEST RESULTS

Test procedures according to the technical standard(s):

FCC CFR Title 47, Part 15, Subpart C					
Standard(s) Section	Test Item	Test Result	Judgment	Remark	
15.207	AC Power Line Conducted Emissions	APPENDIX A	PASS		
15.247(d) 15.205(a) 15.209(a)	Radiated Emission	APPENDIX B APPENDIX C APPENDIX D	PASS		
15.247 (a)(1)(iii)	Number of Hopping Frequency		PASS	Note(3)	
15.247 (a)(1)(iii)	Average Time of Occupancy		PASS	Note(3)	
15.247(a)(1)	Hopping Channel Separation		PASS	Note(3)	
15.247(a)(1)	Bandwidth		PASS	Note(3)	
15.247(a)(1)	Maximum Output Power		PASS	Note(3)	
15.247(d)	Conducted Spurious Emission		PASS	Note(3)	
15.203	Antenna Requirement		PASS	Note(2)	

Note:

- (1) "N/A" denotes test is not applicable in this test report
- (2) The device what use a permanently attached antenna were considered sufficient to comply with the provisions of 15.203.
- (3) For test data, please refer to the report 200611-04.TR05.

1.1. TEST FACILITY

Company:	Shenzhen Haiyun Standard Technical CO., Ltd.
Address:	No. 110-113, 115, 116, Block B, Jinyuan Business Building, Bao'an District, Shenzhen, China
CNAS Registration Number:	CNAS L18252
CAB identifier:	CN0145
A2LA Certificate Number:	6823.01
Telephone:	0755-26024411

1.2. MEASUREMENT UNCERTAINTY

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2))

Uncertainty				
Parameter	Uncertainty			
Conducted emission(9kHz~30MHz) AC main	±2.72dB			
Radiated emission(9kHz~30MHz)	±2.66dB			
Radiated emission (30MHz~1GHz)	±4.62dB			
Radiated emission (1GHz~18GHz)	±4.86dB			
Radiated emission (18GHz~40GHz)	±3.80dB			

Note: Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3. TEST ENVIRONMENT CONDITIONS

Test Item	Temperatur e	Humidity	Test Voltage	Tested By
AC Power Line Conducted Emissions	23.9°C	51%	AC 120V/60Hz	Freedom Zhuo
Radiated Emissions-9 kHz to 30 MHz	24.5°C	53%	AC 120V/60Hz	Freedom Zhuo
Radiated Emissions-30 MHz to 1000 MHz	24.5°C	53%	AC 120V/60Hz	Freedom Zhuo
Radiated Emissions-Above 1000 MHz	24.5°C	53%	AC 120V/60Hz	Freedom Zhuo

Note: Adapter supply voltage AC 120V/60Hz.

2.. GENERAL INFORMATION

2.1. GENERAL DESCRIPTION OF EUT

Product No.	POC240307009-S002
Product Name	V3 3 in 1 tablet
Model Name	V3, V3-001, V3-002, V3-003, V3-004, V3-005, V3-006, V3-007, V3-008, V3-009, V3-010, V3-011, V3-012, V3-013, V3-014, V3-015, V3-016, V3-017, V3-018, V3-019, V3-020, V3 SE
Test Model	V3
Model Difference	Only the model name and color are different.
Trade Mark	minisfourm
Power Supply	DC 11.55V from battery
Adapter Information	Model: PN651U Input: 100-240V~, 50/60Hz 1.5A Max Output: 5V==3A/9V==3A/12V==3A/15V==3A/20V==3.25A Max
Operation Frequency	2402 MHz ~ 2480 MHz
Modulation Type	GFSK, π/4-DQPSK, 8-DPSK
Bit Rate of Transmitter	1Mbps, 2Mbps, 3Mbps
Max. Output Power	1Mbps: 11.04 dBm
Antenna gain	2.41dBi
Antenna type	PIFA antenna
1-4	

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

2. Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	27	2429	54	2456
01	2403	28	2430	55	2457
02	2404	29	2431	56	2458
03	2405	30	2432	57	2459
04	2406	31	2433	58	2460
05	2407	32	2434	59	2461
06	2408	33	2435	60	2462
07	2409	34	2436	61	2463
08	2410	35	2437	62	2464
09	2411	36	2438	63	2465
10	2412	37	2439	64	2466
11	2413	38	2440	65	2467
12	2414	39	2441	66	2468
13	2415	40	2442	67	2469
14	2416	41	2443	68	2470
15	2417	42	2444	69	2471
16	2418	43	2445	70	2472
17	2419	44	2446	71	2473
18	2420	45	2447	72	2474
19	2421	46	2448	73	2475
20	2422	47	2449	74	2476
21	2423	48	2450	75	2477
22	2424	49	2451	76	2478
23	2425	50	2452	77	2479
24	2426	51	2453	78	2480
25	2427	52	2454		
26	2428	53	2455		

2.2. DESCRIPTION OF TEST MODES

The test system was pre-tested based on the consideration of all possible combinations of EUT operation mode.

Pretest Mode	Description
Mode 1	TX Mode_1Mbps Channel 00/39/78
Mode 2	TX Mode_2Mbps Channel 00/39/78
Mode 3	TX Mode_3Mbps Channel 00/39/78
Mode 4	TX Mode_1Mbps Channel 78

Following mode(s) was (were) found to be the worst case(s) and selected for the final test.

AC power line conducted emissions test			
Final Test Mode Description			
Mode 4 TX Mode_1Mbps Channel 78			

Radiated emissions test - Below 1GHz			
Final Test Mode Description			
Mode 4	TX Mode_1Mbps Channel 78		

Radiated emissions test - Above 1GHz		
Final Test Mode Description		
Mode 1	TX Mode_1Mbps Channel 00/39/78	
Mode 2	TX Mode_2Mbps Channel 00/39/78	
Mode 3	TX Mode_3Mbps Channel 00/39/78	

Note:

- (1) For radiated emission above 1 GHz test, the spurious points of 1GHz~18GHz and 18GHz~26.5GHz have been pre-tested and in this report only recorded the worst case. The remaining spurious points are all below the limit value of 20dB.
- (2) For AC power line conducted emissions and radiated emissions below 1 GHz test, the TX Mode_1Mbps Channel 78 is found to be the worst case and recorded.

2.3. PARAMETERS OF TEST SOFTWARE

During testing, channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level.

Test Software Version	DRTU		
Frequency (MHz)	2402	2441	2480
1Mbps	default	default	default
2Mbps	default	default	default
3Mbps	default	default	default

2.4. SUPPORT UNITS

None

3.. AC POWER LINE CONDUCTED EMISSIONS

3.1. **LIMIT**

Frequency of Emission (MHz)	Limit (dl	ΒμV)
Frequency of Emission (WHZ)	Quasi-peak	Average
0.15 - 0.5	66 to 56*	56 to 46*
0.5 - 5.0	56	46
5.0 - 30.0	60	50

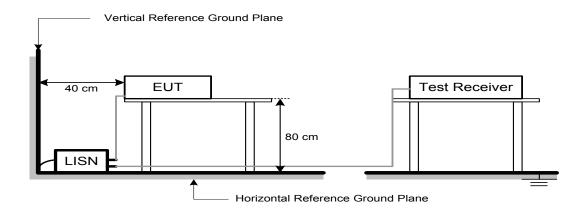
Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

3.2. TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

The following table is the setting of the receiver:


Receiver Parameters	Setting
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

3.3. DEVIATION FROM TEST STANDARD

No deviation.

3.4. TEST SETUP

3.5. EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical function (as a customer would normally use it), EUT was programmed to be in continuously transmitting data or hopping on mode.

3.6. TEST RESULTS

Please refer to the APPENDIX A.

Remark:

- (1) All readings are QP Mode value unless otherwise stated AVG in column of [Note.] . If the QP Mode Measured value compliance with the QP Limits and lower than AVG Limits, the EUT shall be deemed to meet both QP & AVG Limits and then only QP Mode was measured, but AVG Mode didn't perform in this case, a "*" marked in AVG Mode column of Interference Voltage Measured. (2) Measuring frequency range from 150 kHz to 30 MHz.

4.. RADIATED EMISSIONS

4.1. LIMIT

In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (9 kHz-1000 MHz)

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000 MHz)

Frequency (MHz)	(dBuV/m at 3 m)	
	Peak	Average
Above 1000	74	54

Note:

- (1) The limit for radiated test was performed according to FCC CFR Title 47, Part 15, Subpart C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

4.2. TEST PROCEDURE

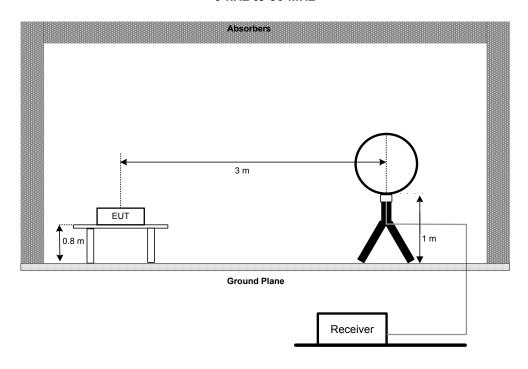
- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1 GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1 GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8m or 1.5m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1 GHz)
- h. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1 GHz)
- i. For the actual test configuration, please refer to the related Item -EUT Test Photos.

The following table is the setting of the receiver:

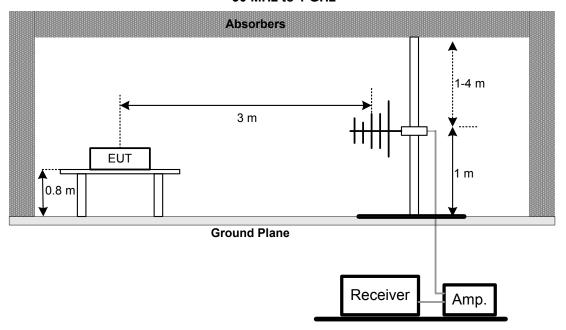
Spectrum Parameters	Setting	
Start ~ Stop Frequency	9 kHz~150 kHz for RBW 200 Hz	
Start ~ Stop Frequency	0.15 MHz~30 MHz for RBW 9 kHz	
Start ~ Stop Frequency	30 MHz~1000 MHz for RBW 100 kHz	

Spectrum Parameters	Setting	
Start Frequency	1000 MHz	
Stop Frequency	10th carrier harmonic	
RBW / VBW	1 MHz / 3 MHz for PK value	
(Emission in restricted band)	1 MHz / 1/T Hz for AVG value	

Spectrum Parameters	Setting	
Start ~ Stop Frequency 9 kHz~90 kHz for PK/AVG detector		
Start ~ Stop Frequency	90 kHz~110 kHz for QP detector	
Start ~ Stop Frequency	Frequency 110 kHz~490 kHz for PK/AVG detector	
Start ~ Stop Frequency	490 kHz~30 MHz for QP detector	
Start ~ Stop Frequency 30 MHz~1000 MHz for QP detector		
Start ~ Stop Frequency	1 GHz~26.5 GHz for PK/AVG detector	

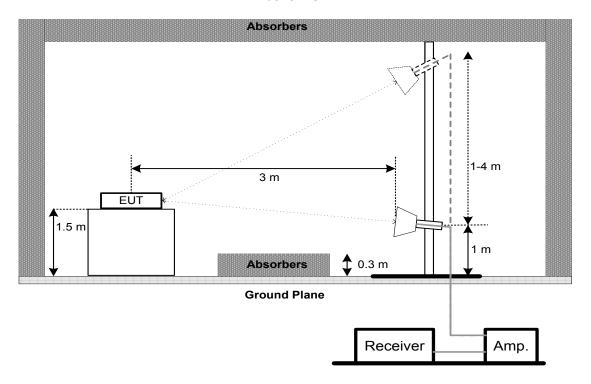


4.3. DEVIATION FROM TEST STANDARD


No deviation.

4.4. TEST SETUP

9 kHz to 30 MHz



30 MHz to 1 GHz

Above 1 GHz

4.5. EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

4.6. TEST RESULTS - 9 kHz TO 30 MHz

Please refer to the APPENDIX B.

Remark:

- (1) Distance extrapolation factor = 40 log (specific distance / test distance) (dB).
- (2) Limit line = specific limits (dBuV) + distance extrapolation factor.

4.7. TEST RESULTS - 30 MHz TO 1000 MHz

Please refer to the APPENDIX C.

4.8. TEST RESULTS - ABOVE 1000 MHz

Please refer to the APPENDIX D.

Remark:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

5.. NUMBER OF HOPPING FREQUENCY

5.1. **LIMIT**

Section	Test Item	Limit
FCC 15.247(a)(1)(iii)	Number of Hopping Frequency	15

5.2. TEST PROCEDURE

Note: For test data, please refer to the report 200611-04.TR05.

5.3. DEVIATION FROM STANDARD

No deviation.

5.4. TEST SETUP

Note: For test data, please refer to the report 200611-04.TR05.

5.5. EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

5.6. TEST RESULTS

Test result: PASS

Note: For test data, please refer to the report 200611-04.TR05.

6.. AVERAGE TIME OF OCCUPANCY

6.1. LIMIT

Section	Test Item	Limit
FCC 15.247(a)(1)(iii)	Average Time of Occupancy	0.4sec

6.2. TEST PROCEDURE

Note: For test data, please refer to the report 200611-04.TR05.

6.3. DEVIATION FROM STANDARD

No deviation.

6.4. TEST SETUP

Note: For test data, please refer to the report 200611-04.TR05.

6.5. EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

6.6. TEST RESULTS

Test result: PASS

Note: For test data, please refer to the report 200611-04.TR05.

7.. HOPPING CHANNEL SEPARATION

7.1. **LIMIT**

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

7.2. TEST PROCEDURE

Note: For test data, please refer to the report 200611-04.TR05.

7.3. DEVIATION FROM STANDARD

No deviation.

7.4. TEST SETUP

Note: For test data, please refer to the report 200611-04.TR05.

7.5. EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

7.6. TEST RESULTS

Test result: PASS

Note: For test data, please refer to the report 200611-04.TR05.

8.. BANDWIDTH

8.1. LIMIT

Section	Test Item
FCC 15.247(a)(1)	Bandwidth

8.2. TEST PROCEDURE

Note: For test data, please refer to the report 200611-04.TR05.

8.3. DEVIATION FROM STANDARD

No deviation.

8.4. TEST SETUP

Note: For test data, please refer to the report 200611-04.TR05.

8.5. EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

8.6. TEST RESULTS

Test result: PASS

Note: For test data, please refer to the report 200611-04.TR05.

9.. MAXIMUM OUTPUT POWER

9.1. **LIMIT**

Section	Test Item	Limit
FCC 15.247(a)(1)	Maximum Output Power	0.1250 Watt or 20.97 dBm

Note: Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

9.2. TEST PROCEDURE

Note: For test data, please refer to the report 200611-04.TR05.

9.3. DEVIATION FROM STANDARD

No deviation.

9.4. TEST SETUP

Note: For test data, please refer to the report 200611-04.TR05.

9.5. EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

9.6. TEST RESULTS

Test result: PASS

Please refer to the APPENDIX E.

10.. CONDUCTED SPURIOUS EMISSION

10.1. LIMIT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak Output Power limits. If the transmitter complies with the Output Power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required.

10.2. TEST PROCEDURE

Note: For test data, please refer to the report 200611-04.TR05.

10.3. DEVIATION FROM STANDARD

No deviation.

10.4. TEST SETUP

Note: For test data, please refer to the report 200611-04.TR05.

10.5. EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

10.6. TEST RESULTS

Test result: PASS

Note: For test data, please refer to the report 200611-04.TR05.

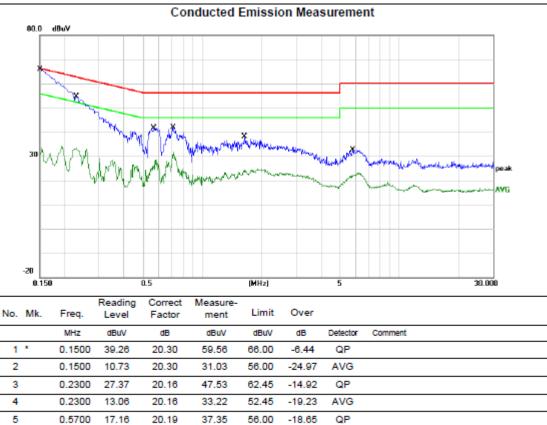
11.. MEASUREMENT INSTRUMENTS LIST

	11 MEASUREMENT INSTRUMENTS LIST Radiated Emissions					
	Cal date Cal Due date					
No.	Equipment	Manufacturer	Type No.	Serial No.	(yyyy/mm/dd)	(yyyy/mm/dd)
1	Test receiver	Rohde&Schwarz	ESU	100184	2024/4/24	2025/4/23
2	Horn Antenna	Schwarzbeck	BBHA 9120 D	9120D-1273	2024/4/20	2025/4/19
3	Low frequency amplifier	Unknown	LNA 0920N	2014	2024/4/24	2025/4/23
4	High frequency amplifier	Schwarzbeck	BBV 9718	284	2024/4/24	2025/4/23
5	Loop Antenna	Schwarzbeck	FMZB1519 B	00029	2023/7/16	2024/7/15
6	Log periodic antenna	Schwarzbeck	VULB 9168	1151	2024/4/20	2025/4/19
7	Horn Antenna	Schwarzbeck	BBHA 9120 D	9120D-1273	2024/4/20	2025/4/19
8	Horn Antenna	Schwarzbeck	BBHA 9170	9170#685	2023/7/16	2024/7/15
9	Temp&Humidity Recorder	Meideshi	JR900	1	2024/4/24	2025/4/23
10	RF cable(966 chamber)9kHz- 1GHz	Unknown	Unknown	Unknown	2024/4/24	2025/4/23
11	RF cable(966 chamber)1GHz- 18GHz	Unknown	Unknown	Unknown	2024/4/24	2025/4/23
12	RF cable(966 chamber)18GHz- 40GHz	Unknown	Unknown	Unknown	2024/4/24	2025/4/23
13	Test software	Farad Technology Co., Ltd		EZ-EMC	Ver.TW-03A2	
	Conducted Emission					
1	Test receiver	Rohde&Schwarz	ESCI	100718	2024/4/24	2025/4/23
2	LISN	Rohde&Schwarz	ENV216	100075	2024/4/24	2025/4/23
3	Pulse limiter	Rohde&Schwarz	ESH3-Z2	102299	2024/4/24	2025/4/23
4	RF cable (9kHz-30MHz)	Unknown	Unknown	Unknown	2024/4/24	2025/4/23
5 Test software Farad Technology Co., Ltd EZ-EMC Ver.TW-03A2						

12.. ANTENNA REQUIREMENT

Test standard: FCC part 15.203

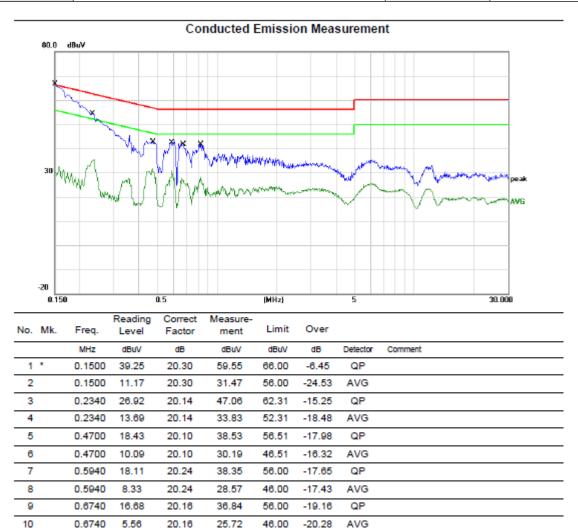
According to the manufacturer declared, the EUT has PIFA antenna, the antenna gain is 2.41dBi and the antenna connector is designed with permanent attachment and no consideration of replacement.


Therefore the EUT is considered sufficient to comply with the provision.

Refer to EUT Photo for further details.

APPENDIX A - AC POWER LINE CONDUCTED EMISSIONS

Test Mode	TX Mode_1Mbps Channel 78	Phase	Line



в 0.5700 6.10 20.19 26.29 46.00 -19.71 AVG 7 9.89 20.12 30.01 56.00 0.7140 -25.99 QP 1.50 20.12 21.62 46.00 8 0.7140 -24.38 AVG 9 1.6380 20.32 30.04 56.00 -25.96 QP 10 1.6380 2.89 20.32 23.21 46.00 -22.79 AVG 6.08 5.8060 20.26 26.34 60.00 -33.66 QP 11 5.8060 1.23 21.49 50.00 -28.51 AVG

REMARKS:

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

QP

AVG

-19.58

-19.28

REMARKS:

11

12

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

16.35

6.65

0.8300

0.8300

20.07

20.07

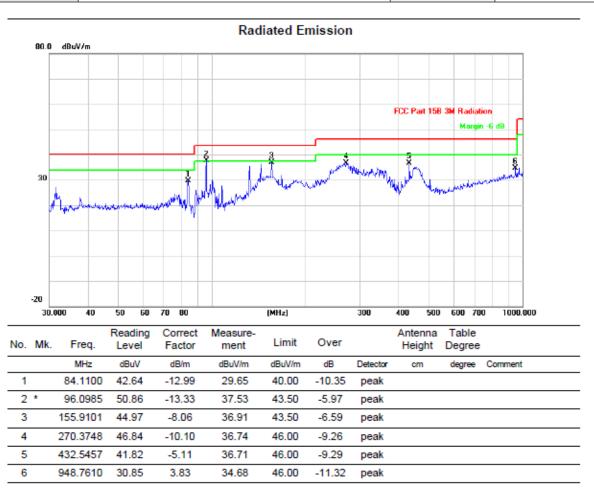
36.42

26.72

56.00

46.00

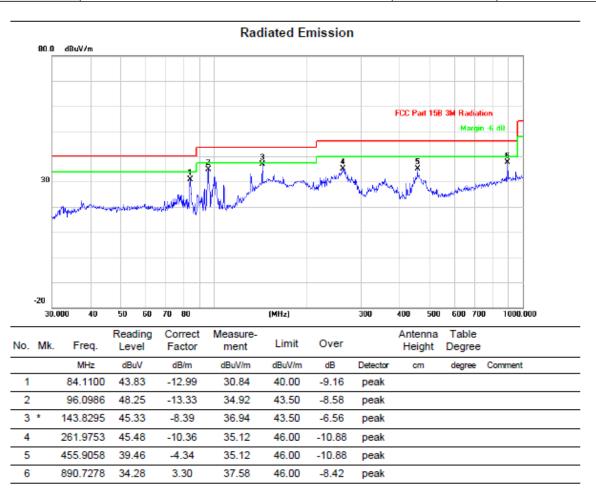
APPENDIX B - RADIATED EMISSION - 9 KHZ TO 30 MHZ


The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.

APPENDIX C - RADIATED EMISSION - 30 MHZ TO 1000 MHZ

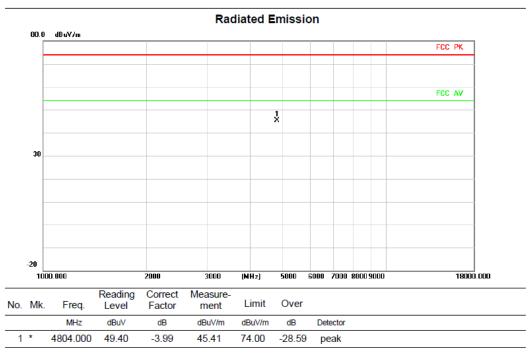
Test Mode	TX Mode 1Mbps Channel 78	Polarization	Vertical
	174 Middo_1Mbpo dilamio 7 0	. o.aa	• oou.



REMARKS:

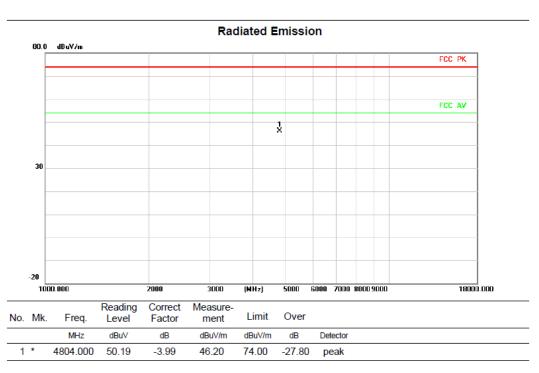
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

Test Mode	TX Mode_1Mbps Channel 78	Polarization	Horizontal
-----------	--------------------------	--------------	------------

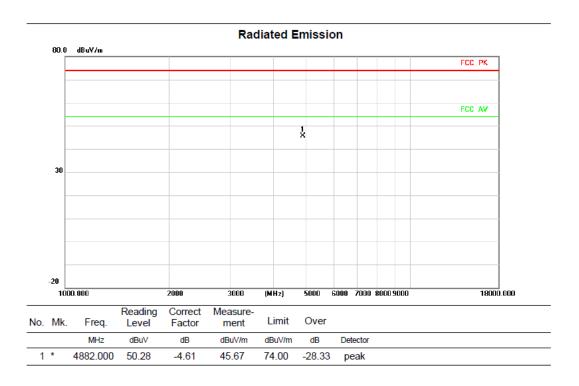

REMARKS:

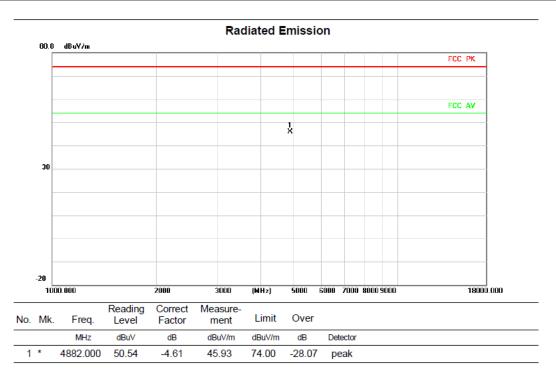
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

APPENDIX D - RADIATED EMISSION - ABOVE 1000 MHZ

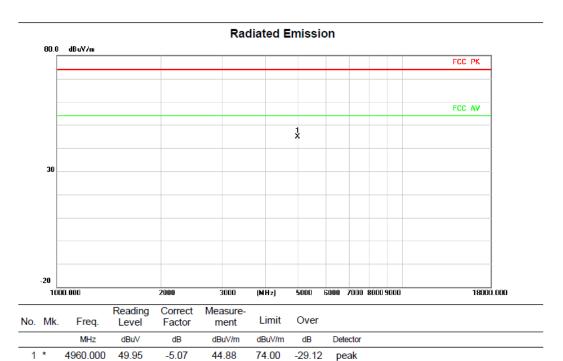

Test Mode TX Mode_1Mbps Channel 00	Polarization Vertical
------------------------------------	-----------------------

Radiated Emission 120.0 dBuV/m 70 FCC AV 2310.000 2319.50 2338.50 2348.00 2405.00 MHz Reading Correct Measure-Limit Over No. Mk. Freq. Level Factor dBuV dB/m dBuV/m MHz dBuV/m dB Detector 2310.000 46.96 -1.78 45.18 74.00 -28.82 1 * peak 2 2390.000 46.31 -1.54 44.77 74.00 -29.23 peak


Test Mode	TX Mode 1Mbps Channel 00	Polarization	Horizontal
I CSL WIOGC	17 Mode_TMbp3 Chariner 00	i Giarization	I IOI IZOI Ital


Radiated Emission 120.0 dBuV/m FCC PK FCC AV 20.0 2310.000 2319.50 2329.00 2338.50 2348.00 2357.50 2367.00 2376.50 2386.00 2405.00 MHz Reading Correct Measure-Limit Over No. Mk. Freq. Level Factor ment MHz dBuV dB/m dBuV/m dBuV/m dB Detector 2310.000 45.97 -1.78 44.19 74.00 -29.81 1 peak peak 2 * 2390.000 45.90 -1.54 44.36 74.00 -29.64

Test Mode	TX Mode 1Mbps Channel 39	Polarization	Vertical
1 COL MICAC	TX Mode_TMbps charmer oo	i olarization	VCITIOUI



Test Mode	TX Mode_1Mbps Channel 39	Polarization	Horizontal
-----------	--------------------------	--------------	------------

Test Mode	TX Mode 1Mbps Channel78	Polarization	Vertical
1 COL MICAC	17X Mode_1Mbps onailleiro	i olarization	VCITIOUI

Radiated Emission 120.0 dBuV/m FCC PK FCC AV 20.0 2475.000 2482.50 2490.00 2497.50 2505.00 2512.50 2520.00 2527.50 2535.00 2550.00 MHz Reading Correct Measure-No. Mk. Freq. Limit Over Level Factor ment

dBuV/m

74.00

74.00

dB

-22.91

-32.47

Detector

peak

peak

Report No.: RF240307009-06-005

dB/m

-0.90

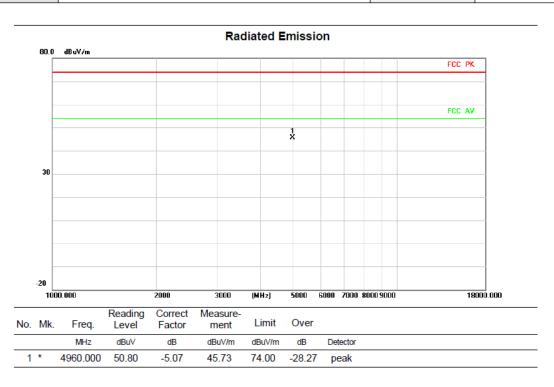
-0.74

dBuV/m

51.09

41.53

1 *


2

2483.500

2500.000

51.99

Radiated Emission 120.0 dBuV/m FCC PK 70 20.0

No.	Mk.	Freq.		Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	2483.500	53.54	-0.90	52.64	74.00	-21.36	peak
2		2500.000	44.53	-0.74	43.79	74.00	-30.21	peak

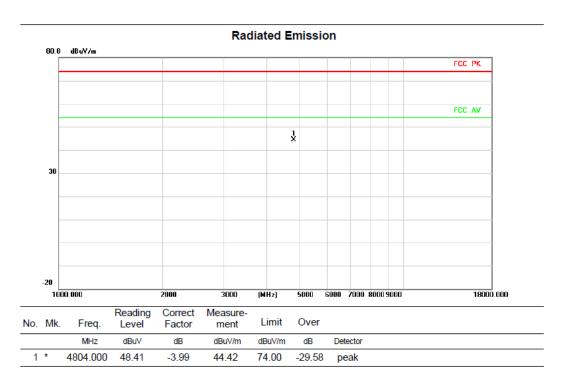
2512.50

2520.00 2527.50

2535.00

2550.00 MHz

Report No.: RF240307009-06-005


2475.000 2482.50

2490.00

2497.50

Test Mode TX Mode_2Mbps Channel 00 Polarization Vertical

Radiated Emission 120.0 dBuV/m FCC PK FCC AV 2410.00 MHz 2310.000 2320.00 2330.00 2340.00 2350.00 2360.00 2370.00 2380.00 2390.00 Reading Correct Measure-Limit Over No. Mk. Freq. Level Factor ment

dBuV/m

74.00

74.00

dB

-28.26

-29.18

Detector

peak

peak

Report No.: RF240307009-06-005

dBuV/m

45.74

44.82

1 '

2

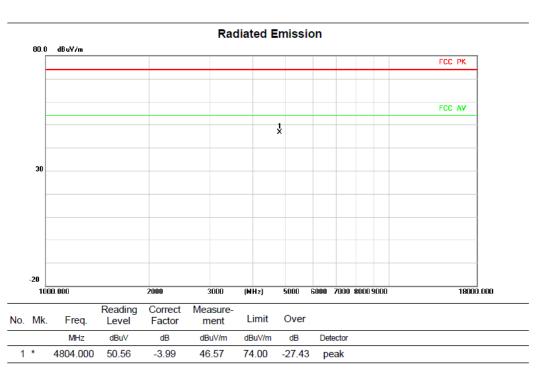
MHz

2310.000

2390.000

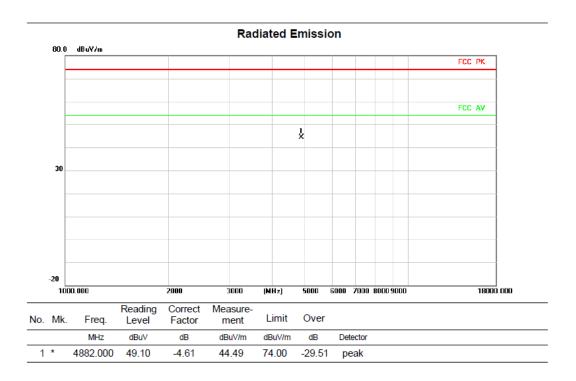
dBuV

35.55

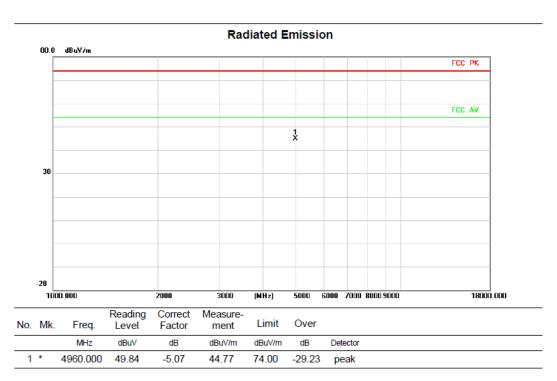

34.41

dB/m

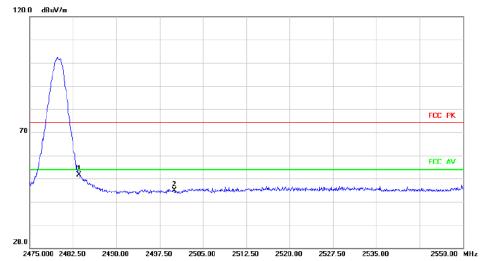
10.19


Test Mode	TX Mode 2Mbps Channel 00	Polarization	Horizontal
1 OOL WIGGO	177 Mode_ZMbpe Chamier 00	1 Oldrization	i ionzontai

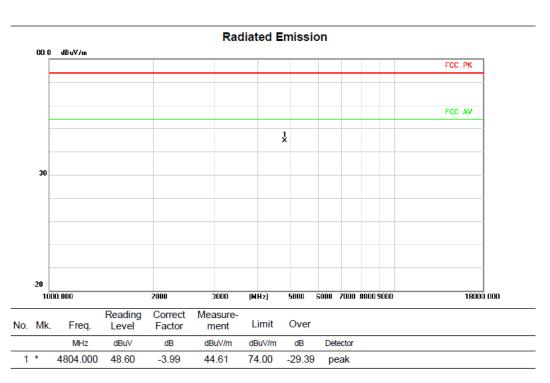
Radiated Emission 120.0 dBuV/m 70 FCC 2410.00 MHz 2310.000 2320.00 2330.00 2340.00 2350.00 2360.00 2370.00 2380.00 2390.00 Reading Correct Measure-Limit Over No. Mk. Freq. Factor MHz dBuV dB/m dBuV/m dBuV/m dB Detector 2310.000 34.28 10.19 44.47 74.00 1 -29.53 peak 2 2390.000 33.08 10.41 43.49 74.00 -30.51 peak


Test Mode	TX Mode 2Mbps Channel 39	Polarization	Vertical
1 COL IVIOGO	17X Wode_ZWbps Charlie 00	i olarization	VCITIOUI

Test Mode	TX Mode 2Mbps Channel78	Polarization	Vertical
1 COL IVIOGO	17X Mode_ZMbps Onamich o	i olarization	VCITIOUI


Radiated Emission 120.0 dBuV/m 70 FCC AV 20.0 2550.00 MHz 2475.000 2482.50 2490.00 2497.50 2505.00 2512.50 2520.00 2527.50 2535.00 Reading Correct Measure-Limit Over No. Mk. Freq. Level Factor ment dBuV MHz dB/m dBuV/m dBuV/m dB Detector 1 * 2483.500 40.80 51.89 74.00 11.09 -22.11 peak 44.35 peak 2 2500.000 33.13 11.22 74.00 -29.65

Test Mode	TX Mode 2Mbps Channel 78	Polarization	Horizontal
1 CSt WIOGC	TX Wode_ZWbp3 Onarrier 70	i Olarization	i ionzontai


Radiated Emission

No.	Mk.	Freq.		Factor	ment	Limit	Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector		
1	*	2483.500	40.47	11.09	51.56	74.00	-22.44	peak		
2		2500.000	33.70	11.22	44.92	74.00	-29.08	peak		

Test Mode TX Mode_3Mbps Channel 00 Polarization Vertical

Radiated Emission 120.0 dBuV/m FCC PK 70 FCC NV 2310.000 2320.00 2330.00 2340.00 2350.00 2360.00 2370.00 2390.00 2410.00 MHz Reading Correct Measure-No. Mk. Limit Over Freq. Level Factor ment dB/m dBuV/m MHz dBuV dBuV/m dΒ Detector 2310.000 1 33.73 10.19 43.92 74.00 -30.08 peak

74.00

-29.39

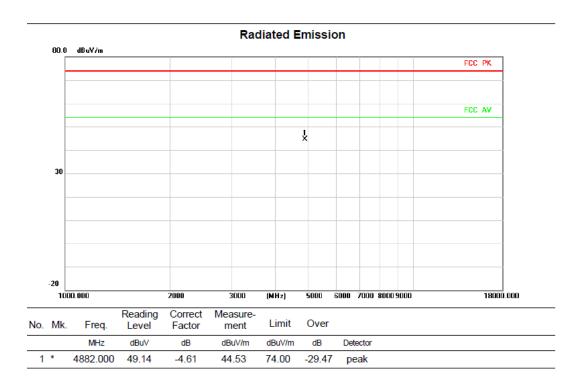
peak

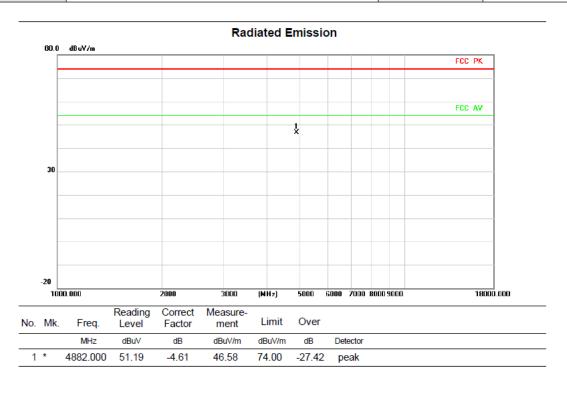
2 *

2390.000

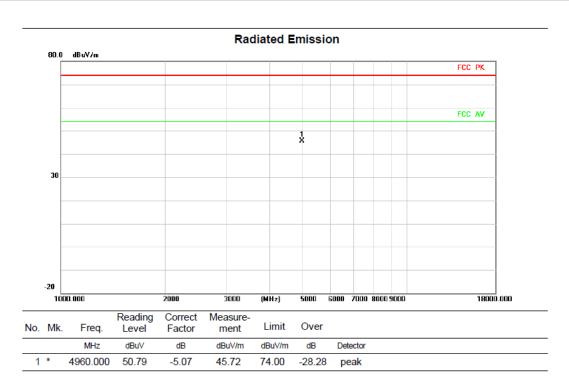
34.20

10.41


Test Mode	TX Mode 3Mbps Channel 00	Polarization	Horizontal
I CSL MOUC	1 X Wode_SWbps Charmer 00	i dianzadion	i ionzoniai

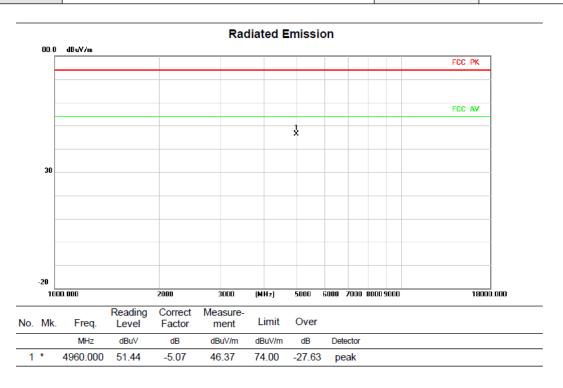

Radiated Emission 120.0 dBuV/m FCC XV 20.0 2310.000 2320.00 2330.00 2340.00 2350.00 2360.00 2370.00 2380.00 2390.00 2410.00 MHz Reading Correct Measure-No. Mk. Freq. Limit Over Level Factor ment MHz dBuV dB/m dBuV/m dBuV/m dB Detector 2310.000 34.23 10.19 44.42 74.00 -29.58 peak 2 * 2390.000 34.50 10.41 44.91 74.00 -29.09 peak

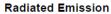
Test Mode	TX Mode 3Mbps Channel 39	Polarization	Vertical
1 COL IVIOGO	17X Mode_oMbps onainici oo	i olarization	V CI tioui

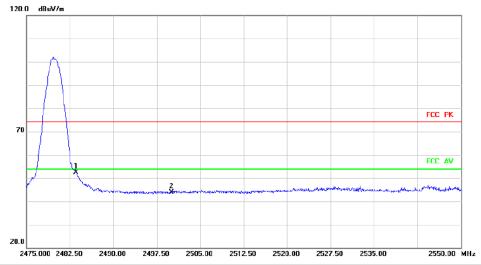


Test Mode TX Mode_3Mbps Channel 39	Polarization Horizontal
------------------------------------	-------------------------

Test Mode	TX Mode 3Mbps Channel78	Polarization	Vertical
I CSL MOUC	1 × Wode_SWbps Charmen o	i dianzadion	v Ci licai


Radiated Emission




No.	Mk.	Freq.			Measure- ment	Limit	Over		
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	
1	*	2483.500	38.62	11.09	49.71	74.00	-24.29	peak	
2		2500.000	32.71	11.22	43.93	74.00	-30.07	peak	

Test Mode	TX Mode 3Mbps Channel 78	Polarization	Horizontal
I EST MODE	1 × Wode_SWDps Charmer 76	FUIAITZALIUIT	I IUI IZUI Ilai

No) .	Mk.				Measure- ment	Limit	Over		
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	
	1	*	2483.500	41.39	11.09	52.48	74.00	-21.52	peak	
	2		2500.000	32.57	11.22	43.79	74.00	-30.21	peak	

REMARKS:

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Statement

- The report is invalid without the official seal or special seal of Shenzhen Haiyun
 Standard Technology Co., Ltd. (hereinafter referred to as the unit).
- 2. The report is invalid without the signature of the approver.
- 3. The report is invalid if altered arbitrarily.
- 4. The report shall not be partially copied without the written approval of the unit.
- 5. The reported test results are only valid for the tested samples.
- 6. If there is any objection to the test report, it shall be submitted to the test unit within 15 days from the date of receiving the report, and the overdue shall not be accepted.

Shenzhen Haiyun Standard Technology Co., Ltd.

Address: Room 110, 111, 112, 113, 115, 116, Block B, Jinyuan Business Building, No. 302, Xixiang Avenue, Labor Community, Xixiang Street, Baoan District, Shenzhen, China

Tel: 0755-26024411

Email: service@hy-lab.cn

End of Test Report