

TEST REPORT							
FCC Rules Part 15.247							
Report Reference No	MTEB23070004-R3 A4C-10012B						
Compiled by (position+printed name+signature):	File administrators Alisa Luo						
Supervised by (position+printed name+signature):	Test Engineer Sunny Deng	Aisa Luo Sunny Deng					
Approved by (position+printed name+signature):	Manager Yvette Zhou	Jutter-					
Date of issue	Jul.03,2023						
Representative Laboratory Name .:	Shenzhen Most Technology Sei	vice Co., Ltd.					
Address	No.5, 2nd Langshan Road, North Nanshan, Shenzhen, Guangdong						
Applicant's name	RM ACQUISITIONS LLC						
Address	8770 W. Bryn Mawr Avenue, Chica	ago,Illinois,United States,60631					
Test specification/ Standard:	FCC Rules Part 15.247						
TRF Originator		ce Co., Ltd.					
Shenzhen Most Technology Service This publication may be reproduced in Shenzhen Most Technology Service Co material. Shenzhen Most Technology S liability for damages resulting from the placement and context.	whole or in part for non-commercia o., Ltd. is acknowledged as copyrig service Co., Ltd. takes no responsil	ht owner and source of the pility for and will not assume					
Test item description	GPS Device						
Trade Mark	RAND M?NALLY						
Manufacturer	SHEN ZHEN APICAL TECHNOL	OGY CO., LTD					
Model/Type reference	RandTab7						
Listed Models	N/A						
Modulation Type	GFSK, π/4DQPSK, 8DPSK						
Operation Frequency	From 2402MHz to 2480MHz						
Hardware Version	T1050-MT8176-MAIN-01B						
Software Version	RandTab7_mp						
Rating	DC 3.7V (by Battery) DC 5V (by USB Port) DC 5V (by Car Charger)						
Result	PASS						

TEST REPORT

Equipment under Test	:	GPS Device
Model /Type	:	RandTab7
Listed Models	:	N/A
Remark		N/A.
Applicant	:	RM ACQUISITIONS LLC
Address	:	8770 W. Bryn Mawr Avenue, Chicago, Illinois, United States, 60631
Manufacturer	:	SHEN ZHEN APICAL TECHNOLOGY CO., LTD
Address	:	9/F,B Building, Tinghua Unis Infoport, Langshan RD, North district, Hi-tech Industrial Park, Nanshan, Shenzhen

Test Result:	PASS
--------------	------

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

<u>1</u>	REVISION HISTORY	4
<u>2</u>	TEST STANDARDS	5
<u>3</u>	SUMMARY	6
3.1	General Remarks	6
3.2	Product Description	6
3.3	Equipment Under Test	6
3.4	Short description of the Equipment under Test (EUT)	6
3.5	EUT operation mode	7
3.6	Block Diagram of Test Setup	7
3.7	Test Item (Equipment Under Test) Description*	7
3.8 3.9	Auxiliary Equipment (AE) Description Antenna Information*	7
3.9 3.10	Related Submittal(s) / Grant (s)	7 8
3.10	Modifications	8
3.12	EUT configuration	8
<u>4</u>	TEST ENVIRONMENT	9
		•
4.1	Address of the test laboratory Environmental conditions	9
4.2 4.3	Summary of measurement results	9 10
4.4	Statement of the measurement uncertainty	10
4.5	Equipments Used during the Test	11
<u>5</u>	TEST CONDITIONS AND RESULTS	. 12
5.1	AC Power Conducted Emission	12
5.2	Radiated Emission	15
5.3	Maximum Peak Output Power	21
5.4	20dB Bandwidth	22
5.5	Frequency Separation	23
5.6 5.7	Number of hopping frequency Time of Occupancy (Dwell Time)	24 25
5.8	Spurious RF Conducted Emission	26
5.9	Pseudorandom Frequency Hopping Sequence	27
5.10	Antenna Requirement	28
<u>6</u>	TEST SETUP PHOTOS OF THE EUT	. 29
<u>7</u>	PHOTOS OF THE EUT	. 30
ΔΡΡΕΝ	DIX I.Conducted Peak Output Power	31
		-
	DIX II.99% Bandwidth DIX III.20dB Bandwidth	32 34
	DIX IV.Carrier Frequencies Separation	34
	DIX V.Conducted Out Of Band Emission	38
APPEN	DIX VI.Duty Cycle	44
APPEN	DIX VII.Dwell Time	49

1 <u>Revision History</u>

Revision	Issue Date	Revisions	Revised By
00	2023-07-03	Initial Issue	Alisa Luo

2 TEST STANDARDS

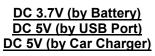
The tests were performed according to following standards:

<u>FCC Rules Part 15.247</u>: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. <u>ANSI C63.10-2013</u>: American National Standard for Testing Unlicensed Wireless Devices

3 <u>SUMMARY</u>

3.1 General Remarks

Date of receipt of test sample	:	2023.06.19
Testing commenced on	• •	2023.06.20
Testing concluded on	:	2023.07.03


3.2 **Product Description**

Product Name:	GPS Device
Model/Type reference:	RandTab7
Power Supply:	DC 3.7V (by Battery) DC 5V (by USB Port) DC 5V (by Car Charger)
Testing sample ID:	MTYP01540
Bluetooth :	
Supported Type:	Bluetooth BR/EDR
Modulation:	GFSK, π/4DQPSK, 8DPSK
Operation frequency:	2402MHz~2480MHz
Channel number:	79
Channel separation:	1MHz
Antenna type:	FPC Antenna
Antenna gain:	0.90dBi

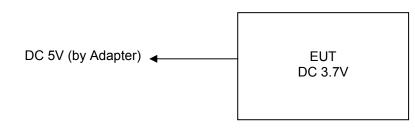
3.3 Equipment Under Test

Power supply system utilised

Power supply voltage	:	0	230V / 50 Hz	0	120V / 60Hz
		0	12 V DC	0	24 V DC
		•	Other (specified in blank below)		

3.4 Short description of the Equipment under Test (EUT)

This is a GPS Device For more details, refer to the user's manual of the EUT.


3.5 EUT operation mode

The Applicant provides communication tools software(Engineer mode) to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing .There are 79 channels provided to the EUT and Channel 00/39/78 were selected to test.

Operation Frequency:

Channel	Frequency (MHz)
00	2402
01	2403
:	÷
38	2440
39	2441
40	2442
:	÷
77	2479
78	2480

3.6 Block Diagram of Test Setup

3.7 Test Item (Equipment Under Test) Description*

Short designation	EUT Name	EUT Description	Serial number	Hardware status	Software status
EUT A					
EUT B					

*: declared by the applicant. According to customers information EUTs A and B are the same devices.

3.8 Auxiliary Equipment (AE) Description

AE short designation	EUT Name (if available)	EUT Description	Serial number (if available)	Software (if used)
AE 1	Adapter	1	MDY-08-EH	
AE 2	-			

3.9 Antenna Information*

Short designation	Antenna Name	Antenna Type	Frequency Range	Serial number	Antenna Peak Gain
Antenna 1		FPC Antenna	2.4 – 2.5 GHz		0.90dBi
Antenna 2					

*: declared by the applicant.

3.10 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for the device filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

3.11 Modifications

No modifications were implemented to meet testing criteria.

3.12 EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- $\, \odot \,$ supplied by the manufacturer
- - Supplied by the lab

\bullet	ADAPTER	M/N:	MDY-08-EH
		Manufacturer:	Xiaomi Communications Co.,Ltd

4 <u>TEST ENVIRONMENT</u>

4.1 Address of the test laboratory

Shenzhen Most Technology Service Co., Ltd.

No.5, 2nd Langshan Road, North District, Hi-tech Industrial Park, Nanshan, Shenzhen, Guangdong, China. The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.4:2014 and CISPR 16-1-4:2010 SVSWR requirement for radiated emission above 1GHz.

Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Designation No.: CN1315

Shenzhen Most Technology Service Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

A2LA-Lab Cert. No.: 6343.01

Shenzhen Most Technology Service Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

4.2 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Radiated Emission:

Temperature:	23 ° C
Humidity:	48 %
Atmospheric pressure:	950-1050mbar

AC Main Conducted testing:

Temperature:	24 ° C
Humidity:	45 %
Atmospheric pressure:	950-1050mbar
Atmospheric pressure:	950-1050mbar

Conducted testing:

Temperature:	24 ° C
Humidity:	45 %
Atmospheric pressure:	950-1050mbar

4.3 Summary of measurement results

Test Specification clause	Test case	Test Mode	Test Channel		orded eport	Test result
§15.247(a)(1)	Carrier Frequency separation	GFSK Π/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK Π/4DQPSK 8DPSK	Middle	Compliant
§15.247(a)(1)	Number of Hopping channels	GFSK Π/4DQPSK 8DPSK	🛛 Full	GFSK 8DPSK	🖾 Full	Compliant
§15.247(a)(1)	Time of Occupancy (dwell time)	GFSK Π/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK Π/4DQPSK 8DPSK	Middle	Compliant
§15.247(a)(1)	Spectrumbandwidth of aFHSS system20dB bandwidth	GFSK ∏/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK Π/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	Compliant
§15.247(b)(1)	Maximum outputpower	GFSK Π/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK Π/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	Compliant
§15.247(d)	Band edgecompliance conducted	GFSK Π/4DQPSK 8DPSK	⊠ Lowest ⊠ Highest	GFSK Π/4DQPSK 8DPSK	⊠ Lowest ⊠ Highest	Compliant
§15.205	Band edgecompliance radiated	GFSK Π/4DQPSK 8DPSK	⊠ Lowest ⊠ Highest	GFSK	⊠ Lowest ⊠ Highest	Compliant
§15.247(d)	TX spuriousemissions conducted	GFSK Π/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK Π/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	Compliant
§15.247(d)	TX spuriousemissions radiated	GFSK Π/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK	⊠ Lowest ⊠ Middle ⊠ Highest	Compliant
§15.209(a)	TX spurious Emissions radiated Below 1GHz	GFSK ∏/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK	⊠ Middle	Compliant
§15.107(a) §15.207	Conducted Emissions 9KHz-30 MHz	GFSK Π/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK	🛛 Middle	N/A

Remark:

1. The measurement uncertainty is not included in the test result.

2. We tested all test mode and recorded worst case in report

4.4 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen Most Technology Service Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

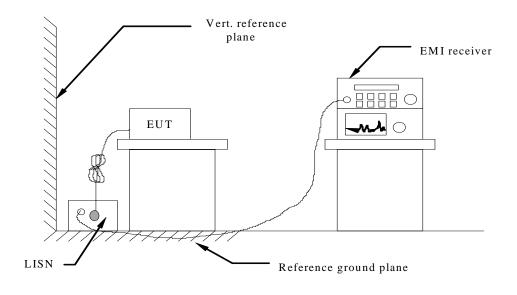
Hereafter the best measurement capability for Shenzhen Most Technology Service Co., Ltd. is reported:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.10 dB	(1)
Radiated Emission	1~18GHz	4.32 dB	(1)
Radiated Emission	18-40GHz	5.54 dB	(1)
Conducted Disturbance	0.15~30MHz	3.12 dB	(1)
20dB Bandwidth & 99% Bandwidth	/	5%	(1)
Maximum Conducted Output Power	/	0.80dB	(1)

Spurious RF Conducted Emission	1	1.6dB	(1)
-----------------------------------	---	-------	-----

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

4.5 Equipments Used during the Test


Item	Equipment	Manufacturer	Model No.	Serial No.	Firmware versions	Last Cal.	Cal. Interval
1.	L.I.S.N.	R&S	ENV216	100093	/	2023/03/17	1 Year
2	Three-phase artificial power network	Schwarzback Mess	NNLK8129	8129178	/	2023/03/17	1 Year
3.	Receiver	R&S	ESCI	100492	V3.0-10-2	2023/03/17	1 Year
4	Receiver	R&S	ESPI	101202	V3.0-10-2	2023/03/17	1 Year
5	Spectrum analyzer	Agilent	9020A	MT-E306	A14.16	2023/03/17	1 Year
6	Bilong Antenna	Sunol Sciences	JB3	A121206	/	2023/03/17	1 Year
7	Horn antenna	HF Antenna	HF Antenna	MT-E158	/	2023/03/17	1 Year
8	Loop antenna	Beijing Daze	ZN30900B	1	/	2023/03/17	1 Year
9	Horn antenna	R&S	OBH100400	26999002	/	2023/03/17	1 Year
10	Wireless Communication Test Set	R&S	CMW500	1	CMW-BASE- 3.7.21	2023/03/17	1 Year
11	Spectrum analyzer	R&S	FSP	100019	V4.40 SP2	2023/03/17	1 Year
12	High gain antenna	Schwarzbeck	LB-180400KF	MT-E389	/	2023/03/17	1 Year
13	Preamplifier	Schwarzbeck	BBV 9743	MT-E390	/	2023/03/17	1 Year
14	Pre-amplifier	EMCI	EMC051845S E	MT-E391	/	2023/03/17	1 Year
15	Pre-amplifier	Agilent	83051A	MT-E392	/	2023/03/17	1 Year
16	High pass filter unit	Tonscend	JS0806-F	MT-E393	1	2023/03/17	1 Year
17	RF Cable(below1GHz)	Times	9kHz-1GHz	MT-E394	/	2023/03/17	1 Year
18	RF Cable(above 1GHz)	Times	1-40G	MT-E395	/	2023/03/17	1 Year
19	RF Cable (9KHz-40GHz)	Tonscend	170660	N/A	/	2023/03/17	1 Year

Note: The Cal.Interval was one year.

5 TEST CONDITIONS AND RESULTS

5.1 AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.

2 Support equipment, if needed, was placed as per ANSI C63.10-2013

3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013

4 The EUT received DC 12V power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.

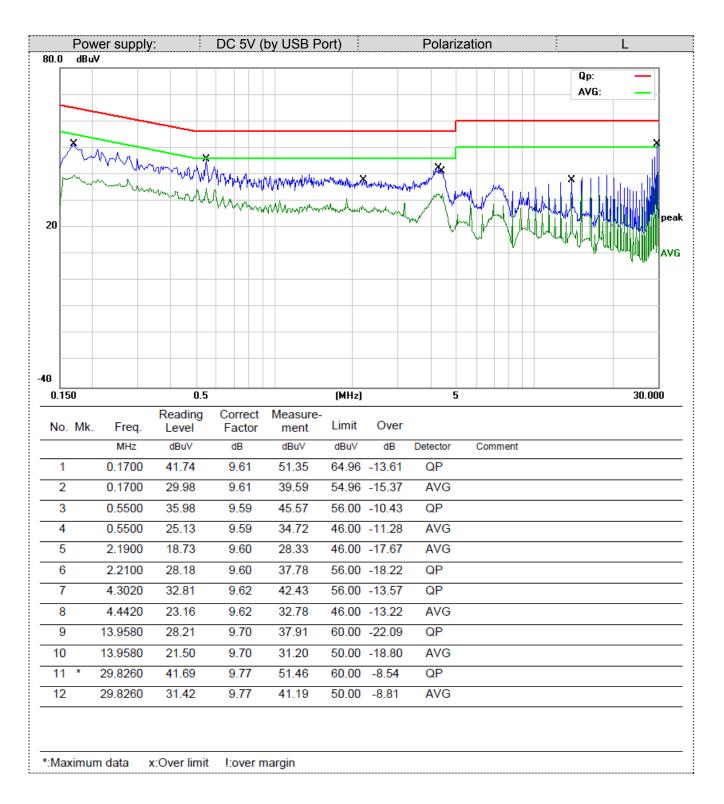
5 All support equipments received AC power from a second LISN, if any.

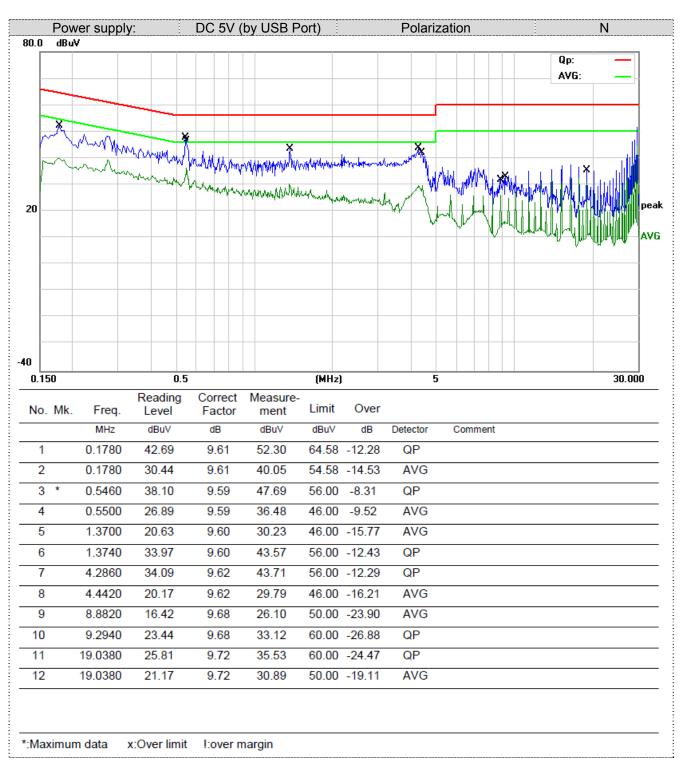
6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT.The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.

7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

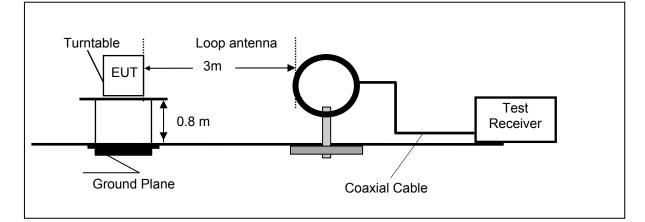

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following :

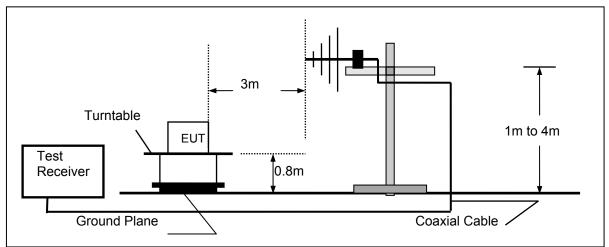

Frequency range (MHz)	Limit (dBuV)		
	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	
* Decreases with the logarithm of the frequen	CV.		

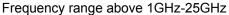
TEST RESULTS

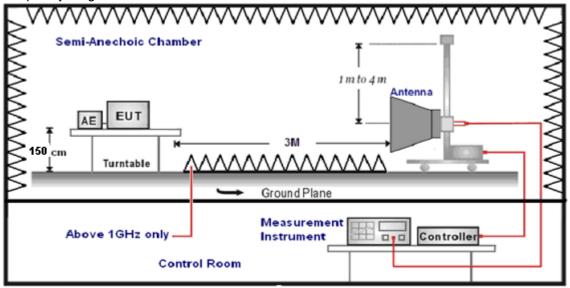
Remark:

1. GFSK, π /4DQPSK, 8DPSK were test at Low, Middle, and High channel; only the worst result of 8DPSK Middle Channel was reported as below:




5.2 Radiated Emission


TEST CONFIGURATION


Frequency range 9 KHz – 30MHz

Frequency range 30MHz – 1000MHz

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz –1GHz;the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. Radiated emission test frequency band from 9KHz to 25GHz.
- 6. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Ultra-Broadband Antenna	3
1GHz-18GHz	Double Ridged Horn Antenna	3
18GHz-25GHz	Horn Anternna	1
	.	

7. Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector		
9KHz-150KHz	9KHz-150KHz RBW=200Hz/VBW=3KHz,Sweep time=Auto			
150KHz-30MHz	150KHz-30MHz RBW=9KHz/VBW=100KHz,Sweep time=Auto			
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP		
1GHz-40GHz	Peak Value: RBW=1MHz/VBW=3MHz, Sweep time=Auto Average Value: RBW=1MHz/VBW=10Hz, Sweep time=Auto	Peak		

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

Transd=AF +CL-AG

RADIATION LIMIT

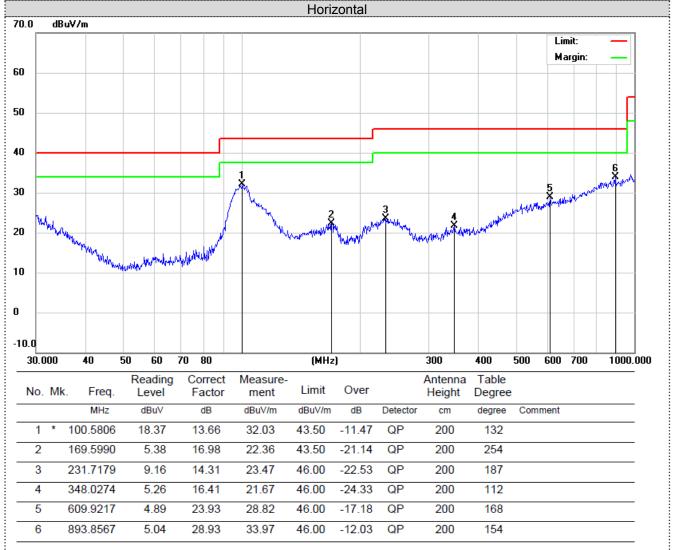
For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

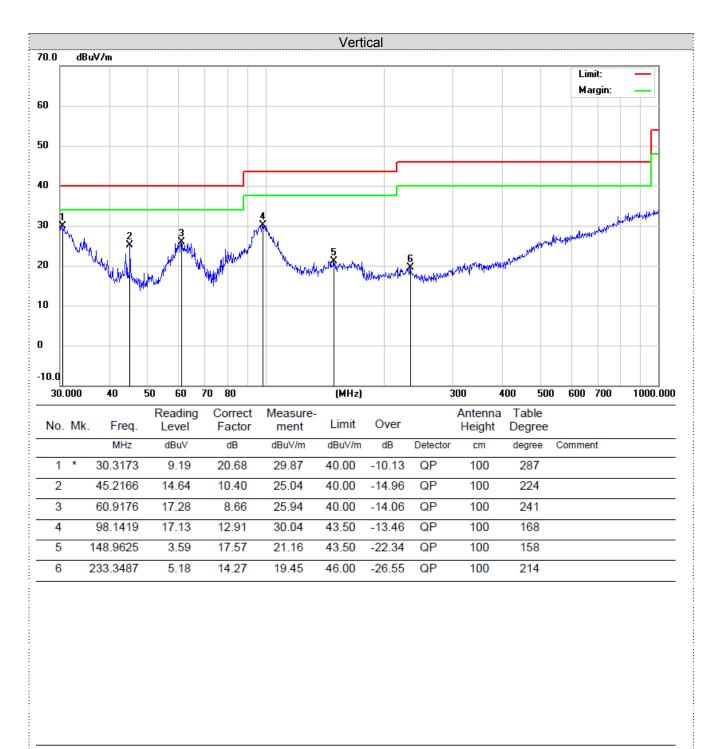
The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

Frequency (MHz)	Distance	Radiated (dBµV/m)	Radiated (µV/m)
	(Meters)		
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

TEST RESULTS

Remark:


1. This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X position. 2. We measured Radiated Emission at GFSK, $\pi/4$ DQPSK and 8DPSK mode from 9 KHz to 25GHz and recorded worst case at GFSK DH5 mode.


3. For below 1GHz testing recorded worst at GFSK DH5 middle channel.

4. Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.

5. Remark: Result=Reading value+Factor

For 30MHz-1GHz

*:Maximum data x:Over limit !:over margin

For 1GHz to 25GHz

Note: GFSK, Pi/4 DQPSK and 8DPSK all have been tested, only worse case GFSK is reported. GFSK (above 1GHz)

GFSK (above TGHZ)										
Freque	Frequency(MHz):			02	Pola	rity:	н	ORIZONTA	NL	
Frequency (MHz)	-	sion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4804	56.31	PK	74	17.69	54.41	31.42	6.98	36.5	1.9	
4804	46.72	AV	54	7.28	44.82	31.42	6.98	36.5	1.9	
7206	53.2	PK	74	20.8	42.6	37.03	8.87	35.3	10.6	
7206	42.56	AV	54	11.44	31.96	37.03	8.87	35.3	10.6	

Freque	ncy(MHz)	:	24	02	Pola	arity:		Factor amplifier Fac (dB) (dB) (dB		
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Factor	amplifier	Correction Factor (dB/m)	
4804	53.92	PK	74	20.08	52.02	31.42	6.98	36.5	1.9	
4804	46.67	AV	54	7.33	44.77	31.42	6.98	36.5	1.9	
7206	53.66	PK	74	20.34	43.06	37.03	8.87	35.3	10.6	
7206	41.35	AV	54	12.65	30.75	37.03	8.87	35.3	10.6	

Freque	ncy(MHz)	:	2441		Pola	arity:	Н	Factor amplifier Facto	
Frequency (MHz)	Emis Lev (dBu)	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Factor	amplifier	Correction Factor (dB/m)
4882	52.76	PK	74	21.24	50.7	30.98	7.58	36.5	2.06
4882	46.82	AV	54	7.18	44.76	30.98	7.58	36.5	2.06
7323	51.11	PK	74	22.89	40.19	37.66	8.56	35.3	10.92
7323	42.35	AV	54	11.65	31.43	37.66	8.56	35.3	10.92

Freque	ncy(MHz)	:	24	41	Pola	arity:		VERTICAL	
Frequency (MHz)	Emis Lev (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4882	57.49	PK	74	16.51	55.43	30.98	7.58	36.5	2.06
4882	44.16	AV	54	9.84	42.1	30.98	7.58	36.5	2.06
7323	55.87	PK	74	18.13	44.95	37.66	8.56	35.3	10.92
7323	42.14	AV	54	11.86	31.22	37.66	8.56	35.3	10.92

Freque	ncy(MHz)):	24	80	Pola	arity:	Н	Factor (dB) amplifier (dB) Factor (dB/m) 7.8 36.2 3.07 7.8 36.2 3.07	
Frequency (MHz)	-	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Factor	amplifier	Correction Factor (dB/m)
4960	57.94	PK	74	16.06	54.87	31.47	7.8	36.2	3.07
4960	43.34	AV	54	10.66	40.27	31.47	7.8	36.2	3.07
7440	53.75	PK	74	20.25	42.01	38.32	8.72	35.3	11.74
7440	42.62	PK	54	11.38	30.88	38.32	8.72	35.3	11.74

Freque	ncy(MHz)):	24	80	Pola	arity:		VERTICAL	
Frequency (MHz)	-	ssion vel V/m)	Limit (dBuV/m)	J		Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960	56.69	PK	74	17.31	53.62	31.47	7.8	36.2	3.07
4960	45.47	AV	54	8.53	42.4	31.47	7.8	36.2	3.07
7440	53.41	PK	74	20.59	41.67	38.32	8.72	35.3	11.74
7440	43.23	PK	54	10.77	31.49	38.32	8.72	35.3	11.74

REMARKS:

1. 2.

Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m) Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier

- 3.
- Margin value = Limit value- Emission level. -- Mean the PK detector measured value is below average limit. 4.
- 5. The other emission levels were very low against the limit.

Results of Band Edges Test (Radiated)

Note: GFSK, Pi/4 DQPSK and 8DPSK all have been tested, only worse case GFSK is reported. GESK

				GFS	ĸ				
Freque	ncy(MHz)	:	24	02	Pola	arity:	н	ORIZONTA	Ĺ
Frequency (MHz)	Emis Le (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390	54.75	PK	74	19.25	60.16	27.49	3.32	36.22	-5.41
2390	40.1	AV	54	13.9	45.51	27.49	3.32	36.22	-5.41
Freque	ncy(MHz)	:	24	02	Pola	arity:		VERTICAL	
Frequency (MHz)	Emis Le (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390	57.74	PK	74	16.26	63.15	27.49	3.32	36.22	-5.41
2390	39.94	AV	54	14.06	45.35	27.49	3.32	36.22	-5.41
Freque	ncy(MHz)	:	24	80	Pola	arity:	н	ORIZONTA	L
Frequency (MHz)	Emis Le (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.5	54.7	PK	74	19.3	60.21	27.45	3.38	36.34	-5.51
2483.5	39.62	AV	54	14.38	45.13	27.45	3.38	36.34	-5.51
Freque	ncy(MHz)	:	24	80	Pola	arity:		VERTICAL	
Frequency (MHz)	Emis Le (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.5	56.53	PK	74	17.47	62.04	27.45	3.38	36.34	-5.51
2483.5	38.82	AV	54	15.18	44.33	27.45	3.38	36.34	-5.51

REMARKS:

1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)

2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier

3.

Margin value = Limit value- Emission level. -- Mean the PK detector measured value is below average limit. 4.

5.3 Maximum Peak Output Power

<u>Limit</u>

The Maximum Peak Output Power Measurement is 125mW (20.97).

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the powersensor.

Test Configuration

Test Results

See Appendix I

5.4 20dB Bandwidth

<u>Limit</u>

For frequency hopping systems operating in the 2400MHz-2483.5MHz no limit for 20dB bandwidth.

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 30 KHz RBW and 100 KHz VBW.

The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

Test Configuration

Test Results

See Appendix III

5.5 Frequency Separation

<u>LIMIT</u>

According to 15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25KHz or the 2/3*20dB bandwidth of the hopping channel, whichever is greater.

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with100 KHz RBW and 300 KHz VBW.

TEST CONFIGURATION

TEST RESULTS

See Appendix IV

5.6 Number of hopping frequency

<u>Limit</u>

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.

Test Procedure

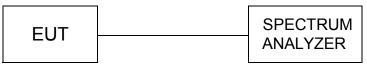
The transmitter output was connected to the spectrum analyzer through an attenuator. Set spectrum analyzer start 2400MHz to 2483.5MHz with 100 KHz RBW and 300 KHz VBW.

Test Configuration

Test Results

See Appendix VIII

5.7 Time of Occupancy (Dwell Time)


<u>Limit</u>

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. Set center frequency of spectrum analyzer=operating frequency with 1MHz RBW and 1MHz VBW, Span 0Hz.

Test Configuration

Test Results

See Appendix VII

5.8 Spurious RF Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBW= 300KHz to measure the peak field strength , and mwasure frequeny range from 9KHz to 25GHz.

<u>LIMIT</u>

1. Below -20dB of the highest emission level in operating band.

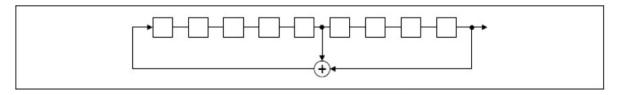
2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.

Test Results

See Appendix V

5.9 Pseudorandom Frequency Hopping Sequence

TEST APPLICABLE


For 47 CFR Part 15C section 15.247 (a) (1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hop-ping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hop-ping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence Requirement

The pseudorandom frequency hopping sequence may be generated in a nice-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first one of 9 consecutive ones, for example: the shift register is initialized with nine ones.

- Number of shift register stages:9
- Length of pseudo-random sequence:29-1=511 bits
- Longest sequence of zeros:8(non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of pseudorandom frequency hopping sequence as follows:

0	2	4	6	62	64	 78	1		73	75	77
\square									Γ	Γ	Г
										L	
								}	L		

Each frequency used equally one the average by each transmitter.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitter and shift frequencies in synchronization with the transmitted signals.

5.10 Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (c), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Refer to statement below for compliance

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Antenna Connected Construction

The directional gains of antenna used for transmitting is 0.90dBi, and the antenna is an FPC Antenna connect to PCB board and no consideration of replacement. Please see EUT photo for details.

Results: Compliance.

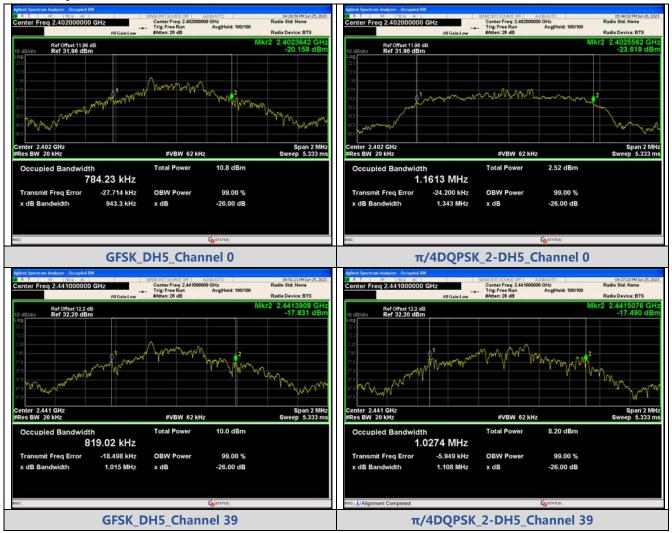
6 Test Setup Photos of the EUT

7 Photos of the EUT

See related photo report.

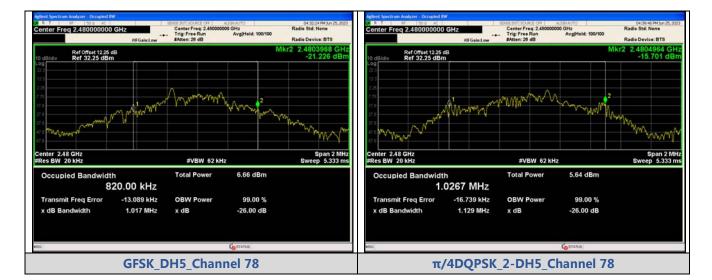
APPENDIX I.Conducted Peak Output Power

Test Result							
Modulation	Packet Type	Channel	Peak Output Power (dBm)	Peak Output Power (mW)	Max. Avg. Power (dBm)	Limit (dBm)	Result
		0	6.349	4.314	None		PASS
GFSK	DH5	39	5.689	3.706	None	30	PASS
		78	2.496	1.777	None		PASS
		0	-1.649	0.684	None		PASS
π/4DQPSK	2-DH5	39	5.230	3.334	None		PASS
		78	2.577	1.810	None	20.07	PASS
		0	5.751	3.759	None	20.97	PASS
8DPSK	3-DH5	39	5.220	3.327	None		PASS
		78	2.054	1.605	None		PASS


Test Result

APPENDIX II.99% Bandwidth

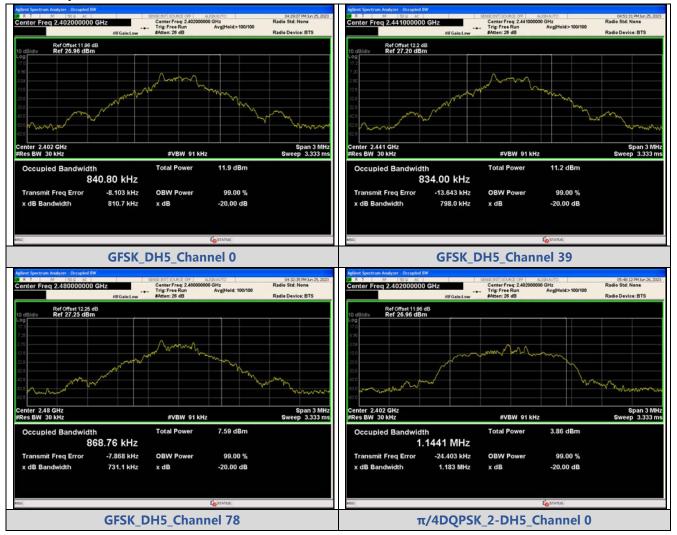
Test Result


Modulation	Channel	99% BW (MHz)
	0	0.78423
GFSK	39	0.81902
	78	0.82000
	0	1.1613
π/4DQPSK	39	1.0274
	78	1.0267
	0	1.0145
8DPSK	39	1.0031
	78	1.0352

Test Graphs

Report No.: MTEB23070004-R3

Page 33 of 54



APPENDIX III.20dB Bandwidth

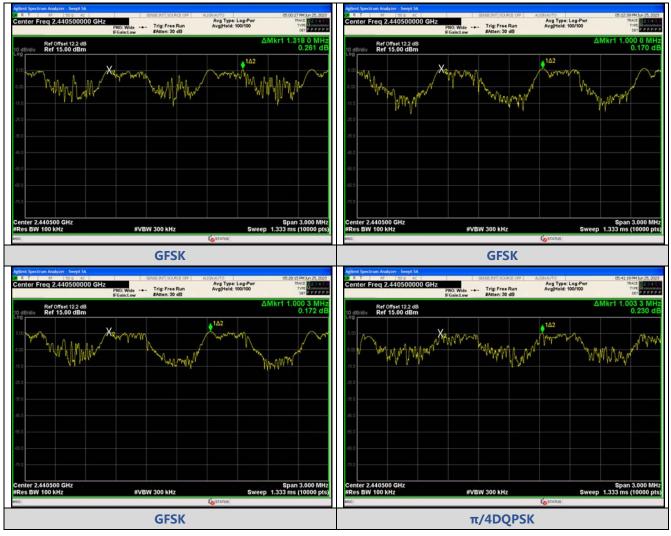
Test Result

Modulation	Channel	Center Frequency (MHz)	20 dB Bandwidth (MHz)
	0	2402 MHz	0.8107
GFSK	39	2441 MHz	0.7980
	78	2480 MHz	0.7311
	0	2402 MHz	1.183
π/4DQPSK	39	2441 MHz	1.115
	78	2480 MHz	1.115
	0	2402 MHz	1.126
8DPSK	39	2441 MHz	1.104
	78	2480 MHz	1.120

Test Graphs

Report No.: MTEB23070004-R3

Page 35 of 54



APPENDIX IV.Carrier Frequencies Separation

Test Result

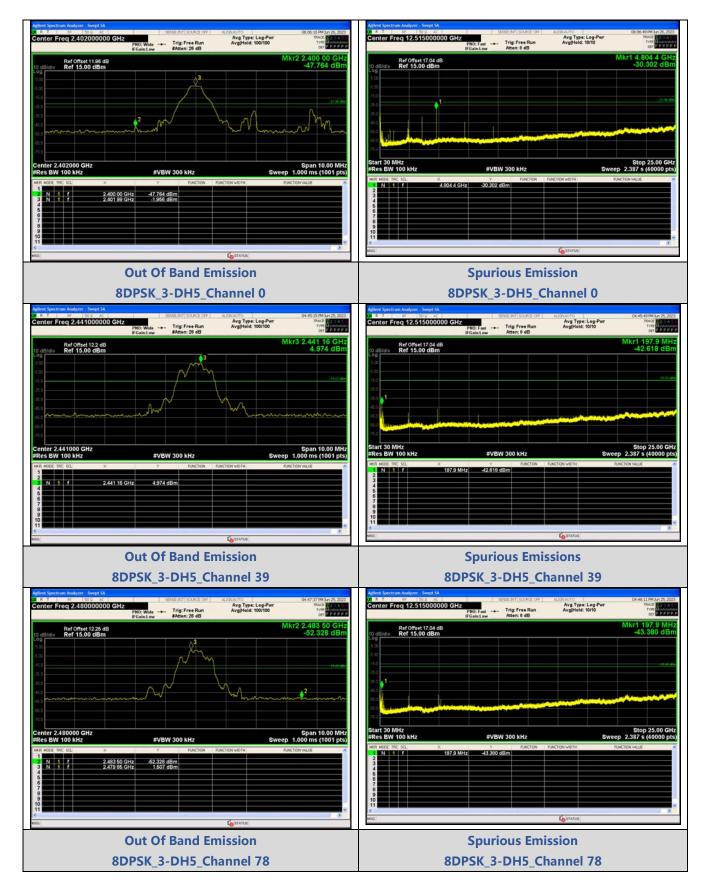
Modulation	Packet	Left Center frequency (MHz)	Right Center frequency (MHz)	Hopping Frequency Separation (MHz)	Limit (MHz)	Result
GFSK	DH5	2439.8323	2441.1503	1.3180	0.54	PASS
GFSK	DH5	2439.8317	2440.8317	1.0000	0.532	PASS
GFSK	DH5	2439.8311	2440.8314	1.0003	0.487	PASS
π/4DQPSK	2-DH5	2439.8242	2440.8275	1.0033	0.739	PASS
π/4DQPSK	2-DH5	2439.8167	2440.8392	1.0225	0.743	PASS
π/4DQPSK	2-DH5	2440.0192	2440.9829	0.9637	0.743	PASS
8DPSK	3-DH5	2440.0252	2441.1698	1.1446	0.751	PASS
8DPSK	3-DH5	2440.1503	2441.1407	0.9904	0.736	PASS
8DPSK	3-DH5	2440.1512	2441.1551	1.0039	0.747	PASS

Test Graphs

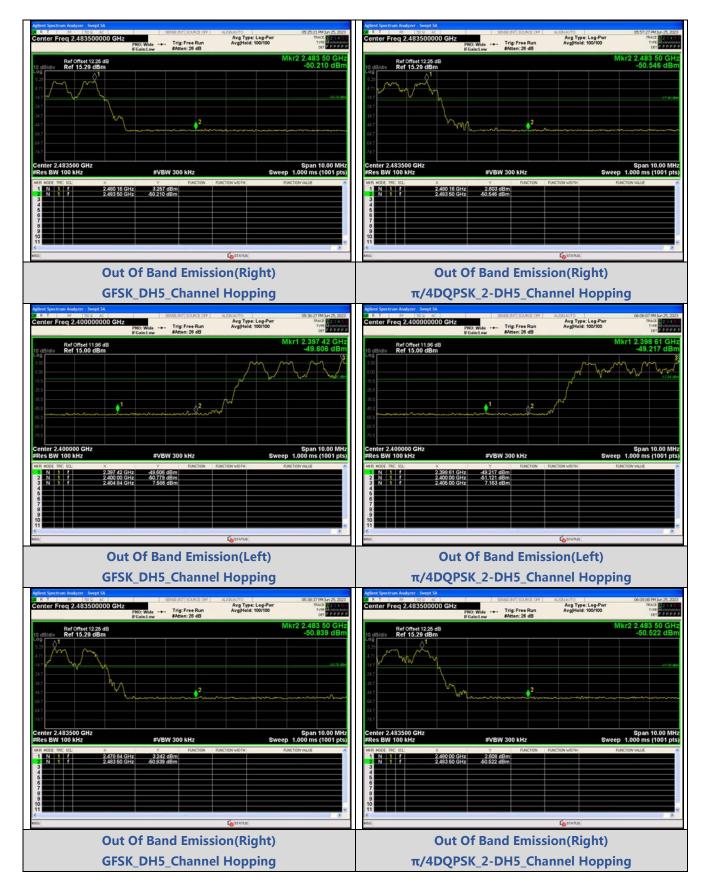
Page 37 of 54

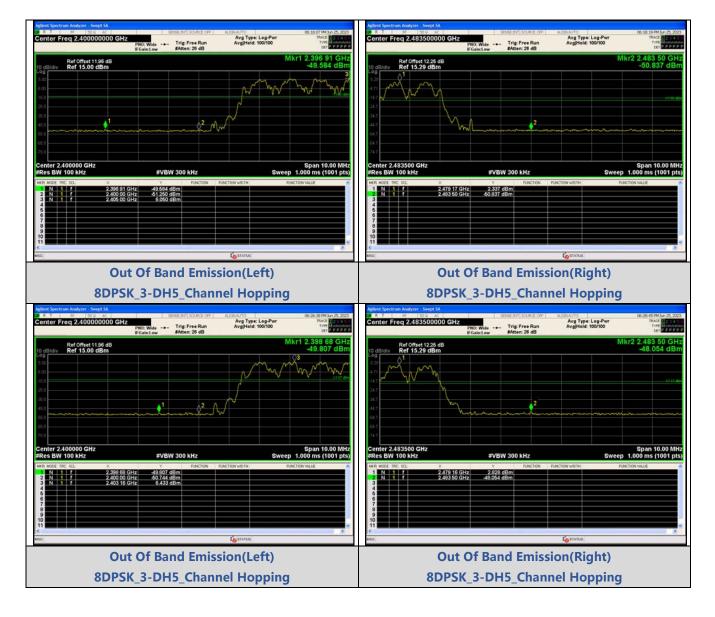


APPENDIX V.Conducted Out Of Band Emission


Test Result

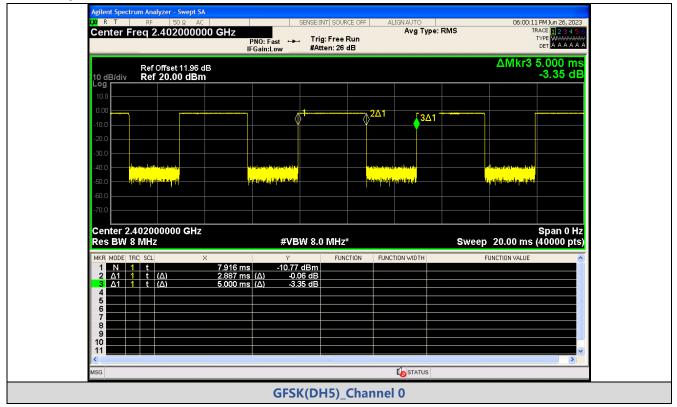
Test Graphs


Page 40 of 54

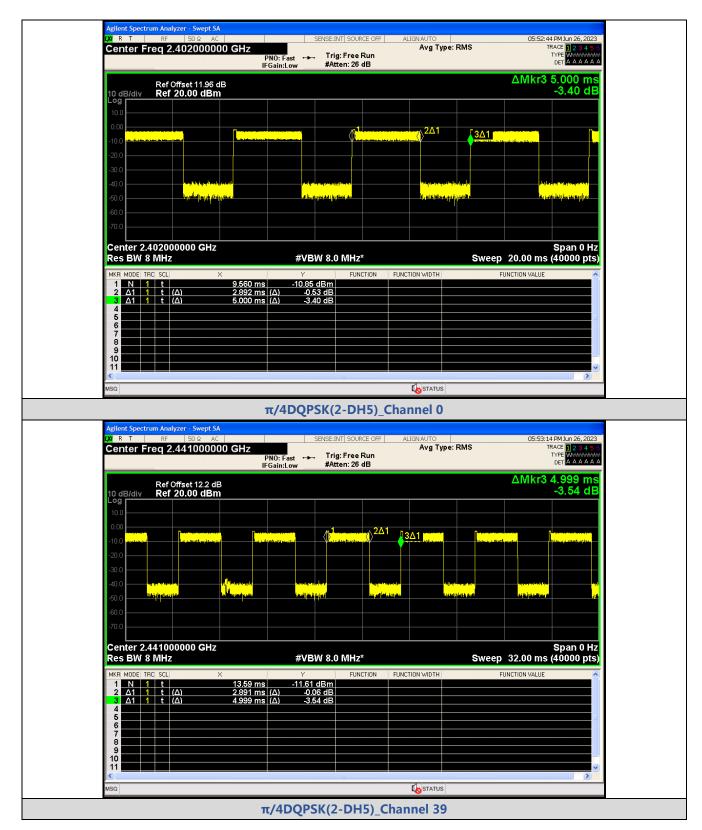

Page 41 of 54

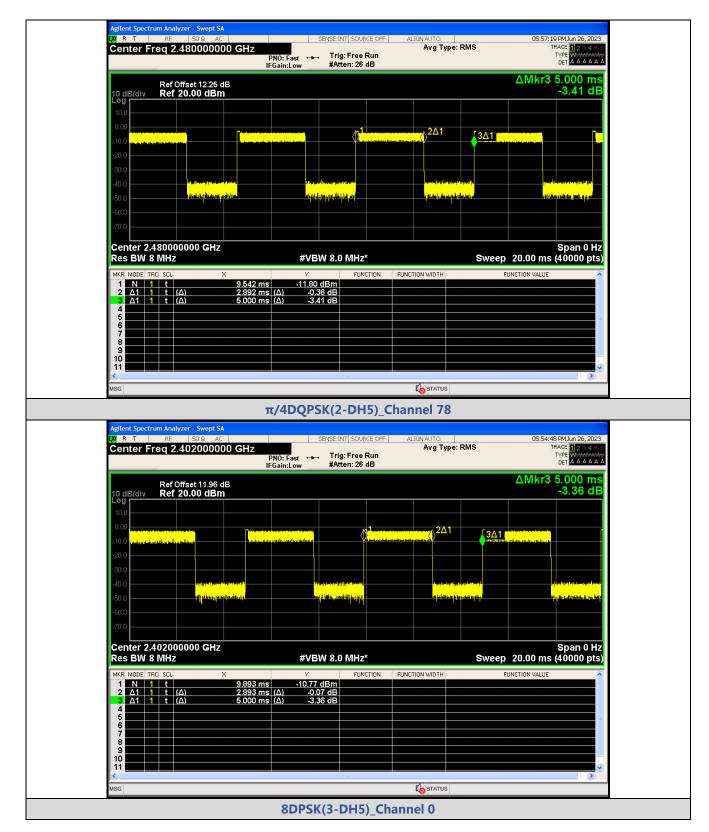
Page 42 of 54

Page 43 of 54



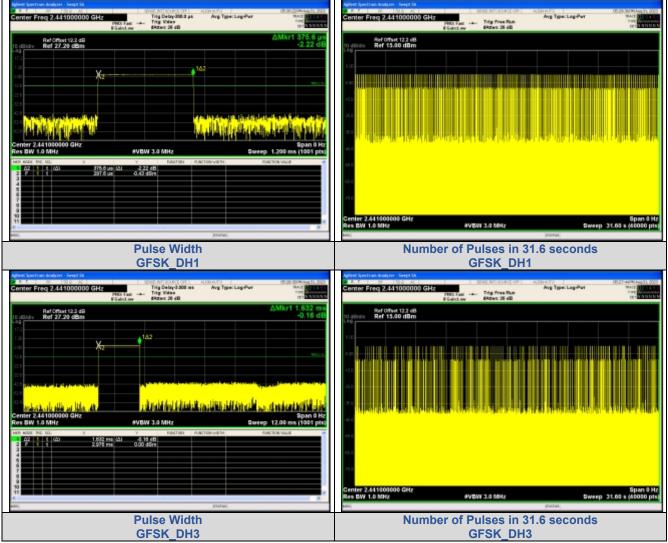
APPENDIX VI.Duty Cycle


Test Result

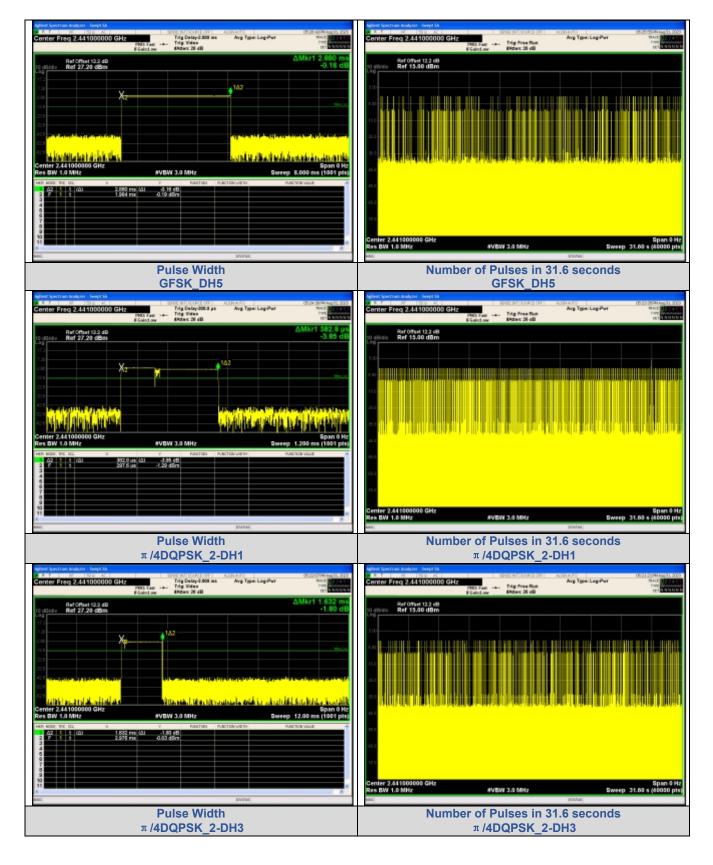

Modulation	Deskata	Channel	On Time	Period	Duty Cycle	Duty Cycle	Duty Cycle
wodulation	Modulation Packets		(ms)	(ms)	(%)	(linear)	Factor (dB)
GFSK D		0	2.887	5.000	57.75	0.5775	2.3845
	DH5	39	2.887	5.000	57.75	0.5775	2.3845
		78	2.887	5.000	57.74	0.5774	2.3852
π/4DQPSK 2-DH5	2-DH5	0	2.892	5.000	57.85	0.5785	2.377
		39	2.891	4.999	57.83	0.5783	2.3785
		78	2.892	5.000	57.84	0.5784	2.3777
8DPSK 3-Dł	3-DH5	0	2.893	5.000	57.87	0.5787	2.3755
		39	2.893	5.000	57.86	0.5786	2.3762
		78	2.893	4.999	57.87	0.5787	2.3755

Test Graphs

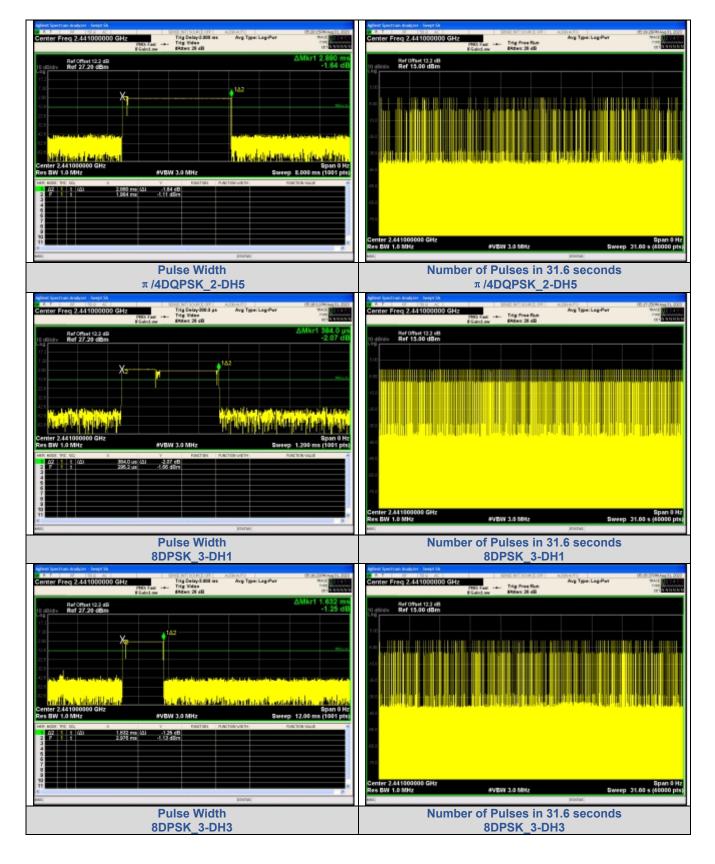
022 R T RF 50Ω AC Center Freq 2.441000000				:44 PM Jun 26, 2023 TRACE 1 2 3 4 5 6 TYPE WWWWWW DET A A A A A A
Ref Offset 12.2 dB 10 dB/div Ref 20.00 dBm			ΔMkr	3 5.000 ms -3.67 dB
Log 10.0				
-10.0				
-20.0				
-30.0	- templete flas - contrat	te bis in plate if partices a		
-50.0	and the second		<mark>ىرىمە ھەراك ئەلەرلىكەن يەتەر ھۆچ</mark>	
-70.0				
Center 2.441000000 GHz Res BW 8 MHz	#VBW 8.0 MI	Hz*	Sweep 20.00 m	Span 0 Hz s (40000 pts)
MKR MODE TRC SCL X	Y	FUNCTION FUNCTION WIDTH	FUNCTION VALUE	
1 N 1 t 2 Δ1 1 t (Δ) 3 Δ1 1 t (Δ)	7.430 ms -11.94 dBm 2.887 ms (Δ) 0.34 dB 5.000 ms (Δ) -3.67 dB			
4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6				E
7 8 9				
10				
MSG		I STATUS		
Agilent Spectrum Analyzer - Swept SA (X R T RF 50.9. AC Center Freq 2.480000000) GHz	Channel 39		:14 PM Jun 26, 2023
Agilent Spectrum Analyzer - Swept SA) GHz PNO: Fast →→ Trig: Fr IFGain:Low #Atten:	Channel 39	MS	214 PM Jun 26, 2023 TRACE 2 3 4 5 6 TYPE WAXAAAA 5.000 ms -1.25 dB
Agilent Spectrum Analyzer - Swept SA OX R T RF 150 Ω AC Center Freq 2.480000000 Ref Offset 12.25 dB 10 dB/div Ref 20.00 dBm 10 0 -0.00) GHz PNO: Fast IFGain:Low Hitsensether	_Channel 39	MS AMkra	14 PM Jun 26, 2023 TRACE 1 2 3 4 5 6 TYPE WARNA A A 3 5.000 ms -1.25 dB
Agilent Spectrum Analyzer - Swept SA OX R T RF 50 2 AC Center Freq 2.480000000 Ref Offset 12.25 dB 10 dB/div Ref 20.00 dBm 10 0 -0 0	BO29 ms -11 99 dBm	_Channel 39		14 PM Jun 26, 2023 TRACE 1 2 3 4 5 6 TYPE WARAAAA 3 5.000 ms -1.25 dB -1.25 dB
Agilent Spectrum Analyzer - Swept SA (X) R T RF 50 Ω AC Center Freq 2.480000000 Secondary Secondary Secondary Secondary 10 dB/div Ref Offset 12.25 dB Secondary Secondary Secondary 10 dB/div Ref 20.00 dBm Secondary Secondary Secondary 10.0 dB/div Ref 20.00 dBm Secondary Secondary Secondary 20.0 dB/div Ref 20.00 dBm Secondary Secondary Secondary -0.0 dB/div Ref 20.00 dBm Secondary Secondary Secondary -0.0 dB/div dB/div dB/div Secondary Secondary -0.0 dB/div dB/div dB/div dB/div Secondary Secondary -0.0 dB/div dB/div dB/div dB/div Secondary Secondary -0.0 dB/div dB/div dB/div dB/div Secondary Secondary Secondary	SENSE:INT S	_Channel 39 OURCE OFF ALIGNAUTO ee Run 26 dB 2Δ1 3Δ1 3Δ1 3Δ1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	MS AMkr3	14 PM Jun 26, 2023 TRACE 1 2 3 4 5 6 TYPE WARAAAA 3 5.000 ms -1.25 dB -1.25 dB

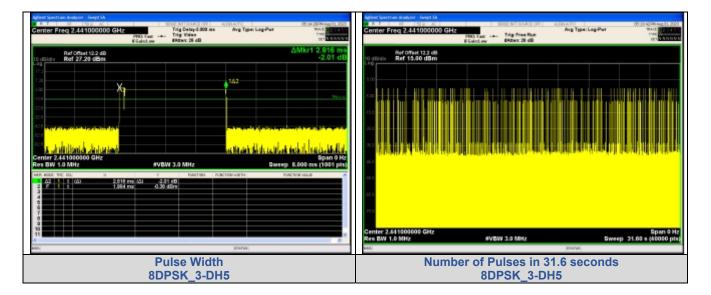

040 R T RF 50 Ω A Center Freq 2.4410000		SENSE:INT SOU	Run	IGN AUTO Avg Type: RM		05:57:55 PM Jun 26, 2023 TRACE 1 2 3 4 5 TYPE WWWWWW DET A A A A A
Ref Offset 12.2 dB 10 dB/div Ref 20.00 dBm					ΔN	1kr3 5.000 ms -1.36 dB
Log 10.0						
		5 <mark>1</mark>	2∆1	<u>∡3∆1 prostation</u>		
-10.0	in a star beta stranger a	te, ite, pipelin, piceres, states, pasilo,	1	healte, perte, pertega estaj ji	adalaha	¹ and 1, 1997 and 1, 1997 and 1997 and 1997
-30.0			with the set			
-40.0				<u>.</u>	and a second	
-60.0						
Center 2.441000000 GHz	2					Span 0 Hz
Res BW 8 MHz		#VBW 8.0 MHz	Z*		-	0 ms (40000 pts
1 N 1 t	× 7.209 ms 2.893 ms (Δ)	11.76 dBm	NCTION FUNC	TION WIDTH	FUNCTION	VALUE
2 Δ1 1 t (Δ) 3 Δ1 1 t (Δ) 4	2.893 ms (Δ) 5.000 ms (Δ)	-0.03 dB -1.36 dB				
5 6 7						
8						
10 11						×
MSG				STATUS		
MSG	8DF	SK(3-DH5)_Channo			
MSG Agilent Spectrum Analyzer - Swept S QVI R T RF 50 Ω A	SA	SENSE:INT SOU	-			05:59:13 PM Jun 26, 2023
, Agilent Spectrum Analyzer - Swept S	SA AC DOO GHz PNO: Fast	SENSE:INT SOU	IRCE OFF AL	el 39	s	05:59:13 PM Jun 26, 2023 TRACE 23 4 5 TYPE
Agilent Spectrum Analyzer - Swept S M R T RF 50 A Center Freq 2.4800000	SA AC DOO GHz PNO: Fast IFGain:Low	SENSE:INT SOU	IRCE OFF AL	el 39		05:59:13 PM Jun 26, 2023 TRACE 12 3 4 5 TYPE WWWWWW DET A A A A A
່ Agilent Spectrum Analyzer - Swept S XXI R T RF 50 Q A	SA AC DOO GHz PNO: Fast IFGain:Low	SENSE:INT SOU	IRCE OFF AL	el 39		05:59:13 PM Jun 26, 2023 TRACE 123 4-5 TYPE WWWWWW DET A A A A
Agilent Spectrum Analyzer - Swept S	SA AC DOO GHz PNO: Fast IFGain:Low	SENSE:INT SOU , Trig: Free #Atten: 26	IRCE OFF AL ₽ Run ₽ dB	el 39		05:59:13 PM Jun 26, 2023 TRACE 12 3 4 5 TYPE WWWWWW DET A A A A A
Agilent Spectrum Analyzer - Swept S 20 R T RF 50 Q A Center Freq 2.4800000 Ref Offset 12.25 10 dB/div Ref 20.00 dBr	SA AC DOO GHz PNO: Fast IFGain:Low	SENSE:INT SOU , Trig: Free #Atten: 26	IRCE OFF AL	IGNAUTO		05:59:13 PM Jun 26, 2023 TRACE 12 3 4 5 TYPE WWWWWW DET A A A A A
Agilent Spectrum Analyzer - Swept S OX R T RF 50.2 A Center Freq 2.4800000 Ref Offset 12.25 10 dB/div Ref 20.00 dBr 10 0 0.00 10 0 10 0	SA AC DOO GHz PNO: Fast IFGain:Low	SENSE:INT SOU , Trig: Free #Atten: 26	RCE OFF AL	IGNAUTO		05:59:13 PM Jun 26, 2023 TRACE 12 3 4 5 TYPE WWWWWW DET A A A A A
Agilent Spectrum Analyzer - Swept S 20 R T RF 50 Ω A Center Freq 2.4800000 Ref Offset 12.25 10 dB/div Ref 20.00 dBr 10 0 0.00 10 0 -10 0 -20 0 -30 0 -40 0 -4	SA AC DOO GHZ PNO: Fast IFGain:Low dB M Cash, and and a PRO: Fast Fas	SENSE:INT SOU Trig: Free #Atten: 26	RCE OFF AL	IGN AUTO Avg Type: RM		05:59:13 PM Jun 26, 2023 TRACE 12 3 4 5 TYPE A A A A A 1kr3 4.999 ms -3.27 dB
Agilent Spectrum Analyzer - Swept S OX R T RF 50.0 A Center Freq 2.4800000 Ref Offset 12.25 10 dB/div Ref 20.00 dBr 10 0 10 0	SA AC DOO GHZ PNO: Fast IFGaint.ov dB m Cases of our Al Cases of o	SENSE:INT SOU , Trig: Free #Atten: 26	RCE OFF AL	IGNAUTO		05:59:13 PM Jun 26, 2023 TRACE 12 3 4 5 TYPE A A A A A 1kr3 4.999 ms -3.27 dB
Agilent Spectrum Analyzer - Swept S OX R T RF S0.0 A Center Freq 2.4800000 Ref Offset 12.25 10 dB/div Ref 20.00 dBu 0.00	SA AC DOO GHZ PNO: Fast IFGain:Low dB M Cash, and and a PRO: Fast Fas	SENSE:INT SOU Trig: Free #Atten: 26	RCE OFF AL	IGN AUTO Avg Type: RM		05:59:13 PM Jun 26, 2023 TRACE 12 3 4 5 TYPE A A A A A 1kr3 4.999 ms -3.27 dB
Agilent Spectrum Analyzer - Swept S (X) R T RF 50.2 A Center Freq 2.4800000 Ref Offset 12.25 10 dB/div Ref 20.00 dB1 10 0 .00 .00 .00 .00 .00 .00 .00	SA NC DOO GHZ PNO: Fast IFGain:Low dB m Lite to the state of each of the state of the state of each of the state of	SENSE:INT SOU Trig: Free #Atten: 26	RCE OFF AL	IGN AUTO Avg Type: RM		05:59:13 PM Jun 26, 2023 TRACE 2 3 4 5 TYPE WWWWWW DET A A A A A 1kr3 4.999 ms -3.27 dE
Agilent Spectrum Analyzer - Swept S (X) R. T RF 500 A Center Freq 2.4800000 Ref Offset 12.25 10 dB/div Ref 20.00 dBr 10 0 -10 0 -10 0 -20 0 -30 0 -40 0 -50 0 -70 0 Center 2.480000000 GHz Res BW 8 MHz	SA AC DOO GHZ PNO: Fast IFGaint.ov dB m Contraction of our of the Contraction of the contraction of the contraction of the contraction of the Contraction of the contraction of	SENSE:INT SOU Trig: Free #Atten: 26	RCE OFF AL	IGN AUTO Avg Type: RM		05:59:13 PM Jun 26, 2023 TRACE [] 2 3 4 5 TYPE WARNAM DET A A A A 1kr3 4.999 ms -3.27 dE (100 100 000 ms Span 0 Hz 0 ms (40000 pts
Agilent Spectrum Analyzer Swept S X R T RF 50.0 A Center Freq 2.4800000 Ref Offset 12.25 S	SA AC DOO GHZ PNO: Fast IFGain:Low dB m It be above and the set It be above and the set	SENSE:INT SOU → Trig: Free #Atten: 26 /	RCE OFF AL	Avg Type: RM	۵۸	05:59:13 PM Jun 26, 2023 TRACE [] 2 3 4 5 TYPE WARNAM DET A A A A 1kr3 4.999 ms -3.27 dE (100 100 000 ms Span 0 Hz 0 ms (40000 pts
Agilent Spectrum Analyzer - Swept S X R T RF 50.0 A Center Freq 2.4800000 Ref Offset 12.25 10 dB/div Ref 20.00 dBr -00 - - - -10.0 - - - - -00 - - - - - -10.0 - </td <td>SA SA SA SA SA SA PNO: Fast IFGain:Low IGB M SA SA PNO: Fast IFGain:Low IGB SA SA PNO: Fast IFGain:Low IGB SA SA PNO: Fast IFGain:Low IGB SA SA PNO: Fast IFGain:Low IGB SA SA SA SA SA SA SA SA SA SA</td> <td>SENSE:INT SOU Trig: Free #Atten: 26</td> <td>RCE OFF AL</td> <td>Avg Type: RM</td> <td>۵۸</td> <td>05:59:13 PM Jun 26, 2023 TRACE [] 2 3 4 5 TYPE WARNAM DET A A A A 1kr3 4.999 ms -3.27 dE (100 100 000 ms Span 0 Hz 0 ms (40000 pts</td>	SA SA SA SA SA SA PNO: Fast IFGain:Low IGB M SA SA PNO: Fast IFGain:Low IGB SA SA PNO: Fast IFGain:Low IGB SA SA PNO: Fast IFGain:Low IGB SA SA PNO: Fast IFGain:Low IGB SA SA SA SA SA SA SA SA SA SA	SENSE:INT SOU Trig: Free #Atten: 26	RCE OFF AL	Avg Type: RM	۵۸	05:59:13 PM Jun 26, 2023 TRACE [] 2 3 4 5 TYPE WARNAM DET A A A A 1kr3 4.999 ms -3.27 dE (100 100 000 ms Span 0 Hz 0 ms (40000 pts
Agilent Spectrum Analyzer Swept S (X) R. T RF 50.0 A Center Freq 2.4800000 Ref Offset 12.25 10 dB/div Ref 20.00 dBr 10 dB/div Ref 20.00 dBr 10 10 10 10 0.00	SA AC DOO GHZ PNO: Fast IFGain:Low dB m It be above and the set It be above and the set	SENSE:INT SOU → Trig: Free #Atten: 26 /	RCE OFF AL	Avg Type: RM	۵۸	05:59:13 PM Jun 26, 2023 TRACE [] 2 3 4 5 TYPE WARNAM DET A A A A 1kr3 4.999 ms -3.27 dE (100 100 000 ms Span 0 Hz 0 ms (40000 pts
Agilent Spectrum Analyzer - Swept S OX R T RF S0.2 A Center Freq 2.4800000 Ref Offset 12.25 10 dBi 10 dBi/div Ref 20.00 dBi 10 dBi/div Ref 20.00 dBi 10 dBi dBi dBi 20 dBi dBi dBi -20	SA AC DOO GHZ PNO: Fast IFGain:Low dB m It be above and the set It be above and the set	SENSE:INT SOU → Trig: Free #Atten: 26 /	RCE OFF AL	Avg Type: RM	۵۸	05:59:13 PM Jun 26, 2023 TRACE [] 2 3 4 5 TYPE WARNAM DET A A A A 1kr3 4.999 ms -3.27 dE (100 100 000 ms Span 0 Hz 0 ms (40000 pts
Agilent Spectrum Analyzer - Swept S (X) R. T RF 50.0 A Center Freq 2.4800000 Ref Offset 12.25 10.0 B 10.0 <	SA AC DOO GHZ PNO: Fast IFGain:Low dB m It be above and the set It be above and the set	SENSE:INT SOU → Trig: Free #Atten: 26 /	RCE OFF AL	Avg Type: RM	۵۸	05:59:13 PM Jun 26, 2023 TRACE [] 2 3 4 5 TYPE WARNAM DET A A A A 1kr3 4.999 ms -3.27 dE (100 100 000 ms Span 0 Hz 0 ms (40000 pts

APPENDIX VII.Dwell Time


Test Result

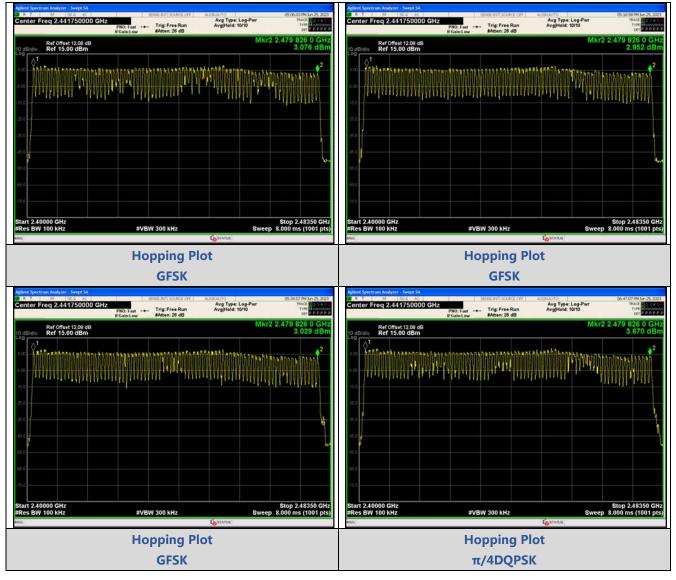
Modulation	Packet	Channel	Pulse Width (ms)	Number of Pulses in 31.6 seconds	Dwell Time (ms)	Limit (ms)	Result
	DH1	CH39 (2441MHz)	0.3756	312	117.19	< 400	PASS
GFSK	DH3		1.632	157	256.22		PASS
2-DH π/4DQPSK 2-DH 2-DH 3-DH	DH5		2.880	114	328.32		PASS
	2-DH1		0.3828	313	119.82		PASS
	2-DH3		1.632	157	256.22		PASS
	2-DH5		2.880	112	322.56		PASS
	3-DH1		0.3840	312	119.81		PASS
	3-DH3		1.632	156	254.59		PASS
	3-DH5		2.816	115	323.84		PASS



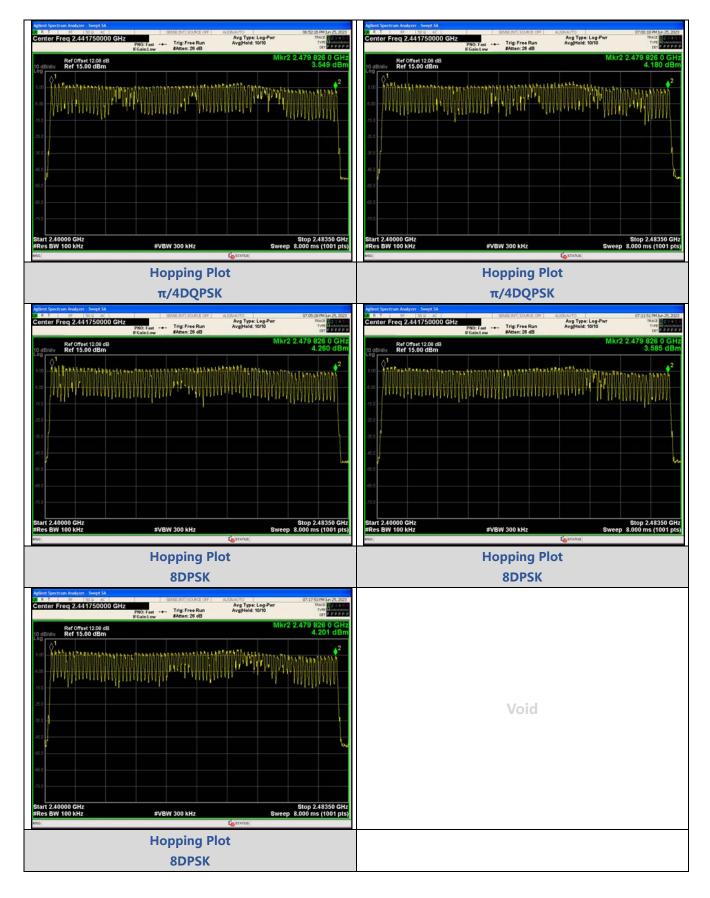

Page 50 of 54

Page 51 of 54

Page 52 of 54



APPENDIX VIII.Number Of Hopping Channel


Test Result

Modulation	Packet	Number of Hopping Channel	Limit	Result
GFSK	DH5	79	15	PASS
GFSK	DH5	79	15	PASS
GFSK	DH5	79	15	PASS
π/4DQPSK	2-DH5	79	15	PASS
π/4DQPSK	2-DH5	79	15	PASS
π/4DQPSK	2-DH5	79	15	PASS
8DPSK	3-DH5	79	15	PASS
8DPSK	3-DH5	79	15	PASS
8DPSK	3-DH5	79	15	PASS

Test Graphs

Page 54 of 54

