

### PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com



### SAR EVALUATION REPORT

Applicant Name: LG Electronics U.S.A., Inc. 1000 Sylvan Avenue Englewood Cliffs, NJ 07632 United States **Date of Testing:** 12/05/2019 – 01/16/2020 **Test Site/Location:** 

PCTEST Lab, Columbia, MD, USA **Document Serial No.:** 

1M1911290211-01-R2.ZNF

FCC ID: ZNFL455DL

APPLICANT: LG ELECTRONICS U.S.A., INC.

**DUT Type:** Portable Handset

Application Type: Class II Permissive Change

FCC Rule Part(s): CFR §2.1093 Model: LG L455DL

Additional Model(s) LG-L455DL, LM-K400UM, LM-K400MM, LM-K400QM, LM-K400VPP, LM-

K400QM5, LM-K400QM6. LGL455DL, LMK400UM, LMK400MM, LMK400QM, LMK400QM5, LMK400QM6, LMK400VPP, L455DL, K400UM, K400MM, K400QM, K400QM5, K400QM6, K400VPP

Permissive Change(s): See FCC Change Document

Date of Original Certification: 12/23/2019

| Equipment   | Band & Mode              | Tx Frequency          | SAR               |                         |                      |                       |  |  |
|-------------|--------------------------|-----------------------|-------------------|-------------------------|----------------------|-----------------------|--|--|
| Class       |                          | .,                    | 1g Head<br>(W/kg) | 1g Body-<br>Worn (W/kg) | 1g Hotspot<br>(W/kg) | 10g Phablet<br>(W/kg) |  |  |
| PCE         | GSM/GPRS/EDGE 850        | 824.20 - 848.80 MHz   | 0.35              | 0.63                    | 0.63                 | N/A                   |  |  |
| PCE         | GSM/GPRS/EDGE 1900       | 1850.20 - 1909.80 MHz | 0.19              | 0.46                    | 0.46                 | N/A                   |  |  |
| PCE         | UMTS 850                 | 826.40 - 846.60 MHz   | 0.30              | 0.52                    | 0.52                 | N/A                   |  |  |
| PCE         | UMTS 1750                | 1712.4 - 1752.6 MHz   | 0.33              | 0.84                    | 0.84                 | 3.16                  |  |  |
| PCE         | UMTS 1900                | 1852.4 - 1907.6 MHz   | 0.31              | 0.74                    | 0.74                 | 2.90                  |  |  |
| PCE         | CDMA/EVDO BC10 (§90S)    | 817.90 - 823.10 MHz   | 0.22              | 0.36                    | 0.34                 | N/A                   |  |  |
| PCE         | CDMA/EVDO BC0 (§22H)     | 824.70 - 848.31 MHz   | 0.29              | 0.44                    | 0.37                 | N/A                   |  |  |
| PCE         | PCS CDMA/EVDO            | 1851.25 - 1908.75 MHz | 0.37              | 0.93                    | 0.70                 | 3.01                  |  |  |
| PCE         | LTE Band 71              | 665.5 - 695.5 MHz     | 0.26              | 0.46                    | 0.46                 | N/A                   |  |  |
| PCE         | LTE Band 12              | 699.7 - 715.3 MHz     | 0.33              | 0.56                    | 0.63                 | N/A                   |  |  |
| PCE         | LTE Band 13              | 779.5 - 784.5 MHz     | 0.32              | 0.60                    | 0.60                 | N/A                   |  |  |
| PCE         | LTE Band 26 (Cell)       | 814.7 - 848.3 MHz     | 0.36              | 0.52                    | 0.52                 | N/A                   |  |  |
| PCE         | LTE Band 5 (Cell)        | 824.7 - 848.3 MHz     | N/A               | N/A                     | N/A                  | N/A                   |  |  |
| PCE         | LTE Band 66 (AWS)        | 1710.7 - 1779.3 MHz   | 0.31              | 0.77                    | 0.77                 | 2.86                  |  |  |
| PCE         | LTE Band 4 (AWS)         | 1710.7 - 1754.3 MHz   | N/A               | N/A                     | N/A                  | N/A                   |  |  |
| PCE         | LTE Band 25 (PCS)        | 1850.7 - 1914.3 MHz   | 0.34              | 0.86                    | 0.86                 | 3.17                  |  |  |
| PCE         | LTE Band 2 (PCS)         | 1850.7 - 1909.3 MHz   | N/A               | N/A                     | N/A                  | N/A                   |  |  |
| PCE         | LTE Band 41              | 2498.5 - 2687.5 MHz   | 0.20              | 0.59                    | 0.68                 | 3.08                  |  |  |
| DTS         | 2.4 GHz WLAN             | 2412 - 2462 MHz       | 1.06              | 0.44                    | 0.44                 | N/A                   |  |  |
| NII         | U-NII-1                  | 5180 - 5240 MHz       | N/A               | N/A                     | 0.88                 | N/A                   |  |  |
| NII         | U-NII-2A                 | 5260 - 5320 MHz       | 0.48              | 0.96                    | N/A                  | 1.85                  |  |  |
| NII         | U-NII-2C                 | 5500 - 5720 MHz       | 0.48              | 0.36                    | N/A                  | 0.87                  |  |  |
| NII         | U-NII-3                  | 5745 - 5825 MHz       | 0.36              | 0.63                    | 0.63                 | N/A                   |  |  |
| DSS/DTS     | Bluetooth                | 2402 - 2480 MHz       | 0.28              | < 0.1                   | < 0.1                | N/A                   |  |  |
| Simultaneou | s SAR per KDB 690783 D01 | v01r03:               | 1.42              | 1.59                    | 1.58                 | 3.84                  |  |  |

Note: This revised Test Report (S/N: 1M1911290211-01-R2.ZNF) supersedes and replaces the previously issued test report on the same subject device for the same type of testing as indicated. Please discard or destroy the previously issued test report(s) and dispose of it accordingly.

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE C95.1-1992 and has been tested in accordance with the measurement procedures specified in Section 1.7 of this report; for North American frequency bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Test results reported herein relate only to the item(s) tested.







The SAR Tick is an initiative of the Mobile & Wireless Forum (MWF). While a product may be considered eligible, use of the SAR Tick logo requires an agreement with the MWF. Further details can be obtained by emailing: sartick@mwfai.info.

| FCC ID: ZNFL455DL      |                         | SAR EVALUATION REPORT | LG | Approved by: Quality Manager |
|------------------------|-------------------------|-----------------------|----|------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:             |    | Dogg 4 of 120                |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset      |    | Page 1 of 129                |

© 2020 PCTEST Engineering Laboratory, Inc.

# TABLE OF CONTENTS

| 1              | DEVICE                          | UNDER TEST                                                                                       | 3     |
|----------------|---------------------------------|--------------------------------------------------------------------------------------------------|-------|
| 2              | LTE INFO                        | ORMATION                                                                                         | 12    |
| 3              | INTROD                          | UCTION                                                                                           | 13    |
| 4              | DOSIME                          | TRIC ASSESSMENT                                                                                  | 14    |
| 5              | DEFINIT                         | ION OF REFERENCE POINTS                                                                          | 15    |
| 6              | TEST CO                         | DNFIGURATION POSITIONS                                                                           | 16    |
| 7              | RF EXPO                         | OSURE LIMITS                                                                                     | 20    |
| 8              | FCC ME                          | ASUREMENT PROCEDURES                                                                             | 21    |
| 9              | RF CON                          | DUCTED POWERS                                                                                    | 28    |
| 10             | SYSTEM                          | I VERIFICATION                                                                                   | 68    |
| 11             | SAR DA                          | ΓA SUMMARY                                                                                       | 74    |
| 12             | FCC MU                          | LTI-TX AND ANTENNA SAR CONSIDERATIONS                                                            | 97    |
| 13             | SAR ME                          | ASUREMENT VARIABILITY                                                                            | . 117 |
| 14             | ADDITIO                         | NAL TESTING PER FCC GUIDANCE                                                                     | . 119 |
| 15             | EQUIPM                          | ENT LIST                                                                                         | . 125 |
| 16             | MEASUF                          | REMENT UNCERTAINTIES                                                                             | 126   |
| 17             | CONCLU                          | JSION                                                                                            | . 127 |
| 18             | REFERE                          | NCES                                                                                             | . 128 |
| APPEN<br>APPEN | IDIX A: IDIX B: IDIX C: IDIX C: | SAR TEST PLOTS SAR DIPOLE VERIFICATION PLOTS SAR TISSUE SPECIFICATIONS SAR TISSUE SPECIFICATIONS |       |
| APPEN          | IDIX D:                         | SAR SYSTEM VALIDATION                                                                            |       |
| APPEN          | IDIX E:                         | DUT ANTENNA DIAGRAM & SAR TEST SETUP PHOTOGRAPHS                                                 |       |
|                | IDIX F:<br>IDIX G:              | POWER REDUCTION VERIFICATION PROBE AND DIPOLE CALIBRATION CERTIFICATES                           |       |

| FCC ID: ZNFL455DL      | PCTEST*                 | SAR EVALUATION REPORT LG | Approved by:  Quality Manager |  |
|------------------------|-------------------------|--------------------------|-------------------------------|--|
| Document S/N:          | Test Dates:             | DUT Type:                | Page 2 of 120                 |  |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset         | Page 2 of 129                 |  |

#### 1.1 Device Overview

| Band & Mode           | Operating Modes | Tx Frequency          |
|-----------------------|-----------------|-----------------------|
| GSM/GPRS/EDGE 850     | Voice/Data      | 824.20 - 848.80 MHz   |
| GSM/GPRS/EDGE 1900    | Voice/Data      | 1850.20 - 1909.80 MHz |
| UMTS 850              | Voice/Data      | 826.40 - 846.60 MHz   |
| UMTS 1750             | Voice/Data      | 1712.4 - 1752.6 MHz   |
| UMTS 1900             | Voice/Data      | 1852.4 - 1907.6 MHz   |
| CDMA/EVDO BC10 (§90S) | Voice/Data      | 817.90 - 823.10 MHz   |
| CDMA/EVDO BC0 (§22H)  | Voice/Data      | 824.70 - 848.31 MHz   |
| PCS CDMA/EVDO         | Voice/Data      | 1851.25 - 1908.75 MHz |
| LTE Band 71           | Voice/Data      | 665.5 - 695.5 MHz     |
| LTE Band 12           | Voice/Data      | 699.7 - 715.3 MHz     |
| LTE Band 13           | Voice/Data      | 779.5 - 784.5 MHz     |
| LTE Band 26 (Cell)    | Voice/Data      | 814.7 - 848.3 MHz     |
| LTE Band 5 (Cell)     | Voice/Data      | 824.7 - 848.3 MHz     |
| LTE Band 66 (AWS)     | Voice/Data      | 1710.7 - 1779.3 MHz   |
| LTE Band 4 (AWS)      | Voice/Data      | 1710.7 - 1754.3 MHz   |
| LTE Band 25 (PCS)     | Voice/Data      | 1850.7 - 1914.3 MHz   |
| LTE Band 2 (PCS)      | Voice/Data      | 1850.7 - 1909.3 MHz   |
| LTE Band 41           | Voice/Data      | 2498.5 - 2687.5 MHz   |
| 2.4 GHz WLAN          | Voice/Data      | 2412 - 2462 MHz       |
| U-NII-1               | Voice/Data      | 5180 - 5240 MHz       |
| U-NII-2A              | Voice/Data      | 5260 - 5320 MHz       |
| U-NII-2C              | Voice/Data      | 5500 - 5720 MHz       |
| U-NII-3               | Voice/Data      | 5745 - 5825 MHz       |
| Bluetooth             | Data            | 2402 - 2480 MHz       |

#### 1.2 Power Reduction for SAR

This device uses a power reduction mechanism for SAR compliance. The power reduction mechanism is activated when the device is used in close proximity to the user's body. FCC KDB Publication 616217 D04v01r02 Section 6 was used as a guideline for selecting SAR test distances for this device. Detailed descriptions of the power reduction mechanism are included in the operational description.

This device uses an independent fixed level power reduction mechanism for WLAN operations during voice or VoIP held to ear scenarios. Per FCC Guidance, the held-to-ear exposure conditions were evaluated at reduced power according to the head SAR positions described in IEEE 1528-2013. Detailed descriptions of the power reduction mechanism are included in the operational description.

| FCC ID: ZNFL455DL      | @\ PCTEST                    | SAR EVALUATION REPORT | Approved by:    |  |
|------------------------|------------------------------|-----------------------|-----------------|--|
|                        | SHOUNDERING CARONATREE, INC. |                       | Quality Manager |  |
| Document S/N:          | Test Dates:                  | DUT Type:             | Dogo 2 of 120   |  |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020      | Portable Handset      | Page 3 of 129   |  |

© 2020 PCTEST Engineering Laboratory, Inc.

09/11/2019

© 2020 PCTEST Engineering Laboratory, Inc. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

# 1.3 Nominal and Maximum Output Power Specifications

This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v06.

## 1.3.1 Maximum Output Power

| Mode / Band         |         | Voice<br>(dBm) | Burst Average GMSK (dBm) |       |       |       | Burst Average 8-PSK (dBm) |       |       |       |
|---------------------|---------|----------------|--------------------------|-------|-------|-------|---------------------------|-------|-------|-------|
|                     |         | 1 TX Slot      | 1 TX                     | 2 TX  | 3 TX  | 4 TX  | 1 TX                      | 2 TX  | 3 TX  | 4 TX  |
|                     |         | 1 17 2101      | Slots                    | Slots | Slots | Slots | Slots                     | Slots | Slots | Slots |
| GSM/GPRS/EDGE 850   | Maximum | 33.7           | 33.7                     | 32.2  | 30.7  | 29.7  | 27.7                      | 26.7  | 24.7  | 23.7  |
| GSIVI/GPRS/EDGE 650 | Nominal |                | 33.2                     | 31.7  | 30.2  | 29.2  | 27.2                      | 26.2  | 24.2  | 23.2  |
| GSM/GPRS/EDGE 1900  | Maximum | 30.7           | 30.7                     | 28.7  | 26.7  | 25.7  | 26.7                      | 25.7  | 24.7  | 23.7  |
| GSM/GPKS/EDGE 1900  | Nominal | 30.2           | 30.2                     | 28.2  | 26.2  | 25.2  | 26.2                      | 25.2  | 24.2  | 23.2  |

|                             |               | Modulated Average (dBm) |           |           |           |                  |           |           |           |           |           |
|-----------------------------|---------------|-------------------------|-----------|-----------|-----------|------------------|-----------|-----------|-----------|-----------|-----------|
|                             |               |                         | 3GPP      |           |           | 3GPP HSUPA (dBm) |           |           |           |           |           |
| Mode / Band                 |               | WCDMA 3GPP HSDPA (dBm)  |           |           |           |                  |           |           |           |           |           |
| Wiode / Baild               | Wiode / Barid |                         |           |           |           |                  |           |           |           |           |           |
|                             |               | RMC/AMR                 | Subtest 1 | Subtest 2 | Subtest 3 | Subtest 4        | Subtest 1 | Subtest 2 | Subtest 3 | Subtest 4 | Subtest 5 |
| LINATE Donal E (OFO NALL-)  | Maximum       | 24.7                    | 23.7      | 23.7      | 23.2      | 23.2             | 21.7      | 21.7      | 22.7      | 21.2      | 22.7      |
| UMTS Band 5 (850 MHz)       | Nominal       | 24.2                    | 23.2      | 23.2      | 22.7      | 22.7             | 21.2      | 21.2      | 22.2      | 20.7      | 22.2      |
| UMTS Band 4 (1750 MHz)      | Maximum       | 24.7                    | 23.7      | 23.7      | 23.2      | 23.2             | 21.7      | 21.7      | 22.7      | 21.2      | 22.7      |
| UIVITS Ballu 4 (1750 IVITZ) | Nominal       | 24.2                    | 23.2      | 23.2      | 22.7      | 22.7             | 21.2      | 21.2      | 22.2      | 20.7      | 22.2      |
| LINATC D = 12 (4 000 NAU-)  | Maximum       | 24.7                    | 23.7      | 23.7      | 23.2      | 23.2             | 21.7      | 21.7      | 22.7      | 21.2      | 22.7      |
| UMTS Band 2 (1900 MHz)      | Nominal       | 24.2                    | 23.2      | 23.2      | 22.7      | 22.7             | 21.2      | 21.2      | 22.2      | 20.7      | 22.2      |

| Mode / Band              | Modulated Average<br>(dBm) |      |
|--------------------------|----------------------------|------|
| CDMA/EVDO BC10 (§90S)    | Maximum                    | 24.7 |
| CDIMA/EADO PCTO (8302)   | Nominal                    | 24.2 |
| CDA44 /EV/DO DCO /53341) | Maximum                    | 24.7 |
| CDMA/EVDO BC0 (§22H)     | Nominal                    | 24.2 |
| DCC CDMA/EV/DO           | Maximum                    | 24.7 |
| PCS CDMA/EVDO            | Nominal                    | 24.2 |

| FCC ID: ZNFL455DL      | PCTEST*                 | SAR EVALUATION REPORT | LG | Approved by: Quality Manager |  |
|------------------------|-------------------------|-----------------------|----|------------------------------|--|
| Document S/N:          | Test Dates:             | DUT Type:             |    | Dogg 4 of 120                |  |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset      |    | Page 4 of 129                |  |

| Mode / Band         | Modulated Average<br>(dBm) |      |
|---------------------|----------------------------|------|
| LTE Band 71         | Maximum                    | 24.7 |
| LIE Ballu / I       | Nominal                    | 24.2 |
| LTE Band 12         | Maximum                    | 25.2 |
| LTL Datiu 12        | Nominal                    | 24.7 |
| LTE Band 13         | Maximum                    | 24.2 |
| LIL Dalla 13        | Nominal                    | 23.7 |
| LTE Band 26 (Cell)  | Maximum                    | 25.2 |
| LTE Ballu 20 (Cell) | Nominal                    | 24.7 |
| LTE Band 5 (Cell)   | Maximum                    | 25.2 |
| LTE Ballu 3 (Cell)  | Nominal                    | 24.7 |
| LTE Band 66 (AWS)   | Maximum                    | 24.7 |
| LTE Ballu 00 (AVV3) | Nominal                    | 24.2 |
| LTE Band 4 (AWS)    | Maximum                    | 24.7 |
| LTL Ballu 4 (AVV3)  | Nominal                    | 24.2 |
| LTE Band 25 (PCS)   | Maximum                    | 24.7 |
| LTL Balla 25 (FCS)  | Nominal                    | 24.2 |
| LTE Band 2 (PCS)    | Maximum                    | 24.7 |
| LIL Dalla 2 (FC3)   | Nominal                    | 24.2 |
| LTE Band 41 (PC3)   | Maximum                    | 24.7 |
| LIL Dallu 41 (FC3)  | Nominal                    | 24.2 |
| LTE Band 41 (PC2)   | Maximum                    | 27.2 |
| L1L Dallu 41 (FCZ)  | Nominal                    | 26.7 |

| SHOUNDERS LASPATERY, INC. | SAR EVALUATION REPORT | Approved by: Quality Manager |  |
|---------------------------|-----------------------|------------------------------|--|
| Test Dates:               | DUT Type:             | Dogg 5 of 120                |  |
| 12/05/2019 - 01/16/2020   | Portable Handset      | Page 5 of 129                |  |
|                           | Test Dates:           |                              |  |

| Mode / Band             |         | ated Avo<br>gle Tx Cl<br>(dBm) | nain   |      |
|-------------------------|---------|--------------------------------|--------|------|
|                         | Channel | 1                              | 2 - 10 | 11   |
| IEEE 802.11b (2.4 GHz)  | Maximum | 21.0                           | 21.0   | 21.0 |
| TEEE 802.110 (2.4 GHZ)  | Nominal | 20.0                           | 20.0   | 20.0 |
| IEEE 802.11g (2.4 GHz)  | Maximum | 17.0                           | 18.5   | 16.5 |
| 1666 802.11g (2.4 GHZ)  | Nominal | 16.0                           | 17.5   | 15.5 |
| IEEE 802.11n (2.4 GHz)  | Maximum | 16.0                           | 17.0   | 15.0 |
| 1ELE 602.1111 (2.4 GHZ) | Nominal | 15.0                           | 16.0   | 14.0 |

| Mode / Band           | I       |       |                  |        |         | rage - Single Tx Chain<br>(dBm) |                  |         |       |      |      |                  |         |        |      |
|-----------------------|---------|-------|------------------|--------|---------|---------------------------------|------------------|---------|-------|------|------|------------------|---------|--------|------|
|                       |         |       | 20 MHz Bandwidth |        |         |                                 | 40 MHz Bandwidth |         |       |      |      | 80 MHz Bandwidth |         |        |      |
|                       | Channel | 36-40 | 44-56            | 60-112 | 116-144 | 149-153                         | 157              | 161-165 | 38-54 | 62   | 102  | 110-142          | 151-159 | 42-138 | 155  |
| JEEE 003 44- /E CU-)  | Maximum | 16.0  | 16.0             | 14.0   | 14.0    | 13.0                            | 16.0             | 14.0    |       |      |      |                  |         |        |      |
| IEEE 802.11a (5 GHz)  | Nominal | 15.0  | 15.0             | 13.0   | 13.0    | 12.0                            | 15.0             | 13.0    |       |      |      |                  |         |        |      |
| IEEE 802.11n (5 GHz)  | Maximum | 15.5  | 15.0             | 14.0   | 14.0    | 13.0                            | 14.5             | 14.0    | 13.5  | 12.0 | 10.5 | 13.5             | 12.5    |        |      |
| IEEE 802.11II (3 GHZ) | Nominal | 14.5  | 14.0             | 13.0   | 13.0    | 12.0                            | 13.5             | 13.0    | 12.5  | 11.0 | 9.5  | 12.5             | 11.5    |        |      |
| IEEE 802.11ac (5 GHz) | Maximum | 15.5  | 15.0             | 14.0   | 14.0    | 13.0                            | 14.5             | 14.0    | 13.5  | 12.0 | 10.5 | 13.5             | 12.5    | 11.5   | 11.0 |
| IEEE 802.11ac (5 GHz) | Nominal | 14.5  | 14.0             | 13.0   | 13.0    | 12.0                            | 13.5             | 13.0    | 12.5  | 11.0 | 9.5  | 12.5             | 11.5    | 10.5   | 10.0 |

| Mode / Band   | Modulated Average<br>(dBm) |     |
|---------------|----------------------------|-----|
| Bluetooth     | Maximum                    | 9.0 |
| biuetootii    | Nominal                    | 8.0 |
| Bluetooth LE  | Maximum                    | 5.0 |
| DiuelOOLII LE | Nominal                    | 4.0 |

#### 1.3.2 **Reduced Output Power**

|                              |         |         | Modulated Average (dBm) |           |           |           |           |                  |           |           |           |  |
|------------------------------|---------|---------|-------------------------|-----------|-----------|-----------|-----------|------------------|-----------|-----------|-----------|--|
| Mode / Band                  |         | 3GPP    | 3GPP HSDPA (dBm)        |           |           |           |           |                  |           |           |           |  |
|                              |         | WCDMA   |                         |           |           |           |           | 3GPP HSUPA (dBm) |           |           |           |  |
|                              |         | (dBm)   |                         |           |           |           |           |                  |           |           |           |  |
|                              | Channel | RMC/AMR | Subtest 1               | Subtest 2 | Subtest 3 | Subtest 4 | Subtest 1 | Subtest 2        | Subtest 3 | Subtest 4 | Subtest 5 |  |
| LINATE Daniel 4 (1750 NALIE) | Maximum | 22.3    | 22.3                    | 22.3      | 22.3      | 22.3      | 21.7      | 21.7             | 22.3      | 21.2      | 22.3      |  |
| UMTS Band 4 (1750 MHz)       | Nominal | 21.8    | 21.8                    | 21.8      | 21.8      | 21.8      | 21.2      | 21.2             | 21.8      | 20.7      | 21.8      |  |
| UMTS Band 2 (1900 MHz)       |         | 22.7    | 22.7                    | 22.7      | 22.7      | 22.7      | 21.7      | 21.7             | 22.7      | 21.2      | 22.7      |  |
| OIVITS Balla 2 (1900 IVITI2) | Nominal | 22.2    | 22.2                    | 22.2      | 22.2      | 22.2      | 21.2      | 21.2             | 22.2      | 20.7      | 22.2      |  |

| FCC ID: ZNFL455DL      | PCTEST*                 | SAR EVALUATION REPORT | Approved by:  Quality Manager |
|------------------------|-------------------------|-----------------------|-------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:             | D 0 -f 400                    |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset      | Page 6 of 129                 |

| Mode / Band   | Modulated Average<br>(dBm) |      |  |
|---------------|----------------------------|------|--|
|               | Maximum                    | 23.0 |  |
| PCS CDMA/EVDO | Nominal                    | 22.5 |  |

| Mode / Band         | Mode / Band |      |  |  |  |
|---------------------|-------------|------|--|--|--|
| LTE Band 66 (AWS)   | Maximum     | 22.5 |  |  |  |
| LTE Ballu 00 (AVV3) | Nominal     | 22.0 |  |  |  |
| LTE Band 4 (AWS)    | Maximum     | 22.5 |  |  |  |
| LTE Ballu 4 (AVV3)  | Nominal     | 22.0 |  |  |  |
| LTE Band 25 (PCS)   | Maximum     | 22.7 |  |  |  |
| LIE Ballu 25 (PCS)  | Nominal     | 22.2 |  |  |  |
| LTE Dand 2 (DCC)    | Maximum     | 22.7 |  |  |  |
| LTE Band 2 (PCS)    | Nominal     | 22.2 |  |  |  |
| LTC Dand 41 (DC2)   | Maximum     | 22.7 |  |  |  |
| LTE Band 41 (PC3)   | Nominal     | 22.2 |  |  |  |
| LTE Dand 41 (DC2)   | Maximum     | 25.2 |  |  |  |
| LTE Band 41 (PC2)   | Nominal     | 24.7 |  |  |  |

| Mode / Band            | Modu    | lated Av<br>(dBm) | verage |      |
|------------------------|---------|-------------------|--------|------|
|                        | 1       | 2 - 10            | 11     |      |
| IEEE 802.11b (2.4 GHz) | Maximum | 17.0              | 17.0   | 17.0 |
| TEEE 602.110 (2.4 GHZ) | Nominal | 16.0              | 16.0   | 16.0 |
| IEEE 802.11g (2.4 GHz) | Maximum | 17.0              | 17.0   | 16.5 |
|                        | Nominal | 16.0              | 16.0   | 15.5 |
| IEEE 902 11n /2 4 CHz\ | Maximum | 16.0              | 17.0   | 15.0 |
| IEEE 802.11n (2.4 GHz) | Nominal | 15.0              | 16.0   | 14.0 |

| FCC ID: ZNFL455DL      | PCTEST                  | SAR EVALUATION REPORT LG | Approved by: Quality Manager |
|------------------------|-------------------------|--------------------------|------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:                | D 7 -f 400                   |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset         | Page 7 of 129                |

| Mode / Band                    |         |       | Modulated Aver   |        |         |         | erage - Single Tx Chain<br>(dBm) |         |       |      |      |                  |         |        |      |
|--------------------------------|---------|-------|------------------|--------|---------|---------|----------------------------------|---------|-------|------|------|------------------|---------|--------|------|
| ,                              |         |       | 20 MHz Bandwidth |        |         |         | 40 MHz Bandwidth                 |         |       |      |      | 80 MHz Bandwidth |         |        |      |
|                                | Channel | 36-40 | 44-56            | 60-112 | 116-144 | 149-153 | 157                              | 161-165 | 38-54 | 62   | 102  | 110-142          | 151-159 | 42-138 | 155  |
| IEEE 802.11a (5 GHz)           | Maximum | 14.0  | 14.0             | 14.0   | 14.0    | 12.5    | 13.0                             | 13.0    |       |      |      |                  |         |        |      |
| 1EEE 802.11a (5 GHZ)           | Nominal | 13.0  | 13.0             | 13.0   | 13.0    | 11.5    | 12.0                             | 12.0    |       |      |      |                  |         |        |      |
| IEEE 802.11n (5 GHz)           | Maximum | 14.0  | 14.0             | 13.5   | 14.0    | 12.5    | 13.0                             | 13.0    | 13.5  | 12.0 | 10.5 | 13.5             | 12.5    |        |      |
| IEEE 802.11II (3 GHZ)          | Nominal | 13.0  | 13.0             | 12.5   | 13.0    | 11.5    | 12.0                             | 12.0    | 12.5  | 11.0 | 9.5  | 12.5             | 11.5    |        |      |
| IEEE 902 1126 (5 GHz)          | Maximum | 14.0  | 14.0             | 13.5   | 14.0    | 12.5    | 13.0                             | 13.0    | 13.5  | 12.0 | 10.5 | 13.5             | 12.5    | 11.5   | 11.0 |
| IEEE 802.11ac (5 GHz)  Nominal |         | 13.0  | 13.0             | 12.5   | 13.0    | 11.5    | 12.0                             | 12.0    | 12.5  | 11.0 | 9.5  | 12.5             | 11.5    | 10.5   | 10.0 |

#### 1.4 DUT Antenna Locations

The overall dimensions of this device are > 9 x 5 cm. A diagram showing the location of the device antennas can be found in Appendix E. Since the diagonal dimension of this device is > 160 mm and <200 mm, it is considered a "phablet."

Table 1-1
Device Edges/Sides for SAR Testing

| Mode               | Back | Front | Тор | Bottom | Right | Left |
|--------------------|------|-------|-----|--------|-------|------|
| GPRS 850           | Yes  | Yes   | No  | Yes    | Yes   | Yes  |
| GPRS 1900          | Yes  | Yes   | No  | Yes    | No    | Yes  |
| UMTS 850           | Yes  | Yes   | No  | Yes    | Yes   | Yes  |
| UMTS 1750          | Yes  | Yes   | No  | Yes    | No    | Yes  |
| UMTS 1900          | Yes  | Yes   | No  | Yes    | No    | Yes  |
| EVDO BC10 (§90S)   | Yes  | Yes   | No  | Yes    | Yes   | Yes  |
| EVDO BC0 (§22H)    | Yes  | Yes   | No  | Yes    | Yes   | Yes  |
| PCS EVDO           | Yes  | Yes   | No  | Yes    | No    | Yes  |
| LTE Band 71        | Yes  | Yes   | No  | Yes    | Yes   | Yes  |
| LTE Band 12        | Yes  | Yes   | No  | Yes    | Yes   | Yes  |
| LTE Band 13        | Yes  | Yes   | No  | Yes    | Yes   | Yes  |
| LTE Band 26 (Cell) | Yes  | Yes   | No  | Yes    | Yes   | Yes  |
| LTE Band 66 (AWS)  | Yes  | Yes   | No  | Yes    | No    | Yes  |
| LTE Band 25 (PCS)  | Yes  | Yes   | No  | Yes    | No    | Yes  |
| LTE Band 41        | Yes  | Yes   | No  | Yes    | Yes   | Yes  |
| 2.4 GHz WLAN       | Yes  | Yes   | Yes | No     | No    | Yes  |
| 5 GHz WLAN         | Yes  | Yes   | Yes | No     | No    | Yes  |
| Bluetooth          | Yes  | Yes   | Yes | No     | No    | Yes  |

Note: Particular DUT edges were not required to be evaluated for wireless router SAR or phablet SAR if the edges were greater than 2.5 cm from the transmitting antenna according to FCC KDB Publication 941225 D06v02r01 Section III and FCC KDB Publication 648474 D04v01r03. The distances between the transmit antennas and the edges of the device are included in the filing. When wireless router mode is enabled U-NII-2A, U-NII-2C operations are disabled.

| FCC ID: ZNFL455DL      | PCTEST*                 | SAR EVALUATION REPORT | Approved by: Quality Manager |
|------------------------|-------------------------|-----------------------|------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:             | Dags 9 of 120                |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset      | Page 8 of 129                |

#### 1.5 **Simultaneous Transmission Capabilities**

According to FCC KDB Publication 447498 D01v06, transmitters are considered to be operating simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds.

This device contains multiple transmitters that may operate simultaneously, and therefore requires a simultaneous transmission analysis according to FCC KDB Publication 447498 D01v06 4.3.2 procedures.

> Table 1-2 **Simultaneous Transmission Scenarios**

| No. | Capable Transmit Configuration                   | Head  | Body-Worn<br>Accessory | Wireless<br>Router | Phablet | Notes                                                                                   |
|-----|--------------------------------------------------|-------|------------------------|--------------------|---------|-----------------------------------------------------------------------------------------|
| 1   | 1x CDMA voice + 2.4 GHz WI-FI                    | Yes   | Yes                    | N/A                | Yes     |                                                                                         |
| 2   | 1x CDMA voice + 5 GHz WI-FI                      | Yes   | Yes                    | N/A                | Yes     |                                                                                         |
| 3   | 1x CDMA voice + 2.4 GHz Bluetooth                | Yes^  | Yes                    | N/A                | Yes     | ^ Bluetooth Tethering is considered                                                     |
| 4   | 1x CDMA voice + 2.4 GHz Bluetooth + 5 GHz WI-FI  | Yes^  | Yes                    | N/A                | Yes     | ^Bluetooth Tethering is considered                                                      |
| 5   | GSM voice + 2.4 GHz WI-FI                        | Yes   | Yes                    | N/A                | Yes     | -                                                                                       |
| 6   | GSM voice + 5 GHz WI-FI                          | Yes   | Yes                    | N/A                | Yes     |                                                                                         |
| 7   | GSM voice + 2.4 GHz Bluetooth                    | Yes^  | Yes                    | N/A                | Yes     | ^ Bluetooth Tethering is considered                                                     |
| 8   | GSM voice + 2.4 GHz Bluetooth + 5 GHz WI-FI      | Yes^  | Yes                    | N/A                | Yes     | ^ Bluetooth Tethering is considered                                                     |
| 9   | UMTS + 2.4 GHz WI-FI                             | Yes   | Yes                    | Yes                | Yes     | •                                                                                       |
| 10  | UMTS + 5 GHz WI-FI                               | Yes   | Yes                    | Yes                | Yes     |                                                                                         |
| 11  | UMTS + 2.4 GHz Bluetooth                         | Yes^  | Yes                    | Yes^               | Yes     | ^ Bluetooth Tethering is considered                                                     |
| 12  | UMTS + 2.4 GHz Bluetooth + 5 GHz WI-FI           | Yes^  | Yes                    | Yes^               | Yes     | ^ Bluetooth Tethering is considered                                                     |
| 13  | LTE + 2.4 GHz WI-FI                              | Yes   | Yes                    | Yes                | Yes     | <u> </u>                                                                                |
| 14  | LTE + 5 GHz WI-FI                                | Yes   | Yes                    | Yes                | Yes     |                                                                                         |
| 15  | LTE + 2.4 GHz Bluetooth                          | Yes^  | Yes                    | Yes^               | Yes     | ^ Bluetooth Tethering is considered                                                     |
| 16  | LTE + 2.4 GHz Bluetooth + 5 GHz WI-FI            | Yes^  | Yes                    | Yes^               | Yes     | ^ Bluetooth Tethering is considered                                                     |
| 17  | CDMA/EVDO data + 2.4 GHz WI-FI                   | Yes*  | Yes*                   | Yes                | Yes     | * Pre-installed VOIP applications are considered                                        |
| 18  | CDMA/EVDO data + 5 GHz WI-FI                     | Yes*  | Yes*                   | Yes                | Yes     | * Pre-installed VOIP applications are considered                                        |
| 19  | CDMA/EVDO data + 2.4 GHz Bluetooth               | Yes*^ | Yes*                   | Yes^               | Yes     | * Pre-installed VOIP applications are considered ^ Bluetooth Tethering is considered    |
| 20  | CDMA/EVDO data + 2.4 GHz Bluetooth + 5 GHz WI-FI | Yes*^ | Yes*                   | Yes^               | Yes     | * Pre-installed VOIP applications are considered<br>^ Bluetooth Tethering is considered |
| 21  | GPRS/EDGE + 2.4 GHz WI-FI                        | Yes*  | Yes*                   | Yes                | Yes     | * Pre-installed VOIP applications are considered                                        |
| 22  | GPRS/EDGE + 5 GHz WI-FI                          | Yes*  | Yes*                   | Yes                | Yes     | * Pre-installed VOIP applications are considered                                        |
| 23  | GPRS/EDGE + 2.4 GHz Bluetooth                    | Yes*^ | Yes*                   | Yes^               | Yes     | * Pre-installed VOIP applications are considered<br>^ Bluetooth Tethering is considered |
| 24  | GPRS/EDGE + 2.4 GHz Bluetooth + 5 GHz WI-FI      | Yes*^ | Yes*                   | Yes^               | Yes     | * Pre-installed VOIP applications are considered<br>^ Bluetooth Tethering is considered |

- 1. 2.4 GHz WLAN and 2.4 GHz Bluetooth share the same antenna path and cannot transmit simultaneously.
- 2. All licensed modes share the same antenna path and cannot transmit simultaneously.
- 3. When the user utilizes multiple services in UMTS 3G mode it uses multi-Radio Access Bearer or multi-RAB. The power control is based on a physical control channel (Dedicated Physical Control Channel [DPCCH]) and power control will be adjusted to meet the needs of both services. Therefore, the UMTS+WLAN scenario also represents the UMTS Voice/DATA + WLAN Hotspot scenario.
- 4. Per the manufacturer, WIFI Direct is expected to be used in conjunction with a held-to-ear or body-worn accessory voice call. Therefore, there are no simultaneous transmission scenarios involving WIFI direct beyond that listed in the above table.
- 5. 5 GHz Wireless Router is only supported for the U-NII-1 and U-NII-3 by S/W, therefore U-NII-2A, and U-NII-2C were not evaluated for wireless router conditions.
- 6. This device supports VOLTE.
- 7. This device supports VOWIFI.
- This device supports Bluetooth Tethering.

| FCC ID: ZNFL455DL      | PCTEST*                 | SAR EVALUATION REPORT LG | Approved by:  Quality Manager |
|------------------------|-------------------------|--------------------------|-------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:                | Dags 0 of 120                 |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset         | Page 9 of 129                 |

#### 1.6 Miscellaneous SAR Test Considerations

### (A) WIFI/BT

Since Wireless Router operations are not allowed by the chipset firmware using U-NII-2A & U-NII-2C WIFI, only 2.4 GHz, U-NII-1, and U-NII-3 WIFI Hotspot SAR tests and combinations are considered for SAR with respect to Wireless Router configurations according to FCC KDB 941225 D06v02r01.

This device supports IEEE 802.11ac with the following features:

- a) Up to 80 MHz Bandwidth only
- b) No aggregate channel configurations
- c) 1 Tx antenna output
- d) 256 QAM is supported
- e) TDWR and Band gap channels are supported

Per FCC KDB Publication 648474 D04v01r03, this device is considered a "phablet" since the diagonal dimension is greater than 160mm and less than 200mm. Phablet SAR tests are required when wireless router mode does not apply or if wireless router 1g SAR > 1.2 W/kg. Because wireless router operations are not supported for U-NII-2A & U-NII-2C WLAN, phablet SAR tests were performed. Phablet SAR was not evaluated for 2.4 GHz, U-NII-1, and U-NII-3 WLAN operations since wireless router 1g SAR was < 1.2 W/kg.

#### (B) Licensed Transmitter(s)

GSM/GPRS/EDGE DTM is not supported for US bands. Therefore, the GSM Voice modes in this report do not transmit simultaneously with GPRS/EDGE Data.

This device is only capable of QPSK HSUPA in the uplink. Therefore, no additional SAR tests are required beyond that described for devices with HSUPA in KDB 941225 D01v03r01.

LTE SAR for the higher modulations and lower bandwidths were not tested since the maximum average output power of all required channels and configurations was not more than 0.5 dB higher than the highest bandwidth; and the reported LTE SAR for the highest bandwidth was less than 1.45 W/kg for all configurations according to FCC KDB 941225 D05v02r04.

This device supports LTE Carrier Aggregation (CA) in the downlink. All uplink communications are identical to Release 8 specifications. Per FCC KDB Publication 941225 D05A v01r02, SAR for LTE CA operations was not needed since the maximum average output power in LTE CA mode was not >0.25 dB higher than the maximum output power when downlink carrier aggregation was inactive. LTE Downlink Carrier Aggregation was fully addressed in the original filing. Per FCC Guidance, no additional measurements were required since there were no changes to the downlink CA implementation for this C2PC.

Per FCC KDB Publication 648474 D04v01r03, this device is considered a "phablet" since the diagonal dimension is greater than 160mm and less than 200mm. Therefore, phablet SAR tests are required when wireless router mode does not apply or if wireless router 1g SAR > 1.2 W/kg. Additional SAR tests for phablet SAR were evaluated per KDB 616217 Section 6 (See Section 6.9 for more information).

This device supports LTE capabilities with overlapping transmission frequency ranges. When the supported frequency range of an LTE Band falls completely within an LTE band with a larger transmission frequency range, both LTE bands have the same target power (or the band with the larger transmission frequency range has a higher target power), and both LTE bands share the same transmission path and signal characteristics, SAR was only assessed for the band with the larger transmission frequency range.

| FCC ID: ZNFL455DL                       | PCTEST.                 | SAR EVALUATION REPORT | SAR EVALUATION REPORT |                |
|-----------------------------------------|-------------------------|-----------------------|-----------------------|----------------|
| Document S/N:                           | Test Dates:             | DUT Type:             |                       | Dogg 40 of 420 |
| 1M1911290211-01-R2.ZNF                  | 12/05/2019 - 01/16/2020 | Portable Handset      |                       | Page 10 of 129 |
| 020 PCTEST Engineering Laboratory, Inc. |                         |                       |                       | REV 21.4 M     |

This device supports both Power Class 2 (PC2) and Power Class 3 (PC3) for LTE Band 41. Per May 2017 TCB Workshop Notes, SAR tests were performed with Power Class 3 (given the specific UL/DL limitations for Power Class 2). Additionally, SAR testing for the power class condition was evaluated for the highest configuration in Power Class 3 for each test configuration to confirm the results were scalable linearly (See Section 14.1).

This device supports LTE Carrier Aggregation (CA) for LTE Band 41, with two component carriers in the uplink. SAR Measurements and conducted powers were evaluated per 2017 Fall TCB Workshop Notes.

#### 1.7 Guidance Applied

- IEEE 1528-2013
- FCC KDB Publication 941225 D01v03r01, D05v02r04, D05Av01r02, D06v02r01 (2G/3G/4G and Hotspot)
- FCC KDB Publication 248227 D01v02r02 (SAR Considerations for 802.11 Devices)
- FCC KDB Publication 447498 D01v06 (General SAR Guidance)
- FCC KDB Publication 865664 D01v01r04, D02v01r02 (SAR Measurements up to 6 GHz)
- FCC KDB Publication 648474 D04v01r03 (Phablet Procedures)
- FCC KDB Publication 616217 D04v01r02 (Proximity Sensor)
- October 2013 TCB Workshop Notes (GPRS Testing Considerations)
- May 2017 TCB Workshop Notes (LTE Band 41 Power Class 2/3)
- April 2018 TCB Workshop Notes (LTE Carrier Aggregation)

#### 1.8 Device Serial Numbers

Several samples with identical hardware were used to support SAR testing. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units. The serial numbers used for each test are indicated alongside the results in Section 11.

| FCC ID: ZNFL455DL      | PCTEST:                 | SAR EVALUATION REPORT | Approved by: Quality Manager |
|------------------------|-------------------------|-----------------------|------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:             | Dogg 44 of 420               |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset      | Page 11 of 129               |

|                                                       | LT                                                                        | E Information                    |                                                                                       |                                  |                   |  |
|-------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------|---------------------------------------------------------------------------------------|----------------------------------|-------------------|--|
| orm Factor                                            |                                                                           |                                  | Portable Handset                                                                      |                                  |                   |  |
| requency Range of each LTE transmission band          |                                                                           |                                  | Band 71 (665.5 - 695.5                                                                |                                  |                   |  |
|                                                       |                                                                           |                                  | Band 12 (699.7 - 715.3                                                                |                                  |                   |  |
|                                                       |                                                                           |                                  | Band 13 (779.5 - 784.5                                                                |                                  | <u></u>           |  |
|                                                       |                                                                           |                                  | nd 26 (Cell) (814.7 - 848                                                             |                                  |                   |  |
|                                                       |                                                                           |                                  | and 5 (Cell) (824.7 - 848.                                                            |                                  |                   |  |
|                                                       | LTE Band 66 (AWS) (1710.7 - 1779.3 MHz)                                   |                                  |                                                                                       |                                  |                   |  |
|                                                       | LTE Band 4 (AWS) (1710.7 - 1754.3 MHz)                                    |                                  |                                                                                       |                                  |                   |  |
|                                                       | LTE Band 25 (PCS) (1850.7 - 1914.3 MHz)                                   |                                  |                                                                                       |                                  |                   |  |
|                                                       | LTE Band 2 (PCS) (1850.7 - 1909.3 MHz)  LTE Band 41 (2498.5 - 2687.5 MHz) |                                  |                                                                                       |                                  |                   |  |
| annel Bandwidths                                      |                                                                           |                                  | 3and 41 (2498.5 - 2687.5<br>71: 5 MHz, 10 MHz, 15 N                                   |                                  |                   |  |
| arinor pariuwidus                                     |                                                                           |                                  | 12: 1.4 MHz, 3 MHz, 5 M                                                               |                                  |                   |  |
|                                                       |                                                                           |                                  | E Band 13: 5 MHz, 10 M                                                                |                                  |                   |  |
|                                                       |                                                                           |                                  | ): 1.4 MHz, 3 MHz, 5 MH                                                               |                                  |                   |  |
|                                                       |                                                                           | LTE Band 5 (                     | Cell): 1.4 MHz, 3 MHz, 5                                                              | MHz, 10 MHz                      |                   |  |
|                                                       |                                                                           |                                  | 4 MHz, 3 MHz, 5 MHz, 1                                                                |                                  |                   |  |
|                                                       |                                                                           |                                  | 4 MHz, 3 MHz, 5 MHz, 10                                                               |                                  |                   |  |
|                                                       |                                                                           |                                  | 4 MHz, 3 MHz, 5 MHz, 1                                                                |                                  |                   |  |
|                                                       | L'                                                                        |                                  | 4 MHz, 3 MHz, 5 MHz, 10                                                               |                                  | Z                 |  |
| pappal Numbers and Fraguessias (NALIS)                | 10                                                                        |                                  | 41: 5 MHz, 10 MHz, 15 M                                                               |                                  | I Each            |  |
| nannel Numbers and Frequencies (MHz) E Band 71: 5 MHz | Low 665.5.(1                                                              | Low-Mid                          | Mid<br>680 5 (133207)                                                                 | Mid-High                         | High              |  |
| E Band 71: 5 MHz E Band 71: 10 MHz                    | 665.5 (1                                                                  |                                  | 680.5 (133297)<br>680.5 (133297)                                                      | 695.5 (                          |                   |  |
| E Band 71: 10 MHz                                     | 668 (13<br>670.5 (1                                                       |                                  | 680.5 (133297)<br>680.5 (133297)                                                      | 693 (1<br>690.5 (                |                   |  |
| E Band 71: 15 MHz E Band 71: 20 MHz                   | 673 (13                                                                   |                                  | 680.5 (133297)                                                                        | 688 (1                           |                   |  |
| E Band 12: 1.4 MHz                                    | 699.7 (2                                                                  |                                  | 707.5 (23095)                                                                         |                                  | 23173)            |  |
| E Band 12: 3 MHz                                      | 700.5 (2                                                                  |                                  | 707.5 (23095)                                                                         | 714.5 (                          |                   |  |
| E Band 12: 5 MHz                                      | 700.5 (2                                                                  |                                  | 707.5 (23095)                                                                         | 713.5 (                          |                   |  |
| E Band 12: 10 MHz                                     | 701.5 (2                                                                  |                                  | 707.5 (23095)                                                                         | 713.3 (                          |                   |  |
| E Band 13: 5 MHz                                      | 779.5 (2                                                                  |                                  | 782 (23230)                                                                           | 784.5 (                          |                   |  |
| E Band 13: 10 MHz                                     | N/                                                                        |                                  | 782 (23230)                                                                           | 704.5 (<br>N                     |                   |  |
| E Band 26 (Cell): 1.4 MHz                             | 814.7 (2                                                                  |                                  | 831.5 (26865)                                                                         |                                  |                   |  |
| E Band 26 (Cell): 3 MHz                               | 815.5 (2                                                                  |                                  | 831.5 (26865)                                                                         | 848.3 (27033)<br>847.5 (27025)   |                   |  |
| E Band 26 (Cell): 5 MHz                               | 816.5 (2                                                                  |                                  | 831.5 (26865)                                                                         | 846.5 (27015)                    |                   |  |
| E Band 26 (Cell): 10 MHz                              | 819 (2                                                                    |                                  | 831.5 (26865)                                                                         | 844 (26990)                      |                   |  |
| E Band 26 (Cell): 15 MHz                              | 821.5 (2                                                                  |                                  | 831.5 (26865)                                                                         | 841.5 (26965)                    |                   |  |
| E Band 5 (Cell): 1.4 MHz                              | 824.7 (2                                                                  |                                  | 836.5 (20525)                                                                         | 848.3 (20643)                    |                   |  |
| E Band 5 (Cell): 3 MHz                                | 825.5 (20415)                                                             |                                  | 836.5 (20525)                                                                         | 847.5 (                          |                   |  |
| E Band 5 (Cell): 5 MHz                                | 826.5 (20425)                                                             |                                  | 836.5 (20525)                                                                         | 846.5 (                          |                   |  |
| E Band 5 (Cell): 10 MHz                               | 829 (2)                                                                   |                                  | 836.5 (20525)                                                                         | 844 (20600)                      |                   |  |
| E Band 66 (AWS): 1.4 MHz                              | 1710.7 (1                                                                 |                                  | 1745 (132322)                                                                         | 1779.3 (132665)                  |                   |  |
| E Band 66 (AWS): 3 MHz                                | 1711.5 (1                                                                 | 31987)                           | 1745 (132322)                                                                         | 1778.5 (132657)                  |                   |  |
| E Band 66 (AWS): 5 MHz                                | 1712.5 (1                                                                 | 31997)                           | 1745 (132322)                                                                         | 1777.5 (132647)                  |                   |  |
| E Band 66 (AWS): 10 MHz                               | 1715 (1                                                                   |                                  | 1745 (132322)                                                                         | 1775 (132622)                    |                   |  |
| E Band 66 (AWS): 15 MHz                               | 1717.5 (1                                                                 | 32047)                           | 1745 (132322)                                                                         | 1772.5 (132597)                  |                   |  |
| E Band 66 (AWS): 20 MHz                               | 1720 (1                                                                   |                                  | 1745 (132322)                                                                         | 1770 (132572)                    |                   |  |
| E Band 4 (AWS): 1.4 MHz                               | 1710.7 (                                                                  |                                  | 1732.5 (20175)                                                                        | 1754.3 (20393)                   |                   |  |
| E Band 4 (AWS): 3 MHz                                 | 1711.5 (                                                                  |                                  | 1732.5 (20175)                                                                        | 1753.5 (20385)                   |                   |  |
| E Band 4 (AWS): 5 MHz                                 | 1712.5 (                                                                  |                                  | 1732.5 (20175)                                                                        | 1752.5 (20375)                   |                   |  |
| E Band 4 (AWS): 10 MHz                                | 1715 (2                                                                   |                                  | 1732.5 (20175)                                                                        | 1750 (20350)                     |                   |  |
| E Band 4 (AWS): 15 MHz                                | 1717.5 (                                                                  |                                  | 1732.5 (20175)                                                                        | 1747.5 (20325)                   |                   |  |
| E Band 4 (AWS): 20 MHz                                | 1720 (2                                                                   |                                  | 1732.5 (20175)                                                                        | 1745 (                           |                   |  |
| E Band 25 (PCS): 1.4 MHz                              | 1850.7 (                                                                  |                                  | 1882.5 (26365)                                                                        | 1914.3 (26683)                   |                   |  |
| E Band 25 (PCS): 3 MHz                                | 1851.5 (                                                                  |                                  | 1882.5 (26365)                                                                        | 1913.5 (26675)                   |                   |  |
| E Band 25 (PCS): 5 MHz                                | 1852.5 (                                                                  |                                  | 1882.5 (26365)                                                                        | 1912.5                           |                   |  |
| E Band 25 (PCS): 10 MHz                               | 1855 (2                                                                   |                                  | 1882.5 (26365)                                                                        | 1910 (                           |                   |  |
| E Band 25 (PCS): 15 MHz                               | 1857.5 (                                                                  |                                  | 1882.5 (26365)                                                                        | 1907.5 (26615)                   |                   |  |
| E Band 25 (PCS): 20 MHz                               | 1860 (2                                                                   |                                  | 1882.5 (26365)                                                                        | 1905 (                           |                   |  |
| E Band 2 (PCS): 1.4 MHz                               | 1850.7 (                                                                  |                                  | 1880 (18900)                                                                          | 1909.3                           | · /               |  |
| E Band 2 (PCS): 3 MHz                                 | 1851.5 (                                                                  |                                  | 1880 (18900)                                                                          |                                  | (19185)           |  |
| E Band 2 (PCS): 5 MHz                                 | 1852.5 (                                                                  |                                  | 1880 (18900)                                                                          |                                  | (19175)           |  |
| E Band 2 (PCS): 10 MHz                                | 1855 (1                                                                   |                                  | 1880 (18900)                                                                          | 1905 (                           |                   |  |
| E Band 2 (PCS): 15 MHz                                | 1857.5 (<br>1860 (1                                                       |                                  | 1880 (18900)<br>1880 (18900)                                                          | 1902.5<br>1900 (                 |                   |  |
| E Band 2 (PCS): 20 MHz<br>E Band 41: 5 MHz            | 2506 (39750)                                                              | 2549.5 (40185)                   | 2593 (40620)                                                                          | 2636.5 (41055)                   | 2680 (41490)      |  |
| E Band 41: 5 MHz<br>E Band 41: 10 MHz                 | 2506 (39750)                                                              | 2549.5 (40185)<br>2549.5 (40185) | 2593 (40620)                                                                          | 2636.5 (41055)<br>2636.5 (41055) | 2680 (41490)      |  |
| E Band 41: 10 MHz                                     | 2506 (39750)                                                              | 2549.5 (40185)                   | 2593 (40620)                                                                          | 2636.5 (41055)                   | 2680 (41490)      |  |
| E Band 41: 13 MHz                                     | 2506 (39750)                                                              | 2549.5 (40185)                   | 2593 (40620)                                                                          | 2636.5 (41055)                   | 2680 (41490)      |  |
| Category                                              |                                                                           |                                  | DL UE Cat 7, UL UE Cat                                                                |                                  | (00)              |  |
| dulations Supported in UL                             |                                                                           |                                  | QPSK, 16QAM, 64QAM                                                                    |                                  |                   |  |
| E MPR Permanently implemented per 3GPP TS             |                                                                           |                                  |                                                                                       |                                  |                   |  |
| .101 section 6.2.3~6.2.5? (manufacturer attestation   |                                                                           |                                  | YES                                                                                   |                                  |                   |  |
| be provided)                                          |                                                                           |                                  |                                                                                       |                                  |                   |  |
| MPR (Additional MPR) disabled for SAR Testing?        |                                                                           | ·                                | YES                                                                                   | ·                                |                   |  |
| E Carrier Aggregation Possible Combinations           | The tec                                                                   | nnical description incl          | ludes all the possible car                                                            | rier aggregation combin          | nations           |  |
| E Additional Information                              | Release 8 Specification                                                   | ons. Uplink communic             | s on 3GPP Release 11. A<br>ations are done on the P<br>ad MIMO, eICIC, eMBMS<br>FDMA. | CC. The following LTE            | Release 11 Featur |  |

| FCC ID: ZNFL455DL      | PCTEST*                 | SAR EVALUATION REPORT | Approved by: Quality Manager |
|------------------------|-------------------------|-----------------------|------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:             | Dogg 12 of 120               |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset      | Page 12 of 129               |

#### 3

The FCC and Innovation, Science, and Economic Development Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. [1]

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [3] and Health Canada RF Exposure Guidelines Safety Code 6 [22]. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave [4] is used for guidance in measuring the Specific Absorption Rate (SAR) due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the International Committee for Non-Ionizing Radiation Protection (ICNIRP) in Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," Report No. Vol 74. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

#### 3.1 SAR Definition

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density ( $\rho$ ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Equation 3-1).

# Equation 3-1 SAR Mathematical Equation

$$SAR = \frac{d}{dt} \left( \frac{dU}{dm} \right) = \frac{d}{dt} \left( \frac{dU}{\rho dv} \right)$$

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:

 $\sigma$  = conductivity of the tissue-simulating material (S/m)

 $\rho$  = mass density of the tissue-simulating material (kg/m<sup>3</sup>)

E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.[6]

| FCC ID: ZNFL455DL      | PCTEST*                 | SAR EVALUATION REPORT | Approved by:  Quality Manager |
|------------------------|-------------------------|-----------------------|-------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:             | Dogg 42 of 420                |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset      | Page 13 of 129                |

© 2020 PCTEST Engineering Laboratory, Inc.

#### 4 DOSIMETRIC ASSESSMENT

#### 4.1 Measurement Procedure

The evaluation was performed using the following procedure compliant to FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013:

- The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01r04 (See Table 4-1) and IEEE 1528-2013.
- 2. The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed point was measured and used as a reference value.

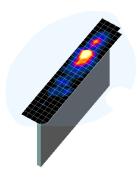



Figure 4-1 Sample SAR Area Scan

- 3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01r04 (See Table 4-1) and IEEE 1528-2013. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):
  - a. SAR values at the inner surface of the phantom are extrapolated from the measured values along the line away from the surface with spacing no greater than that in Table 4-1. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).
  - b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR.
  - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- 4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated.

Table 4-1
Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01r04\*

|           | Maximum Area Scan<br>Resolution (mm)       | Maximum Zoom Scan<br>Resolution (mm)       | Max                    | imum Zoom So<br>Resolution ( |                                 | Minimum Zoom Scan      |
|-----------|--------------------------------------------|--------------------------------------------|------------------------|------------------------------|---------------------------------|------------------------|
| Frequency | (Δx <sub>area</sub> , Δy <sub>area</sub> ) | (Δx <sub>200m</sub> , Δy <sub>200m</sub> ) | Uniform Grid           | G                            | raded Grid                      | Volume (mm)<br>(x,y,z) |
|           |                                            |                                            | Δz <sub>zoom</sub> (n) | Δz <sub>zoom</sub> (1)*      | Δz <sub>zoom</sub> (n>1)*       |                        |
| ≤ 2 GHz   | ≤ 15                                       | ≤8                                         | ≤5                     | ≤4                           | ≤ 1.5*∆z <sub>zoom</sub> (n-1)  | ≥ 30                   |
| 2-3 GHz   | ≤ 12                                       | ≤5                                         | ≤5                     | ≤4                           | $\leq 1.5*\Delta z_{zoom}(n-1)$ | ≥ 30                   |
| 3-4 GHz   | ≤12                                        | ≤5                                         | ≤4                     | ≤3                           | $\leq 1.5*\Delta z_{zoom}(n-1)$ | ≥ 28                   |
| 4-5 GHz   | ≤ 10                                       | ≤ 4                                        | ≤3                     | ≤2.5                         | $\leq 1.5*\Delta z_{zoom}(n-1)$ | ≥ 25                   |
| 5-6 GHz   | ≤ 10                                       | ≤4                                         | ≤2                     | ≤2                           | $\leq 1.5*\Delta z_{zoom}(n-1)$ | ≥ 22                   |

<sup>\*</sup>Also compliant to IEEE 1528-2013 Table 6

| FCC ID: ZNFL455DL      | PCTEST                  | SAR EVALUATION REPORT | (LG | Approved by:  Quality Manager |
|------------------------|-------------------------|-----------------------|-----|-------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:             |     | Dogg 14 of 120                |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset      |     | Page 14 of 129                |

© 2020 PCTEST Engineering Laboratory, Inc.

#### 5.1 EAR REFERENCE POINT

Figure 5-2 shows the front, back and side views of the SAM Twin Phantom. The point "M" is the reference point for the center of the mouth, "LE" is the left ear reference point (ERP), and "RE" is the right ERP. The ERP is 15mm posterior to the entrance to the ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 5-1. The plane passing through the two ear canals and M is defined as the Reference Plane. The line N-F (Neck-Front), also called the Reference Pivoting Line, is not perpendicular to the reference plane (see Figure 5-1). Line B-M is perpendicular to the N-F line. Both N-F and B-M lines are marked on the external phantom shell to facilitate handset positioning [5].

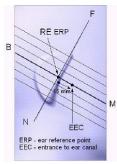



Figure 5-1 Close-Up Side view of ERP

#### 5.2 HANDSET REFERENCE POINTS

Two imaginary lines on the handset were established: the vertical centerline and the horizontal line. The test device was placed in a normal operating position with the acoustic output located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (See Figure 5-3). The acoustic output was than located at the same level as the center of the ear reference point. The test device was positioned so that the "vertical centerline" was bisecting the front surface of the handset at its top and bottom edges, positioning the "ear reference point" on the outer surface of the both the left and right head phantoms on the ear reference point.



Figure 5-2 Front, back and side view of SAM Twin Phantom

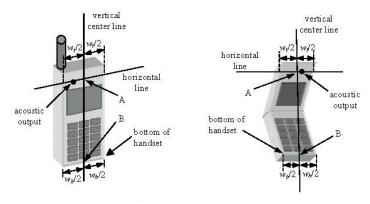



Figure 5-3
Handset Vertical Center & Horizontal Line Reference Points

| FCC ID: ZNFL455DL      | PCTEST:                 | SAR EVALUATION REPORT | Approved by:  Quality Manager |
|------------------------|-------------------------|-----------------------|-------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:             | Dage 45 of 420                |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset      | Page 15 of 129                |

### 6 TEST CONFIGURATION POSITIONS

#### 6.1 Device Holder

The device holder is made out of low-loss POM material having the following dielectric parameters: relative permittivity  $\varepsilon = 3$  and loss tangent  $\delta = 0.02$ .

#### 6.2 Positioning for Cheek

1. The test device was positioned with the device close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 6-1), such that the plane defined by the vertical center line and the horizontal line of the phone is approximately parallel to the sagittal plane of the phantom.



Figure 6-1 Front, Side and Top View of Cheek Position

- The handset was translated towards the phantom along the line passing through RE & LE until the handset touches the pinna.
- 3. While maintaining the handset in this plane, the handset was rotated around the LE-RE line until the vertical centerline was in the reference plane.
- 4. The phone was then rotated around the vertical centerline until the phone (horizontal line) was symmetrical was respect to the line NF.
- 5. While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE, and maintaining the device contact with the ear, the device was rotated about the NF line until any point on the handset made contact with a phantom point below the ear (cheek) (See Figure 6-2).

### 6.3 Positioning for Ear / 15° Tilt

With the test device aligned in the "Cheek Position":

- 1. While maintaining the orientation of the phone, the phone was retracted parallel to the reference plane far enough to enable a rotation of the phone by 15degrees.
- 2. The phone was then rotated around the horizontal line by 15 degrees.
- 3. While maintaining the orientation of the phone, the phone was moved parallel to the reference plane until any part of the handset touched the head. (In this position, point A was located on the line RE-LE). The tilted position is obtained when the contact is on the pinna. If the contact was at any location other than the pinna, the angle of the phone would then be reduced. In this situation, the tilted position was obtained when any part of the phone was in contact of the ear as well as a second part of the phone was in contact with the head (see Figure 6-2).

| FCC ID: ZNFL455DL      | PCTEST*                 | SAR EVALUATION REPORT | Approved by:  Quality Manager |
|------------------------|-------------------------|-----------------------|-------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:             | Dage 16 of 120                |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset      | Page 16 of 129                |

© 2020 PCTEST Engineering Laboratory, Inc.



Figure 6-2 Front, Side and Top View of Ear/15° Tilt Position

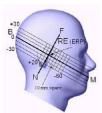



Figure 6-3
Side view w/ relevant markings

### 6.4 SAR Evaluations near the Mouth/Jaw Regions of the SAM Phantom

Antennas located near the bottom of a phone may require SAR measurements around the mouth and jaw regions of the SAM head phantom. This typically applies to clam-shell style phones that are generally longer in the unfolded normal use positions or to certain older style long rectangular phones. Per IEEE 1528-2013, a rotated SAM phantom is necessary to allow probe access to such regions. Both SAM heads of the TwinSAM-Chin20 are rotated 20 degrees around the NF line. Each head can be removed from the table for emptying and cleaning.

Under these circumstances, the following procedures apply, adopted from the FCC guidance on SAR handsets document FCC KDB Publication 648474 D04v01r03. The SAR required in these regions of SAM should be measured using a flat phantom. The phone should be positioned with a separation distance of 4 mm between the ear reference point (ERP) and the outer surface of the flat phantom shell. While maintaining this distance at the ERP location, the low (bottom) edge of the phone should be lowered from the phantom to establish the same separation distance between the peak SAR location identified by the truncated partial SAR distribution measured with the SAM phantom. The distance from the peak SAR location to the phone is determined by the straight line passing perpendicularly through the phantom surface. When it is not feasible to maintain 4 mm separation at the ERP while also establishing the required separation at the peak SAR location, the top edge of the phone will be allowed to touch the phantom with a separation < 4 mm at the ERP. The phone should not be tilted to the left or right while placed in this inclined position to the flat phantom.

### 6.5 Body-Worn Accessory Configurations

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 6-4). Per FCC KDB Publication 648474 D04v01r03, Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB Publication 447498 D01v06 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation



Figure 6-4
Sample Body-Worn Diagram

distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not

| FCC ID: ZNFL455DL      | PCTEST:                 | SAR EVALUATION REPORT | Approved by: Quality Manager |
|------------------------|-------------------------|-----------------------|------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:             | D 47 - 6400                  |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset      | Page 17 of 129               |

© 2020 PCTEST Engineering Laboratory, Inc.

contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented.

Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

#### 6.6 Extremity Exposure Configurations

Devices that are designed or intended for use on extremities or mainly operated in extremity only exposure conditions; i.e., hands, wrists, feet and ankles, may require extremity SAR evaluation. When the device also operates in close proximity to the user's body, SAR compliance for the body is also required. The 1g body and 10g extremity SAR Exclusion Thresholds found in KDB Publication 447498 D01v06 should be applied to determine SAR test requirements.

Per KDB Publication 447498 D01v06, Cell phones (handsets) are not normally designed to be used on extremities or operated in extremity only exposure conditions. The maximum output power levels of handsets generally do not require extremity SAR testing to show compliance. Therefore, extremity SAR was not evaluated for this device.

### 6.7 Wireless Router Configurations

Some battery-operated handsets have the capability to transmit and receive user data through simultaneous transmission of WIFI simultaneously with a separate licensed transmitter. The FCC has provided guidance in FCC KDB Publication 941225 D06v02r01 where SAR test considerations for handsets (L x W  $\geq$  9 cm x 5 cm) are based on a composite test separation distance of 10 mm from the front, back and edges of the device containing transmitting antennas within 2.5 cm of their edges, determined from general mixed use conditions for this type of devices. Since the hotspot SAR results may overlap with the body-worn accessory SAR requirements, the more conservative configurations can be considered, thus excluding some body-worn accessory SAR tests.

When the user enables the personal wireless router functions for the handset, actual operations include simultaneous transmission of both the WIFI transmitter and another licensed transmitter. Both transmitters often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions due to the limitations of the SAR assessment probes. Therefore, SAR must be evaluated for each frequency transmission and mode separately and spatially summed with the WIFI transmitter according to FCC KDB Publication 447498 D01v06 procedures. The "Portable Hotspot" feature on the handset was NOT activated during SAR assessments, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal at a time.

### 6.8 Phablet Configurations

For smart phones with a display diagonal dimension > 150 mm or an overall diagonal dimension > 160 mm that provide similar mobile web access and multimedia support found in mini-tablets or UMPC mini-tablets that

| FCC ID: ZNFL455DL                    | PCTEST*                 | SAR EVALUATION REPORT | Approved by:  Quality Manager |
|--------------------------------------|-------------------------|-----------------------|-------------------------------|
| Document S/N:                        | Test Dates:             | DUT Type:             | Dags 49 of 120                |
| 1M1911290211-01-R2.ZNF               | 12/05/2019 - 01/16/2020 | Portable Handset      | Page 18 of 129                |
| 20 PCTEST Engineering Laboratory Inc |                         |                       | REV/ 21 / M                   |

© 2020 PCTEST Engineering Laboratory, Inc.

support voice calls next to the ear, the phablets procedures outlined in KDB Publication 648474 D04v01r03 should be applied to evaluate SAR compliance. A device marketed as phablets, regardless of form factors and operating characteristics must be tested as a phablet to determine SAR compliance. In addition to the normally required head and body-worn accessory SAR test procedures required for handsets, the UMPC mini-tablet procedures must also be applied to test the SAR of all surfaces and edges with an antenna <=25 mm from that surface or edge, in direct contact with the phantom, for 10g SAR. The UMPC mini-tablet 1g SAR at 5 mm is not required. When hotspot mode applies, 10g SAR is required only for the surfaces and edges with hotspot mode 1g SAR > 1.2 W/kg.

#### 6.9 Proximity Sensor Considerations

This device uses a power reduction mechanism to reduce output powers in certain use conditions when the device is used close the user's body.

When the device's antenna is within a certain distance of the user, the sensor activates and reduces the maximum allowed output power. However, the sensor is not active when the device is moved beyond the sensor triggering distance and the maximum output power is no longer limited. Therefore, additional evaluation is needed in the vicinity of the triggering distance to ensure SAR is compliant when the device is allowed to operate at a non-reduced output power level. FCC KDB Publication 616217 D04v01r02 Section 6 was used as a guideline for selecting SAR test distances for this device at these additional test positions. Sensor triggering distance summary data is included in Appendix F.

The sensor is designed to support sufficient detection range and sensitivity to cover regions of the sensors in all applicable directions since the sensor entirely covers the antennas.

| FCC ID: ZNFL455DL      | PCTEST*                 | SAR EVALUATION REPORT LG | Approved by: Quality Manager |
|------------------------|-------------------------|--------------------------|------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:                | Dogg 10 of 120               |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset         | Page 19 of 129               |

### 7 RF EXPOSURE LIMITS

#### 7.1 Uncontrolled Environment

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

#### 7.2 Controlled Environment

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table 7-1
SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6

| HUMAN EXPOSURE LIMITS                                        |                                        |                                  |
|--------------------------------------------------------------|----------------------------------------|----------------------------------|
|                                                              | UNCONTROLLED<br>ENVIRONMENT            | CONTROLLED<br>ENVIRONMENT        |
|                                                              | General Population<br>(W/kg) or (mW/g) | Occupational<br>(W/kg) or (mW/g) |
| Peak Spatial Average SAR<br><sub>Head</sub>                  | 1.6                                    | 8.0                              |
| Whole Body SAR                                               | 0.08                                   | 0.4                              |
| Peak Spatial Average SAR<br>Hands, Feet, Ankle, Wrists, etc. | 4.0                                    | 20                               |

<sup>1.</sup> The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

2. The Spatial Average value of the SAR averaged over the whole body.

| FCC ID: ZNFL455DL      | PCTEST*                 | SAR EVALUATION REPORT | Approved by:  Quality Manager |
|------------------------|-------------------------|-----------------------|-------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:             | Dags 20 of 120                |
| 1M1911290211-01-R2.ZNF | 12/05/2019 – 01/16/2020 | Portable Handset      | Page 20 of 129                |

© 2020 PCTEST Engineering Laboratory, Inc.

<sup>3.</sup> The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

### 8 FCC MEASUREMENT PROCEDURES

Power measurements for licensed transmitters are performed using a base station simulator under digital average power.

#### 8.1 Measured and Reported SAR

Per FCC KDB Publication 447498 D01v06, when SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as *reported* SAR. The highest *reported* SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r03.

#### 8.2 3G SAR Test Reduction Procedure

In FCC KDB Publication 941225 D01v03r01, certain transmission modes within a frequency band and wireless mode evaluated for SAR are defined as primary modes. The equivalent modes considered for SAR test reduction are denoted as secondary modes. When the maximum output power including tune-up tolerance specified for production units in a secondary mode is  $\leq 0.25$  dB higher than the primary mode or when the highest reported SAR of the primary mode, scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode, is  $\leq 1.2$  W/kg, SAR measurements are not required for the secondary mode. These criteria are referred to as the 3G SAR test reduction procedure. When the 3G SAR test reduction procedure is not satisfied, SAR measurements are additionally required for the secondary mode.

### 8.3 Procedures Used to Establish RF Signal for SAR

The following procedures are according to FCC KDB Publication 941225 D01v03r01 "3G SAR Measurement Procedures."

The device is placed into a simulated call using a base station simulator in a RF shielded chamber. Establishing connections in this manner ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. Devices under test are evaluated prior to testing, with a fully charged battery and were configured to operate at maximum output power. In order to verify that the device is tested throughout the SAR test at maximum output power, the SAR measurement system measures a "point SAR" at an arbitrary reference point at the start and end of the 1 gram SAR evaluation, to assess for any power drifts during the evaluation. If the power drift deviates by more than 5%, the SAR test and drift measurements are repeated.

#### 8.4 SAR Measurement Conditions for CDMA2000

The following procedures were performed according to FCC KDB Publication 941225 D01v03r01 "3G SAR Measurement Procedures."

#### 8.4.1 Output Power Verification

See 3GPP2 C.S0011/TIA-98-E as recommended by FCC KDB Publication 941225 D01v03r01 "3G SAR Measurement Procedures." Maximum output power is verified on the High, Middle and Low channels according to procedures in section 4.4.5.2 of 3GPP2 C.S0011/TIA-98-E. SO55 tests were measured with power control bits in the "All Up" condition.

| FCC ID: ZNFL455DL      | PCTEST*                 | SAR EVALUATION REPORT | Approved by:  Quality Manager |
|------------------------|-------------------------|-----------------------|-------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:             | Dags 24 of 120                |
| 1M1911290211-01-R2.ZNF | 12/05/2019 – 01/16/2020 | Portable Handset      | Page 21 of 129                |

© 2020 PCTEST Engineering Laboratory, Inc.

- 1. If the mobile station (MS) supports Reverse TCH RC 1 and Forward TCH RC 1, set up a call using Fundamental Channel Test Mode 1 (RC=1/1) with 9600 bps data rate only.
- 2. Under RC1, C.S0011 Table 4.4.5.2-1, Table 8-1 parameters were applied.
- 3. If the MS supports the RC 3 Reverse FCH, RC3 Reverse SCHo and demodulation of RC 3,4, or 5, set up a call using Supplemental Channel Test Mode 3 (RC 3/3) with 9600 bps Fundamental Channel and 9600 bps SCH0 data rate.
- Under RC3, C.S0011 Table 4.4.5.2-2, Table 8-2 was applied.

Table 8-1 Parameters for Max. Power for RC1

| Parameter              | Units        | Value |
|------------------------|--------------|-------|
| Îor                    | dBm/1.23 MHz | -104  |
| Pilot E <sub>c</sub>   | dB           | -7    |
| Traffic E <sub>c</sub> | dB           | -7.4  |

Table 8-2 Parameters for Max. Power for RC3

| Parameter              | Units        | Value |
|------------------------|--------------|-------|
| I <sub>or</sub>        | dBm/1.23 MHz | -86   |
| Pilot E <sub>c</sub>   | dB           | -7    |
| Traffic E <sub>c</sub> | dB           | -7.4  |

5. FCHs were configured at full rate for maximum SAR with "All Up" power control bits.

#### 8.4.2 **Head SAR Measurements**

SAR for next to the ear head exposure is measured in RC3 with the handset configured to transmit at fullrate in SO55. The 3G SAR test reduction procedure is applied to RC1 with RC3 as the primary mode; otherwise, SAR is required for the channel with maximum measured output in RC1 using the head exposure configuration that results in the highest reported SAR in RC3.

Head SAR is additionally evaluated using EVDO Rev. A to support compliance for VoIP operations. See Section 8.4.5 for EVDO Rev. A configuration parameters.

#### 8.4.3 **Body-worn SAR Measurements**

SAR for body-worn exposure configurations is measured in RC3 with the DUT configured to transmit at full rate on FCH with all other code channels disabled using TDSO / SO32. The 3G SAR test reduction procedure is applied to the multiple code channel configuration (FCH+SCHn), with FCH only as the primary mode. Otherwise, SAR is required for multiple code channel configuration (FCH + SCHn), with FCH at full rate and SCH0 enabled at 9600 bps, using the highest reported SAR configuration for FCH only. When multiple code channels are enabled, the transmitter output can shift by more than 0.5 dB and may lead to higher SAR drifts and SCH dropouts.

The 3G SAR test reduction procedure is applied to body-worn accessory SAR in RC1 with RC3 as the primary mode. Otherwise, SAR is required for RC1, with SO55 and full rate, using the highest reported SAR configuration for body-worn accessory exposure in RC3.

#### 8.4.4 **Body-worn SAR Measurements for EVDO Devices**

For handsets with EVDO capabilities, the 3G SAR test reduction procedure is applied to EVDO Rev. 0 with 1x RTT RC3 as the primary mode to determine body-worn accessory test requirements. Otherwise, body-worn accessory SAR is required for Rev. 0, at 153.6 kbps, using the highest reported SAR configuration for body-worn accessory exposure in RC3.

The 3G SAR test reduction procedure is applied to Rev. A, with Rev. 0 as the primary mode to determine body-worn accessory SAR test requirements. When SAR is not required for Rev. 0, the 3G SAR test reduction is applied with 1x RTT RC3 as the primary mode.

| FCC ID: ZNFL455DL      | PCTEST*                 | SAR EVALUATION REPORT | Approved by:  Quality Manager |
|------------------------|-------------------------|-----------------------|-------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:             | Dage 22 of 420                |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset      | Page 22 of 129                |

When SAR is required for EVDO Rev. A, SAR is measured with a Reverse Data Channel payload size of 4096 bits and a Termination Target of 16 slots defined for Subtype 2 Physical Layer configurations, using the highest reported SAR configuration for body-worn accessory exposure in Rev. 0 or 1x RTT RC3, as appropriate.

#### 8.4.5 Body SAR Measurements for EVDO Hotspot

Hotspot Body SAR is measured using Subtype 0/1 Physical Layer configurations for Rev. 0. The 3G SAR test reduction procedure is applied to Rev. A, Subtype 2 Physical layer configuration, with Rev. 0 as the primary mode; otherwise, SAR is measured for Rev. A using the highest reported SAR configuration for body-worn accessory exposure in Rev. 0. The AT is tested with a Reverse Data Channel rate of 153.6 kbps in Subtype 0/1 Physical Layer configurations; and a Reverse Data Channel payload size of 4096 bits and Termination Target of 16 slots in Subtype 2 Physical Layer configurations.

For EVDO data devices that also support 1x RTT voice and/or data operations, the 3G SAR test reduction procedure is applied to 1x RTT RC3 and RC1 with EVDO Rev. 0 and Rev. A as the respective primary modes. Otherwise, the 'Body-Worn Accessory SAR' procedures in the '3GPP2 CDMA 2000 1x Handsets' section are applied.

#### 8.5 **SAR Measurement Conditions for UMTS**

#### 8.5.1 **Output Power Verification**

Maximum output power is verified on the High, Middle and Low channels according to the general descriptions in section 5.2 of 3GPP TS 34.121, using the appropriate RMC with TPC (transmit power control) set to all "1s" or applying the required inner loop power control procedures to maintain maximum output power while HSUPA is active. Results for all applicable physical channel configurations (DPCCH, DPDCHn and spreading codes, HS-DPCCH etc) are tabulated in this test report. All configurations that are not supported by the DUT or cannot be measured due to technical or equipment limitations are identified.

#### 8.5.2 **Head SAR Measurements**

SAR for next to the ear head exposure is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to AMR configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for 12.2 kbps AMR in 3.4 kbps SRB (signaling radio bearer) using the highest reported SAR configuration in 12.2 kbps RMC for head exposure.

#### 8.5.3 **Body SAR Measurements**

SAR for body exposure configurations is measured using the 12.2 kbps RMC with the TPC bits all "1s". The 3G SAR test reduction procedure is applied to other spreading codes and multiple DPDCH<sub>0</sub> configurations supported by the handset with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured using an applicable RMC configuration with the corresponding spreading code or DPDCH<sub>n</sub>, for the highest reported SAR configuration in 12.2 kbps RMC.

#### SAR Measurements with Rel 5 HSDPA 8.5.4

The 3G SAR test reduction procedure is applied to HSDPA body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSDPA is measured using an FRC with H-Set 1 in Sub-test 1 and a 12.2 kbps RMC configured in Test Loop Mode 1, for the highest reported SAR configuration in 12.2 kbps RMC without HSDPA. Handsets with both HSDPA and HSUPA are tested according to Release 6 HSPA test procedures.

| FCC ID: ZNFL455DL      | PCTEST                  | SAR EVALUATION REPORT | LG | Approved by:  Quality Manager |
|------------------------|-------------------------|-----------------------|----|-------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:             |    | Dogg 22 of 120                |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset      |    | Page 23 of 129                |

#### 8.5.5 SAR Measurements with Rel 6 HSUPA

The 3G SAR test reduction procedure is applied to HSPA (HSUPA/HSDPA with RMC) body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSPA is measured with E-DCH Subtest 5, using H-Set 1 and QPSK for FRC and a 12.2 kbps RMC configured in Test Loop Mode 1 and power control algorithm 2, according to the highest reported body SAR configuration in 12.2 kbps RMC without HSPA.

When VOIP applies to head exposure, the 3G SAR test reduction procedure is applied with 12.2 kbps RMC as the primary mode; otherwise, the same HSPA configuration used for body SAR measurements are applied to head exposure testing.

#### 8.6 SAR Measurement Conditions for LTE

LTE modes are tested according to FCC KDB 941225 D05v02r04 publication. Establishing connections with base station simulators ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. The R&S CMW500 or Anritsu MT8820C simulators are used for LTE output power measurements and SAR testing. Closed loop power control was used so the UE transmits with maximum output power during SAR testing. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).

#### 8.6.1 Spectrum Plots for RB Configurations

A properly configured base station simulator was used for SAR tests and power measurements. Therefore, spectrum plots for RB configurations were not required to be included in this report.

#### 8.6.2 MPR

MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 – 6.2.5 under Table 6.2.3-1.

#### 8.6.3 A-MPR

A-MPR (Additional MPR) has been disabled for all SAR tests by setting NS=01 on the base station simulator.

### 8.6.4 Required RB Size and RB Offsets for SAR Testing

According to FCC KDB 941225 D05v02r04:

- a. Per Section 5.2.1, SAR is required for QPSK 1 RB Allocation for the largest bandwidth
  - i. The required channel and offset combination with the highest maximum output power is required for SAR.
  - ii. When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required. Otherwise, SAR is required for the remaining required test channels using the RB offset configuration with highest output power for that channel.
  - iii. When the reported SAR for a required test channel is > 1.45 W/kg, SAR is required for all RB offset configurations for that channel.
- b. Per Section 5.2.2, SAR is required for 50% RB allocation using the largest bandwidth following the same procedures outlined in Section 5.2.1.
- c. Per Section 5.2.3, QPSK SAR is not required for the 100% allocation when the highest maximum output power for the 100% allocation is less than the highest maximum output power of the 1 RB

| FCC ID: ZNFL455DL      | PCTEST*                 | SAR EVALUATION REPORT | Approved by: Quality Manager |
|------------------------|-------------------------|-----------------------|------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:             | Dogo 24 of 120               |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset      | Page 24 of 129               |

© 2020 PCTEST Engineering Laboratory, Inc.

- and 50% RB allocations and the reported SAR for the 1 RB and 50% RB allocations is < 0.8 W/ka.
- d. Per Section 5.2.4 and 5.3, SAR tests for higher order modulations and lower bandwidths configurations are not required when the conducted power of the required test configurations determined by Sections 5.2.1 through 5.2.3 is less than or equal to ½ dB higher than the equivalent configuration using QPSK modulation and when the QPSK SAR for those configurations is <1.45 W/kg.</p>

#### 8.6.5 TDD

LTE TDD testing is performed using the SAR test guidance provided in FCC KDB 941225 D05v02r04. TDD is tested at the highest duty factor using UL-DL configuration 0 with special subframe configuration 6 and applying the FDD LTE procedures in KDB 941225 D05v02r04. SAR testing is performed using the extended cyclic prefix listed in 3GPP TS 36.211 Section 4.

#### 8.6.6 Downlink Only Carrier Aggregation

Conducted power measurements with LTE Carrier Aggregation (CA) (downlink only) active are made in accordance to KDB Publication 941225 D05Av01r02. The RRC connection is only handled by one cell, the primary component carrier (PCC) for downlink and uplink communications. After making a data connection to the PCC, the UE device adds secondary component carrier(s) (SCC) on the downlink only. All uplink communications and acknowledgements remain identical to specifications when downlink carrier aggregation is inactive on the PCC. Additional conducted output powers are measured with the downlink carrier aggregation active for the configuration with highest measured maximum conducted power with downlink carrier aggregation inactive measured among the channel bandwidth, modulation, and RB combinations in each frequency band. Per FCC KDB Publication 941225 D05Av01r02, no SAR measurements are required for downlink only carrier aggregation configurations when the average output power with downlink only carrier aggregation active is not more than 0.25 dB higher than the average output power with downlink only carrier aggregation inactive.

### 8.7 SAR Testing with 802.11 Transmitters

The normal network operating configurations of 802.11 transmitters are not suitable for SAR measurements. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable. See KDB Publication 248227 D01v02r02 for more details.

#### 8.7.1 General Device Setup

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters.

A periodic duty factor is required for current generation SAR systems to measure SAR. When 802.11 frame gaps are accounted for in the transmission, a maximum transmission duty factor of 92 - 96% is typically achievable in most test mode configurations. A minimum transmission duty factor of 85% is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. The reported SAR is scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

#### 8.7.2 U-NII-1 and U-NII-2A

For devices that operate in both U-NII-1 and U-NII-2A bands, when the same maximum output power is specified for both bands, SAR measurement using OFDM SAR test procedures is not required for U-NII-1

|    | FCC ID: ZNFL455DL                   | PCTEST:                 | SAR EVALUATION REPORT LG | Approved by: Quality Manager |
|----|-------------------------------------|-------------------------|--------------------------|------------------------------|
|    | Document S/N:                       | Test Dates:             | DUT Type:                | Dogo 25 of 120               |
|    | 1M1911290211-01-R2.ZNF              | 12/05/2019 - 01/16/2020 | Portable Handset         | Page 25 of 129               |
| ٦: | O PCTEST Engineering Laboratory Inc |                         |                          | REV/ 21 / M                  |

© 2020 PCTEST Engineering Laboratory, Inc.

unless the highest reported SAR for U-NII-2A is > 1.2 W/kg. When different maximum output powers are specified for the bands, SAR measurement for the U-NII band with the lower maximum output power is not required unless the highest reported SAR for the U-NII band with the higher maximum output power, adjusted by the ratio of lower to higher specified maximum output power for the two bands, is > 1.2 W/kg. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

#### 8.7.3 U-NII-2C and U-NII-3

The frequency range covered by U-NII-2C and U-NII-3 is 380 MHz (5.47-5.85 GHz), which requires a minimum of at least two SAR probe calibration frequency points to support SAR measurements. When Terminal Doppler Weather Radar (TDWR) restriction applies, the channels at 5.60-5.65 GHz in U-NII-2C band must be disabled with acceptable mechanisms and documented in the equipment certification. Unless band gap channels are permanently disabled, SAR must be considered for these channels. Each band is tested independently according to the normally required OFDM SAR measurement and probe calibration frequency points requirements.

#### 8.7.4 Initial Test Position Procedure

For exposure conditions with multiple test positions, such as handset operating next to the ear, devices with hotspot mode or UMPC mini-tablet, procedures for initial test position can be applied. Using the transmission mode determined by the DSSS procedure or initial test configuration, area scans are measured for all positions in an exposure condition. The test position with the highest extrapolated (peak) SAR is used as the initial test position. When reported SAR for the initial test position is  $\leq 0.4$  W/kg, no additional testing for the remaining test positions is required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is  $\leq 0.8$  W/kg or all test positions are measured. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

### 8.7.5 2.4 GHz SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either the fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- When the reported SAR is > 0.8 W/kg, SAR is required for that position using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.

2.4 GHz 802.11 g/n/ax OFDM are additionally evaluated for SAR if the highest reported SAR for 802.11b, adjusted by the ratio of the OFDM to DSSS specified maximum output power, is > 1.2 W/kg. When SAR is required for OFDM modes in 2.4 GHz band, the Initial Test Configuration Procedures should be followed. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

#### 8.7.6 OFDM Transmission Mode and SAR Test Channel Selection

When the same maximum output power was specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration with the largest channel bandwidth, lowest order modulation and lowest data rate. When the maximum output power of a channel is the same for equivalent OFDM configurations; for example, 802.11a, 802.11a and 802.11a or 802.11g and 802.11n with the same channel bandwidth, modulation and data rate etc., the lower order 802.11 mode i.e.,

| FCC ID: ZNFL455DL      | PCTEST*                 | SAR EVALUATION REPORT | Approved by:  Quality Manager |
|------------------------|-------------------------|-----------------------|-------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:             | D 00 -f 400                   |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset      | Page 26 of 129                |

 $\hbox{@ 2020 PCTEST}$  Engineering Laboratory, Inc.

802.11a, then 802.11n and 802.11ac or 802.11g then 802.11n, is used for SAR measurement. Per April 2019 TCB Workshop guidance, 802.11ax was considered the highest order 802.11 mode. When the maximum output power are the same for multiple test channels, either according to the default or additional power measurement requirements, SAR is measured using the channel closest to the middle of the frequency band or aggregated band. When there are multiple channels with the same maximum output power, SAR is measured using the higher number channel.

### 8.7.7 Initial Test Configuration Procedure

For OFDM, an initial test configuration is determined for each frequency band and aggregated band, according to the transmission mode with the highest maximum output power specified for SAR measurements. When the same maximum output power is specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration(s) with the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order IEEE 802.11 mode. The channel of the transmission mode with the highest average RF output conducted power will be the initial test configuration.

When the reported SAR is  $\leq 0.8$  W/kg, no additional measurements on other test channels are required. Otherwise, SAR is evaluated using the subsequent highest average RF output channel until the reported SAR result is  $\leq 1.2$  W/kg or all channels are measured. When there are multiple untested channels having the same subsequent highest average RF output power, the channel with higher frequency from the lowest 802.11 mode is considered for SAR measurements (See Section 8.7.6). When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

### 8.7.8 Subsequent Test Configuration Procedures

For OFDM configurations in each frequency band and aggregated band, SAR is evaluated for initial test configuration using the fixed test position or the initial test position procedure. When the highest reported SAR (for the initial test configuration), adjusted by the ratio of the specified maximum output power of the subsequent test configuration to initial test configuration, is ≤ 1.2 W/kg, no additional SAR tests for the subsequent test configurations are required. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

| FCC ID: ZNFL455DL      | PCTEST:                 | SAR EVALUATION REPORT | Approved by:  Quality Manager |
|------------------------|-------------------------|-----------------------|-------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:             | Dags 27 of 120                |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset      | Page 27 of 129                |

#### 9.1 CDMA Conducted Powers

Table 9-1
Maximum Conducted Power

| Band     | Channel | Rule Part | Frequency | SO55<br>[dBm] | SO55<br>[dBm] | TDSO SO32<br>[dBm] | TDSO SO32<br>[dBm] | 1x EvDO<br>Rev. 0<br>[dBm] | 1x EvDO<br>Rev. A<br>[dBm] |
|----------|---------|-----------|-----------|---------------|---------------|--------------------|--------------------|----------------------------|----------------------------|
| Cellular | 564     | 90S       | 820.1     | 24.61         | 24.66         | 23.69              | 24.70              | 24.70                      | 24.69                      |
|          | 1013    | 22H       | 824.7     | 24.61         | 24.68         | 23.68              | 24.70              | 24.70                      | 24.68                      |
| Cellular | 384     | 22H       | 836.52    | 24.60         | 24.67         | 23.66              | 24.66              | 24.69                      | 24.70                      |
|          | 777     | 22H       | 848.31    | 24.54         | 24.60         | 23.63              | 24.59              | 24.60                      | 24.63                      |
|          | 25      | 24E       | 1851.25   | 24.27         | 24.36         | 23.35              | 24.31              | 24.30                      | 24.32                      |
| PCS      | 600     | 24E       | 1880      | 24.26         | 24.35         | 23.32              | 24.29              | 24.26                      | 24.27                      |
|          | 1175    | 24E       | 1908.75   | 24.48         | 24.56         | 23.50              | 24.49              | 24.55                      | 24.46                      |

Table 9-2
Reduced Conducted Power

| Band | Channel | Rule Part | Frequency | SO55<br>[dBm] | SO55<br>[dBm] | TDSO SO32<br>[dBm] | TDSO SO32<br>[dBm] | 1x EvDO<br>Rev. 0<br>[dBm] | 1x EvDO<br>Rev. A<br>[dBm] |
|------|---------|-----------|-----------|---------------|---------------|--------------------|--------------------|----------------------------|----------------------------|
|      | F-RC    |           | MHz       | RC1           | RC3           | FCH+SCH            | FCH                | (RTAP)                     | (RETAP)                    |
|      | 25      | 24E       | 1851.25   | 22.58         | 22.65         | 21.62              | 22.64              | 22.63                      | 22.66                      |
| PCS  | 600     | 24E       | 1880      | 22.58         | 22.64         | 21.61              | 22.65              | 22.60                      | 22.62                      |
|      | 1175    | 24E       | 1908.75   | 22.75         | 22.82         | 21.81              | 22.84              | 22.80                      | 22.83                      |

Note: RC1 is only applicable for IS-95 compatibility. For FCC Rule Part 90S, Per FCC KDB Publication 447498 D01v06 4.1.g), only one channel is required since the device operates within the transmission range of 817.90 – 823.10 MHz.



Figure 9-1
Power Measurement Setup

| FCC ID: ZNFL455DL      | PCTEST                  | SAR EVALUATION REPORT LG | Approved by: Quality Manager |
|------------------------|-------------------------|--------------------------|------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:                | D 00 -f 100                  |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset         | Page 28 of 129               |

© 2020 PCTEST Engineering Laboratory, Inc.

#### 9.2 **GSM Conducted Powers**

Table 9-3 Maximum Conducted Power

|          | Maximum Conducted Power  Maximum Burst-Averaged Output Power |                                |                            |                            |                            |                            |                            |                            |                            |                            |  |
|----------|--------------------------------------------------------------|--------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|--|
|          |                                                              | Voice                          |                            |                            | DGE Data<br>MSK)           |                            | EDGE Data<br>(8-PSK)       |                            |                            |                            |  |
| Band     | Channel                                                      | GSM<br>[dBm]<br>CS<br>(1 Slot) | GPRS<br>[dBm]<br>1 Tx Slot | GPRS<br>[dBm]<br>2 Tx Slot | GPRS<br>[dBm]<br>3 Tx Slot | GPRS<br>[dBm]<br>4 Tx Slot | EDGE<br>[dBm]<br>1 Tx Slot | EDGE<br>[dBm]<br>2 Tx Slot | EDGE<br>[dBm]<br>3 Tx Slot | EDGE<br>[dBm]<br>4 Tx Slot |  |
|          | 128                                                          | 33.50                          | 33.51                      | 32.20                      | 30.48                      | 29.45                      | 27.42                      | 26.31                      | 24.20                      | 23.15                      |  |
| GSM 850  | 190                                                          | 33.42                          | 33.43                      | 32.10                      | 30.36                      | 29.42                      | 27.34                      | 26.25                      | 24.09                      | 23.12                      |  |
|          | 251                                                          | 33.46                          | 33.46                      | 32.14                      | 30.40                      | 29.37                      | 27.30                      | 26.21                      | 24.25                      | 23.01                      |  |
|          | 512                                                          | 30.62                          | 30.62                      | 28.70                      | 26.50                      | 25.66                      | 26.40                      | 25.58                      | 24.24                      | 23.41                      |  |
| GSM 1900 | 661                                                          | 30.50                          | 30.50                      | 28.54                      | 26.34                      | 25.48                      | 26.25                      | 25.39                      | 24.01                      | 23.10                      |  |
|          | 810                                                          | 30.38                          | 30.39                      | 28.42                      | 26.26                      | 25.21                      | 26.49                      | 25.64                      | 24.25                      | 23.39                      |  |

|          |              | Calcula                        | ted Maxim                  | num Frame                  | e-Average                  | d Output                   | Power                      |                            |                            |                            |
|----------|--------------|--------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|
|          |              | Voice                          |                            |                            | DGE Data<br>NSK)           |                            | EDGE Data<br>(8-PSK)       |                            |                            |                            |
| Band     | Channel      | GSM<br>[dBm]<br>CS<br>(1 Slot) | GPRS<br>[dBm]<br>1 Tx Slot | GPRS<br>[dBm]<br>2 Tx Slot | GPRS<br>[dBm]<br>3 Tx Slot | GPRS<br>[dBm]<br>4 Tx Slot | EDGE<br>[dBm]<br>1 Tx Slot | EDGE<br>[dBm]<br>2 Tx Slot | EDGE<br>[dBm]<br>3 Tx Slot | EDGE<br>[dBm]<br>4 Tx Slot |
|          | 128          | 24.47                          | 24.48                      | 26.18                      | 26.22                      | 26.44                      | 18.39                      | 20.29                      | 19.94                      | 20.14                      |
| GSM 850  | 190          | 24.39                          | 24.40                      | 26.08                      | 26.10                      | 26.41                      | 18.31                      | 20.23                      | 19.83                      | 20.11                      |
|          | 251          | 24.43                          | 24.43                      | 26.12                      | 26.14                      | 26.36                      | 18.27                      | 20.19                      | 19.99                      | 20.00                      |
|          | 512          | 21.59                          | 21.59                      | 22.68                      | 22.24                      | 22.65                      | 17.37                      | 19.56                      | 19.98                      | 20.40                      |
| GSM 1900 | 661          | 21.47                          | 21.47                      | 22.52                      | 22.08                      | 22.47                      | 17.22                      | 19.37                      | 19.75                      | 20.09                      |
|          | 810          | 21.35                          | 21.36                      | 22.40                      | 22.00                      | 22.20                      | 17.46                      | 19.62                      | 19.99                      | 20.38                      |
|          |              |                                |                            |                            |                            |                            |                            |                            |                            |                            |
| GSM 850  | Frame        | 24.17                          | 24.17                      | 25.68                      | 25.94                      | 26.19                      | 18.17                      | 20.18                      | 19.94                      | 20.19                      |
| GSM 1900 | Avg.Targets: | 21.17                          | 21.17                      | 22.18                      | 21.94                      | 22.19                      | 17.17                      | 19.18                      | 19.94                      | 20.19                      |

| FCC ID: ZNFL455DL                     | PCTEST                  | SAR EVALUATION REPORT LG | Approved by: Quality Manager |
|---------------------------------------|-------------------------|--------------------------|------------------------------|
| Document S/N:                         | Test Dates:             | DUT Type:                | Dogg 20 of 120               |
| 1M1911290211-01-R2.ZNF                | 12/05/2019 - 01/16/2020 | Portable Handset         | Page 29 of 129               |
| 20 DOTECT Engineering Laboratory Inc. |                         |                          | DEV/ 24 4 M                  |

#### Note:

- 1. Both burst-averaged and calculated frame-averaged powers are included. Frame-averaged power was calculated from the measured burst-averaged power by converting the slot powers into linear units and calculating the energy over 8 timeslots.
- 2. GPRS/EDGE (GMSK) output powers were measured with coding scheme setting of 1 (CS1) on the base station simulator. CS1 was configured to measure GPRS output power measurements and SAR to ensure GMSK modulation in the signal. Our Investigation has shown that CS1 CS4 settings do not have any impact on the output levels or modulation in the GPRS modes.
- 3. EDGE (8-PSK) output powers were measured with MCS7 on the base station simulator. MCS7 coding scheme was used to measure the output powers for EDGE since investigation has shown that choosing MCS7 coding scheme will ensure 8-PSK modulation. It has been shown that MCS levels that produce 8-PSK modulation do not have an impact on output power.

**GSM Class:** B

GPRS Multislot class: 12 (Max 4 Tx uplink slots) EDGE Multislot class: 12 (Max 4 Tx uplink slots)

**DTM Multislot Class: N/A** 



Figure 9-2
Power Measurement Setup

| FCC ID: ZNFL455DL      | PCTEST*                 | SAR EVALUATION REPORT LG | Approved by: Quality Manager |
|------------------------|-------------------------|--------------------------|------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:                | Domo 20 of 120               |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset         | Page 30 of 129               |

#### 9.3 **UMTS Conducted Powers**

Table 9-4 **Maximum Conducted Power** 

| 3GPP<br>Release | Mode     | 3GPP 34.121<br>Subtest | Cellu | Cellular Band [dBm] |       | AWS Band [dBm] |       |       | PCS Band [dBm] |       |       | 3GPP MPR |
|-----------------|----------|------------------------|-------|---------------------|-------|----------------|-------|-------|----------------|-------|-------|----------|
| Version         |          | Subtest                | 4132  | 4183                | 4233  | 1312           | 1412  | 1513  | 9262           | 9400  | 9538  | [ub]     |
| 99              | WCDMA    | 12.2 kbps RMC          | 24.64 | 24.53               | 24.56 | 24.57          | 24.59 | 24.56 | 24.63          | 24.60 | 24.64 | -        |
| 99              | VVCDIVIA | 12.2 kbps AMR          | 24.61 | 24.56               | 24.50 | 24.46          | 24.49 | 24.48 | 24.57          | 24.52 | 24.54 | -        |
| 6               |          | Subtest 1              | 23.55 | 23.46               | 23.53 | 23.60          | 23.65 | 23.60 | 23.54          | 23.55 | 23.54 | 0        |
| 6               | HSDPA    | Subtest 2              | 23.51 | 23.41               | 23.49 | 23.51          | 23.47 | 23.53 | 23.49          | 23.49 | 23.51 | 0        |
| 6               | TIODEA   | Subtest 3              | 23.00 | 22.88               | 22.97 | 23.09          | 23.15 | 23.06 | 23.03          | 22.95 | 23.02 | 0.5      |
| 6               |          | Subtest 4              | 22.96 | 22.86               | 22.96 | 23.03          | 23.06 | 23.06 | 23.00          | 22.88 | 23.02 | 0.5      |
| 6               |          | Subtest 1              | 21.47 | 21.36               | 21.43 | 21.55          | 21.53 | 21.50 | 21.45          | 21.41 | 21.43 | 0        |
| 6               |          | Subtest 2              | 21.45 | 21.39               | 21.42 | 21.53          | 21.51 | 21.53 | 21.45          | 21.42 | 21.45 | 2        |
| 6               | HSUPA    | Subtest 3              | 22.44 | 22.36               | 22.42 | 22.50          | 22.57 | 22.57 | 22.43          | 22.42 | 22.45 | 1        |
| 6               |          | Subtest 4              | 20.88 | 20.86               | 20.94 | 21.02          | 21.03 | 21.01 | 20.97          | 20.94 | 20.97 | 2        |
| 6               |          | Subtest 5              | 22.41 | 22.36               | 22.39 | 22.48          | 22.49 | 22.50 | 22.45          | 22.39 | 22.45 | 0        |

Table 9-5 **Reduced Conducted Power** 

| 3GPP<br>Release | Mode    | 3GPP 34.121<br>Subtest | AWS Band [dBm] |       |       | PCS   | Band [dl | Bm]   | MPR [dB] |
|-----------------|---------|------------------------|----------------|-------|-------|-------|----------|-------|----------|
| Version         |         | Gubtest                | 1312           | 1412  | 1513  | 9262  | 9400     | 9538  |          |
| 99              | WCDMA   | 12.2 kbps RMC          | 22.01          | 22.03 | 22.00 | 22.66 | 22.64    | 22.62 | •        |
| 99              | WCDIVIA | 12.2 kbps AMR          | 22.04          | 22.00 | 22.03 | 22.66 | 22.61    | 22.59 | •        |
| 6               |         | Subtest 1              | 22.15          | 22.21 | 22.15 | 22.53 | 22.48    | 22.49 | 0        |
| 6               | HSDPA   | Subtest 2              | 22.12          | 22.14 | 22.13 | 22.43 | 22.41    | 22.44 | 0        |
| 6               | ПОДРА   | Subtest 3              | 21.59          | 21.63 | 21.59 | 21.90 | 21.94    | 21.89 | 0        |
| 6               |         | Subtest 4              | 21.65          | 21.61 | 21.58 | 21.90 | 21.92    | 21.91 | 0        |
| 6               |         | Subtest 1              | 20.38          | 20.31 | 20.39 | 20.42 | 20.41    | 20.46 | 0        |
| 6               |         | Subtest 2              | 20.38          | 20.39 | 20.37 | 20.43 | 20.38    | 20.43 | 0        |
| 6               | HSUPA   | Subtest 3              | 21.11          | 21.13 | 21.11 | 21.36 | 21.41    | 21.40 | 0        |
| 6               |         | Subtest 4              | 19.72          | 19.74 | 19.72 | 19.79 | 19.72    | 19.76 | 0        |
| 6               |         | Subtest 5              | 21.14          | 21.12 | 21.12 | 21.43 | 21.39    | 21.42 | 0        |

This device does not support DC-HSDPA.



Figure 9-3 **Power Measurement Setup** 

| FCC ID: ZNFL455DL      | PCTEST                  | SAR EVALUATION REPORT LG | Approved by: Quality Manager |
|------------------------|-------------------------|--------------------------|------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:                | Danie 24 of 420              |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset         | Page 31 of 129               |

### 9.4 LTE Conducted Powers

#### 9.4.1 LTE Band 71

Table 9-6
LTE Band 71 Conducted Powers - 20 MHz Bandwidth

|            |         |           | LTE Band 71 20 MHz Bandwidth | o mile Banawiani |          |
|------------|---------|-----------|------------------------------|------------------|----------|
|            |         |           | Mid Channel                  |                  |          |
| Modulation | RB Size | RB Offset | 133297<br>(680.5 MHz)        | MPR Allowed per  | MPR [dB] |
|            |         |           | Conducted Power              | 3GPP [dB]        |          |
|            |         |           | [dBm]                        |                  |          |
|            | 1       | 0         | 24.50                        |                  | 0        |
|            | 1       | 50        | 24.70                        | 0                | 0        |
|            | 1       | 99        | 24.59                        |                  | 0        |
| QPSK       | 50      | 0         | 23.52                        |                  | 1        |
|            | 50      | 25        | 23.62                        | 0-1              | 1        |
|            | 50      | 50        | 23.59                        | 0-1              | 1        |
|            | 100     | 0         | 23.55                        |                  | 1        |
|            | 1       | 0         | 23.70                        |                  | 1        |
|            | 1       | 50        | 23.67                        | 0-1              | 1        |
|            | 1       | 99        | 23.69                        |                  | 1        |
| 16QAM      | 50      | 0         | 22.53                        |                  | 2        |
|            | 50      | 25        | 22.63                        | 0-2              | 2        |
|            | 50      | 50        | 22.58                        | 0-2              | 2        |
|            | 100     | 0         | 22.55                        |                  | 2        |
|            | 1       | 0         | 22.63                        |                  | 2        |
|            | 1       | 50        | 22.70                        | 0-2              | 2        |
|            | 1       | 99        | 22.64                        |                  | 2        |
| 64QAM      | 50      | 0         | 21.47                        |                  | 3        |
|            | 50      | 25        | 21.48                        | 0-3              | 3        |
|            | 50      | 50        | 21.44                        | U-3              | 3        |
|            | 100     | 0         | 21.46                        |                  | 3        |

Note: LTE Band 71 at 20 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

| FCC ID: ZNFL455DL      | PCTEST*                 | SAR EVALUATION REPORT LG | Approved by: Quality Manager |
|------------------------|-------------------------|--------------------------|------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:                | Dage 22 of 120               |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset         | Page 32 of 129               |

© 2020 PCTEST Engineering Laboratory, Inc.

Table 9-7
LTE Band 71 Conducted Powers - 15 MHz Bandwidth

| LTE Band 71<br>15 MHz Bandwidth |         |           |                                                |                              |          |  |  |  |
|---------------------------------|---------|-----------|------------------------------------------------|------------------------------|----------|--|--|--|
| Modulation                      | RB Size | RB Offset | Mid Channel 133297 (680.5 MHz) Conducted Power | MPR Allowed per<br>3GPP [dB] | MPR [dB] |  |  |  |
|                                 |         |           | [dBm]                                          |                              |          |  |  |  |
|                                 | 1       | 0         | 24.46                                          |                              | 0        |  |  |  |
|                                 | 1       | 36        | 24.47                                          | 0                            | 0        |  |  |  |
|                                 | 1       | 74        | 24.41                                          |                              | 0        |  |  |  |
| QPSK                            | 36      | 0         | 23.53                                          |                              | 1        |  |  |  |
|                                 | 36      | 18        | 23.57                                          | 0-1                          | 1        |  |  |  |
|                                 | 36      | 37        | 23.53                                          | 0-1                          | 1        |  |  |  |
|                                 | 75      | 0         | 23.49                                          |                              | 1        |  |  |  |
|                                 | 1       | 0         | 23.68                                          |                              | 1        |  |  |  |
|                                 | 1       | 36        | 23.66                                          | 0-1                          | 1        |  |  |  |
|                                 | 1       | 74        | 23.61                                          |                              | 1        |  |  |  |
| 16QAM                           | 36      | 0         | 22.51                                          |                              | 2        |  |  |  |
|                                 | 36      | 18        | 22.52                                          | 0-2                          | 2        |  |  |  |
|                                 | 36      | 37        | 22.49                                          | 0-2                          | 2        |  |  |  |
|                                 | 75      | 0         | 22.49                                          |                              | 2        |  |  |  |
|                                 | 1       | 0         | 22.61                                          |                              | 2        |  |  |  |
|                                 | 1       | 36        | 22.60                                          | 0-2                          | 2        |  |  |  |
|                                 | 1       | 74        | 22.56                                          |                              | 2        |  |  |  |
| 64QAM                           | 36      | 0         | 21.52                                          |                              | 3        |  |  |  |
|                                 | 36      | 18        | 21.55                                          | 0-3                          | 3        |  |  |  |
|                                 |         |           |                                                | . (7)                        |          |  |  |  |

Note: LTE Band 71 at 15 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

21.50

21.47

0-3

| FCC ID: ZNFL455DL      | PCTEST*                 | SAR EVALUATION REPORT | Approved by:  Quality Manager |
|------------------------|-------------------------|-----------------------|-------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:             | D 00 -f 400                   |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset      | Page 33 of 129                |

36

75

37

0

3

3

Table 9-8 LTE Band 71 Conducted Powers - 10 MHz Bandwidth

|            |         |           |                       | LTE Band 71           |                       |                              |          |
|------------|---------|-----------|-----------------------|-----------------------|-----------------------|------------------------------|----------|
|            |         |           |                       | 10 MHz Bandwidth      |                       |                              |          |
|            |         |           | Low Channel           | Mid Channel           | High Channel          |                              |          |
| Modulation | RB Size | RB Offset | 133172<br>(668.0 MHz) | 133297<br>(680.5 MHz) | 133422<br>(693.0 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |
|            |         |           | (                     | Conducted Power [dBm  | ]                     |                              |          |
|            | 1       | 0         | 24.54                 | 24.49                 | 24.48                 |                              | 0        |
|            | 1       | 25        | 24.58                 | 24.53                 | 24.54                 | 0                            | 0        |
|            | 1       | 49        | 24.46                 | 24.42                 | 24.44                 |                              | 0        |
| QPSK       | 25      | 0         | 23.52                 | 23.53                 | 23.53                 | 0-1                          | 1        |
|            | 25      | 12        | 23.59                 | 23.54                 | 23.53                 |                              | 1        |
|            | 25      | 25        | 23.54                 | 23.55                 | 23.53                 |                              | 1        |
|            | 50      | 0         | 23.55                 | 23.53                 | 23.54                 |                              | 1        |
|            | 1       | 0         | 23.70                 | 23.70                 | 23.64                 | 0-1                          | 1        |
|            | 1       | 25        | 23.69                 | 23.68                 | 23.69                 |                              | 1        |
|            | 1       | 49        | 23.70                 | 23.58                 | 23.70                 |                              | 1        |
| 16QAM      | 25      | 0         | 22.51                 | 22.54                 | 22.56                 |                              | 2        |
|            | 25      | 12        | 22.57                 | 22.54                 | 22.55                 | 0-2                          | 2        |
|            | 25      | 25        | 22.53                 | 22.48                 | 22.58                 | 0 2                          | 2        |
|            | 50      | 0         | 22.53                 | 22.51                 | 22.56                 |                              | 2        |
|            | 1       | 0         | 22.66                 | 22.67                 | 22.67                 |                              | 2        |
|            | 1       | 25        | 22.68                 | 22.69                 | 22.68                 | 0-2                          | 2        |
|            | 1       | 49        | 22.67                 | 22.56                 | 22.63                 |                              | 2        |
| 64QAM      | 25      | 0         | 21.49                 | 21.53                 | 21.57                 |                              | 3        |
|            | 25      | 12        | 21.56                 | 21.55                 | 21.56                 | 0-3                          | 3        |
|            | 25      | 25        | 21.53                 | 21.46                 | 21.56                 | ] 0-3                        | 3        |
|            | 50      | 0         | 21.51                 | 21.51                 | 21.55                 | 1                            | 3        |

Table 9-9 LTE Band 71 Conducted Powers - 5 MHz Bandwidth

|            |         |           |                       | LTE Band 71           |                       |                              |          |
|------------|---------|-----------|-----------------------|-----------------------|-----------------------|------------------------------|----------|
|            |         |           |                       | 5 MHz Bandwidth       |                       |                              |          |
|            |         |           | Low Channel           | Mid Channel           | High Channel          |                              |          |
| Modulation | RB Size | RB Offset | 133147<br>(665.5 MHz) | 133297<br>(680.5 MHz) | 133447<br>(695.5 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |
|            |         |           | (                     | Conducted Power [dBm  | ]                     |                              |          |
|            | 1       | 0         | 24.55                 | 24.35                 | 24.58                 |                              | 0        |
|            | 1       | 12        | 24.65                 | 24.62                 | 24.64                 | 0                            | 0        |
|            | 1       | 24        | 24.66                 | 24.34                 | 24.67                 |                              | 0        |
| QPSK       | 12      | 0         | 23.61                 | 23.44                 | 23.64                 |                              | 1        |
|            | 12      | 6         | 23.66                 | 23.53                 | 23.58                 | 0-1                          | 1        |
|            | 12      | 13        | 23.68                 | 23.44                 | 23.56                 |                              | 1        |
|            | 25      | 0         | 23.67                 | 23.45                 | 23.68                 |                              | 1        |
|            | 1       | 0         | 23.69                 | 23.54                 | 23.66                 |                              | 1        |
|            | 1       | 12        | 23.70                 | 23.69                 | 23.67                 | 0-1                          | 1        |
|            | 1       | 24        | 23.60                 | 23.50                 | 23.55                 |                              | 1        |
| 16QAM      | 12      | 0         | 22.63                 | 22.43                 | 22.45                 |                              | 2        |
|            | 12      | 6         | 22.67                 | 22.53                 | 22.58                 | 0-2                          | 2        |
|            | 12      | 13        | 22.67                 | 22.42                 | 22.51                 | 0-2                          | 2        |
|            | 25      | 0         | 22.67                 | 22.44                 | 22.66                 |                              | 2        |
|            | 1       | 0         | 22.66                 | 22.57                 | 22.55                 |                              | 2        |
|            | 1       | 12        | 22.68                 | 22.66                 | 22.62                 | 0-2                          | 2        |
|            | 1       | 24        | 22.69                 | 22.48                 | 22.49                 |                              | 2        |
| 64QAM      | 12      | 0         | 21.68                 | 21.45                 | 21.58                 |                              | 3        |
|            | 12      | 6         | 21.68                 | 21.55                 | 21.68                 |                              | 3        |
|            | 12      | 13        | 21.63                 | 21.45                 | 21.69                 | 0-3                          | 3        |
|            | 25      | 0         | 21.67                 | 21.45                 | 21.70                 |                              | 3        |

| FCC ID: ZNFL455DL      | PCTEST*                 | SAR EVALUATION REPORT | Approved by: Quality Manager |
|------------------------|-------------------------|-----------------------|------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:             | Dogg 24 of 120               |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset      | Page 34 of 129               |

### 9.4.2 LTE Band 12

Table 9-10
LTE Band 12 Conducted Powers - 10 MHz Bandwidth

|            | LTE Band 12  LTE Band 12  10 MHz Bandwidth |           |                      |                              |          |  |  |
|------------|--------------------------------------------|-----------|----------------------|------------------------------|----------|--|--|
|            |                                            |           | Mid Channel          |                              |          |  |  |
| Modulation | RB Size                                    | RB Offset | 23095<br>(707.5 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |  |  |
|            |                                            |           | Conducted Power      | 00.1 [02]                    |          |  |  |
|            |                                            |           | [dBm]                |                              |          |  |  |
|            | 1                                          | 0         | 25.01                |                              | 0        |  |  |
|            | 1                                          | 25        | 25.17                | 0                            | 0        |  |  |
|            | 1                                          | 49        | 25.05                |                              | 0        |  |  |
| QPSK       | 25                                         | 0         | 24.15                |                              | 1        |  |  |
|            | 25                                         | 12        | 24.14                | 0-1                          | 1        |  |  |
|            | 25                                         | 25        | 24.14                | 0-1                          | 1        |  |  |
|            | 50                                         | 0         | 24.14                |                              | 1        |  |  |
|            | 1                                          | 0         | 24.16                |                              | 1        |  |  |
|            | 1                                          | 25        | 24.17                | 0-1                          | 1        |  |  |
|            | 1                                          | 49        | 24.13                |                              | 1        |  |  |
| 16QAM      | 25                                         | 0         | 23.06                |                              | 2        |  |  |
|            | 25                                         | 12        | 23.09                | 0-2                          | 2        |  |  |
|            | 25                                         | 25        | 23.05                | 0-2                          | 2        |  |  |
|            | 50                                         | 0         | 23.03                |                              | 2        |  |  |
|            | 1                                          | 0         | 22.69                |                              | 2        |  |  |
|            | 1                                          | 25        | 22.83                | 0-2                          | 2        |  |  |
|            | 1                                          | 49        | 22.72                |                              | 2        |  |  |
| 64QAM      | 25                                         | 0         | 22.20                |                              | 3        |  |  |
|            | 25                                         | 12        | 22.17                | 0.0                          | 3        |  |  |
|            | 25                                         | 25        | 22.09                | 0-3                          | 3        |  |  |
|            | 50                                         | 0         | 22.11                |                              | 3        |  |  |

Note: LTE Band 12 at 10 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

| FCC ID: ZNFL455DL      | PCTEST*                 | SAR EVALUATION REPORT LG | Approved by: Quality Manager |  |
|------------------------|-------------------------|--------------------------|------------------------------|--|
| Document S/N:          | Test Dates:             | DUT Type:                | Dogo 25 of 120               |  |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset         | Page 35 of 129               |  |

**Table 9-11** LTE Band 12 Conducted Powers - 5 MHz Bandwidth

| LTE Band 12 Conducted Powers - 5 Minz Bandwidth |         |           |                      |                                |                      |                              |          |  |
|-------------------------------------------------|---------|-----------|----------------------|--------------------------------|----------------------|------------------------------|----------|--|
|                                                 |         |           |                      | LTE Band 12<br>5 MHz Bandwidth |                      |                              |          |  |
|                                                 |         | I         | Low Channel          | Mid Channel                    | High Channel         |                              |          |  |
| Modulation                                      | RB Size | RB Offset | 23035<br>(701.5 MHz) | 23095<br>(707.5 MHz)           | 23155<br>(713.5 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |  |
|                                                 |         |           | ·                    | Conducted Power [dBm           | ]                    |                              |          |  |
|                                                 | 1       | 0         | 25.07                | 25.09                          | 25.04                |                              | 0        |  |
|                                                 | 1       | 12        | 25.16                | 25.19                          | 25.17                | 0                            | 0        |  |
|                                                 | 1       | 24        | 25.01                | 25.06                          | 24.97                |                              | 0        |  |
| QPSK                                            | 12      | 0         | 24.11                | 24.11                          | 24.12                | 0-1                          | 1        |  |
|                                                 | 12      | 6         | 24.16                | 24.17                          | 24.15                |                              | 1        |  |
|                                                 | 12      | 13        | 24.09                | 24.13                          | 24.01                |                              | 1        |  |
|                                                 | 25      | 0         | 24.12                | 24.13                          | 24.03                |                              | 1        |  |
|                                                 | 1       | 0         | 24.12                | 24.08                          | 24.19                | 0-1                          | 1        |  |
|                                                 | 1       | 12        | 24.17                | 24.10                          | 24.11                |                              | 1        |  |
|                                                 | 1       | 24        | 24.13                | 24.05                          | 24.08                |                              | 1        |  |
| 16QAM                                           | 12      | 0         | 23.04                | 23.07                          | 23.04                |                              | 2        |  |
|                                                 | 12      | 6         | 23.11                | 23.10                          | 23.15                | 0-2                          | 2        |  |
|                                                 | 12      | 13        | 23.09                | 23.10                          | 23.14                | 0-2                          | 2        |  |
|                                                 | 25      | 0         | 23.07                | 23.10                          | 23.03                |                              | 2        |  |
|                                                 | 1       | 0         | 23.04                | 23.15                          | 23.03                |                              | 2        |  |
|                                                 | 1       | 12        | 23.18                | 23.20                          | 23.16                | 0-2                          | 2        |  |
|                                                 | 1       | 24        | 23.09                | 23.17                          | 23.09                |                              | 2        |  |
| 64QAM                                           | 12      | 0         | 22.10                | 22.14                          | 22.02                |                              | 3        |  |
|                                                 | 12      | 6         | 22.16                | 22.18                          | 22.09                | 0-3                          | 3        |  |
|                                                 | 12      | 13        | 22.10                | 22.19                          | 22.00                | ] 0-3                        | 3        |  |
|                                                 | 25      | 0         | 22.07                | 22.15                          | 22.08                |                              | 3        |  |

**Table 9-12** LTE Band 12 Conducted Powers - 3 MHz Bandwidth

|            |                 |           |                      | LTE Band 12          | O IIII I Dallai      |                              |          |  |  |
|------------|-----------------|-----------|----------------------|----------------------|----------------------|------------------------------|----------|--|--|
|            | 3 MHz Bandwidth |           |                      |                      |                      |                              |          |  |  |
|            |                 |           | Low Channel          | Mid Channel          | High Channel         |                              |          |  |  |
| Modulation | RB Size         | RB Offset | 23025<br>(700.5 MHz) | 23095<br>(707.5 MHz) | 23165<br>(714.5 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |  |  |
|            |                 |           | (                    | Conducted Power [dBm | ]                    |                              |          |  |  |
|            | 1               | 0         | 25.11                | 25.09                | 25.05                |                              | 0        |  |  |
|            | 1               | 7         | 25.18                | 25.19                | 25.20                | 0                            | 0        |  |  |
|            | 1               | 14        | 25.07                | 25.08                | 24.98                |                              | 0        |  |  |
| QPSK       | 8               | 0         | 24.08                | 24.10                | 24.09                |                              | 1        |  |  |
|            | 8               | 4         | 24.13                | 24.14                | 24.09                | 0-1                          | 1        |  |  |
|            | 8               | 7         | 24.10                | 24.09                | 24.03                |                              | 1        |  |  |
|            | 15              | 0         | 24.06                | 24.06                | 24.05                |                              | 1        |  |  |
|            | 1               | 0         | 24.20                | 24.19                | 24.17                | 0-1                          | 1        |  |  |
|            | 1               | 7         | 24.20                | 24.19                | 24.16                |                              | 1        |  |  |
|            | 1               | 14        | 24.19                | 24.20                | 24.20                |                              | 1        |  |  |
| 16QAM      | 8               | 0         | 23.17                | 23.19                | 23.18                |                              | 2        |  |  |
|            | 8               | 4         | 23.19                | 23.16                | 23.18                | 0-2                          | 2        |  |  |
|            | 8               | 7         | 23.15                | 23.18                | 23.13                | 0-2                          | 2        |  |  |
|            | 15              | 0         | 23.08                | 23.11                | 23.11                |                              | 2        |  |  |
|            | 1               | 0         | 22.99                | 22.97                | 22.92                |                              | 2        |  |  |
|            | 1               | 7         | 23.14                | 23.15                | 23.09                | 0-2                          | 2        |  |  |
|            | 1               | 14        | 22.98                | 22.97                | 23.02                |                              | 2        |  |  |
| 64QAM      | 8               | 0         | 22.12                | 22.15                | 22.11                |                              | 3        |  |  |
|            | 8               | 4         | 22.16                | 22.17                | 22.15                | 0-3                          | 3        |  |  |
|            | 8               | 7         | 22.10                | 22.13                | 22.09                | 0-3                          | 3        |  |  |
|            | 15              | 0         | 22.04                | 22.07                | 22.04                |                              | 3        |  |  |

| FCC ID: ZNFL455DL                      | PCTEST*                 | SAR EVALUATION REPORT | LG | Approved by: Quality Manager |
|----------------------------------------|-------------------------|-----------------------|----|------------------------------|
| Document S/N:                          | Test Dates:             | DUT Type:             |    | Dogg 20 of 120               |
| 1M1911290211-01-R2.ZNF                 | 12/05/2019 - 01/16/2020 | Portable Handset      |    | Page 36 of 129               |
| 20 PCTEST Engineering Laboratory, Inc. |                         |                       |    | REV 21.4 M                   |

### **Table 9-13** LTE Band 12 Conducted Powers -1.4 MHz Bandwidth

|            |         | <u> </u>  | L Band 12 Con        | LTE Band 12          | 1.4 WILL Dallay      | VIGUI                        |          |
|------------|---------|-----------|----------------------|----------------------|----------------------|------------------------------|----------|
|            |         |           |                      | 1.4 MHz Bandwidth    |                      |                              |          |
|            |         |           | Low Channel          | Mid Channel          | High Channel         |                              |          |
| Modulation | RB Size | RB Offset | 23017<br>(699.7 MHz) | 23095<br>(707.5 MHz) | 23173<br>(715.3 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |
|            |         |           |                      | Conducted Power [dBm | ]                    |                              |          |
|            | 1       | 0         | 25.09                | 25.15                | 24.91                |                              | 0        |
|            | 1       | 2         | 25.19                | 25.16                | 25.05                |                              | 0        |
|            | 1       | 5         | 25.10                | 25.13                | 24.89                | 0                            | 0        |
| QPSK       | 3       | 0         | 25.08                | 25.10                | 25.06                | U                            | 0        |
|            | 3       | 2         | 25.13                | 25.13                | 25.14                |                              | 0        |
|            | 3       | 3         | 25.11                | 25.08                | 25.11                |                              | 0        |
|            | 6       | 0         | 24.18                | 24.14                | 24.06                | 0-1                          | 1        |
|            | 1       | 0         | 24.12                | 24.16                | 24.15                |                              | 1        |
|            | 1       | 2         | 24.18                | 24.16                | 24.17                |                              | 1        |
|            | 1       | 5         | 24.14                | 24.09                | 24.09                | 0-1                          | 1        |
| 16QAM      | 3       | 0         | 24.11                | 24.20                | 24.04                |                              | 1        |
|            | 3       | 2         | 24.17                | 24.19                | 24.02                |                              | 1        |
|            | 3       | 3         | 24.12                | 24.12                | 24.02                |                              | 1        |
|            | 6       | 0         | 23.08                | 23.11                | 23.04                | 0-2                          | 2        |
|            | 1       | 0         | 22.89                | 23.18                | 23.06                |                              | 2        |
|            | 1       | 2         | 23.03                | 23.19                | 23.16                |                              | 2        |
|            | 1       | 5         | 22.88                | 23.15                | 23.14                | 0-2                          | 2        |
| 64QAM      | 3       | 0         | 23.03                | 23.18                | 23.05                |                              | 2        |
|            | 3       | 2         | 23.08                | 23.18                | 23.09                | ]                            | 2        |
|            | 3       | 3         | 23.06                | 23.16                | 23.09                |                              | 2        |
|            | 6       | 0         | 22.17                | 22.04                | 22.10                | 0-3                          | 3        |

| FCC ID: ZNFL455DL      | PCTEST*                 | SAR EVALUATION REPORT | Approved by:  Quality Manager |
|------------------------|-------------------------|-----------------------|-------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:             | Dogo 27 of 120                |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset      | Page 37 of 129                |

### LTE Band 13 9.4.3

**Table 9-14** LTE Band 13 Conducted Powers - 10 MHz Bandwidth

|            | LTE Band 13<br>10 MHz Bandwidth |           |                      |                              |          |  |  |  |  |
|------------|---------------------------------|-----------|----------------------|------------------------------|----------|--|--|--|--|
|            |                                 |           | Mid Channel          |                              |          |  |  |  |  |
| Modulation | RB Size                         | RB Offset | 23230<br>(782.0 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |  |  |  |  |
|            |                                 |           | Conducted Power      | 3011 [db]                    |          |  |  |  |  |
|            |                                 |           | [dBm]                |                              |          |  |  |  |  |
|            | 1                               | 0         | 24.00                |                              | 0        |  |  |  |  |
|            | 1                               | 25        | 24.20                | 0                            | 0        |  |  |  |  |
|            | 1                               | 49        | 24.01                |                              | 0        |  |  |  |  |
| QPSK       | 25                              | 0         | 23.08                |                              | 1        |  |  |  |  |
|            | 25                              | 12        | 23.17                | 0-1                          | 1        |  |  |  |  |
|            | 25                              | 25        | 23.20                | 0-1                          | 1        |  |  |  |  |
|            | 50                              | 0         | 23.19                |                              | 1        |  |  |  |  |
|            | 1                               | 0         | 23.16                |                              | 1        |  |  |  |  |
|            | 1                               | 25        | 23.20                | 0-1                          | 1        |  |  |  |  |
|            | 1                               | 49        | 23.18                |                              | 1        |  |  |  |  |
| 16QAM      | 25                              | 0         | 22.04                |                              | 2        |  |  |  |  |
|            | 25                              | 12        | 22.15                | 0-2                          | 2        |  |  |  |  |
|            | 25                              | 25        | 22.20                | 0-2                          | 2        |  |  |  |  |
|            | 50                              | 0         | 22.06                |                              | 2        |  |  |  |  |
|            | 1                               | 0         | 22.20                |                              | 2        |  |  |  |  |
|            | 1                               | 25        | 22.19                | 0-2                          | 2        |  |  |  |  |
|            | 1                               | 49        | 22.17                |                              | 2        |  |  |  |  |
| 64QAM      | 25                              | 0         | 21.18                |                              | 3        |  |  |  |  |
|            | 25                              | 12        | 21.10                | 0-3                          | 3        |  |  |  |  |
|            | 25                              | 25        | 21.04                | 0-3                          | 3        |  |  |  |  |
|            | 50                              | 0         | 21.12                |                              | 3        |  |  |  |  |

| FCC ID: ZNFL455DL      | PCTEST*                 | SAR EVALUATION REPORT LG | Approved by: Quality Manager |
|------------------------|-------------------------|--------------------------|------------------------------|
| Document S/N:          | Test Dates:             | s: DUT Type:             |                              |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset         | Page 38 of 129               |

**Table 9-15** LTE Band 13 Conducted Powers - 5 MHz Bandwidth

|            | LTE Band 13 5 MHz Bandwidth |                 |                                     |                              |          |  |  |  |  |
|------------|-----------------------------|-----------------|-------------------------------------|------------------------------|----------|--|--|--|--|
| Modulation | RB Size                     | PR Offset 23230 | Mid Channel<br>23230<br>(782.0 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |  |  |  |  |
|            |                             |                 | Conducted Power [dBm]               |                              |          |  |  |  |  |
|            | 1                           | 0               | 23.77                               |                              | 0        |  |  |  |  |
|            | 1                           | 12              | 24.00                               | 0                            | 0        |  |  |  |  |
|            | 1                           | 24              | 23.73                               |                              | 0        |  |  |  |  |
| QPSK       | 12                          | 0               | 22.99                               |                              | 1        |  |  |  |  |
|            | 12                          | 6               | 22.96                               | 0-1                          | 1        |  |  |  |  |
|            | 12                          | 13              | 23.00                               | 0-1                          | 1        |  |  |  |  |
|            | 25                          | 0               | 22.97                               |                              | 1        |  |  |  |  |
|            | 1                           | 0               | 23.01                               |                              | 1        |  |  |  |  |
|            | 1                           | 12              | 23.09                               | 0-1                          | 1        |  |  |  |  |
|            | 1                           | 24              | 23.02                               |                              | 1        |  |  |  |  |
| 16QAM      | 12                          | 0               | 21.91                               |                              | 2        |  |  |  |  |
|            | 12                          | 6               | 21.95                               | 0-2                          | 2        |  |  |  |  |
|            | 12                          | 13              | 21.96                               | 0-2                          | 2        |  |  |  |  |
|            | 25                          | 0               | 21.99                               |                              | 2        |  |  |  |  |
|            | 1                           | 0               | 21.89                               |                              | 2        |  |  |  |  |
|            | 1                           | 12              | 22.13                               | 0-2                          | 2        |  |  |  |  |
|            | 1                           | 24              | 21.91                               |                              | 2        |  |  |  |  |
| 64QAM      | 12                          | 0               | 21.00                               |                              | 3        |  |  |  |  |
|            | 12                          | 6               | 21.02                               | 0-3                          | 3        |  |  |  |  |
|            | 12                          | 13              | 21.06                               | 0-3                          | 3        |  |  |  |  |
|            | 25                          | 0               | 21.10                               |                              | 3        |  |  |  |  |

Note: LTE Band 13 at 5 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

| FCC ID: ZNFL455DL        | PCTEST'                 | SAR EVALUATION REPORT LG | Approved by:  Quality Manager |
|--------------------------|-------------------------|--------------------------|-------------------------------|
| Document S/N:            | Test Dates:             | DUT Type:                | Dogg 20 of 120                |
| 1M1911290211-01-R2.ZNF 1 | 12/05/2019 – 01/16/2020 | Portable Handset         | Page 39 of 129                |

## 9.4.4 LTE Band 26 (Cell)

Table 9-16 LTE Band 26 (Cell) Conducted Powers - 15 MHz Bandwidth

| LTE Band 26 (Cell) Conducted Powers - 15 MHz Bandwidth  LTE Band 26 (Cell) |         |           |                                     |                              |          |  |  |
|----------------------------------------------------------------------------|---------|-----------|-------------------------------------|------------------------------|----------|--|--|
|                                                                            |         | ı         | 15 MHz Bandwidth                    |                              |          |  |  |
| Modulation                                                                 | RB Size | RB Offset | Mid Channel<br>26865<br>(831.5 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |  |  |
|                                                                            |         |           | Conducted Power                     | 3011 [0]                     |          |  |  |
|                                                                            |         |           | [dBm]                               |                              |          |  |  |
|                                                                            | 1       | 0         | 25.15                               |                              | 0        |  |  |
|                                                                            | 1       | 36        | 25.18                               | 0                            | 0        |  |  |
|                                                                            | 1       | 74        | 24.97                               |                              | 0        |  |  |
| QPSK                                                                       | 36      | 0         | 24.20                               |                              | 1        |  |  |
|                                                                            | 36      | 18        | 24.12                               | 0-1                          | 1        |  |  |
|                                                                            | 36      | 37        | 24.16                               | 0-1                          | 1        |  |  |
|                                                                            | 75      | 0         | 24.14                               |                              | 1        |  |  |
|                                                                            | 1       | 0         | 24.14                               |                              | 1        |  |  |
|                                                                            | 1       | 36        | 24.17                               | 0-1                          | 1        |  |  |
|                                                                            | 1       | 74        | 24.11                               |                              | 1        |  |  |
| 16QAM                                                                      | 36      | 0         | 23.19                               |                              | 2        |  |  |
|                                                                            | 36      | 18        | 23.15                               | 0-2                          | 2        |  |  |
|                                                                            | 36      | 37        | 23.13                               | 0-2                          | 2        |  |  |
|                                                                            | 75      | 0         | 23.14                               |                              | 2        |  |  |
|                                                                            | 1       | 0         | 22.98                               |                              | 2        |  |  |
|                                                                            | 1       | 36        | 23.00                               | 0-2                          | 2        |  |  |
|                                                                            | 1       | 74        | 23.04                               | ]                            | 2        |  |  |
| 64QAM                                                                      | 36      | 0         | 21.96                               |                              | 3        |  |  |
|                                                                            | 36      | 18        | 21.96                               | 0.0                          | 3        |  |  |
|                                                                            | 36      | 37        | 21.95                               | 0-3                          | 3        |  |  |
|                                                                            | 75      | 0         | 21.93                               |                              | 3        |  |  |

Note: LTE Band 26 (Cell) at 15 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

| FCC ID: ZNFL455DL      | PCTEST:                 | SAR EVALUATION REPORT LG | Approved by: Quality Manager |
|------------------------|-------------------------|--------------------------|------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:                | Dags 40 of 120               |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset         | Page 40 of 129               |

© 2020 PCTEST Engineering Laboratory, Inc.

09/11/2019

**Table 9-17** LTE Band 26 (Cell) Conducted Powers - 10 MHz Bandwidth

|            |         |           | Jana 20 (Och) O                     | LTE Band 26 (Cell)                  | TO TO MITTE BU                       | - I G W I G C I              |          |
|------------|---------|-----------|-------------------------------------|-------------------------------------|--------------------------------------|------------------------------|----------|
|            |         |           |                                     | 10 MHz Bandwidth                    |                                      |                              |          |
| Modulation | RB Size | RB Offset | Low Channel<br>26740<br>(819.0 MHz) | Mid Channel<br>26865<br>(831.5 MHz) | High Channel<br>26990<br>(844.0 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |
|            |         |           | ·                                   | Conducted Power [dBm                | ]                                    |                              |          |
|            | 1       | 0         | 24.81                               | 24.91                               | 24.77                                |                              | 0        |
|            | 1       | 25        | 25.01                               | 25.01                               | 24.96                                | 0                            | 0        |
|            | 1       | 49        | 24.85                               | 24.77                               | 24.83                                |                              | 0        |
| QPSK       | 25      | 0         | 23.85                               | 23.95                               | 23.90                                |                              | 1        |
|            | 25      | 12        | 23.89                               | 23.92                               | 23.88                                | 0-1                          | 1        |
|            | 25      | 25        | 23.96                               | 23.92                               | 23.79                                | 0-1                          | 1        |
|            | 50      | 0         | 23.89                               | 23.92                               | 23.84                                |                              | 1        |
|            | 1       | 0         | 24.13                               | 24.19                               | 23.89                                |                              | 1        |
|            | 1       | 25        | 24.18                               | 24.17                               | 24.07                                | 0-1                          | 1        |
|            | 1       | 49        | 24.16                               | 24.13                               | 23.90                                |                              | 1        |
| 16QAM      | 25      | 0         | 22.91                               | 22.99                               | 22.97                                |                              | 2        |
|            | 25      | 12        | 22.94                               | 22.97                               | 22.95                                | 0-2                          | 2        |
|            | 25      | 25        | 23.00                               | 22.96                               | 22.89                                | 0-2                          | 2        |
|            | 50      | 0         | 22.87                               | 22.91                               | 22.91                                |                              | 2        |
|            | 1       | 0         | 22.69                               | 22.95                               | 22.72                                |                              | 2        |
|            | 1       | 25        | 22.92                               | 23.13                               | 22.88                                | 0-2                          | 2        |
|            | 1       | 49        | 22.83                               | 22.94                               | 22.74                                |                              | 2        |
| 64QAM      | 25      | 0         | 21.88                               | 22.01                               | 22.04                                |                              | 3        |
|            | 25      | 12        | 21.92                               | 21.97                               | 22.02                                |                              | 3        |
|            | 25      | 25        | 21.97                               | 21.95                               | 22.01                                | 0-3                          | 3        |
|            | 50      | 0         | 21.94                               | 21.93                               | 21.96                                |                              | 3        |

**Table 9-18** LTE Band 26 (Cell) Conducted Powers - 5 MHz Bandwidth

|            |         |           |                      | LTE Band 26 (Cell)<br>5 MHz Bandwidth |                      |                              |          |
|------------|---------|-----------|----------------------|---------------------------------------|----------------------|------------------------------|----------|
|            |         |           | Low Channel          | Mid Channel                           | High Channel         |                              |          |
| Modulation | RB Size | RB Offset | 26715<br>(816.5 MHz) | 26865<br>(831.5 MHz)                  | 27015<br>(846.5 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |
|            |         |           |                      | Conducted Power [dBn                  | 1]                   |                              |          |
|            | 1       | 0         | 24.66                | 24.82                                 | 24.71                |                              | 0        |
|            | 1       | 12        | 24.94                | 25.05                                 | 25.01                | 0                            | 0        |
|            | 1       | 24        | 24.71                | 24.77                                 | 24.76                |                              | 0        |
| QPSK       | 12      | 0         | 23.79                | 23.87                                 | 23.86                | 0-1                          | 1        |
|            | 12      | 6         | 23.91                | 23.92                                 | 23.88                |                              | 1        |
|            | 12      | 13        | 23.84                | 23.87                                 | 23.75                |                              | 1        |
|            | 25      | 0         | 23.84                | 23.85                                 | 23.85                |                              | 1        |
|            | 1       | 0         | 23.92                | 24.03                                 | 23.75                |                              | 1        |
|            | 1       | 12        | 24.20                | 24.19                                 | 24.01                | 0-1                          | 1        |
|            | 1       | 24        | 23.95                | 24.03                                 | 23.77                |                              | 1        |
| 16QAM      | 12      | 0         | 22.79                | 23.02                                 | 22.87                |                              | 2        |
|            | 12      | 6         | 22.87                | 23.06                                 | 22.90                | 0-2                          | 2        |
|            | 12      | 13        | 22.82                | 22.95                                 | 22.78                | 0-2                          | 2        |
|            | 25      | 0         | 22.85                | 22.84                                 | 22.89                |                              | 2        |
|            | 1       | 0         | 22.80                | 22.87                                 | 22.93                |                              | 2        |
|            | 1       | 12        | 23.07                | 23.11                                 | 23.19                | 0-2                          | 2        |
|            | 1       | 24        | 22.87                | 22.86                                 | 22.92                |                              | 2        |
| 64QAM      | 12      | 0         | 21.82                | 21.78                                 | 21.97                |                              | 3        |
|            | 12      | 6         | 21.95                | 21.82                                 | 21.98                | ] <u> </u>                   | 3        |
|            | 12      | 13        | 21.90                | 21.75                                 | 21.91                | 0-3                          | 3        |
|            | 25      | 0         | 21.84                | 21.86                                 | 21.92                | ]                            | 3        |

| FCC ID: ZNFL455DL      | PCTEST*                 | SAR EVALUATION REPORT | Approved by: Quality Manager |
|------------------------|-------------------------|-----------------------|------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:             | D 44 -f 400                  |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset      | Page 41 of 129               |

**Table 9-19** LTE Band 26 (Cell) Conducted Powers - 3 MHz Bandwidth

|            |         |           | <u> </u>                                                 | LTE Band 26 (Cell)   | <u> </u>                     |           |   |
|------------|---------|-----------|----------------------------------------------------------|----------------------|------------------------------|-----------|---|
|            |         | 1         |                                                          | 3 MHz Bandwidth      |                              | 1         |   |
|            |         |           | Low Channel                                              | Mid Channel          | Mid Channel High Channel     |           |   |
| Modulation | RB Size | RB Offset | 26705 26865 27025<br>(815.5 MHz) (831.5 MHz) (847.5 MHz) | 27025<br>(847.5 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB]  |   |
|            |         |           |                                                          | Conducted Power [dBm |                              | John [db] |   |
|            | 1       | 0         | 24.79                                                    | 24.73                | 24.81                        |           | 0 |
|            | 1       | 7         | 24.91                                                    | 24.97                | 24.97                        | 0         | 0 |
|            | 1       | 14        | 24.84                                                    | 24.70                | 24.86                        |           | 0 |
| QPSK       | 8       | 0         | 23.82                                                    | 23.87                | 23.86                        | 0-1       | 1 |
|            | 8       | 4         | 23.91                                                    | 23.90                | 23.82                        |           | 1 |
|            | 8       | 7         | 23.86                                                    | 23.83                | 23.81                        |           | 1 |
|            | 15      | 0         | 23.83                                                    | 23.86                | 23.83                        |           | 1 |
|            | 1       | 0         | 24.05                                                    | 24.00                | 23.94                        | 0-1       | 1 |
|            | 1       | 7         | 24.20                                                    | 24.19                | 24.07                        |           | 1 |
|            | 1       | 14        | 24.16                                                    | 23.94                | 23.87                        |           | 1 |
| 16QAM      | 8       | 0         | 22.91                                                    | 22.83                | 22.93                        |           | 2 |
|            | 8       | 4         | 22.98                                                    | 22.88                | 22.96                        | 0-2       | 2 |
|            | 8       | 7         | 22.92                                                    | 22.85                | 22.87                        | 0-2       | 2 |
|            | 15      | 0         | 22.85                                                    | 22.84                | 22.80                        |           | 2 |
|            | 1       | 0         | 22.69                                                    | 22.88                | 22.67                        |           | 2 |
|            | 1       | 7         | 22.88                                                    | 23.07                | 22.89                        | 0-2       | 2 |
|            | 1       | 14        | 22.77                                                    | 22.78                | 22.77                        |           | 2 |
| 64QAM      | 8       | 0         | 21.86                                                    | 21.86                | 21.94                        |           | 3 |
|            | 8       | 4         | 21.90                                                    | 21.90                | 21.95                        | 0-3       | 3 |
|            | 8       | 7         | 21.84                                                    | 21.88                | 21.90                        | 0-3       | 3 |
|            | 15      | 0         | 21.79                                                    | 21.84                | 21.96                        |           | 3 |

**Table 9-20** LTE Band 26 (Cell) Conducted Powers -1.4 MHz Bandwidth

|            |         |           |                                     | LTE Band 26 (Cell)<br>1.4 MHz Bandwidth |                                      |                              |          |
|------------|---------|-----------|-------------------------------------|-----------------------------------------|--------------------------------------|------------------------------|----------|
| Modulation | RB Size | RB Offset | Low Channel<br>26697<br>(814.7 MHz) | Mid Channel<br>26865<br>(831.5 MHz)     | High Channel<br>27033<br>(848.3 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |
|            |         |           |                                     | Conducted Power [dBn                    | n]                                   |                              |          |
|            | 1       | 0         | 24.89                               | 24.80                                   | 24.77                                |                              | 0        |
|            | 1       | 2         | 24.94                               | 24.90                                   | 24.88                                | ]                            | 0        |
|            | 1       | 5         | 24.89                               | 24.75                                   | 24.78                                | 0                            | 0        |
| QPSK       | 3       | 0         | 24.80                               | 24.84                                   | 24.83                                |                              | 0        |
|            | 3       | 2         | 24.83                               | 24.88                                   | 24.86                                |                              | 0        |
|            | 3       | 3         | 24.82                               | 24.86                                   | 24.84                                |                              | 0        |
|            | 6       | 0         | 23.89                               | 23.95                                   | 23.87                                | 0-1                          | 1        |
|            | 1       | 0         | 24.00                               | 24.11                                   | 23.86                                |                              | 1        |
|            | 1       | 2         | 24.08                               | 24.20                                   | 23.96                                |                              | 1        |
|            | 1       | 5         | 24.04                               | 24.12                                   | 23.84                                | 0-1                          | 1        |
| 16QAM      | 3       | 0         | 23.93                               | 23.84                                   | 23.97                                | ] ""                         | 1        |
|            | 3       | 2         | 23.95                               | 23.86                                   | 23.94                                |                              | 1        |
|            | 3       | 3         | 23.94                               | 23.82                                   | 23.91                                |                              | 1        |
|            | 6       | 0         | 22.95                               | 22.89                                   | 22.84                                | 0-2                          | 2        |
|            | 1       | 0         | 23.00                               | 22.87                                   | 22.67                                |                              | 2        |
|            | 1       | 2         | 23.16                               | 22.97                                   | 22.81                                | 1                            | 2        |
|            | 1       | 5         | 23.12                               | 22.91                                   | 22.68                                | 0-2                          | 2        |
| 64QAM      | 3       | 0         | 22.93                               | 22.85                                   | 22.90                                | U-2                          | 2        |
|            | 3       | 2         | 22.93                               | 22.89                                   | 22.90                                | ]                            | 2        |
|            | 3       | 3         | 22.93                               | 22.84                                   | 22.93                                | <u> </u>                     | 2        |
|            | 6       | 0         | 21.73                               | 21.90                                   | 21.90                                | 0-3                          | 3        |

| FCC ID: ZNFL455DL      | PCTEST*                 | SAR EVALUATION REPORT | Approved by: Quality Manager |
|------------------------|-------------------------|-----------------------|------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:             | Dana 40 at 400               |
| 1M1911290211-01-R2.ZNF | 12/05/2019 – 01/16/2020 | Portable Handset      | Page 42 of 129               |

# 9.4.5 LTE Band 66 (AWS)

Table 9-21
LTE Band 66 (AWS) Maximum Conducted Powers - 20 MHz Bandwidth

|            |         |            | , , , , , , , , , , , , , , , , , , , , | LTE Band 66 (AWS)    |              |                 |           |
|------------|---------|------------|-----------------------------------------|----------------------|--------------|-----------------|-----------|
|            |         |            |                                         | 20 MHz Bandwidth     |              |                 |           |
|            |         |            | Low Channel                             | Mid Channel          | High Channel |                 |           |
| Modulation | RB Size | RB Offset  | 132072                                  | 132322               | 132572       | MPR Allowed per | MPR [dB]  |
| Wodulation | ND Size | IND Offset | (1720.0 MHz)                            | (1745.0 MHz)         | (1770.0 MHz) | 3GPP [dB]       | WIFK [UD] |
|            |         |            | <b>O</b>                                | Conducted Power [dBm | ]            |                 |           |
|            | 1       | 0          | 24.10                                   | 24.22                | 24.14        |                 | 0         |
|            | 1       | 50         | 24.37                                   | 24.50                | 24.44        | 0               | 0         |
|            | 1       | 99         | 24.08                                   | 24.28                | 24.15        |                 | 0         |
| QPSK       | 50      | 0          | 23.41                                   | 23.43                | 23.45        |                 | 1         |
|            | 50      | 25         | 23.44                                   | 23.50                | 23.42        | 0-1             | 1         |
|            | 50      | 50         | 23.40                                   | 23.49                | 23.48        |                 | 1         |
|            | 100     | 0          | 23.43                                   | 23.47                | 23.41        |                 | 1         |
|            | 1       | 0          | 23.51                                   | 23.55                | 23.47        | 0-1             | 1         |
|            | 1       | 50         | 23.68                                   | 23.70                | 23.69        |                 | 1         |
|            | 1       | 99         | 23.53                                   | 23.60                | 23.47        |                 | 1         |
| 16QAM      | 50      | 0          | 22.41                                   | 22.45                | 22.53        |                 | 2         |
|            | 50      | 25         | 22.48                                   | 22.44                | 22.55        | 0-2             | 2         |
|            | 50      | 50         | 22.43                                   | 22.48                | 22.47        | 02              | 2         |
|            | 100     | 0          | 22.47                                   | 22.52                | 22.52        |                 | 2         |
|            | 1       | 0          | 22.65                                   | 22.67                | 22.46        |                 | 2         |
|            | 1       | 50         | 22.69                                   | 22.69                | 22.70        | 0-2             | 2         |
|            | 1       | 99         | 22.66                                   | 22.70                | 22.44        |                 | 2         |
| 64QAM      | 50      | 0          | 21.41                                   | 21.43                | 21.59        | 0-3             | 3         |
|            | 50      | 25         | 21.44                                   | 21.41                | 21.54        |                 | 3         |
|            | 50      | 50         | 21.42                                   | 21.50                | 21.49        |                 | 3         |
|            | 100     | 0          | 21.45                                   | 21.46                | 21.52        |                 | 3         |

Table 9-22 LTE Band 66 (AWS) Maximum Conducted Powers - 15 MHz Bandwidth

|            |         | i L Dana oc | (AVVO) Waxiiii         | LTE Band 66 (AWS)      | OWEIS - IS WII         | iz Danawiatii                |          |
|------------|---------|-------------|------------------------|------------------------|------------------------|------------------------------|----------|
|            |         |             |                        | 15 MHz Bandwidth       |                        |                              |          |
|            |         |             | Low Channel            | Mid Channel            | High Channel           |                              |          |
| Modulation | RB Size | RB Offset   | 132047<br>(1717.5 MHz) | 132322<br>(1745.0 MHz) | 132597<br>(1772.5 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |
|            |         |             |                        | Conducted Power [dBm   |                        |                              |          |
|            | 1       | 0           | 24.26                  | 24.21                  | 24.14                  |                              | 0        |
|            | 1       | 36          | 24.32                  | 24.30                  | 24.27                  | 0                            | 0        |
|            | 1       | 74          | 24.25                  | 24.19                  | 24.25                  |                              | 0        |
| QPSK       | 36      | 0           | 23.43                  | 23.43                  | 23.38                  |                              | 1        |
|            | 36      | 18          | 23.41                  | 23.43                  | 23.41                  | 0-1                          | 1        |
|            | 36      | 37          | 23.48                  | 23.48                  | 23.42                  |                              | 1        |
|            | 75      | 0           | 23.45                  | 23.46                  | 23.42                  |                              | 1        |
|            | 1       | 0           | 23.65                  | 23.69                  | 23.43                  | 0-1                          | 1        |
|            | 1       | 36          | 23.66                  | 23.68                  | 23.50                  |                              | 1        |
|            | 1       | 74          | 23.67                  | 23.70                  | 23.45                  |                              | 1        |
| 16QAM      | 36      | 0           | 22.37                  | 22.40                  | 22.35                  |                              | 2        |
|            | 36      | 18          | 22.36                  | 22.38                  | 22.38                  | 0-2                          | 2        |
|            | 36      | 37          | 22.41                  | 22.45                  | 22.37                  | 0-2                          | 2        |
|            | 75      | 0           | 22.48                  | 22.47                  | 22.40                  |                              | 2        |
|            | 1       | 0           | 22.25                  | 22.22                  | 22.22                  |                              | 2        |
|            | 1       | 36          | 22.39                  | 22.36                  | 22.33                  | 0-2                          | 2        |
|            | 1       | 74          | 22.25                  | 22.21                  | 22.28                  |                              | 2        |
| 64QAM      | 36      | 0           | 21.41                  | 21.36                  | 21.48                  |                              | 3        |
|            | 36      | 18          | 21.41                  | 21.39                  | 21.45                  | 0-3                          | 3        |
|            | 36      | 37          | 21.42                  | 21.45                  | 21.50                  | ]                            | 3        |
|            | 75      | 0           | 21.45                  | 21.40                  | 21.40                  |                              | 3        |

| FCC ID: ZNFL455DL      | PCTEST*                 | SAR EVALUATION REPORT | LG | Approved by:  Quality Manager |
|------------------------|-------------------------|-----------------------|----|-------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:             |    | D 40 -f 400                   |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset      |    | Page 43 of 129                |

© 2020 PCTEST Engineering Laboratory, Inc.

REV 21.4 M 09/11/2019

**Table 9-23** LTE Band 66 (AWS) Maximum Conducted Powers - 10 MHz Bandwidth

|            |         | L Bana oc | ////////////////////////////////////// | LTE Band 66 (AWS)      | 011010 10 1111         | iz Banawatii                 |          |
|------------|---------|-----------|----------------------------------------|------------------------|------------------------|------------------------------|----------|
|            |         |           |                                        | 10 MHz Bandwidth       |                        |                              |          |
|            |         |           | Low Channel                            | Mid Channel            | High Channel           |                              |          |
| Modulation | RB Size | RB Offset | 132022<br>(1715.0 MHz)                 | 132322<br>(1745.0 MHz) | 132622<br>(1775.0 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |
|            |         |           | (                                      | Conducted Power [dBm   | ]                      |                              |          |
|            | 1       | 0         | 24.24                                  | 24.22                  | 24.23                  |                              | 0        |
|            | 1       | 25        | 24.44                                  | 24.40                  | 24.38                  | 0                            | 0        |
|            | 1       | 49        | 24.20                                  | 24.25                  | 24.25                  |                              | 0        |
| QPSK       | 25      | 0         | 23.38                                  | 23.36                  | 23.35                  |                              | 1        |
|            | 25      | 12        | 23.40                                  | 23.41                  | 23.42                  | 0-1                          | 1        |
|            | 25      | 25        | 23.42                                  | 23.51                  | 23.33                  |                              | 1        |
|            | 50      | 0         | 23.40                                  | 23.45                  | 23.39                  |                              | 1        |
|            | 1       | 0         | 23.60                                  | 23.68                  | 23.61                  | 0-1                          | 1        |
|            | 1       | 25        | 23.68                                  | 23.67                  | 23.69                  |                              | 1        |
|            | 1       | 49        | 23.64                                  | 23.63                  | 23.67                  |                              | 1        |
| 16QAM      | 25      | 0         | 22.46                                  | 22.42                  | 22.52                  |                              | 2        |
|            | 25      | 12        | 22.50                                  | 22.48                  | 22.51                  | 0-2                          | 2        |
|            | 25      | 25        | 22.57                                  | 22.57                  | 22.52                  | 0-2                          | 2        |
|            | 50      | 0         | 22.46                                  | 22.45                  | 22.43                  |                              | 2        |
|            | 1       | 0         | 22.48                                  | 22.33                  | 22.36                  |                              | 2        |
|            | 1       | 25        | 22.63                                  | 22.48                  | 22.48                  | 0-2                          | 2        |
|            | 1       | 49        | 22.45                                  | 22.26                  | 22.30                  |                              | 2        |
| 64QAM      | 25      | 0         | 21.49                                  | 21.38                  | 21.42                  | 0-3                          | 3        |
|            | 25      | 12        | 21.53                                  | 21.43                  | 21.46                  |                              | 3        |
|            | 25      | 25        | 21.58                                  | 21.47                  | 21.43                  |                              | 3        |
|            | 50      | 0         | 21.48                                  | 21.45                  | 21.41                  |                              | 3        |

**Table 9-24** LTE Band 66 (AWS) Maximum Conducted Powers - 5 MHz Bandwidth

|            |         |           | · ,                    | LTE Band 66 (AWS)<br>5 MHz Bandwidth |                        |                              |          |
|------------|---------|-----------|------------------------|--------------------------------------|------------------------|------------------------------|----------|
|            |         |           | Low Channel            | Mid Channel                          | High Channel           |                              |          |
| Modulation | RB Size | RB Offset | 131997<br>(1712.5 MHz) | 132322<br>(1745.0 MHz)               | 132647<br>(1777.5 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |
|            |         |           | (                      | Conducted Power [dBm                 | ]                      |                              |          |
|            | 1       | 0         | 24.18                  | 23.91                                | 23.99                  |                              | 0        |
|            | 1       | 12        | 24.41                  | 24.19                                | 24.28                  | 0                            | 0        |
|            | 1       | 24        | 24.12                  | 23.90                                | 24.04                  |                              | 0        |
| QPSK       | 12      | 0         | 23.22                  | 23.16                                | 23.21                  |                              | 1        |
|            | 12      | 6         | 23.27                  | 23.23                                | 23.26                  | 0-1                          | 1        |
|            | 12      | 13        | 23.20                  | 23.17                                | 23.17                  |                              | 1        |
|            | 25      | 0         | 23.20                  | 23.22                                | 23.16                  |                              | 1        |
|            | 1       | 0         | 23.39                  | 23.30                                | 23.17                  | 0-1                          | 1        |
|            | 1       | 12        | 23.60                  | 23.59                                | 23.40                  |                              | 11       |
|            | 1       | 24        | 23.37                  | 23.27                                | 23.15                  |                              | 1        |
| 16QAM      | 12      | 0         | 22.38                  | 22.14                                | 22.23                  |                              | 2        |
|            | 12      | 6         | 22.44                  | 22.23                                | 22.29                  | 0-2                          | 2        |
|            | 12      | 13        | 22.42                  | 22.22                                | 22.17                  |                              | 2        |
|            | 25      | 0         | 22.22                  | 22.23                                | 22.22                  |                              | 2        |
|            | 1       | 0         | 22.27                  | 22.19                                | 22.34                  |                              | 2        |
|            | 1       | 12        | 22.50                  | 22.46                                | 22.57                  | 0-2                          | 2        |
|            | 1       | 24        | 22.19                  | 22.17                                | 22.30                  |                              | 2        |
| 64QAM      | 12      | 0         | 21.25                  | 21.21                                | 21.29                  |                              | 3        |
|            | 12      | 6         | 21.29                  | 21.26                                | 21.32                  | 0-3                          | 3        |
|            | 12      | 13        | 21.24                  | 21.24                                | 21.25                  |                              | 3        |
|            | 25      | 0         | 21.30                  | 21.19                                | 21.27                  |                              | 3        |

| FCC ID: ZNFL455DL      | PCTEST*                 | SAR EVALUATION REPORT | Approved by: Quality Manager |
|------------------------|-------------------------|-----------------------|------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:             | Dage 44 of 420               |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset      | Page 44 of 129               |

**Table 9-25** LTE Band 66 (AWS) Maximum Conducted Powers - 3 MHz Bandwidth

|            |         |           | · (ziii · ) iii aziiii | LTE Band 66 (AWS)      |                        |                              |          |
|------------|---------|-----------|------------------------|------------------------|------------------------|------------------------------|----------|
|            |         |           |                        | 3 MHz Bandwidth        |                        |                              |          |
|            |         |           | Low Channel            | Mid Channel            | High Channel           |                              |          |
| Modulation | RB Size | RB Offset | 131987<br>(1711.5 MHz) | 132322<br>(1745.0 MHz) | 132657<br>(1778.5 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |
|            |         |           |                        | Conducted Power [dBm   | ]                      |                              |          |
|            | 1       | 0         | 24.22                  | 24.12                  | 24.07                  |                              | 0        |
|            | 1       | 7         | 24.33                  | 24.22                  | 24.24                  | 0                            | 0        |
|            | 1       | 14        | 24.22                  | 24.08                  | 24.10                  |                              | 0        |
| QPSK       | 8       | 0         | 23.30                  | 23.13                  | 23.22                  |                              | 1        |
|            | 8       | 4         | 23.30                  | 23.21                  | 23.22                  | 0-1                          | 1        |
|            | 8       | 7         | 23.23                  | 23.16                  | 23.16                  |                              | 1        |
|            | 15      | 0         | 23.24                  | 23.16                  | 23.24                  |                              | 1        |
|            | 1       | 0         | 23.34                  | 23.67                  | 23.58                  |                              | 1        |
|            | 1       | 7         | 23.49                  | 23.68                  | 23.65                  | 0-1                          | 1        |
|            | 1       | 14        | 23.29                  | 23.66                  | 23.47                  |                              | 1        |
| 16QAM      | 8       | 0         | 22.29                  | 22.29                  | 22.33                  |                              | 2        |
|            | 8       | 4         | 22.33                  | 22.34                  | 22.35                  | 0-2                          | 2        |
|            | 8       | 7         | 22.26                  | 22.35                  | 22.29                  | 0-2                          | 2        |
|            | 15      | 0         | 22.17                  | 22.27                  | 22.33                  |                              | 2        |
|            | 1       | 0         | 22.10                  | 22.20                  | 22.40                  |                              | 2        |
|            | 1       | 7         | 22.28                  | 22.31                  | 22.52                  | 0-2                          | 2        |
|            | 1       | 14        | 22.12                  | 22.19                  | 22.32                  |                              | 2        |
| 64QAM      | 8       | 0         | 21.30                  | 21.24                  | 21.23                  | 0-3                          | 3        |
|            | 8       | 4         | 21.36                  | 21.30                  | 21.26                  |                              | 3        |
|            | 8       | 7         | 21.31                  | 21.21                  | 21.19                  |                              | 3        |
|            | 15      | 0         | 21.38                  | 21.16                  | 21.25                  |                              | 3        |

**Table 9-26** LTE Band 66 (AWS) Maximum Conducted Powers -1.4 MHz Bandwidth

|            |         |           |                       | LTE Band 66 (AWS) 1.4 MHz Bandwidth |                        |                              |          |
|------------|---------|-----------|-----------------------|-------------------------------------|------------------------|------------------------------|----------|
| Modulation | RB Size | RB Offset | Low Channel<br>131979 | Mid Channel<br>132322               | High Channel<br>132665 | MPR Allowed per<br>3GPP [dB] | MPR [dB] |
|            |         |           | (1710.7 MHz)          | (1745.0 MHz) Conducted Power [dBm   | (1779.3 MHz)           | 3611 [05]                    |          |
|            | 1       | 0         | 24.08                 | 24.06                               | 23.98                  |                              | 0        |
|            | 1       | 2         | 24.18                 | 24.17                               | 24.08                  | 1                            | 0        |
|            | 1       | 5         | 24.09                 | 24.08                               | 23.98                  |                              | 0        |
| QPSK       | 3       | 0         | 24.18                 | 24.11                               | 24.17                  | 0                            | 0        |
|            | 3       | 2         | 24.23                 | 24.16                               | 24.23                  |                              | 0        |
|            | 3       | 3         | 24.19                 | 24.13                               | 24.21                  |                              | 0        |
|            | 6       | 0         | 23.25                 | 23.15                               | 23.15                  | 0-1                          | 1        |
|            | 1       | 0         | 23.25                 | 23.39                               | 23.45                  |                              | 1        |
|            | 1       | 2         | 23.32                 | 23.46                               | 23.51                  | 0-1                          | 1        |
|            | 1       | 5         | 23.25                 | 23.39                               | 23.46                  |                              | 1        |
| 16QAM      | 3       | 0         | 23.29                 | 23.34                               | 23.21                  | ] ""                         | 1        |
|            | 3       | 2         | 23.35                 | 23.34                               | 23.21                  |                              | 1        |
|            | 3       | 3         | 23.34                 | 23.33                               | 23.16                  |                              | 1        |
|            | 6       | 0         | 22.17                 | 22.29                               | 22.21                  | 0-2                          | 2        |
|            | 1       | 0         | 22.04                 | 22.55                               | 22.26                  |                              | 2        |
|            | 1       | 2         | 22.15                 | 22.64                               | 22.31                  | 1                            | 2        |
|            | 1       | 5         | 22.03                 | 22.60                               | 22.28                  | 0-2                          | 2        |
| 64QAM      | 3       | 0         | 22.24                 | 22.32                               | 22.25                  | ] 0-2                        | 2        |
|            | 3       | 2         | 22.27                 | 22.28                               | 22.24                  | 1                            | 2        |
|            | 3       | 3         | 22.25                 | 22.29                               | 22.23                  | 1                            | 2        |
|            | 6       | 0         | 21.28                 | 21.07                               | 21.19                  | 0-3                          | 3        |

| FCC ID: ZNFL455DL      | PCTEST*                 | SAR EVALUATION REPORT | Approved by: Quality Manager |
|------------------------|-------------------------|-----------------------|------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:             | Dage 45 of 120               |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset      | Page 45 of 129               |

**Table 9-27** LTE Band 66 (AWS) Reduced Conducted Powers - 20 MHz Bandwidth

|            | <del>_</del> | TE Bana o | o (Allo) Reduc         | LTE Band 66 (AWS)      | OWCIS - ZO MIT         | z Banawiatn                  |          |
|------------|--------------|-----------|------------------------|------------------------|------------------------|------------------------------|----------|
|            |              |           |                        | 20 MHz Bandwidth       |                        |                              |          |
|            |              |           | Low Channel            | Mid Channel            | High Channel           |                              |          |
| Modulation | RB Size      | RB Offset | 132072<br>(1720.0 MHz) | 132322<br>(1745.0 MHz) | 132572<br>(1770.0 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |
|            |              |           | <b>O</b>               | Conducted Power [dBm   | ]                      |                              |          |
|            | 1            | 0         | 21.97                  | 21.75                  | 21.85                  |                              | 0        |
|            | 1            | 50        | 22.06                  | 22.17                  | 22.12                  | 0                            | 0        |
|            | 1            | 99        | 21.87                  | 22.05                  | 21.90                  |                              | 0        |
| QPSK       | 50           | 0         | 22.01                  | 22.02                  | 22.09                  |                              | 0        |
|            | 50           | 25        | 22.06                  | 22.06                  | 22.10                  | 0-1                          | 0        |
|            | 50           | 50        | 22.01                  | 22.07                  | 22.00                  |                              | 0        |
|            | 100          | 0         | 22.03                  | 22.00                  | 22.05                  |                              | 0        |
|            | 1            | 0         | 22.37                  | 21.60                  | 22.34                  | 0-1                          | 0        |
|            | 1            | 50        | 22.43                  | 21.95                  | 22.45                  |                              | 0        |
|            | 1            | 99        | 22.40                  | 21.59                  | 22.00                  |                              | 0        |
| 16QAM      | 50           | 0         | 22.00                  | 22.03                  | 22.15                  |                              | 0        |
|            | 50           | 25        | 22.06                  | 22.04                  | 22.13                  | 0-2                          | 0        |
|            | 50           | 50        | 22.02                  | 22.04                  | 22.03                  | V 2                          | 0        |
|            | 100          | 0         | 22.08                  | 22.07                  | 22.13                  |                              | 0        |
|            | 1            | 0         | 22.07                  | 22.48                  | 22.10                  | _                            | 0        |
|            | 1            | 50        | 22.43                  | 22.50                  | 22.11                  | 0-2                          | 0        |
|            | 1            | 99        | 22.07                  | 22.47                  | 22.06                  |                              | 0        |
| 64QAM      | 50           | 0         | 21.35                  | 21.27                  | 21.40                  | 0-3                          | 0.8      |
|            | 50           | 25        | 21.38                  | 21.29                  | 21.40                  |                              | 0.8      |
|            | 50           | 50        | 21.34                  | 21.34                  | 21.37                  |                              | 0.8      |
|            | 100          | 0         | 21.36                  | 21.27                  | 21.39                  |                              | 0.8      |

**Table 9-28** LTE Band 66 (AWS) Reduced Conducted Powers - 15 MHz Bandwidth

|            |         |           | o (71110) Hodao        | LTE Band 66 (AWS)      | 011010 10 11111        |                              |          |
|------------|---------|-----------|------------------------|------------------------|------------------------|------------------------------|----------|
|            |         |           |                        | 15 MHz Bandwidth       |                        |                              |          |
|            |         |           | Low Channel            | Mid Channel            | High Channel           |                              |          |
| Modulation | RB Size | RB Offset | 132047<br>(1717.5 MHz) | 132322<br>(1745.0 MHz) | 132597<br>(1772.5 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |
|            |         |           | (                      | Conducted Power [dBm   | ]                      |                              |          |
|            | 1       | 0         | 22.09                  | 22.04                  | 21.99                  |                              | 0        |
|            | 1       | 36        | 22.20                  | 22.12                  | 22.06                  | 0                            | 0        |
|            | 1       | 74        | 22.07                  | 21.99                  | 21.98                  |                              | 0        |
| QPSK       | 36      | 0         | 22.13                  | 22.06                  | 22.08                  |                              | 0        |
|            | 36      | 18        | 22.07                  | 22.06                  | 22.09                  | 0-1                          | 0        |
|            | 36      | 37        | 22.12                  | 22.09                  | 22.10                  |                              | 0        |
|            | 75      | 0         | 22.10                  | 22.09                  | 22.08                  |                              | 0        |
|            | 1       | 0         | 22.27                  | 22.24                  | 22.29                  | 0-1                          | 0        |
|            | 1       | 36        | 22.31                  | 22.28                  | 22.31                  |                              | 0        |
|            | 1       | 74        | 22.20                  | 22.15                  | 22.26                  |                              | 0        |
| 16QAM      | 36      | 0         | 22.11                  | 22.08                  | 22.09                  |                              | 0        |
|            | 36      | 18        | 22.10                  | 22.10                  | 22.12                  | 0-2                          | 0        |
|            | 36      | 37        | 22.13                  | 22.10                  | 22.07                  | 0-2                          | 0        |
|            | 75      | 0         | 22.08                  | 22.09                  | 22.08                  |                              | 0        |
|            | 1       | 0         | 22.48                  | 22.48                  | 22.32                  |                              | 0        |
|            | 1       | 36        | 22.50                  | 22.49                  | 22.41                  | 0-2                          | 0        |
|            | 1       | 74        | 22.43                  | 22.49                  | 22.23                  |                              | 0        |
| 64QAM      | 36      | 0         | 21.39                  | 21.32                  | 21.32                  | 0-3                          | 0.8      |
|            | 36      | 18        | 21.36                  | 21.36                  | 21.36                  |                              | 0.8      |
|            | 36      | 37        | 21.41                  | 21.36                  | 21.32                  |                              | 0.8      |
|            | 75      | 0         | 21.39                  | 21.33                  | 21.31                  |                              | 0.8      |

| FCC ID: ZNFL455DL      | PCTEST*                 | SAR EVALUATION REPORT LG | Approved by: Quality Manager |
|------------------------|-------------------------|--------------------------|------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:                | Dage 46 of 120               |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset         | Page 46 of 129               |

**Table 9-29** LTE Band 66 (AWS) Reduced Conducted Powers - 10 MHz Bandwidth

|            |         |           | <u> </u>               | LTE Band 66 (AWS)      |                        |                              |          |
|------------|---------|-----------|------------------------|------------------------|------------------------|------------------------------|----------|
|            |         |           |                        | 10 MHz Bandwidth       |                        |                              |          |
|            |         |           | Low Channel            | Mid Channel            | High Channel           |                              |          |
| Modulation | RB Size | RB Offset | 132022<br>(1715.0 MHz) | 132322<br>(1745.0 MHz) | 132622<br>(1775.0 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |
|            |         |           | O                      | Conducted Power [dBm   | ]                      |                              |          |
|            | 1       | 0         | 21.99                  | 21.98                  | 21.97                  |                              | 0        |
|            | 1       | 25        | 22.18                  | 22.17                  | 22.16                  | 0                            | 0        |
|            | 1       | 49        | 21.97                  | 21.96                  | 21.96                  |                              | 0        |
| QPSK       | 25      | 0         | 22.10                  | 22.01                  | 22.05                  |                              | 0        |
|            | 25      | 12        | 22.08                  | 22.02                  | 22.13                  | - 0-1<br>-                   | 0        |
|            | 25      | 25        | 22.07                  | 22.05                  | 22.03                  |                              | 0        |
|            | 50      | 0         | 22.07                  | 22.01                  | 22.05                  |                              | 0        |
|            | 1       | 0         | 22.44                  | 22.26                  | 22.22                  | 0-1                          | 0        |
|            | 1       | 25        | 22.43                  | 22.29                  | 22.40                  |                              | 0        |
|            | 1       | 49        | 22.28                  | 22.18                  | 22.28                  |                              | 0        |
| 16QAM      | 25      | 0         | 22.12                  | 22.08                  | 22.16                  |                              | 0        |
|            | 25      | 12        | 22.13                  | 22.08                  | 22.18                  | 0-2                          | 0        |
|            | 25      | 25        | 22.10                  | 22.09                  | 22.08                  | 0-2                          | 0        |
|            | 50      | 0         | 22.12                  | 22.10                  | 22.09                  |                              | 0        |
|            | 1       | 0         | 22.20                  | 22.22                  | 22.31                  |                              | 0        |
|            | 1       | 25        | 22.41                  | 22.39                  | 22.49                  | 0-2                          | 0        |
|            | 1       | 49        | 22.29                  | 22.15                  | 22.25                  |                              | 0        |
| 64QAM      | 25      | 0         | 21.38                  | 21.27                  | 21.37                  | 0-3                          | 0.8      |
|            | 25      | 12        | 21.34                  | 21.27                  | 21.38                  |                              | 0.8      |
|            | 25      | 25        | 21.34                  | 21.31                  | 21.32                  |                              | 0.8      |
|            | 50      | 0         | 21.31                  | 21.23                  | 21.25                  |                              | 0.8      |

**Table 9-30** LTE Band 66 (AWS) Reduced Conducted Powers - 5 MHz Bandwidth

|            |         |           |                        | LTE Band 66 (AWS)              |                        |                              |          |
|------------|---------|-----------|------------------------|--------------------------------|------------------------|------------------------------|----------|
|            |         | I         | Low Channel            | 5 MHz Bandwidth<br>Mid Channel | High Channel           |                              |          |
| Modulation | RB Size | RB Offset | 131997<br>(1712.5 MHz) | 132322<br>(1745.0 MHz)         | 132647<br>(1777.5 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |
|            |         |           | (                      | Conducted Power [dBm           | ]                      |                              |          |
|            | 1       | 0         | 21.86                  | 21.84                          | 21.91                  |                              | 0        |
|            | 1       | 12        | 21.92                  | 21.92                          | 21.99                  | 0                            | 0        |
|            | 1       | 24        | 21.84                  | 21.84                          | 21.90                  |                              | 0        |
| QPSK       | 12      | 0         | 22.04                  | 22.00                          | 22.09                  |                              | 0        |
|            | 12      | 6         | 22.06                  | 22.03                          | 22.11                  | 0-1                          | 0        |
|            | 12      | 13        | 22.06                  | 22.02                          | 22.03                  |                              | 0        |
|            | 25      | 0         | 22.04                  | 21.99                          | 22.07                  |                              | 0        |
|            | 1       | 0         | 22.50                  | 22.21                          | 22.47                  | 0-1                          | 0        |
|            | 1       | 12        | 22.50                  | 22.46                          | 22.50                  |                              | 0        |
|            | 1       | 24        | 22.48                  | 22.17                          | 22.48                  |                              | 0        |
| 16QAM      | 12      | 0         | 22.12                  | 22.03                          | 22.19                  |                              | 0        |
|            | 12      | 6         | 22.13                  | 22.07                          | 22.19                  | 0-2                          | 0        |
|            | 12      | 13        | 22.10                  | 22.04                          | 22.09                  | 0-2                          | 0        |
|            | 25      | 0         | 22.04                  | 22.03                          | 22.06                  |                              | 0        |
|            | 1       | 0         | 22.18                  | 22.43                          | 22.24                  |                              | 0        |
|            | 1       | 12        | 22.47                  | 22.50                          | 22.47                  | 0-2                          | 0        |
|            | 1       | 24        | 22.17                  | 22.43                          | 22.21                  |                              | 0        |
| 64QAM      | 12      | 0         | 21.29                  | 21.28                          | 21.31                  |                              | 0.8      |
|            | 12      | 6         | 21.30                  | 21.35                          | 21.33                  | 0-3                          | 0.8      |
|            | 12      | 13        | 21.27                  | 21.31                          | 21.25                  | 0-3                          | 0.8      |
|            | 25      | 0         | 21.37                  | 21.28                          | 21.37                  |                              | 0.8      |

| FCC ID: ZNFL455DL      | PCTEST*                 | SAR EVALUATION REPORT | Approved by: Quality Manager |
|------------------------|-------------------------|-----------------------|------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:             | Dage 47 of 120               |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset      | Page 47 of 129               |

**Table 9-31** LTE Band 66 (AWS) Reduced Conducted Powers - 3 MHz Bandwidth

|            |         |           | o (Zilio) ilouui       | LTE Band 66 (AWS)      |                        |                              |          |
|------------|---------|-----------|------------------------|------------------------|------------------------|------------------------------|----------|
|            |         |           |                        | 3 MHz Bandwidth        |                        |                              |          |
|            |         |           | Low Channel            | Mid Channel            | High Channel           |                              |          |
| Modulation | RB Size | RB Offset | 131987<br>(1711.5 MHz) | 132322<br>(1745.0 MHz) | 132657<br>(1778.5 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |
|            |         |           |                        | Conducted Power [dBm   | ]                      |                              |          |
|            | 1       | 0         | 22.05                  | 22.00                  | 21.92                  |                              | 0        |
|            | 1       | 7         | 22.23                  | 22.08                  | 22.23                  | 0                            | 0        |
|            | 1       | 14        | 22.02                  | 22.02                  | 21.91                  |                              | 0        |
| QPSK       | 8       | 0         | 22.05                  | 22.07                  | 22.01                  |                              | 0        |
|            | 8       | 4         | 22.02                  | 21.94                  | 22.02                  | 0-1                          | 0        |
|            | 8       | 7         | 22.04                  | 21.99                  | 21.99                  |                              | 0        |
|            | 15      | 0         | 22.01                  | 21.97                  | 22.01                  |                              | 0        |
|            | 1       | 0         | 22.49                  | 22.28                  | 22.49                  |                              | 0        |
|            | 1       | 7         | 22.46                  | 22.40                  | 22.47                  | 0-1                          | 0        |
|            | 1       | 14        | 22.41                  | 22.22                  | 22.48                  |                              | 0        |
| 16QAM      | 8       | 0         | 22.23                  | 22.20                  | 22.05                  |                              | 0        |
|            | 8       | 4         | 22.19                  | 22.15                  | 22.04                  | 0-2                          | 0        |
|            | 8       | 7         | 22.19                  | 22.15                  | 22.07                  | 0-2                          | 0        |
|            | 15      | 0         | 22.05                  | 21.97                  | 22.13                  |                              | 0        |
|            | 1       | 0         | 22.24                  | 22.26                  | 22.28                  |                              | 0        |
|            | 1       | 7         | 22.36                  | 22.43                  | 22.46                  | 0-2                          | 0        |
|            | 1       | 14        | 22.21                  | 22.21                  | 22.28                  |                              | 0        |
| 64QAM      | 8       | 0         | 21.32                  | 21.27                  | 21.19                  | 0-3                          | 0.8      |
|            | 8       | 4         | 21.27                  | 21.22                  | 21.20                  |                              | 0.8      |
|            | 8       | 7         | 21.32                  | 21.23                  | 21.15                  |                              | 0.8      |
|            | 15      | 0         | 21.28                  | 21.16                  | 21.21                  |                              | 0.8      |

**Table 9-32** LTE Band 66 (AWS) Reduced Conducted Powers -1.4 MHz Bandwidth

|            |         |           | , ,               | LTE Band 66 (AWS)             |                        |                              |                                               |
|------------|---------|-----------|-------------------|-------------------------------|------------------------|------------------------------|-----------------------------------------------|
|            |         |           | Low Channel       | 1.4 MHz Bandwidth Mid Channel | High Channel           |                              |                                               |
| Modulation | RB Size | RB Offset | K ()ttset         | 132322<br>(1745.0 MHz)        | 132665<br>(1779.3 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB]  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
|            |         |           |                   | Conducted Power [dBm          | ]                      |                              |                                               |
|            | 1       | 0         | 22.05             | 21.97                         | 21.95                  |                              | 0                                             |
|            | 1       | 2         | 22.17             | 21.97                         | 22.02                  |                              | 0                                             |
|            | 1       | 5         | 22.04             | 21.96                         | 21.87                  | 0                            | 0                                             |
| QPSK       | 3       | 0         | 22.08             | 21.97                         | 22.02                  | U                            | 0                                             |
|            | 3       | 2         | 22.08             | 21.96                         | 22.04                  |                              | 0                                             |
|            | 3       | 3         | 22.06 21.98 22.08 |                               | 0                      |                              |                                               |
|            | 6       | 0         | 22.06             | 21.96                         | 22.09                  | 0-1                          | 0                                             |
|            | 1       | 0         | 22.45             | 22.36                         | 22.48                  | 0-1                          | 0                                             |
|            | 1       | 2         | 22.48             | 22.36                         | 22.50                  |                              | 0                                             |
|            | 1       | 5         | 22.40             | 22.36                         | 22.44                  |                              | 0                                             |
| 16QAM      | 3       | 0         | 22.11             | 22.36                         | 22.23                  |                              | 0                                             |
|            | 3       | 2         | 22.13             | 22.37                         | 22.20                  |                              | 0                                             |
|            | 3       | 3         | 22.16             | 22.36                         | 22.23                  |                              | 0                                             |
|            | 6       | 0         | 22.18             | 22.36                         | 22.01                  | 0-2                          | 0                                             |
|            | 1       | 0         | 22.49             | 22.49                         | 22.30                  |                              | 0                                             |
|            | 1       | 2         | 22.50             | 22.50                         | 22.48                  |                              | 0                                             |
|            | 1       | 5         | 22.48             | 22.49                         | 22.23                  | 0-2                          | 0                                             |
| 64QAM      | 3       | 0         | 21.97             | 21.81                         | 21.99                  | ] 0-2                        | 0                                             |
|            | 3       | 2         | 22.19             | 21.82                         | 22.02                  | 1                            | 0                                             |
|            | 3       | 3         | 22.03             | 21.90                         | 22.11                  | 1                            | 0                                             |
|            | 6       | 0         | 21.26             | 21.27                         | 21.37                  | 0-3                          | 0.8                                           |

| FCC ID: ZNFL455DL      | PCTEST*                 | SAR EVALUATION REPORT LG | Approved by: Quality Manager |
|------------------------|-------------------------|--------------------------|------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:                | Dage 49 of 420               |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset         | Page 48 of 129               |

# 9.4.6 LTE Band 25 (PCS)

Table 9-33 LTE Band 25 (PCS) Maximum Conducted Powers - 20 MHz Bandwidth

|            | <del></del> | TE Bana 2 | Lo (i Go) maxim                      | LTE Band 25 (PCS)                    | 1 011010 20 1111                      | E Banawiath                  |          |
|------------|-------------|-----------|--------------------------------------|--------------------------------------|---------------------------------------|------------------------------|----------|
|            |             |           |                                      | 20 MHz Bandwidth                     |                                       |                              |          |
| Modulation | RB Size     | RB Offset | Low Channel<br>26140<br>(1860.0 MHz) | Mid Channel<br>26365<br>(1882.5 MHz) | High Channel<br>26590<br>(1905.0 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |
|            |             |           |                                      | Conducted Power [dBm                 | ]                                     |                              |          |
|            | 1           | 0         | 24.00                                | 24.27                                | 24.22                                 |                              | 0        |
|            | 1           | 50        | 24.26                                | 24.51                                | 24.52                                 | 0                            | 0        |
|            | 1           | 99        | 24.08                                | 24.27                                | 24.35                                 |                              | 0        |
| QPSK       | 50          | 0         | 23.32                                | 23.41                                | 23.56                                 | _<br>0-1                     | 1        |
|            | 50          | 25        | 23.33                                | 23.44                                | 23.46                                 |                              | 1        |
|            | 50          | 50        | 23.33                                | 23.36                                | 23.36                                 |                              | 1        |
|            | 100         | 0         | 23.31                                | 23.44                                | 23.52                                 |                              | 1        |
|            | 1           | 0         | 23.55                                | 23.60                                | 23.55                                 |                              | 1        |
|            | 1           | 50        | 23.69                                | 23.70                                | 23.70                                 | 0-1                          | 1        |
|            | 1           | 99        | 23.57                                | 23.61                                | 23.59                                 |                              | 1        |
| 16QAM      | 50          | 0         | 22.35                                | 22.48                                | 22.64                                 |                              | 2        |
|            | 50          | 25        | 22.40                                | 22.43                                | 22.50                                 | 0-2                          | 2        |
|            | 50          | 50        | 22.37                                | 22.41                                | 22.53                                 | 0-2                          | 2        |
|            | 100         | 0         | 22.35                                | 22.42                                | 22.57                                 |                              | 2        |
|            | 1           | 0         | 22.60                                | 22.65                                | 22.52                                 |                              | 2        |
|            | 1           | 50        | 22.69                                | 22.63                                | 22.70                                 | 0-2                          | 2        |
|            | 1           | 99        | 22.61                                | 22.65                                | 22.50                                 |                              | 2        |
| 64QAM      | 50          | 0         | 21.33                                | 21.45                                | 21.65                                 |                              | 3        |
|            | 50          | 25        | 21.33                                | 21.45                                | 21.61                                 | 0-3                          | 3        |
|            | 50          | 50        | 21.34                                | 21.38                                | 21.61                                 |                              | 3        |
|            | 100         | 0         | 21.31                                | 21.39                                | 21.63                                 |                              | 3        |

Table 9-34
LTE Band 25 (PCS) Maximum Conducted Powers - 15 MHz Bandwidth

|            |         |           |              | LTE Band 25 (PCS)    |              |                 |          |
|------------|---------|-----------|--------------|----------------------|--------------|-----------------|----------|
|            |         |           |              | 15 MHz Bandwidth     |              |                 |          |
|            |         |           | Low Channel  | Mid Channel          | High Channel |                 |          |
| Modulation | RB Size | RB Offset | 26115        | 26365                | 26615        | MPR Allowed per | MPR [dB] |
|            |         |           | (1857.5 MHz) | (1882.5 MHz)         | (1907.5 MHz) | 3GPP [dB]       | • •      |
|            |         |           |              | Conducted Power [dBm |              |                 |          |
|            | 1       | 0         | 24.09        | 24.26                | 24.14        |                 | 0        |
|            | 1       | 36        | 24.17        | 24.32                | 24.23        | 0               | 0        |
|            | 1       | 74        | 24.09        | 24.26                | 24.25        |                 | 0        |
| QPSK       | 36      | 0         | 23.22        | 23.27                | 23.38        |                 | 1        |
|            | 36      | 18        | 23.29        | 23.33                | 23.40        | 0-1             | 1        |
|            | 36      | 37        | 23.27        | 23.36                | 23.38        | 0-1             | 1        |
|            | 75      | 0         | 23.24        | 23.33                | 23.45        |                 | 1        |
|            | 1       | 0         | 23.62        | 23.46                | 23.35        | 0-1             | 1        |
|            | 1       | 36        | 23.66        | 23.52                | 23.45        |                 | 1        |
|            | 1       | 74        | 23.60        | 23.44                | 23.29        |                 | 1        |
| 16QAM      | 36      | 0         | 22.19        | 22.26                | 22.38        |                 | 2        |
|            | 36      | 18        | 22.22        | 22.27                | 22.40        | 0-2             | 2        |
|            | 36      | 37        | 22.21        | 22.28                | 22.39        | 0-2             | 2        |
|            | 75      | 0         | 22.21        | 22.26                | 22.41        |                 | 2        |
|            | 1       | 0         | 22.12        | 22.56                | 22.19        |                 | 2        |
|            | 1       | 36        | 22.14        | 22.63                | 22.27        | 0-2             | 2        |
|            | 1       | 74        | 22.07        | 22.57                | 22.16        |                 | 2        |
| 64QAM      | 36      | 0         | 21.16        | 21.22                | 21.48        |                 | 3        |
|            | 36      | 18        | 21.24        | 21.30                | 21.47        | 0-3             | 3        |
|            | 36      | 37        | 21.23        | 21.27                | 21.44        | 0-3             | 3        |
|            | 75      | 0         | 21.19        | 21.22                | 21.38        |                 | 3        |

| FCC ID: ZNFL455DL      | PCTEST*                 | SAR EVALUATION REPORT | Approved by:  Quality Manager |
|------------------------|-------------------------|-----------------------|-------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:             | Dana 40 at 400                |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset      | Page 49 of 129                |

© 2020 PCTEST Engineering Laboratory, Inc.

09/11/2019

**Table 9-35** LTE Band 25 (PCS) Maximum Conducted Powers - 10 MHz Bandwidth

|            |         | Bana i    | zo (i oo) maxim | LTE Bond 25 (BCS)                     | TOWER TO MIT | iz Banawiatii    |          |
|------------|---------|-----------|-----------------|---------------------------------------|--------------|------------------|----------|
|            |         |           |                 | LTE Band 25 (PCS)<br>10 MHz Bandwidth |              |                  |          |
|            |         |           | Low Channel     |                                       | High Channal |                  |          |
|            |         |           |                 | Mid Channel                           | High Channel | MDD Allaward non |          |
| Modulation | RB Size | RB Offset | 26090           | 26365                                 | 26640        | MPR Allowed per  | MPR [dB] |
|            |         |           | (1855.0 MHz)    | (1882.5 MHz)                          | (1910.0 MHz) | 3GPP [dB]        |          |
|            |         | _         |                 | Conducted Power [dBm                  | -            |                  |          |
|            | 1       | 0         | 24.19           | 24.14                                 | 24.16        |                  | 0        |
|            | 1       | 25        | 24.34           | 24.35                                 | 24.37        | 0                | 0        |
|            | 1       | 49        | 24.17           | 24.15                                 | 24.21        |                  | 0        |
| QPSK       | 25      | 0         | 23.23           | 23.27                                 | 23.41        |                  | 1        |
|            | 25      | 12        | 23.23           | 23.33                                 | 23.43        | - 0-1<br>-       | 1        |
|            | 25      | 25        | 23.23           | 23.29                                 | 23.26        |                  | 1        |
|            | 50      | 0         | 23.20           | 23.29                                 | 23.43        |                  | 1        |
|            | 1       | 0         | 23.31           | 23.66                                 | 23.60        | 0-1              | 1        |
|            | 1       | 25        | 23.49           | 23.68                                 | 23.67        |                  | 1        |
|            | 1       | 49        | 23.29           | 23.61                                 | 23.49        |                  | 1        |
| 16QAM      | 25      | 0         | 22.22           | 22.31                                 | 22.56        |                  | 2        |
|            | 25      | 12        | 22.25           | 22.35                                 | 22.56        | 0-2              | 2        |
|            | 25      | 25        | 22.23           | 22.29                                 | 22.51        | 0-2              | 2        |
|            | 50      | 0         | 22.22           | 22.23                                 | 22.49        |                  | 2        |
|            | 1       | 0         | 22.13           | 22.15                                 | 22.43        |                  | 2        |
|            | 1       | 25        | 22.25           | 22.33                                 | 22.66        | 0-2              | 2        |
|            | 1       | 49        | 22.05           | 22.12                                 | 22.41        |                  | 2        |
| 64QAM      | 25      | 0         | 21.25           | 21.21                                 | 21.57        |                  | 3        |
|            | 25      | 12        | 21.32           | 21.31                                 | 21.60        | 0-3              | 3        |
|            | 25      | 25        | 21.28           | 21.26                                 | 21.46        |                  | 3        |
|            | 50      | 0         | 21.24           | 21.24                                 | 21.54        |                  | 3        |

**Table 9-36** LTE Band 25 (PCS) Maximum Conducted Powers - 5 MHz Bandwidth

|            |         |           |                       | LTE Band 25 (PCS)     |                       |                              |          |
|------------|---------|-----------|-----------------------|-----------------------|-----------------------|------------------------------|----------|
|            |         |           |                       | 5 MHz Bandwidth       |                       |                              |          |
|            |         |           | Low Channel           | Mid Channel           | High Channel          |                              |          |
| Modulation | RB Size | RB Offset | 26065<br>(1852.5 MHz) | 26365<br>(1882.5 MHz) | 26665<br>(1912.5 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |
|            |         |           |                       | Conducted Power [dBm  |                       | JOFF [db]                    |          |
|            | 1       | 0         | 24.19                 | 24.10                 | 24.19                 |                              | 0        |
|            | 1       | 12        | 24.41                 | 24.40                 | 24.44                 | 0                            | 0        |
|            | 1       | 24        | 24.11                 | 24.12                 | 24.20                 |                              | 0        |
| QPSK       | 12      | 0         | 23.19                 | 23.26                 | 23.37                 |                              | 1        |
|            | 12      | 6         | 23.29                 | 23.32                 | 23.41                 | 0-1                          | 1        |
|            | 12      | 13        | 23.26                 | 23.32                 | 23.26                 |                              | 1        |
|            | 25      | 0         | 23.21                 | 23.29                 | 23.30                 |                              | 1        |
|            | 1       | 0         | 23.43                 | 23.40                 | 23.30                 | 0-1                          | 1        |
|            | 1       | 12        | 23.65                 | 23.64                 | 23.54                 |                              | 1        |
|            | 1       | 24        | 23.39                 | 23.40                 | 23.24                 |                              | 1        |
| 16QAM      | 12      | 0         | 22.37                 | 22.22                 | 22.39                 |                              | 2        |
|            | 12      | 6         | 22.46                 | 22.30                 | 22.49                 | 0-2                          | 2        |
|            | 12      | 13        | 22.43                 | 22.23                 | 22.34                 | 0-2                          | 2        |
|            | 25      | 0         | 22.21                 | 22.29                 | 22.45                 |                              | 2        |
|            | 1       | 0         | 22.27                 | 22.23                 | 22.46                 |                              | 2        |
|            | 1       | 12        | 22.50                 | 22.51                 | 22.67                 | 0-2                          | 2        |
|            | 1       | 24        | 22.22                 | 22.26                 | 22.42                 |                              | 2        |
| 64QAM      | 12      | 0         | 21.15                 | 21.24                 | 21.51                 |                              | 3        |
|            | 12      | 6         | 21.22                 | 21.32                 | 21.57                 | 0-3                          | 3        |
|            | 12      | 13        | 21.16                 | 21.25                 | 21.49                 |                              | 3        |
|            | 25      | 0         | 21.21                 | 21.24                 | 21.54                 |                              | 3        |

| FCC ID: ZNFL455DL      | PCTEST*                 | SAR EVALUATION REPORT LG | Approved by:  Quality Manager |
|------------------------|-------------------------|--------------------------|-------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:                | Daga 50 of 120                |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset         | Page 50 of 129                |

**Table 9-37** LTE Band 25 (PCS) Maximum Conducted Powers - 3 MHz Bandwidth

|            | -       |           | 20 (1 00) maxim                      | LTE Band 25 (PCS)                    |                                       |                              |          |
|------------|---------|-----------|--------------------------------------|--------------------------------------|---------------------------------------|------------------------------|----------|
|            |         |           |                                      | 3 MHz Bandwidth                      |                                       |                              |          |
| Modulation | RB Size | RB Offset | Low Channel<br>26055<br>(1851.5 MHz) | Mid Channel<br>26365<br>(1882.5 MHz) | High Channel<br>26675<br>(1913.5 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |
|            |         |           | (                                    | Conducted Power [dBm                 | ]                                     |                              |          |
|            | 1       | 0         | 24.18                                | 24.22                                | 24.19                                 |                              | 0        |
|            | 1       | 7         | 24.34                                | 24.36                                | 24.36                                 | 0                            | 0        |
|            | 1       | 14        | 24.15                                | 24.22                                | 24.33                                 |                              | 0        |
| QPSK       | 8       | 0         | 23.24                                | 23.28                                | 23.36                                 |                              | 1        |
|            | 8       | 4         | 23.26                                | 23.34                                | 23.36                                 | 0-1                          | 1        |
|            | 8       | 7         | 23.23                                | 23.28                                | 23.32                                 | 0-1                          | 1        |
|            | 15      | 0         | 23.22                                | 23.27                                | 23.36                                 |                              | 1        |
|            | 1       | 0         | 23.36                                | 23.67                                | 23.68                                 | 0-1                          | 1        |
|            | 1       | 7         | 23.52                                | 23.66                                | 23.68                                 |                              | 1        |
|            | 1       | 14        | 23.32                                | 23.65                                | 23.55                                 |                              | 1        |
| 16QAM      | 8       | 0         | 22.26                                | 22.38                                | 22.52                                 |                              | 2        |
|            | 8       | 4         | 22.29                                | 22.42                                | 22.53                                 | 0-2                          | 2        |
|            | 8       | 7         | 22.25                                | 22.35                                | 22.46                                 | 0-2                          | 2        |
|            | 15      | 0         | 22.14                                | 22.31                                | 22.53                                 |                              | 2        |
|            | 1       | 0         | 22.18                                | 22.20                                | 22.48                                 |                              | 2        |
|            | 1       | 7         | 22.30                                | 22.35                                | 22.63                                 | 0-2                          | 2        |
|            | 1       | 14        | 22.14                                | 22.18                                | 22.44                                 |                              | 2        |
| 64QAM      | 8       | 0         | 21.28                                | 21.29                                | 21.45                                 | 0-3                          | 3        |
|            | 8       | 4         | 21.28                                | 21.32                                | 21.46                                 |                              | 3        |
|            | 8       | 7         | 21.27                                | 21.25                                | 21.39                                 |                              | 3        |
|            | 15      | 0         | 21.31                                | 21.22                                | 21.51                                 |                              | 3        |

**Table 9-38** LTE Band 25 (PCS) Maximum Conducted Powers -1.4 MHz Bandwidth

|            |         |           | LO (1 OO) Maxim       | LTE Band 25 (PCS)     |                       |                              |          |
|------------|---------|-----------|-----------------------|-----------------------|-----------------------|------------------------------|----------|
|            |         |           |                       | 1.4 MHz Bandwidth     |                       |                              |          |
|            |         |           | Low Channel           | Mid Channel           | High Channel          |                              |          |
| Modulation | RB Size | RB Offset | 26047<br>(1850.7 MHz) | 26365<br>(1882.5 MHz) | 26683<br>(1914.3 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |
|            |         |           | (                     | Conducted Power [dBm  | ]                     |                              |          |
|            | 1       | 0         | 24.09                 | 24.27                 | 24.19                 |                              | 0        |
|            | 1       | 2         | 24.25                 | 24.35                 | 24.37                 |                              | 0        |
|            | 1       | 5         | 24.16                 | 24.25                 | 24.28                 | 0                            | 0        |
| QPSK       | 3       | 0         | 24.24                 | 24.24                 | 24.42                 | ]                            | 0        |
|            | 3       | 2         | 24.27                 | 24.28                 | 24.49                 |                              | 0        |
|            | 3       | 3         | 24.24                 | 24.24                 | 24.42                 | 0-1                          | 0        |
|            | 6       | 0         | 23.30                 | 23.32                 | 23.38                 |                              | 1        |
|            | 1       | 0         | 23.29                 | 23.49                 | 23.54                 | 0-1                          | 1        |
|            | 1       | 2         | 23.44                 | 23.59                 | 23.64                 |                              | 1        |
|            | 1       | 5         | 23.32                 | 23.52                 | 23.52                 |                              | 1        |
| 16QAM      | 3       | 0         | 23.39                 | 23.38                 | 23.38                 | ]                            | 1        |
|            | 3       | 2         | 23.43                 | 23.37                 | 23.37                 |                              | 1        |
|            | 3       | 3         | 23.42                 | 23.35                 | 23.33                 |                              | 1        |
|            | 6       | 0         | 22.25                 | 22.43                 | 22.38                 | 0-2                          | 2        |
|            | 1       | 0         | 22.16                 | 22.60                 | 22.44                 |                              | 2        |
|            | 1       | 2         | 22.23                 | 22.65                 | 22.52                 | ]                            | 2        |
|            | 1       | 5         | 22.10                 | 22.61                 | 22.46                 | 0-2                          | 2        |
| 64QAM      | 3       | 0         | 22.31                 | 22.40                 | 22.50                 | 0-2                          | 2        |
|            | 3       | 2         | 22.31                 | 22.39                 | 22.49                 |                              | 2        |
|            | 3       | 3         | 22.27                 | 22.34                 | 22.49                 | ]                            | 2        |
|            | 6       | 0         | 21.28                 | 21.19                 | 21.44                 | 0-3                          | 3        |

| FCC ID: ZNFL455DL      | PCTEST*                 | SAR EVALUATION REPORT LG | Approved by:  Quality Manager |
|------------------------|-------------------------|--------------------------|-------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:                | Dogg 51 of 120                |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset         | Page 51 of 129                |

**Table 9-39** LTE Band 25 (PCS) Reduced Conducted Powers - 20 MHz Bandwidth

|            |         | - i E Baila | 20 (1 00) 110440      | LTE Don'd SE (DCC)                    | OWOIG ZO IIII         | 2 Banawiani                  |          |
|------------|---------|-------------|-----------------------|---------------------------------------|-----------------------|------------------------------|----------|
|            |         |             |                       | LTE Band 25 (PCS)<br>20 MHz Bandwidth |                       |                              |          |
|            |         | 1           | Low Channel           | Mid Channel                           | High Channel          |                              |          |
| Modulation | RB Size | RB Offset   | 26140<br>(1860.0 MHz) | 26365<br>(1882.5 MHz)                 | 26590<br>(1905.0 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |
|            |         |             | ·                     | Conducted Power [dBm                  | ]                     |                              |          |
|            | 1       | 0           | 22.08                 | 22.22                                 | 22.31                 |                              | 0        |
|            | 1       | 50          | 22.37                 | 22.56                                 | 22.55                 | 0                            | 0        |
|            | 1       | 99          | 22.11                 | 22.31                                 | 22.34                 |                              | 0        |
| QPSK       | 50      | 0           | 22.33                 | 22.37                                 | 22.53                 |                              | 0        |
|            | 50      | 25          | 22.39                 | 22.50                                 | 22.58                 | 0-1                          | 0        |
|            | 50      | 50          | 22.35                 | 22.41                                 | 22.47                 | -                            | 0        |
|            | 100     | 0           | 22.33                 | 22.44                                 | 22.53                 |                              | 0        |
|            | 1       | 0           | 22.02                 | 22.61                                 | 22.49                 | 0-1                          | 0        |
|            | 1       | 50          | 22.28                 | 22.70                                 | 22.37                 |                              | 0        |
|            | 1       | 99          | 22.01                 | 22.67                                 | 22.45                 |                              | 0        |
| 16QAM      | 50      | 0           | 22.33                 | 22.44                                 | 22.65                 |                              | 0        |
|            | 50      | 25          | 22.42                 | 22.51                                 | 22.60                 | 0-2                          | 0        |
|            | 50      | 50          | 22.37                 | 22.45                                 | 22.56                 | 0-2                          | 0        |
|            | 100     | 0           | 22.32                 | 22.47                                 | 22.59                 | ]                            | 0        |
|            | 1       | 0           | 22.70                 | 22.46                                 | 22.49                 |                              | 0        |
|            | 1       | 50          | 22.27                 | 22.54                                 | 22.52                 | 0-2                          | 0        |
|            | 1       | 99          | 22.57                 | 22.54                                 | 22.61                 | ]                            | 0        |
| 64QAM      | 50      | 0           | 21.32                 | 21.46                                 | 21.69                 |                              | 1        |
|            | 50      | 25          | 21.45                 | 21.58                                 | 21.64                 | 0-3                          | 1        |
|            | 50      | 50          | 21.42                 | 21.45                                 | 21.63                 |                              | 1        |
|            | 100     | 0           | 21.36                 | 21.45                                 | 21.60                 | 1                            | 1        |

**Table 9-40** LTE Band 25 (PCS) Reduced Conducted Powers - 15 MHz Bandwidth

|            | _       |           | 20 (1 00) 11044                      | LTE Band 25 (PCS)                    |                                       |                              |          |
|------------|---------|-----------|--------------------------------------|--------------------------------------|---------------------------------------|------------------------------|----------|
|            |         |           |                                      | 15 MHz Bandwidth                     |                                       |                              |          |
| Modulation | RB Size | RB Offset | Low Channel<br>26115<br>(1857.5 MHz) | Mid Channel<br>26365<br>(1882.5 MHz) | High Channel<br>26615<br>(1907.5 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |
|            |         |           |                                      | Conducted Power [dBm                 |                                       |                              |          |
|            | 1       | 0         | 22.35                                | 22.25                                | 22.38                                 |                              | 0        |
|            | 1       | 36        | 22.42                                | 22.34                                | 22.54                                 | 0                            | 0        |
|            | 1       | 74        | 22.32                                | 22.28                                | 22.54                                 | 1                            | 0        |
| QPSK       | 36      | 0         | 22.32                                | 22.38                                | 22.49                                 |                              | 0        |
|            | 36      | 18        | 22.40                                | 22.44                                | 22.59                                 | -<br>0-1                     | 0        |
|            | 36      | 37        | 22.40                                | 22.43                                | 22.57                                 |                              | 0        |
|            | 75      | 0         | 22.40                                | 22.45                                | 22.59                                 |                              | 0        |
|            | 1       | 0         | 22.70                                | 22.67                                | 22.66                                 |                              | 0        |
|            | 1       | 36        | 22.67                                | 22.64                                | 22.68                                 | 0-1                          | 0        |
|            | 1       | 74        | 22.67                                | 22.44                                | 22.69                                 |                              | 0        |
| 16QAM      | 36      | 0         | 22.37                                | 22.45                                | 22.57                                 |                              | 0        |
|            | 36      | 18        | 22.42                                | 22.44                                | 22.61                                 | 0-2                          | 0        |
|            | 36      | 37        | 22.41                                | 22.42                                | 22.55                                 | 0-2                          | 0        |
|            | 75      | 0         | 22.38                                | 22.54                                | 22.56                                 |                              | 0        |
|            | 1       | 0         | 22.53                                | 22.65                                | 22.63                                 |                              | 0        |
|            | 1       | 36        | 22.64                                | 22.63                                | 22.66                                 | 0-2                          | 0        |
|            | 1       | 74        | 22.56                                | 22.59                                | 22.62                                 |                              | 0        |
| 64QAM      | 36      | 0         | 21.39                                | 21.46                                | 21.56                                 |                              | 1        |
|            | 36      | 18        | 21.43                                | 21.47                                | 21.59                                 | 0-3                          | 1        |
|            | 36      | 37        | 21.40                                | 21.44                                | 21.59                                 |                              | 1        |
|            | 75      | 0         | 21.35                                | 21.46                                | 21.59                                 |                              | 1        |

| FCC ID: ZNFL455DL      | PCTEST*                 | SAR EVALUATION REPORT | Approved by: Quality Manager |
|------------------------|-------------------------|-----------------------|------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:             | Daga 52 of 120               |
| 1M1911290211-01-R2.ZNF | 12/05/2019 – 01/16/2020 | Portable Handset      | Page 52 of 129               |

**Table 9-41** LTE Band 25 (PCS) Reduced Conducted Powers - 10 MHz Bandwidth

|            |         | IIL Bana  | 20 (1 00) 110440      | LTE Band 25 (PCS)     | 011010 10 1111        | L Banawati                   |          |
|------------|---------|-----------|-----------------------|-----------------------|-----------------------|------------------------------|----------|
|            |         |           |                       | 10 MHz Bandwidth      |                       |                              |          |
|            |         |           | Low Channel           | Mid Channel           | High Channel          | MDD Allowed nor              | MPR [dB] |
| Modulation | RB Size | RB Offset | 26090<br>(1855.0 MHz) | 26365<br>(1882.5 MHz) | 26640<br>(1910.0 MHz) | MPR Allowed per<br>3GPP [dB] |          |
|            |         |           |                       | Conducted Power [dBm  |                       |                              |          |
|            | 1       | 0         | 22.42                 | 22.40                 | 22.31                 |                              | 0        |
|            | 1       | 25        | 22.56                 | 22.58                 | 22.69                 | 0                            | 0        |
|            | 1       | 49        | 22.39                 | 22.43                 | 22.55                 |                              | 0        |
| QPSK       | 25      | 0         | 22.42                 | 22.45                 | 22.58                 |                              | 0        |
|            | 25      | 12        | 22.45                 | 22.47                 | 22.58                 | 0-1                          | 0        |
|            | 25      | 25        | 22.45                 | 22.47                 | 22.56                 |                              | 0        |
|            | 50      | 0         | 22.41                 | 22.46                 | 22.53                 |                              | 0        |
|            | 1       | 0         | 22.69                 | 22.69                 | 22.65                 | 0-1                          | 0        |
|            | 1       | 25        | 22.69                 | 22.70                 | 22.68                 |                              | 0        |
|            | 1       | 49        | 22.70                 | 22.65                 | 22.68                 |                              | 0        |
| 16QAM      | 25      | 0         | 22.46                 | 22.50                 | 22.67                 |                              | 0        |
|            | 25      | 12        | 22.52                 | 22.51                 | 22.60                 | 0-2                          | 0        |
|            | 25      | 25        | 22.49                 | 22.49                 | 22.57                 | 0-2                          | 0        |
|            | 50      | 0         | 22.48                 | 22.51                 | 22.61                 |                              | 0        |
|            | 1       | 0         | 22.65                 | 22.63                 | 22.64                 |                              | 0        |
|            | 1       | 25        | 22.65                 | 22.63                 | 22.69                 | 0-2                          | 0        |
|            | 1       | 49        | 22.61                 | 22.63                 | 22.65                 |                              | 0        |
| 64QAM      | 25      | 0         | 21.42                 | 21.43                 | 21.64                 |                              | 1        |
|            | 25      | 12        | 21.43                 | 21.44                 | 21.59                 | 0-3                          | 1        |
|            | 25      | 25        | 21.45                 | 21.46                 | 21.56                 |                              | 1        |
|            | 50      | 0         | 21.41                 | 21.45                 | 21.52                 |                              | 1        |

**Table 9-42** LTE Band 25 (PCS) Reduced Conducted Powers - 5 MHz Bandwidth

|            |         |            | (, (, (, (, (, (, (, (, (, (, (, (, (, (, (, (, (, (, (, (, (, (, (, (, (, (, (, (, (, (, (, (, (, (, (, (, (, (, (, (, (, (,(,(,(,(,(,(,(,(,(,(,(,(,(,(,(,(,(,(,(,(,(,(,(,(,(,(,(,(,(,(,(,(,(,(,(,(,(,(,(,(,(,(,(,(,(,(,(,(,(,(,(,(,(,(,(,(,(,(,(,(,(,(,(,(,(,(, ,(, ,(, ,(, ,(, ,(, ,(, ,(, ,(, ,(, ,(, ,(, ,(, ,(, ,(, ,(, ,(, ,(, ,(, ,(, ,(, ,(, , ,(, , , ), , ) | LTE Band 25 (PCS)    |              |                 |          |
|------------|---------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------|-----------------|----------|
|            |         |            |                                                                                                                                                                                                                                                                                                                                                                        | 5 MHz Bandwidth      |              |                 |          |
|            |         |            | Low Channel                                                                                                                                                                                                                                                                                                                                                            | Mid Channel          | High Channel |                 |          |
| Modulation | RB Size | RB Offset  | 26065                                                                                                                                                                                                                                                                                                                                                                  | 26365                | 26665        | MPR Allowed per | MPR [dB] |
|            |         | 112 011001 | (1852.5 MHz)                                                                                                                                                                                                                                                                                                                                                           | (1882.5 MHz)         | (1912.5 MHz) | 3GPP [dB]       |          |
|            |         |            |                                                                                                                                                                                                                                                                                                                                                                        | Conducted Power [dBm | _            |                 |          |
|            | 1       | 0          | 22.26                                                                                                                                                                                                                                                                                                                                                                  | 22.28                | 22.29        |                 | 0        |
|            | 1       | 12         | 22.35                                                                                                                                                                                                                                                                                                                                                                  | 22.37                | 22.36        | 0               | 0        |
|            | 1       | 24         | 22.26                                                                                                                                                                                                                                                                                                                                                                  | 22.30                | 22.30        |                 | 0        |
| QPSK       | 12      | 0          | 22.39                                                                                                                                                                                                                                                                                                                                                                  | 22.40                | 22.49        |                 | 0        |
|            | 12      | 6          | 22.44                                                                                                                                                                                                                                                                                                                                                                  | 22.45                | 22.58        | 0-1             | 0        |
|            | 12      | 13         | 22.44                                                                                                                                                                                                                                                                                                                                                                  | 22.43                | 22.48        |                 | 0        |
|            | 25      | 0          | 22.43                                                                                                                                                                                                                                                                                                                                                                  | 22.45                | 22.57        |                 | 0        |
|            | 1       | 0          | 22.56                                                                                                                                                                                                                                                                                                                                                                  | 22.44                | 22.41        |                 | 0        |
|            | 1       | 12         | 22.32                                                                                                                                                                                                                                                                                                                                                                  | 22.27                | 22.48        | 0-1             | 0        |
|            | 1       | 24         | 22.21                                                                                                                                                                                                                                                                                                                                                                  | 22.53                | 22.66        |                 | 0        |
| 16QAM      | 12      | 0          | 22.49                                                                                                                                                                                                                                                                                                                                                                  | 22.48                | 22.57        |                 | 0        |
|            | 12      | 6          | 22.53                                                                                                                                                                                                                                                                                                                                                                  | 22.52                | 22.61        | 0-2             | 0        |
|            | 12      | 13         | 22.52                                                                                                                                                                                                                                                                                                                                                                  | 22.50                | 22.52        | 0-2             | 0        |
|            | 25      | 0          | 22.40                                                                                                                                                                                                                                                                                                                                                                  | 22.42                | 22.58        |                 | 0        |
|            | 1       | 0          | 22.59                                                                                                                                                                                                                                                                                                                                                                  | 22.58                | 22.64        |                 | 0        |
|            | 1       | 12         | 22.57                                                                                                                                                                                                                                                                                                                                                                  | 22.58                | 22.58        | 0-2             | 0        |
|            | 1       | 24         | 22.57                                                                                                                                                                                                                                                                                                                                                                  | 22.59                | 22.48        |                 | 0        |
| 64QAM      | 12      | 0          | 21.36                                                                                                                                                                                                                                                                                                                                                                  | 21.40                | 21.59        |                 | 1        |
|            | 12      | 6          | 21.42                                                                                                                                                                                                                                                                                                                                                                  | 21.41                | 21.69        | 0-3             | 1        |
|            | 12      | 13         | 21.40                                                                                                                                                                                                                                                                                                                                                                  | 21.42                | 21.56        | 0-3             | 1        |
|            | 25      | 0          | 21.49                                                                                                                                                                                                                                                                                                                                                                  | 21.48                | 21.66        |                 | 1        |

| FCC ID: ZNFL455DL      | PCTEST*                 | SAR EVALUATION REPORT | Approved by:  Quality Manager |
|------------------------|-------------------------|-----------------------|-------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:             | Dags 52 of 120                |
| 1M1911290211-01-R2.ZNF | 12/05/2019 – 01/16/2020 | Portable Handset      | Page 53 of 129                |

**Table 9-43** LTE Band 25 (PCS) Reduced Conducted Powers - 3 MHz Bandwidth

|            |         |           |                                      | LTE Band 25 (PCS)                    |                                       |                              |          |
|------------|---------|-----------|--------------------------------------|--------------------------------------|---------------------------------------|------------------------------|----------|
|            |         |           |                                      | 3 MHz Bandwidth                      |                                       |                              |          |
| Modulation | RB Size | RB Offset | Low Channel<br>26055<br>(1851.5 MHz) | Mid Channel<br>26365<br>(1882.5 MHz) | High Channel<br>26675<br>(1913.5 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |
|            |         |           |                                      | Conducted Power [dBm                 |                                       |                              |          |
|            | 1       | 0         | 22.41                                | 22.47                                | 22.50                                 |                              | 0        |
|            | 1       | 7         | 22.58                                | 22.63                                | 22.69                                 | 0                            | 0        |
|            | 1       | 14        | 22.45                                | 22.48                                | 22.56                                 |                              | 0        |
| QPSK       | 8       | 0         | 22.44                                | 22.45                                | 22.59                                 |                              | 0        |
|            | 8       | 4         | 22.41                                | 22.45                                | 22.54                                 | 0-1                          | 0        |
|            | 8       | 7         | 22.44                                | 22.43                                | 22.57                                 | 0-1                          | 0        |
|            | 15      | 0         | 22.40                                | 22.40                                | 22.58                                 |                              | 0        |
|            | 1       | 0         | 22.67                                | 22.69                                | 22.62                                 | 0-1                          | 0        |
|            | 1       | 7         | 22.67                                | 22.66                                | 22.59                                 |                              | 0        |
|            | 1       | 14        | 22.66                                | 22.67                                | 22.49                                 |                              | 0        |
| 16QAM      | 8       | 0         | 22.64                                | 22.64                                | 22.67                                 |                              | 0        |
|            | 8       | 4         | 22.59                                | 22.59                                | 22.69                                 | 0-2                          | 0        |
|            | 8       | 7         | 22.62                                | 22.57                                | 22.68                                 | 0-2                          | 0        |
|            | 15      | 0         | 22.47                                | 22.44                                | 22.65                                 |                              | 0        |
|            | 1       | 0         | 22.69                                | 22.67                                | 22.65                                 |                              | 0        |
|            | 1       | 7         | 22.68                                | 22.66                                | 22.69                                 | 0-2                          | 0        |
|            | 1       | 14        | 22.67                                | 22.63                                | 22.68                                 |                              | 0        |
| 64QAM      | 8       | 0         | 21.46                                | 21.44                                | 21.58                                 |                              | 1        |
|            | 8       | 4         | 21.40                                | 21.39                                | 21.53                                 | 0-3                          | 1        |
|            | 8       | 7         | 21.44                                | 21.42                                | 21.55                                 | 0-5                          | 1        |
|            | 15      | 0         | 21.36                                | 21.34                                | 21.57                                 |                              | 1        |

**Table 9-44** LTE Band 25 (PCS) Reduced Conducted Powers -1.4 MHz Bandwidth

|            | <u>-</u> |           | ( )                   | LTE Band 25 (PCS)     |                       |                              |          |
|------------|----------|-----------|-----------------------|-----------------------|-----------------------|------------------------------|----------|
|            |          |           |                       | 1.4 MHz Bandwidth     |                       |                              |          |
|            |          |           | Low Channel           | Mid Channel           | High Channel          |                              |          |
| Modulation | RB Size  | RB Offset | 26047<br>(1850.7 MHz) | 26365<br>(1882.5 MHz) | 26683<br>(1914.3 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |
|            |          |           |                       | Conducted Power [dBm  |                       |                              |          |
|            | 1        | 0         | 22.40                 | 22.46                 | 22.49                 |                              | 0        |
|            | 1        | 2         | 22.54                 | 22.56                 | 22.58                 |                              | 0        |
|            | 1        | 5         | 22.38                 | 22.40                 | 22.42                 | 0                            | 0        |
| QPSK       | 3        | 0         | 22.45                 | 22.45                 | 22.53                 |                              | 0        |
|            | 3        | 2         | 22.49                 | 22.47                 | 22.58                 |                              | 0        |
|            |          | 3         | 22.48                 | 22.42                 | 22.63                 |                              | 0        |
| 6          | 6        | 0         | 22.46                 | 22.46                 | 22.65                 | 0-1                          | 0        |
|            | 1        | 0         | 22.44                 | 22.39                 | 22.49                 |                              | 0        |
|            | 1        | 2         | 22.51                 | 22.52                 | 22.64                 |                              | 0        |
|            | 1        | 5         | 22.43                 | 22.35                 | 22.49                 | 0-1                          | 0        |
| 16QAM      | 3        | 0         | 22.50                 | 22.47                 | 22.55                 |                              | 0        |
|            | 3        | 2         | 22.53                 | 22.52                 | 22.55                 |                              | 0        |
|            | 3        | 3         | 22.57                 | 22.56                 | 22.56                 |                              | 0        |
|            | 6        | 0         | 22.60                 | 22.59                 | 22.52                 | 0-2                          | 0        |
|            | 1        | 0         | 22.52                 | 22.49                 | 22.46                 |                              | 0        |
|            | 1        | 2         | 22.64                 | 22.66                 | 22.63                 |                              | 0        |
|            | 1        | 5         | 22.46                 | 22.48                 | 22.38                 | 0-2                          | 0        |
| 64QAM      | 3        | 0         | 22.37                 | 22.33                 | 22.60                 |                              | 0        |
|            | 3        | 2         | 22.57                 | 22.52                 | 22.63                 |                              | 0        |
|            | 3        | 3         | 22.47                 | 22.41                 | 22.69                 |                              | 0        |
|            | 6        | 0         | 21.36                 | 21.34                 | 21.63                 | 0-3                          | 1        |

| FCC ID: ZNFL455DL      | PCTEST*                 | SAR EVALUATION REPORT | Approved by:  Quality Manager |
|------------------------|-------------------------|-----------------------|-------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:             | Daga 54 of 120                |
| 1M1911290211-01-R2.ZNF | 12/05/2019 – 01/16/2020 | Portable Handset      | Page 54 of 129                |

### 9.4.7 LTE Band 41

**Table 9-45** LTE Band 41 Maximum Conducted Powers - 20 MHz Bandwidth

|            |         |           |                       |                       | LTE Band 41           | WCIS-20 WII           |                       |                              |          |
|------------|---------|-----------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|------------------------------|----------|
|            |         |           |                       | 2                     | 0 MHz Bandwidth       |                       |                       |                              |          |
|            |         |           | Low Channel           | Low-Mid Channel       | Mid Channel           | Mid-High Channel      | High Channel          |                              |          |
| Modulation | RB Size | RB Offset | 39750<br>(2506.0 MHz) | 40185<br>(2549.5 MHz) | 40620<br>(2593.0 MHz) | 41055<br>(2636.5 MHz) | 41490<br>(2680.0 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |
|            |         |           |                       | Co                    | nducted Power [dE     | Bm]                   |                       |                              |          |
|            | 1       | 0         | 24.34                 | 24.41                 | 24.44                 | 24.50                 | 24.40                 |                              | 0        |
|            | 1       | 50        | 24.43                 | 24.44                 | 24.42                 | 24.52                 | 24.45                 | 0                            | 0        |
|            | 1       | 99        | 24.45                 | 24.38                 | 24.40                 | 24.60                 | 24.32                 |                              | 0        |
| QPSK       | 50      | 0         | 23.45                 | 23.45                 | 23.45                 | 23.70                 | 23.44                 |                              | 1        |
|            | 50      | 25        | 23.47                 | 23.46                 | 23.44                 | 23.68                 | 23.38                 | 0-1                          | 1        |
|            | 50      | 50        | 23.44                 | 23.47                 | 23.36                 | 23.69                 | 23.35                 | 0-1                          | 1        |
|            | 100     | 0         | 23.50                 | 23.43                 | 23.43                 | 23.49                 | 23.40                 |                              | 1        |
|            | 1       | 0         | 23.43                 | 23.46                 | 23.45                 | 23.16                 | 23.49                 | 0-1                          | 1        |
|            | 1       | 50        | 23.45                 | 23.40                 | 23.50                 | 23.28                 | 23.41                 |                              | 1        |
|            | 1       | 99        | 23.48                 | 23.41                 | 23.49                 | 23.10                 | 23.37                 |                              | 1        |
| 16QAM      | 50      | 0         | 22.41                 | 22.47                 | 22.43                 | 22.50                 | 22.48                 |                              | 2        |
|            | 50      | 25        | 22.48                 | 22.48                 | 22.42                 | 22.48                 | 22.48                 | 0-2                          | 2        |
|            | 50      | 50        | 22.50                 | 22.38                 | 22.42                 | 22.41                 | 22.49                 |                              | 2        |
|            | 100     | 0         | 22.49                 | 22.49                 | 22.39                 | 22.50                 | 22.48                 |                              | 2        |
|            | 1       | 0         | 22.61                 | 22.51                 | 22.49                 | 22.68                 | 22.46                 |                              | 2        |
|            | 1       | 50        | 22.59                 | 22.65                 | 22.56                 | 22.57                 | 22.51                 | 0-2                          | 2        |
|            | 1       | 99        | 22.47                 | 22.58                 | 22.61                 | 22.49                 | 22.50                 |                              | 2        |
| 64QAM      | 50      | 0         | 21.66                 | 21.69                 | 21.63                 | 21.69                 | 21.55                 |                              | 3        |
|            | 50      | 25        | 21.60                 | 21.64                 | 21.62                 | 21.68                 | 21.56                 | 0-3                          | 3        |
|            | 50      | 50        | 21.47                 | 21.61                 | 21.63                 | 21.65                 | 21.52                 |                              | 3        |
|            | 100     | 0         | 21.69                 | 21.49                 | 21.60                 | 21.64                 | 21.49                 |                              | 3        |

**Table 9-46** LTE Band 41 Maximum Conducted Powers - 15 MHz Bandwidth

|            |         |           | Bana III              |                       | LTE Band 41                    | Weis - 13 Mir         | iz Banama             |                              |          |
|------------|---------|-----------|-----------------------|-----------------------|--------------------------------|-----------------------|-----------------------|------------------------------|----------|
|            |         |           | Low Channel           | Low-Mid Channel       | 5 MHz Bandwidth<br>Mid Channel | Mid-High Channel      | High Channel          |                              |          |
| Modulation | RB Size | RB Offset | 39750<br>(2506.0 MHz) | 40185<br>(2549.5 MHz) | 40620<br>(2593.0 MHz)          | 41055<br>(2636.5 MHz) | 41490<br>(2680.0 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |
|            |         |           |                       | Co                    | nducted Power [dB              | Bm]                   |                       |                              |          |
|            | 1       | 0         | 24.15                 | 24.13                 | 24.16                          | 24.19                 | 24.28                 |                              | 0        |
|            | 1       | 36        | 24.20                 | 24.08                 | 24.20                          | 24.08                 | 24.34                 | 0                            | 0        |
|            | 1       | 74        | 24.14                 | 23.99                 | 24.08                          | 24.27                 | 24.18                 |                              | 0        |
| QPSK       | 36      | 0         | 23.27                 | 23.17                 | 23.25                          | 23.34                 | 23.37                 |                              | 1        |
|            | 36      | 18        | 23.40                 | 23.21                 | 23.26                          | 23.36                 | 23.36                 | 0-1                          | 1        |
|            | 36      | 37        | 23.37                 | 23.13                 | 23.20                          | 23.30                 | 23.35                 | 0-1                          | 1        |
|            | 75      | 0         | 23.31                 | 22.94                 | 23.23                          | 23.44                 | 23.36                 |                              | 1        |
|            | 1       | 0         | 23.06                 | 23.02                 | 23.21                          | 23.24                 | 23.13                 | 0-1                          | 1        |
|            | 1       | 36        | 23.17                 | 22.88                 | 22.81                          | 23.35                 | 23.26                 |                              | 1        |
|            | 1       | 74        | 23.01                 | 22.86                 | 22.66                          | 23.18                 | 23.06                 |                              | 1        |
| 16QAM      | 36      | 0         | 22.31                 | 22.15                 | 22.19                          | 22.35                 | 22.40                 |                              | 2        |
|            | 36      | 18        | 22.28                 | 22.16                 | 22.19                          | 22.36                 | 22.39                 | 0-2                          | 2        |
|            | 36      | 37        | 22.25                 | 22.13                 | 22.23                          | 22.35                 | 22.35                 | 0-2                          | 2        |
|            | 75      | 0         | 22.33                 | 22.15                 | 21.98                          | 22.43                 | 22.37                 |                              | 2        |
|            | 1       | 0         | 22.03                 | 22.05                 | 22.38                          | 22.18                 | 22.23                 |                              | 2        |
|            | 1       | 36        | 22.26                 | 22.05                 | 22.20                          | 22.29                 | 22.20                 | 0-2                          | 2        |
|            | 1       | 74        | 22.17                 | 21.83                 | 21.94                          | 22.18                 | 22.60                 |                              | 2        |
| 64QAM      | 36      | 0         | 21.20                 | 21.14                 | 21.16                          | 21.39                 | 21.35                 |                              | 3        |
|            | 36      | 18        | 21.22                 | 21.15                 | 21.15                          | 21.41                 | 21.33                 | 0-3                          | 3        |
|            | 36      | 37        | 21.23                 | 21.13                 | 21.13                          | 21.37                 | 21.30                 |                              | 3        |
|            | 75      | 0         | 21.22                 | 21.14                 | 21.16                          | 21.39                 | 21.37                 |                              | 3        |

| FCC ID: ZNFL455DL      | PCTEST:                 | SAR EVALUATION REPORT | Approved by:  Quality Manager |
|------------------------|-------------------------|-----------------------|-------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:             | D 55 -4 400                   |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset      | Page 55 of 129                |

**Table 9-47** LTE Band 41 Maximum Conducted Powers - 10 MHz Bandwidth

|            |         |           |                       |                       | LTE Band 41           | WC13 - 10 IVII        |                       | <del></del>                  |          |
|------------|---------|-----------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|------------------------------|----------|
|            | I       |           |                       | 1                     | 0 MHz Bandwidth       |                       |                       |                              |          |
|            |         |           | Low Channel           | Low-Mid Channel       | Mid Channel           | Mid-High Channel      | High Channel          |                              |          |
| Modulation | RB Size | RB Offset | 39750<br>(2506.0 MHz) | 40185<br>(2549.5 MHz) | 40620<br>(2593.0 MHz) | 41055<br>(2636.5 MHz) | 41490<br>(2680.0 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |
|            |         |           |                       | Co                    | nducted Power [dE     | Bm]                   |                       | 1                            |          |
|            | 1       | 0         | 24.33                 | 24.45                 | 24.47                 | 24.58                 | 24.41                 |                              | 0        |
|            | 1       | 25        | 24.46                 | 24.61                 | 24.51                 | 24.67                 | 24.57                 | 0                            | 0        |
|            | 1       | 49        | 24.42                 | 24.52                 | 24.43                 | 24.48                 | 24.33                 |                              | 0        |
| QPSK       | 25      | 0         | 23.57                 | 23.66                 | 23.54                 | 23.70                 | 23.48                 |                              | 1        |
|            | 25      | 12        | 23.53                 | 23.70                 | 23.49                 | 23.66                 | 23.40                 | 0-1                          | 1        |
|            | 25      | 25        | 23.52                 | 23.66                 | 23.58                 | 23.67                 | 23.42                 | 0-1                          | 1        |
|            | 50      | 0         | 23.53                 | 23.63                 | 23.54                 | 23.69                 | 23.51                 |                              | 1        |
|            | 1       | 0         | 23.56                 | 23.35                 | 23.31                 | 23.43                 | 23.25                 | 0-1                          | 1        |
|            | 1       | 25        | 23.69                 | 23.33                 | 23.31                 | 23.38                 | 23.19                 |                              | 1        |
|            | 1       | 49        | 23.57                 | 23.39                 | 23.33                 | 23.42                 | 23.18                 |                              | 1        |
| 16QAM      | 25      | 0         | 22.54                 | 22.68                 | 22.58                 | 22.65                 | 22.49                 |                              | 2        |
|            | 25      | 12        | 22.56                 | 22.65                 | 22.53                 | 22.69                 | 22.47                 | 0-2                          | 2        |
|            | 25      | 25        | 22.52                 | 22.61                 | 22.55                 | 22.64                 | 22.44                 | 0-2                          | 2        |
|            | 50      | 0         | 22.47                 | 22.61                 | 22.58                 | 22.67                 | 22.47                 |                              | 2        |
|            | 1       | 0         | 22.57                 | 22.43                 | 22.38                 | 22.41                 | 22.30                 |                              | 2        |
|            | 1       | 25        | 22.67                 | 22.62                 | 22.57                 | 22.65                 | 22.49                 | 0-2                          | 2        |
|            | 1       | 49        | 22.61                 | 22.42                 | 22.58                 | 22.37                 | 22.25                 |                              | 2        |
| 64QAM      | 25      | 0         | 21.51                 | 21.62                 | 21.62                 | 21.66                 | 21.48                 |                              | 3        |
|            | 25      | 12        | 21.48                 | 21.61                 | 21.61                 | 21.64                 | 21.43                 | 0-3                          | 3        |
|            | 25      | 25        | 21.50                 | 21.59                 | 21.52                 | 21.58                 | 21.39                 |                              | 3        |
|            | 50      | 0         | 21.52                 | 21.56                 | 21.55                 | 21.61                 | 21.40                 |                              | 3        |

**Table 9-48** LTE Band 41 Maximum Conducted Powers - 5 MHz Bandwidth

|            |         |           | - Dana Ti IV          | iaximum Co            | LTE Band 41           | WCIS-JIVIII           | z Danawiai            | .1 1                         |          |
|------------|---------|-----------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|------------------------------|----------|
|            |         |           |                       | 5                     | MHz Bandwidth         |                       |                       |                              |          |
|            |         |           | Low Channel           | Low-Mid Channel       | Mid Channel           | Mid-High Channel      | High Channel          |                              |          |
| Modulation | RB Size | RB Offset | 39750<br>(2506.0 MHz) | 40185<br>(2549.5 MHz) | 40620<br>(2593.0 MHz) | 41055<br>(2636.5 MHz) | 41490<br>(2680.0 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |
|            |         |           |                       | Co                    | nducted Power [dE     | Bm]                   |                       |                              |          |
|            | 1       | 0         | 24.37                 | 24.36                 | 24.33                 | 24.49                 | 24.24                 |                              | 0        |
|            | 1       | 12        | 24.64                 | 24.53                 | 24.66                 | 24.70                 | 24.56                 | 0                            | 0        |
|            | 1       | 24        | 24.43                 | 24.34                 | 24.52                 | 24.50                 | 24.34                 |                              | 0        |
| QPSK       | 12      | 0         | 23.47                 | 23.50                 | 23.53                 | 23.62                 | 23.42                 |                              | 1        |
|            | 12      | 6         | 23.53                 | 23.56                 | 23.62                 | 23.65                 | 23.45                 | 0-1                          | 1        |
|            | 12      | 13        | 23.48                 | 23.52                 | 23.56                 | 23.65                 | 23.43                 | 0-1                          | 1        |
|            | 25      | 0         | 23.53                 | 23.49                 | 23.54                 | 23.64                 | 23.42                 |                              | 1        |
|            | 1       | 0         | 23.33                 | 23.52                 | 23.64                 | 23.67                 | 23.56                 | 0-1                          | 1        |
|            | 1       | 12        | 23.54                 | 23.70                 | 23.70                 | 23.70                 | 23.68                 |                              | 1        |
|            | 1       | 24        | 23.33                 | 23.48                 | 23.60                 | 23.68                 | 23.50                 |                              | 1        |
| 16QAM      | 12      | 0         | 22.49                 | 22.44                 | 22.50                 | 22.55                 | 22.39                 |                              | 2        |
|            | 12      | 6         | 22.54                 | 22.50                 | 22.57                 | 22.59                 | 22.45                 | 0-2                          | 2        |
|            | 12      | 13        | 22.51                 | 22.47                 | 22.49                 | 22.60                 | 22.40                 | 0-2                          | 2        |
|            | 25      | 0         | 22.52                 | 22.44                 | 22.49                 | 22.52                 | 22.36                 |                              | 2        |
|            | 1       | 0         | 22.60                 | 22.14                 | 22.27                 | 22.32                 | 22.16                 |                              | 2        |
|            | 1       | 12        | 22.61                 | 22.67                 | 22.68                 | 22.69                 | 22.68                 | 0-2                          | 2        |
|            | 1       | 24        | 22.62                 | 22.12                 | 22.28                 | 22.30                 | 22.19                 |                              | 2        |
| 64QAM      | 12      | 0         | 21.44                 | 21.40                 | 21.45                 | 21.47                 | 21.31                 |                              | 3        |
|            | 12      | 6         | 21.47                 | 21.41                 | 21.47                 | 21.53                 | 21.37                 | 0-3                          | 3        |
|            | 12      | 13        | 21.42                 | 21.35                 | 21.40                 | 21.47                 | 21.30                 | 0-3                          | 3        |
|            | 25      | 0         | 21.41                 | 21.56                 | 21.59                 | 21.70                 | 21.46                 |                              | 3        |

| FCC ID: ZNFL4 | 455DL      | PCTEST NORMALISE LASTATION, INC. | SAR EVALUATION REPORT | <b>L</b> G | Approved by:  Quality Manager |
|---------------|------------|----------------------------------|-----------------------|------------|-------------------------------|
| Document S/N  | l:         | Test Dates:                      | DUT Type:             |            | Dogg 56 of 120                |
| 1M1911290211  | -01-R2.ZNF | 12/05/2019 - 01/16/2020          | Portable Handset      |            | Page 56 of 129                |

**Table 9-49** LTE Band 41 Reduced Conducted Powers - 20 MHz Bandwidth

|            |         |           |                       | educed Con            | LTE Band 41           | 10.0 20 WIII          | 2 Banawia             |                              |          |
|------------|---------|-----------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|------------------------------|----------|
|            |         | 1         |                       | 2                     | 0 MHz Bandwidth       |                       |                       |                              |          |
|            |         |           | Low Channel           | Low-Mid Channel       | Mid Channel           | Mid-High Channel      | High Channel          |                              |          |
| Modulation | RB Size | RB Offset | 39750<br>(2506.0 MHz) | 40185<br>(2549.5 MHz) | 40620<br>(2593.0 MHz) | 41055<br>(2636.5 MHz) | 41490<br>(2680.0 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |
|            |         |           |                       | Co                    | nducted Power [dB     | Bm]                   |                       | 1                            |          |
|            | 1       | 0         | 22.39                 | 22.28                 | 22.16                 | 22.22                 | 22.20                 |                              | 0        |
|            | 1       | 50        | 22.47                 | 22.44                 | 22.46                 | 22.60                 | 22.23                 | 0                            | 0        |
|            | 1       | 99        | 22.30                 | 22.19                 | 22.19                 | 22.27                 | 22.10                 |                              | 0        |
| QPSK       | 50      | 0         | 22.27                 | 22.41                 | 22.36                 | 22.53                 | 22.43                 |                              | 0        |
|            | 50      | 25        | 22.38                 | 22.46                 | 22.43                 | 22.41                 | 22.47                 | 0-1                          | 0        |
|            | 50      | 50        | 22.39                 | 22.41                 | 22.33                 | 22.30                 | 22.40                 | 0-1                          | 0        |
|            | 100     | 0         | 22.36                 | 22.43                 | 22.36                 | 22.35                 | 22.40                 | 1                            | 0        |
|            | 1       | 0         | 22.28                 | 22.35                 | 22.37                 | 22.27                 | 22.42                 | 0-1                          | 0        |
|            | 1       | 50        | 22.53                 | 22.64                 | 22.52                 | 22.02                 | 22.13                 |                              | 0        |
|            | 1       | 99        | 22.35                 | 22.35                 | 22.33                 | 21.82                 | 22.41                 |                              | 0        |
| 16QAM      | 50      | 0         | 22.37                 | 22.57                 | 22.40                 | 22.46                 | 22.43                 |                              | 0        |
|            | 50      | 25        | 22.48                 | 22.54                 | 22.49                 | 22.47                 | 22.41                 | 0-2                          | 0        |
|            | 50      | 50        | 22.49                 | 22.52                 | 22.48                 | 22.38                 | 22.34                 | 0-2                          | 0        |
|            | 100     | 0         | 22.39                 | 22.56                 | 22.38                 | 22.46                 | 22.38                 |                              | 0        |
|            | 1       | 0         | 22.43                 | 22.55                 | 22.32                 | 22.51                 | 22.58                 |                              | 0        |
|            | 1       | 50        | 22.70                 | 22.69                 | 22.53                 | 22.55                 | 22.70                 | 0-2                          | 0        |
|            | 1       | 99        | 22.47                 | 22.56                 | 22.36                 | 22.44                 | 22.45                 |                              | 0        |
| 64QAM      | 50      | 0         | 21.70                 | 21.51                 | 21.36                 | 21.41                 | 21.42                 |                              | 1        |
|            | 50      | 25        | 21.49                 | 21.52                 | 21.42                 | 21.42                 | 21.42                 | 0-3                          | 1        |
|            | 50      | 50        | 21.45                 | 21.44                 | 21.32                 | 21.32                 | 21.32                 | ] 0-3                        | 1        |
|            | 100     | 0         | 21.45                 | 21.53                 | 21.34                 | 21.42                 | 21.42                 |                              | 1        |

**Table 9-50** rated Devices - 45 MHz Developidth

|            |                              | LIE       | : Band 41 R           | educed Con            |                       | vers - 15 MH          | z Bandwidi            | n                            |          |  |  |  |
|------------|------------------------------|-----------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|------------------------------|----------|--|--|--|
|            | LTE Band 41 15 MHz Bandwidth |           |                       |                       |                       |                       |                       |                              |          |  |  |  |
|            |                              |           | Low Channel           | Low-Mid Channel       | Mid Channel           | Mid-High Channel      | High Channel          |                              |          |  |  |  |
| Modulation | RB Size                      | RB Offset | 39750<br>(2506.0 MHz) | 40185<br>(2549.5 MHz) | 40620<br>(2593.0 MHz) | 41055<br>(2636.5 MHz) | 41490<br>(2680.0 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |  |  |  |
|            |                              |           |                       | Co                    | nducted Power [dE     | Bm]                   |                       | 1                            |          |  |  |  |
|            | 1                            | 0         | 22.44                 | 22.40                 | 22.23                 | 22.42                 | 22.26                 |                              | 0        |  |  |  |
|            | 1                            | 36        | 22.63                 | 22.55                 | 22.38                 | 22.47                 | 22.34                 | 0                            | 0        |  |  |  |
|            | 1                            | 74        | 22.47                 | 22.45                 | 22.26                 | 22.39                 | 22.20                 |                              | 0        |  |  |  |
| QPSK       | 36                           | 0         | 22.51                 | 22.45                 | 22.40                 | 22.50                 | 22.37                 |                              | 0        |  |  |  |
|            | 36                           | 18        | 22.53                 | 22.46                 | 22.42                 | 22.51                 | 22.41                 | 0-1                          | 0        |  |  |  |
|            | 36                           | 37        | 22.57                 | 22.42                 | 22.37                 | 22.49                 | 22.38                 |                              | 0        |  |  |  |
|            | 75                           | 0         | 22.53                 | 22.43                 | 22.37                 | 22.53                 | 22.38                 |                              | 0        |  |  |  |
|            | 1                            | 0         | 22.46                 | 22.24                 | 22.16                 | 22.35                 | 22.13                 |                              | 0        |  |  |  |
|            | 1                            | 36        | 22.51                 | 22.33                 | 22.32                 | 22.43                 | 22.14                 | 0-1                          | 0        |  |  |  |
|            | 1                            | 74        | 22.48                 | 22.28                 | 22.16                 | 22.36                 | 22.04                 |                              | 0        |  |  |  |
| 16QAM      | 36                           | 0         | 22.57                 | 22.47                 | 22.35                 | 22.52                 | 22.30                 |                              | 0        |  |  |  |
|            | 36                           | 18        | 22.54                 | 22.43                 | 22.35                 | 22.51                 | 22.35                 | 0-2                          | 0        |  |  |  |
|            | 36                           | 37        | 22.59                 | 22.41                 | 22.32                 | 22.51                 | 22.32                 | 0-2                          | 0        |  |  |  |
|            | 75                           | 0         | 22.55                 | 22.48                 | 22.34                 | 22.52                 | 22.34                 |                              | 0        |  |  |  |
|            | 1                            | 0         | 22.46                 | 22.24                 | 22.22                 | 22.28                 | 22.22                 |                              | 0        |  |  |  |
|            | 1                            | 36        | 22.46                 | 22.41                 | 22.39                 | 22.40                 | 22.28                 | 0-2                          | 0        |  |  |  |
|            | 1                            | 74        | 22.62                 | 22.25                 | 22.20                 | 22.28                 | 22.17                 |                              | 0        |  |  |  |
| 64QAM      | 36                           | 0         | 21.55                 | 21.45                 | 21.32                 | 21.53                 | 21.32                 |                              | 1        |  |  |  |
|            | 36                           | 18        | 21.61                 | 21.45                 | 21.35                 | 21.51                 | 21.37                 | 0-3                          | 1        |  |  |  |
|            | 36                           | 37        | 21.55                 | 21.41                 | 21.37                 | 21.49                 | 21.35                 | 0-3                          | 1        |  |  |  |
|            | 75                           | 0         | 21.51                 | 21.40                 | 21.36                 | 21.50                 | 21.38                 |                              | 1        |  |  |  |

| FCC ID: ZNFL455DL      | PCTEST*                 | SAR EVALUATION REPORT | Approved by:  Quality Manager |
|------------------------|-------------------------|-----------------------|-------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:             | D 57 100                      |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset      | Page 57 of 129                |

**Table 9-51** LTE Band 41 Reduced Conducted Powers - 10 MHz Bandwidth

|            |         |           | - Dana Frik           | caacca oon            | LTE Band 41           | vers - 10 ivin        | Z Barrawiai           |                              |          |
|------------|---------|-----------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|------------------------------|----------|
|            | 1       |           | I                     | 1                     | 0 MHz Bandwidth       | 1                     |                       |                              |          |
|            |         |           | Low Channel           | Low-Mid Channel       | Mid Channel           | Mid-High Channel      | High Channel          |                              |          |
| Modulation | RB Size | RB Offset | 39750<br>(2506.0 MHz) | 40185<br>(2549.5 MHz) | 40620<br>(2593.0 MHz) | 41055<br>(2636.5 MHz) | 41490<br>(2680.0 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |
|            |         |           |                       | Co                    | nducted Power [dB     | Bm]                   |                       |                              |          |
|            | 1       | 0         | 22.62                 | 22.55                 | 22.41                 | 22.46                 | 22.29                 |                              | 0        |
|            | 1       | 25        | 22.68                 | 22.61                 | 22.51                 | 22.58                 | 22.37                 | 0                            | 0        |
|            | 1       | 49        | 22.59                 | 22.48                 | 22.38                 | 22.42                 | 22.25                 |                              | 0        |
| QPSK       | 25      | 0         | 22.68                 | 22.58                 | 22.53                 | 22.62                 | 22.43                 |                              | 0        |
|            | 25      | 12        | 22.67                 | 22.57                 | 22.52                 | 22.59                 | 22.41                 | 0-1                          | 0        |
|            | 25      | 25        | 22.68                 | 22.55                 | 22.50                 | 22.56                 | 22.41                 | ]                            | 0        |
|            | 50      | 0         | 22.66                 | 22.60                 | 22.51                 | 22.57                 | 22.44                 |                              | 0        |
|            | 1       | 0         | 22.50                 | 22.36                 | 22.28                 | 22.45                 | 22.50                 |                              | 0        |
|            | 1       | 25        | 22.66                 | 22.53                 | 22.45                 | 22.40                 | 22.66                 | 0-1                          | 0        |
|            | 1       | 49        | 22.51                 | 22.39                 | 22.36                 | 22.41                 | 22.47                 |                              | 0        |
| 16QAM      | 25      | 0         | 22.66                 | 22.66                 | 22.59                 | 22.66                 | 22.46                 |                              | 0        |
|            | 25      | 12        | 22.70                 | 22.64                 | 22.61                 | 22.64                 | 22.46                 | 0-2                          | 0        |
|            | 25      | 25        | 22.69                 | 22.70                 | 22.53                 | 22.62                 | 22.47                 | 0-2                          | 0        |
|            | 50      | 0         | 22.66                 | 22.63                 | 22.55                 | 22.63                 | 22.43                 |                              | 0        |
|            | 1       | 0         | 22.44                 | 22.31                 | 22.37                 | 22.39                 | 22.46                 |                              | 0        |
|            | 1       | 25        | 22.68                 | 22.51                 | 22.56                 | 22.61                 | 22.48                 | 0-2                          | 0        |
|            | 1       | 49        | 22.46                 | 22.31                 | 22.38                 | 22.36                 | 22.46                 |                              | 0        |
| 64QAM      | 25      | 0         | 21.68                 | 21.60                 | 21.53                 | 21.62                 | 21.43                 |                              | 1        |
|            | 25      | 12        | 21.66                 | 21.56                 | 21.50                 | 21.58                 | 21.43                 | 0-3                          | 1        |
|            | 25      | 25        | 21.70                 | 21.53                 | 21.49                 | 21.54                 | 21.45                 |                              | 1        |
|            | 50      | 0         | 21.63                 | 21.53                 | 21.46                 | 21.54                 | 21.46                 |                              | 1        |

**Table 9-52** LTE Band 41 Reduced Conducted Powers - 5 MHz Bandwidth

|            |         | <u> </u>  | L Dana Ti i           | reduced COI           | LTE Band 41           | wers - 5 Min          | <u> Danawiati</u>     | <b> </b>                     |          |
|------------|---------|-----------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|------------------------------|----------|
|            |         |           |                       |                       | MHz Bandwidth         |                       |                       |                              |          |
|            |         |           | Low Channel           | Low-Mid Channel       | Mid Channel           | Mid-High Channel      | High Channel          |                              |          |
| Modulation | RB Size | RB Offset | 39750<br>(2506.0 MHz) | 40185<br>(2549.5 MHz) | 40620<br>(2593.0 MHz) | 41055<br>(2636.5 MHz) | 41490<br>(2680.0 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |
|            |         |           |                       | Co                    | nducted Power [dB     | Bm]                   |                       |                              |          |
|            | 1       | 0         | 22.55                 | 22.36                 | 22.28                 | 22.36                 | 22.26                 |                              | 0        |
|            | 1       | 12        | 22.67                 | 22.58                 | 22.53                 | 22.60                 | 22.50                 | 0                            | 0        |
|            | 1       | 24        | 22.58                 | 22.45                 | 22.39                 | 22.51                 | 22.28                 |                              | 0        |
| QPSK       | 12      | 0         | 22.61                 | 22.50                 | 22.41                 | 22.51                 | 22.34                 |                              | 0        |
|            | 12      | 6         | 22.68                 | 22.55                 | 22.46                 | 22.56                 | 22.35                 | 0-1                          | 0        |
|            | 12      | 13        | 22.67                 | 22.52                 | 22.42                 | 22.52                 | 22.35                 | 0-1                          | 0        |
|            | 25      | 0         | 22.64                 | 22.48                 | 22.43                 | 22.51                 | 22.34                 | 0-1                          | 0        |
|            | 1       | 0         | 22.69                 | 22.61                 | 22.58                 | 22.53                 | 22.45                 |                              | 0        |
|            | 1       | 12        | 22.62                 | 22.64                 | 22.54                 | 22.70                 | 22.69                 |                              | 0        |
|            | 1       | 24        | 22.64                 | 22.52                 | 22.43                 | 22.49                 | 22.39                 |                              | 0        |
| 16QAM      | 12      | 0         | 22.65                 | 22.64                 | 22.52                 | 22.51                 | 22.36                 |                              | 0        |
|            | 12      | 6         | 22.65                 | 22.55                 | 22.45                 | 22.51                 | 22.40                 | 0-2                          | 0        |
|            | 12      | 13        | 22.65                 | 22.60                 | 22.51                 | 22.52                 | 22.39                 | 0-2                          | 0        |
|            | 25      | 0         | 22.61                 | 22.55                 | 22.45                 | 22.48                 | 22.29                 |                              | 0        |
|            | 1       | 0         | 22.35                 | 22.26                 | 22.25                 | 22.25                 | 22.15                 |                              | 0        |
|            | 1       | 12        | 22.70                 | 22.69                 | 22.70                 | 22.67                 | 22.67                 | 0-2                          | 0        |
|            | 1       | 24        | 22.52                 | 22.26                 | 22.20                 | 22.24                 | 22.12                 |                              | 0        |
| 64QAM      | 12      | 0         | 21.50                 | 21.47                 | 21.39                 | 21.45                 | 21.26                 |                              | 1        |
|            | 12      | 6         | 21.61                 | 21.42                 | 21.44                 | 21.50                 | 21.31                 | 0-3                          | 1        |
|            | 12      | 13        | 21.57                 | 21.40                 | 21.35                 | 21.39                 | 21.26                 | 0-3                          | 1        |
|            | 25      | 0         | 21.68                 | 21.60                 | 21.47                 | 21.58                 | 21.42                 |                              | 1        |

| FCC ID: ZNFL455DL      | PCTEST:                 | SAR EVALUATION REPORT LG | Approved by: Quality Manager |
|------------------------|-------------------------|--------------------------|------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:                | Dogg 50 of 120               |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset         | Page 58 of 129               |

**Table 9-53** LTE Band 41 PC2 Maximum Conducted Powers - 20 MHz Bandwidth

|            |         |           |                       | 2                     | LTE Band 41<br>0 MHz Bandwidth |                       |                       |                              |          |
|------------|---------|-----------|-----------------------|-----------------------|--------------------------------|-----------------------|-----------------------|------------------------------|----------|
|            |         |           | Low Channel           | Low-Mid Channel       | Mid Channel                    | Mid-High Channel      | High Channel          |                              |          |
| Modulation | RB Size | RB Offset | 39750<br>(2506.0 MHz) | 40185<br>(2549.5 MHz) | 40620<br>(2593.0 MHz)          | 41055<br>(2636.5 MHz) | 41490<br>(2680.0 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |
|            |         |           |                       | Co                    | nducted Power [dB              | Bm]                   |                       | 1                            |          |
| •          | 1       | 0         | 26.43                 | 26.51                 | 26.56                          | 26.62                 | 26.48                 |                              | 0        |
|            | 1       | 50        | 26.79                 | 26.74                 | 26.74                          | 26.85                 | 26.60                 | 0                            | 0        |
|            | 1       | 99        | 26.58                 | 26.47                 | 26.54                          | 26.80                 | 26.38                 |                              | 0        |
| QPSK       | 50      | 0         | 25.64                 | 25.76                 | 25.70                          | 25.80                 | 25.59                 |                              | 1        |
|            | 50      | 25        | 25.72                 | 25.75                 | 25.66                          | 25.77                 | 25.61                 | 0-1                          | 1        |
|            | 50      | 50        | 25.68                 | 25.73                 | 25.65                          | 25.73                 | 25.51                 | - 01                         | 1        |
|            | 100     | 0         | 25.63                 | 25.73                 | 25.69                          | 25.79                 | 25.51                 |                              | 1        |
|            | 1       | 0         | 25.48                 | 25.83                 | 25.74                          | 25.72                 | 25.91                 |                              | 1        |
|            | 1       | 50        | 25.75                 | 25.94                 | 25.93                          | 25.81                 | 25.87                 | 0-1                          | 1        |
|            | 1       | 99        | 25.66                 | 25.74                 | 25.76                          | 25.69                 | 25.81                 |                              | 1        |
| 16QAM      | 50      | 0         | 24.57                 | 24.80                 | 24.72                          | 24.78                 | 24.58                 |                              | 2        |
|            | 50      | 25        | 24.67                 | 24.89                 | 24.70                          | 24.79                 | 24.64                 | 0-2                          | 2        |
|            | 50      | 50        | 24.68                 | 24.71                 | 24.65                          | 24.75                 | 24.53                 | 0-2                          | 2        |
|            | 100     | 0         | 24.59                 | 24.77                 | 24.74                          | 24.81                 | 24.65                 |                              | 2        |
|            | 1       | 0         | 24.76                 | 24.73                 | 24.71                          | 24.98                 | 24.34                 |                              | 2        |
|            | 1       | 50        | 24.91                 | 25.00                 | 24.96                          | 24.94                 | 24.48                 | 0-2                          | 2        |
|            | 1       | 99        | 24.92                 | 24.72                 | 24.73                          | 24.91                 | 24.26                 |                              | 2        |
| 64QAM      | 50      | 0         | 23.56                 | 23.85                 | 23.74                          | 23.79                 | 23.65                 |                              | 3        |
|            | 50      | 25        | 23.67                 | 23.85                 | 23.77                          | 23.79                 | 23.63                 | 0-3                          | 3        |
|            | 50      | 50        | 23.69                 | 23.77                 | 23.70                          | 23.72                 | 23.54                 | 0-3                          | 3        |
|            | 100     | 0         | 23.61                 | 23.82                 | 23.77                          | 23.78                 | 23.61                 |                              | 3        |

Table 9-54 LTE Band 41 PC2 Maximum Conducted Powers - 15 MHz Bandwidth

|            |         | LIED      | aliu 41 FCZ           | Waxiiiiuiii C         | LTE Band 41           | owers - 15            | VITIZ Balluw          | idui                         |          |
|------------|---------|-----------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|------------------------------|----------|
|            |         |           |                       | 1:                    | 5 MHz Bandwidth       |                       |                       |                              |          |
|            |         |           | Low Channel           | Low-Mid Channel       | Mid Channel           | Mid-High Channel      | High Channel          |                              |          |
| Modulation | RB Size | RB Offset | 39750<br>(2506.0 MHz) | 40185<br>(2549.5 MHz) | 40620<br>(2593.0 MHz) | 41055<br>(2636.5 MHz) | 41490<br>(2680.0 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |
|            |         |           |                       | Co                    | nducted Power [dB     | m]                    |                       |                              |          |
|            | 1       | 0         | 26.70                 | 26.68                 | 26.84                 | 26.75                 | 26.70                 |                              | 0        |
|            | 1       | 36        | 26.81                 | 26.78                 | 26.88                 | 26.86                 | 26.76                 | 0                            | 0        |
|            | 1       | 74        | 26.75                 | 26.66                 | 26.78                 | 26.75                 | 26.61                 |                              | 0        |
| QPSK       | 36      | 0         | 25.79                 | 25.83                 | 25.94                 | 25.95                 | 25.96                 |                              | 1        |
|            | 36      | 18        | 25.85                 | 25.85                 | 25.93                 | 25.98                 | 25.85                 | 0-1                          | 1        |
|            | 36      | 37        | 25.84                 | 25.83                 | 25.94                 | 25.94                 | 25.83                 | 0-1                          | 1        |
|            | 75      | 0         | 25.84                 | 25.83                 | 25.94                 | 25.98                 | 25.93                 |                              | 1        |
|            | 1       | 0         | 25.88                 | 25.92                 | 25.97                 | 25.93                 | 25.94                 |                              | 1        |
|            | 1       | 36        | 25.99                 | 25.97                 | 26.05                 | 26.00                 | 25.92                 | 0-1                          | 1        |
|            | 1       | 74        | 25.92                 | 25.87                 | 25.95                 | 25.90                 | 25.83                 |                              | 1        |
| 16QAM      | 36      | 0         | 24.78                 | 24.79                 | 24.81                 | 24.90                 | 24.79                 |                              | 2        |
|            | 36      | 18        | 24.83                 | 24.82                 | 24.84                 | 24.99                 | 24.78                 | 0-2                          | 2        |
|            | 36      | 37        | 24.83                 | 24.77                 | 24.85                 | 24.91                 | 24.76                 | 0-2                          | 2        |
|            | 75      | 0         | 24.81                 | 24.79                 | 24.85                 | 24.97                 | 24.75                 |                              | 2        |
|            | 1       | 0         | 24.89                 | 24.88                 | 25.15                 | 24.94                 | 24.91                 |                              | 2        |
|            | 1       | 36        | 24.97                 | 25.18                 | 25.17                 | 25.06                 | 25.15                 | 0-2                          | 2        |
|            | 1       | 74        | 24.87                 | 24.80                 | 25.14                 | 24.96                 | 24.79                 |                              | 2        |
| 64QAM      | 36      | 0         | 23.82                 | 23.83                 | 23.87                 | 23.93                 | 23.81                 |                              | 3        |
|            | 36      | 18        | 23.84                 | 23.84                 | 23.88                 | 23.93                 | 23.80                 | 0-3                          | 3        |
|            | 36      | 37        | 23.86                 | 23.81                 | 23.89                 | 23.91                 | 23.77                 | J 0-3                        | 3        |
|            | 75      | 0         | 23.83                 | 23.81                 | 23.99                 | 23.92                 | 23.79                 |                              | 3        |

| FCC ID: ZNFL455DL      | PCTEST:                 | SAR EVALUATION REPORT LG | Approved by: Quality Manager |
|------------------------|-------------------------|--------------------------|------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:                | Dogg 50 of 120               |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset         | Page 59 of 129               |

**Table 9-55** LTE Band 41 PC2 Maximum Conducted Powers - 10 MHz Bandwidth

|            |         |           |                       | 1                     | LTE Band 41<br>0 MHz Bandwidth |                       |                       |                              |          |
|------------|---------|-----------|-----------------------|-----------------------|--------------------------------|-----------------------|-----------------------|------------------------------|----------|
|            |         |           | Low Channel           | Low-Mid Channel       | Mid Channel                    | Mid-High Channel      | High Channel          |                              |          |
| Modulation | RB Size | RB Offset | 39750<br>(2506.0 MHz) | 40185<br>(2549.5 MHz) | 40620<br>(2593.0 MHz)          | 41055<br>(2636.5 MHz) | 41490<br>(2680.0 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |
|            |         |           |                       | Co                    | nducted Power [dB              | m]                    |                       |                              |          |
|            | 1       | 0         | 26.92                 | 26.80                 | 26.87                          | 26.95                 | 26.87                 |                              | 0        |
|            | 1       | 25        | 26.99                 | 26.86                 | 26.92                          | 26.96                 | 26.93                 | 0                            | 0        |
|            | 1       | 49        | 26.94                 | 26.77                 | 26.88                          | 26.91                 | 26.77                 |                              | 0        |
| QPSK       | 25      | 0         | 25.91                 | 25.90                 | 25.97                          | 26.02                 | 25.84                 |                              | 1        |
|            | 25      | 12        | 25.93                 | 25.89                 | 25.92                          | 26.03                 | 25.85                 | 0-1                          | 1        |
|            | 25      | 25        | 25.91                 | 25.89                 | 25.94                          | 26.01                 | 25.81                 | ]                            | 1        |
|            | 50      | 0         | 25.87                 | 25.89                 | 25.96                          | 26.04                 | 25.82                 |                              | 1        |
|            | 1       | 0         | 26.17                 | 26.03                 | 26.11                          | 26.18                 | 26.15                 |                              | 1        |
|            | 1       | 25        | 26.18                 | 26.16                 | 26.14                          | 26.20                 | 26.18                 | 0-1                          | 1        |
|            | 1       | 49        | 26.01                 | 25.99                 | 26.10                          | 26.14                 | 26.19                 |                              | 1        |
| 16QAM      | 25      | 0         | 24.97                 | 24.98                 | 25.05                          | 25.09                 | 24.92                 |                              | 2        |
|            | 25      | 12        | 24.97                 | 24.95                 | 25.00                          | 25.14                 | 24.89                 | 0-2                          | 2        |
|            | 25      | 25        | 24.97                 | 24.92                 | 24.99                          | 25.05                 | 24.88                 | ] 0-2                        | 2        |
|            | 50      | 0         | 24.96                 | 24.93                 | 24.98                          | 25.06                 | 24.87                 |                              | 2        |
|            | 1       | 0         | 25.10                 | 24.99                 | 25.07                          | 25.14                 | 25.04                 |                              | 2        |
|            | 1       | 25        | 25.19                 | 25.13                 | 25.19                          | 25.16                 | 25.12                 | 0-2                          | 2        |
|            | 1       | 49        | 25.08                 | 24.97                 | 25.07                          | 25.13                 | 24.98                 |                              | 2        |
| 64QAM      | 25      | 0         | 23.90                 | 23.97                 | 24.04                          | 24.10                 | 23.81                 |                              | 3        |
|            | 25      | 12        | 23.90                 | 23.97                 | 24.00                          | 24.04                 | 23.77                 | 0-3                          | 3        |
|            | 25      | 25        | 23.88                 | 23.95                 | 23.98                          | 24.02                 | 23.75                 | ] 0.3                        | 3        |
|            | 50      | 0         | 23.93                 | 23.93                 | 23.97                          | 24.00                 | 23.81                 |                              | 3        |

**Table 9-56** LTE Band 41 PC2 Maximum Conducted Powers - 5 MHz Bandwidth

|            |         |           | Juliu +1 1 02         | · Maxillalli          | LTE Band 41           | rowers - 3 ii         | IIIZ Ballaw           | ideri                        |          |
|------------|---------|-----------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|------------------------------|----------|
|            |         |           |                       |                       | MHz Bandwidth         |                       |                       |                              |          |
|            |         |           | Low Channel           | Low-Mid Channel       | Mid Channel           | Mid-High Channel      | High Channel          |                              |          |
| Modulation | RB Size | RB Offset | 39750<br>(2506.0 MHz) | 40185<br>(2549.5 MHz) | 40620<br>(2593.0 MHz) | 41055<br>(2636.5 MHz) | 41490<br>(2680.0 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |
|            |         |           |                       | Co                    | nducted Power [dB     | Bm]                   |                       |                              |          |
|            | 1       | 0         | 26.74                 | 26.76                 | 26.86                 | 26.87                 | 26.71                 |                              | 0        |
|            | 1       | 12        | 27.03                 | 27.00                 | 26.84                 | 27.12                 | 26.93                 | 0                            | 0        |
|            | 1       | 24        | 26.84                 | 26.76                 | 26.85                 | 26.93                 | 26.73                 |                              | 0        |
| QPSK       | 12      | 0         | 25.87                 | 25.88                 | 25.93                 | 26.04                 | 25.84                 |                              | 1        |
|            | 12      | 6         | 25.90                 | 25.90                 | 25.97                 | 26.07                 | 25.87                 | 0-1                          | 1        |
|            | 12      | 13        | 25.87                 | 25.88                 | 25.90                 | 26.04                 | 25.83                 | 0-1                          | 1        |
|            | 25      | 0         | 25.88                 | 25.86                 | 25.95                 | 26.06                 | 25.85                 |                              | 1        |
|            | 1       | 0         | 26.03                 | 26.08                 | 26.19                 | 26.20                 | 26.10                 |                              | 1        |
|            | 1       | 12        | 26.12                 | 26.12                 | 26.20                 | 26.17                 | 26.07                 | 0-1                          | 1        |
|            | 1       | 24        | 26.03                 | 26.16                 | 26.15                 | 26.03                 | 26.03                 |                              | 1        |
| 16QAM      | 12      | 0         | 24.84                 | 24.86                 | 24.92                 | 25.04                 | 24.83                 |                              | 2        |
|            | 12      | 6         | 24.92                 | 24.93                 | 25.01                 | 25.06                 | 24.91                 | 0-2                          | 2        |
|            | 12      | 13        | 24.88                 | 24.87                 | 24.92                 | 25.05                 | 24.85                 | 0-2                          | 2        |
|            | 25      | 0         | 24.82                 | 24.82                 | 25.01                 | 24.98                 | 24.78                 |                              | 2        |
|            | 1       | 0         | 25.02                 | 25.00                 | 25.12                 | 25.13                 | 25.02                 |                              | 2        |
|            | 1       | 12        | 25.15                 | 25.14                 | 25.20                 | 25.16                 | 25.04                 | 0-2                          | 2        |
|            | 1       | 24        | 25.05                 | 24.97                 | 25.10                 | 25.15                 | 25.01                 |                              | 2        |
| 64QAM      | 12      | 0         | 23.84                 | 23.84                 | 24.01                 | 23.98                 | 23.74                 | ] [                          | 3        |
|            | 12      | 6         | 23.88                 | 23.89                 | 24.08                 | 24.02                 | 23.77                 | 0-3                          | 3        |
|            | 12      | 13        | 23.82                 | 23.85                 | 24.01                 | 23.95                 | 23.73                 |                              | 3        |
|            | 25      | 0         | 23.95                 | 24.00                 | 23.96                 | 24.11                 | 23.86                 |                              | 3        |

| FCC ID: ZNFL455DL      | PCTEST'                 | SAR EVALUATION REPORT LG | Approved by:  Quality Manager |
|------------------------|-------------------------|--------------------------|-------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:                | Daga 60 of 120                |
| 1M1911290211-01-R2.ZNF | 12/05/2019 – 01/16/2020 | Portable Handset         | Page 60 of 129                |

**Table 9-57** LTE Band 41 PC2 Reduced Conducted Powers - 20 MHz Bandwidth

|            |         |           | and 411 02            | . Neduced C           | LTE Band 41           | owers - 20 i          | iii iz Bailaw         | idii                         |          |
|------------|---------|-----------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|------------------------------|----------|
|            |         |           |                       |                       | 0 MHz Bandwidth       |                       |                       |                              |          |
|            |         |           | Low Channel           | Low-Mid Channel       | Mid Channel           | Mid-High Channel      | High Channel          |                              |          |
| Modulation | RB Size | RB Offset | 39750<br>(2506.0 MHz) | 40185<br>(2549.5 MHz) | 40620<br>(2593.0 MHz) | 41055<br>(2636.5 MHz) | 41490<br>(2680.0 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |
|            |         |           |                       | Co                    | nducted Power [dB     | Bm]                   |                       | 1                            |          |
|            | 1       | 0         | 24.56                 | 24.62                 | 24.66                 | 24.60                 | 24.68                 |                              | 0        |
|            | 1       | 50        | 24.80                 | 24.83                 | 24.83                 | 24.84                 | 24.81                 | 0                            | 0        |
|            | 1       | 99        | 24.69                 | 24.63                 | 24.68                 | 24.58                 | 24.64                 |                              | 0        |
| QPSK       | 50      | 0         | 24.67                 | 24.91                 | 24.76                 | 24.97                 | 24.80                 |                              | 0        |
|            | 50      | 25        | 24.86                 | 24.91                 | 24.75                 | 24.92                 | 24.75                 | 0-1                          | 0        |
|            | 50      | 50        | 24.91                 | 24.85                 | 24.75                 | 24.79                 | 24.67                 | 0-1                          | 0        |
|            | 100     | 0         | 24.76                 | 24.83                 | 24.72                 | 24.82                 | 24.75                 |                              | 0        |
|            | 1       | 0         | 24.99                 | 24.83                 | 25.01                 | 24.86                 | 25.13                 |                              | 0        |
|            | 1       | 50        | 25.20                 | 25.05                 | 25.20                 | 24.99                 | 25.16                 | 0-1                          | 0        |
|            | 1       | 99        | 25.17                 | 24.91                 | 25.01                 | 24.82                 | 24.98                 |                              | 0        |
| 16QAM      | 50      | 0         | 24.79                 | 24.92                 | 24.78                 | 24.94                 | 24.57                 |                              | 0        |
|            | 50      | 25        | 24.91                 | 24.96                 | 24.82                 | 24.89                 | 24.58                 | 0-2                          | 0        |
|            | 50      | 50        | 24.91                 | 24.94                 | 24.74                 | 24.84                 | 24.54                 | 0-2                          | 0        |
|            | 100     | 0         | 24.82                 | 24.93                 | 24.76                 | 24.92                 | 24.56                 |                              | 0        |
|            | 1       | 0         | 24.41                 | 25.16                 | 24.49                 | 25.10                 | 24.98                 |                              | 0        |
|            | 1       | 50        | 24.79                 | 25.20                 | 24.68                 | 25.20                 | 25.19                 | 0-2                          | 0        |
|            | 1       | 99        | 24.56                 | 25.19                 | 24.47                 | 25.15                 | 24.89                 |                              | 0        |
| 64QAM      | 50      | 0         | 23.79                 | 24.00                 | 23.79                 | 23.96                 | 23.63                 |                              | 1        |
|            | 50      | 25        | 23.89                 | 24.03                 | 23.79                 | 23.94                 | 23.66                 | 0-3                          | 1        |
|            | 50      | 50        | 23.94                 | 23.96                 | 23.73                 | 23.89                 | 23.55                 | 0-3                          | 1        |
|            | 100     | 0         | 23.84                 | 23.98                 | 23.78                 | 23.94                 | 23.59                 | 1                            | 1        |

**Table 9-58** LTE Rand 41 PC2 Reduced Conducted Powers - 15 MHz Bandwidth

|            |         | LIEB    | and 41 PC2  | Reduced C       |                                | owers - 15 N          | IHZ Bandw             | iatn                  |                       |                              |
|------------|---------|---------|-------------|-----------------|--------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|------------------------------|
|            |         |         |             | 4               | LTE Band 41<br>5 MHz Bandwidth |                       |                       |                       |                       |                              |
|            |         | I       |             |                 |                                |                       |                       |                       |                       |                              |
|            | RB Size |         | Low Channel | Low-Mid Channel | Mid Channel                    | Mid-High Channel      | High Channel          |                       |                       |                              |
| Modulation |         | RB Size | RB Size     | RB Offset       | 39750<br>(2506.0 MHz)          | 40185<br>(2549.5 MHz) | 40620<br>(2593.0 MHz) | 41055<br>(2636.5 MHz) | 41490<br>(2680.0 MHz) | MPR Allowed per<br>3GPP [dB] |
|            |         |         |             | Co              | nducted Power [dE              | Bm]                   |                       | 1                     |                       |                              |
|            | 1       | 0       | 24.77       | 24.85           | 24.81                          | 24.85                 | 24.71                 |                       | 0                     |                              |
|            | 1       | 36      | 24.98       | 24.89           | 24.94                          | 24.93                 | 24.81                 | 0                     | 0                     |                              |
|            | 1       | 74      | 24.84       | 24.81           | 24.82                          | 24.87                 | 24.71                 |                       | 0                     |                              |
| QPSK       | 36      | 0       | 24.92       | 24.96           | 24.90                          | 24.92                 | 24.79                 |                       | 0                     |                              |
|            | 36      | 18      | 24.96       | 24.96           | 24.88                          | 24.91                 | 24.81                 | 0-1                   | 0                     |                              |
|            | 36      | 37      | 24.98       | 24.90           | 24.86                          | 24.91                 | 24.79                 | 0-1                   | 0                     |                              |
|            | 75      | 0       | 24.95       | 24.96           | 24.87                          | 24.99                 | 24.80                 |                       | 0                     |                              |
|            | 1       | 0       | 25.05       | 25.11           | 25.03                          | 25.09                 | 24.94                 |                       | 0                     |                              |
|            | 1       | 36      | 25.18       | 25.17           | 25.14                          | 25.17                 | 25.01                 | 0-1                   | 0                     |                              |
|            | 1       | 74      | 25.11       | 25.03           | 25.04                          | 25.07                 | 24.90                 |                       | 0                     |                              |
| 16QAM      | 36      | 0       | 24.89       | 24.95           | 24.87                          | 24.93                 | 24.76                 |                       | 0                     |                              |
|            | 36      | 18      | 24.95       | 24.93           | 24.87                          | 24.90                 | 24.80                 | 0-2                   | 0                     |                              |
|            | 36      | 37      | 24.95       | 24.90           | 24.86                          | 24.94                 | 24.73                 | 0-2                   | 0                     |                              |
|            | 75      | 0       | 24.89       | 24.93           | 24.84                          | 24.90                 | 24.76                 |                       | 0                     |                              |
|            | 1       | 0       | 25.04       | 25.04           | 25.01                          | 25.04                 | 24.87                 |                       | 0                     |                              |
|            | 1       | 36      | 25.15       | 25.08           | 25.09                          | 25.13                 | 24.94                 | 0-2                   | 0                     |                              |
|            | 1       | 74      | 25.05       | 24.95           | 25.01                          | 25.01                 | 24.83                 |                       | 0                     |                              |
| 64QAM      | 36      | 0       | 23.96       | 24.02           | 23.91                          | 23.94                 | 23.80                 |                       | 1                     |                              |
|            | 36      | 18      | 24.00       | 24.00           | 23.91                          | 23.91                 | 23.82                 | 0-3                   | 1                     |                              |
|            | 36      | 37      | 23.95       | 23.94           | 23.89                          | 23.98                 | 23.80                 |                       | 1                     |                              |
|            | 75      | 0       | 24.01       | 23.97           | 23.89                          | 23.96                 | 23.81                 |                       | 1                     |                              |

| FCC ID: ZNFL455DL          | PETEST.               | SAR EVALUATION REPORT | Approved by:  Quality Manager |
|----------------------------|-----------------------|-----------------------|-------------------------------|
| Document S/N:              | est Dates:            | DUT Type:             | Dogo 64 of 120                |
| 1M1911290211-01-R2.ZNF 12/ | /05/2019 – 01/16/2020 | Portable Handset      | Page 61 of 129                |

**Table 9-59** LTE Band 41 PC2 Reduced Conducted Powers - 10 MHz Bandwidth

|            |         |               |                       | 1                     | LTE Band 41<br>0 MHz Bandwidth |                       | III Danaw             |                              |          |
|------------|---------|---------------|-----------------------|-----------------------|--------------------------------|-----------------------|-----------------------|------------------------------|----------|
|            |         |               | Low Channel           | Low-Mid Channel       | Mid Channel                    | Mid-High Channel      | High Channel          |                              |          |
| Modulation | RB Size | ize RB Offset | 39750<br>(2506.0 MHz) | 40185<br>(2549.5 MHz) | 40620<br>(2593.0 MHz)          | 41055<br>(2636.5 MHz) | 41490<br>(2680.0 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |
|            |         |               |                       | Co                    | nducted Power [dB              | Bm]                   |                       | 1                            |          |
|            | 1       | 0             | 24.93                 | 24.81                 | 24.83                          | 24.89                 | 24.79                 |                              | 0        |
|            | 1       | 25            | 25.06                 | 24.87                 | 24.92                          | 24.95                 | 24.84                 | 0                            | 0        |
|            | 1       | 49            | 24.98                 | 24.78                 | 24.82                          | 24.85                 | 24.80                 | 1 Γ                          | 0        |
| QPSK       | 25      | 0             | 25.03                 | 24.96                 | 24.91                          | 25.01                 | 24.82                 |                              | 0        |
|            | 25      | 12            | 25.05                 | 24.98                 | 24.88                          | 24.96                 | 24.80                 | 0-1                          | 0        |
|            | 25      | 25            | 25.12                 | 24.94                 | 24.88                          | 24.95                 | 24.82                 | J 0-1 [                      | 0        |
|            | 50      | 0             | 25.05                 | 24.92                 | 24.88                          | 24.97                 | 24.81                 |                              | 0        |
|            | 1       | 0             | 25.20                 | 25.19                 | 25.19                          | 25.15                 | 24.99                 | 0-1                          | 0        |
|            | 1       | 25            | 25.20                 | 25.20                 | 25.20                          | 25.19                 | 25.15                 |                              | 0        |
|            | 1       | 49            | 25.15                 | 25.19                 | 25.19                          | 25.09                 | 24.99                 |                              | 0        |
| 16QAM      | 25      | 0             | 25.14                 | 25.07                 | 24.98                          | 25.08                 | 24.87                 |                              | 0        |
|            | 25      | 12            | 25.16                 | 25.06                 | 24.98                          | 25.05                 | 24.88                 | 0-2                          | 0        |
|            | 25      | 25            | 25.17                 | 25.03                 | 24.94                          | 25.05                 | 24.89                 | 0-2                          | 0        |
|            | 50      | 0             | 25.07                 | 25.01                 | 24.92                          | 25.02                 | 24.84                 |                              | 0        |
|            | 1       | 0             | 25.16                 | 25.09                 | 25.08                          | 25.09                 | 24.93                 |                              | 0        |
|            | 1       | 25            | 25.17                 | 25.17                 | 25.12                          | 25.16                 | 25.17                 | 0-2                          | 0        |
|            | 1       | 49            | 25.11                 | 25.09                 | 25.08                          | 25.05                 | 24.95                 |                              | 0        |
| 64QAM      | 25      | 0             | 24.11                 | 23.98                 | 23.91                          | 24.06                 | 23.87                 |                              | 1        |
|            | 25      | 12            | 24.10                 | 24.00                 | 23.89                          | 24.03                 | 23.82                 | 0-3                          | 1        |
|            | 25      | 25            | 24.13                 | 23.97                 | 23.88                          | 24.01                 | 23.86                 |                              | 1        |
|            | 50      | 0             | 24.06                 | 24.01                 | 23.90                          | 24.00                 | 23.84                 |                              | 1        |

**Table 9-60** LTE Band 41 PC2 Reduced Conducted Powers - 5 MHz Bandwidth

|            |         |           |                       | e itcaacca c          | LTE Band 41           | -OWEIS - J IV         | IIIZ Dallawi          | atti                         |          |
|------------|---------|-----------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|------------------------------|----------|
|            |         |           |                       | 5                     | MHz Bandwidth         |                       |                       |                              |          |
|            |         |           | Low Channel           | Low-Mid Channel       | Mid Channel           | Mid-High Channel      | High Channel          |                              |          |
| Modulation | RB Size | RB Offset | 39750<br>(2506.0 MHz) | 40185<br>(2549.5 MHz) | 40620<br>(2593.0 MHz) | 41055<br>(2636.5 MHz) | 41490<br>(2680.0 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |
|            |         |           |                       | Co                    | nducted Power [dB     | Bm]                   |                       |                              |          |
|            | 1       | 0         | 24.85                 | 24.73                 | 24.89                 | 24.63                 | 24.82                 |                              | 0        |
|            | 1       | 12        | 24.76                 | 24.81                 | 24.74                 | 24.87                 | 24.96                 | 0                            | 0        |
|            | 1       | 24        | 24.59                 | 24.77                 | 24.73                 | 24.62                 | 24.74                 |                              | 0        |
| QPSK       | 12      | 0         | 24.94                 | 25.00                 | 24.80                 | 24.75                 | 24.87                 |                              | 0        |
|            | 12      | 6         | 24.91                 | 24.95                 | 24.85                 | 24.81                 | 24.93                 | 0-1                          | 0        |
|            | 12      | 13        | 24.90                 | 25.00                 | 24.82                 | 24.74                 | 24.89                 | 0-1                          | 0        |
|            | 25      | 0         | 24.49                 | 25.05                 | 24.81                 | 24.78                 | 24.88                 |                              | 0        |
|            | 1       | 0         | 24.82                 | 24.92                 | 25.20                 | 24.97                 | 24.98                 |                              | 0        |
|            | 1       | 12        | 24.61                 | 24.85                 | 25.12                 | 25.18                 | 24.78                 | 0-1                          | 0        |
|            | 1       | 24        | 24.71                 | 24.72                 | 25.01                 | 24.93                 | 24.69                 |                              | 0        |
| 16QAM      | 12      | 0         | 24.97                 | 25.01                 | 24.79                 | 24.74                 | 24.90                 |                              | 0        |
|            | 12      | 6         | 24.89                 | 25.10                 | 24.87                 | 24.82                 | 24.97                 | 0-2                          | 0        |
|            | 12      | 13        | 24.80                 | 25.05                 | 24.83                 | 24.75                 | 24.90                 | 0-2                          | 0        |
|            | 25      | 0         | 24.59                 | 25.01                 | 24.74                 | 24.77                 | 24.84                 |                              | 0        |
|            | 1       | 0         | 25.09                 | 25.12                 | 25.02                 | 25.11                 | 24.98                 |                              | 0        |
|            | 1       | 12        | 25.01                 | 25.18                 | 25.00                 | 25.18                 | 25.20                 | 0-2                          | 0        |
|            | 1       | 24        | 24.59                 | 25.15                 | 25.06                 | 25.11                 | 25.11                 |                              | 0        |
| 64QAM      | 12      | 0         | 24.01                 | 24.02                 | 23.75                 | 23.81                 | 23.86                 |                              | 1        |
|            | 12      | 6         | 23.97                 | 24.03                 | 23.83                 | 23.86                 | 23.90                 | 0-3                          | 1        |
|            | 12      | 13        | 23.84                 | 23.96                 | 23.78                 | 23.78                 | 23.84                 | ]                            | 1        |
|            | 25      | 0         | 23.79                 | 24.16                 | 23.88                 | 23.81                 | 23.98                 |                              | 1        |

| SNG(HELESES CAROKATORY, INC. | SAR EVALUATION REPORT | Quality Manager |
|------------------------------|-----------------------|-----------------|
| Test Dates:                  | DUT Type:             | Dogg 62 of 120  |
| 12/05/2019 – 01/16/2020      | Portable Handset      | Page 62 of 129  |
|                              | est Dates:            |                 |

### 9.4.8 LTE Uplink Carrier Aggregation Conducted Powers

# Table 9-61 LTE B41 Uplink Carrier Aggregation Maximum Conducted Powers

|   |             |             |                           |                           |                                      |            |               | , .DD               | . 0940      |                           |                           |           |            | . •        | , o                 |                                          |                                            |
|---|-------------|-------------|---------------------------|---------------------------|--------------------------------------|------------|---------------|---------------------|-------------|---------------------------|---------------------------|-----------|------------|------------|---------------------|------------------------------------------|--------------------------------------------|
| ١ | PCC         |             |                           |                           | SCC                                  |            |               |                     |             |                           | Power                     |           |            |            |                     |                                          |                                            |
|   | Combination | PCC Band    | PCC<br>Bandwidth<br>[MHz] | PCC<br>(UL/DL)<br>Channel | PCC<br>(UL/DL)<br>Frequency<br>[MHz] | Modulation | PCC UL#<br>RB | PCC UL<br>RB Offset | SCC Band    | SCC<br>Bandwidth<br>[MHz] | SCC<br>(UL/DL)<br>Channel | Frequency | Modulation | SCC UL# RB | SCC UL RB<br>Offset | LTE Tx.Power with UL CA<br>Enabled (dBm) | LTE Single<br>Carrier Tx<br>Power<br>(dBm) |
| ſ | CA 41C      | LTE B41 PC3 | 20                        | 41055                     | 2636.5                               | QPSK       | 1             | 99                  | LTE B41 PC3 | 20                        | 41253                     | 2656.3    | QPSK       | 1          | 0                   | 24.52                                    | 24.60                                      |

|             | PCC         |                           |                           |                                      |            |   | scc                 |             |                           |                           |                                      |            | Power      |                     |                                          |                                            |
|-------------|-------------|---------------------------|---------------------------|--------------------------------------|------------|---|---------------------|-------------|---------------------------|---------------------------|--------------------------------------|------------|------------|---------------------|------------------------------------------|--------------------------------------------|
| Combination | PCC Band    | PCC<br>Bandwidth<br>[MHz] | PCC<br>(UL/DL)<br>Channel | PCC<br>(UL/DL)<br>Frequency<br>[MHz] | Modulation |   | PCC UL<br>RB Offset | SCC Band    | SCC<br>Bandwidth<br>[MHz] | SCC<br>(UL/DL)<br>Channel | SCC<br>(UL/DL)<br>Frequency<br>[MHz] | Modulation | SCC UL# RB | SCC UL RB<br>Offset | LTE Tx.Power with UL CA<br>Enabled (dBm) | LTE Single<br>Carrier Tx<br>Power<br>(dBm) |
| CA_41C      | LTE B41 PC2 | 20                        | 41055                     | 2636.5                               | QPSK       | 1 | 99                  | LTE B41 PC2 | 20                        | 41253                     | 2656.3                               | QPSK       | 1          | 0                   | 26.67                                    | 26.80                                      |

# Table 9-62 LTE B41 Uplink Carrier Aggregation Reduced Conducted Powers

|             |             |                           |                           |                                      |            |    | , 9                 |             |                           |                           | U. U . U .                           |            |            |                     |                                          |                                            |
|-------------|-------------|---------------------------|---------------------------|--------------------------------------|------------|----|---------------------|-------------|---------------------------|---------------------------|--------------------------------------|------------|------------|---------------------|------------------------------------------|--------------------------------------------|
| PCC         |             |                           |                           | SCC                                  |            |    |                     |             |                           | Power                     |                                      |            |            |                     |                                          |                                            |
| Combination | PCC Band    | PCC<br>Bandwidth<br>[MHz] | PCC<br>(UL/DL)<br>Channel | PCC<br>(UL/DL)<br>Frequency<br>[MHz] | Modulation |    | PCC UL<br>RB Offset | SCC Band    | SCC<br>Bandwidth<br>[MHz] | SCC<br>(UL/DL)<br>Channel | SCC<br>(UL/DL)<br>Frequency<br>[MHz] | Modulation | SCC UL# RB | SCC UL RB<br>Offset | LTE Tx.Power with UL CA<br>Enabled (dBm) | LTE Single<br>Carrier Tx<br>Power<br>(dBm) |
| CA 41C      | LTF B41 PC3 | 20                        | 41055                     | 2636.5                               | OPSK       | 50 | 0                   | LTF B41 PC3 | 20                        | 40857                     | 2616.7                               | OPSK       | 50         | 50                  | 22.41                                    | 22.53                                      |

|             | PCC         |                           |                           |                                      | SCC        |    |                     |             |                           |                           | Power                                |            |            |                     |                                          |                                            |
|-------------|-------------|---------------------------|---------------------------|--------------------------------------|------------|----|---------------------|-------------|---------------------------|---------------------------|--------------------------------------|------------|------------|---------------------|------------------------------------------|--------------------------------------------|
| Combination | PCC Band    | PCC<br>Bandwidth<br>[MHz] | PCC<br>(UL/DL)<br>Channel | PCC<br>(UL/DL)<br>Frequency<br>[MHz] | Modulation |    | PCC UL<br>RB Offset | SCC Band    | SCC<br>Bandwidth<br>[MHz] | SCC<br>(UL/DL)<br>Channel | SCC<br>(UL/DL)<br>Frequency<br>[MHz] | Modulation | SCC UL# RB | SCC UL RB<br>Offset | LTE Tx.Power with UL CA<br>Enabled (dBm) | LTE Single<br>Carrier Tx<br>Power<br>(dBm) |
| CA 41C      | LTE B41 PC2 | 20                        | 41055                     | 2636.5                               | QPSK       | 50 | 0                   | LTE B41 PC2 | 20                        | 40857                     | 2616.7                               | QPSK       | 50         | 50                  | 24.68                                    | 24.97                                      |

### Notes:

- 1. This device supports uplink carrier aggregation for LTE CA\_41C with a maximum of two 20 MHz component carriers. For intraband contiguous carrier aggregation scenarios, 3GPP 36.101 Table 6.2.2A-1 specifies that the aggregate maximum allowed output power is equivalent to the single carrier scenario. 3GPP 36.101 6.2.3A allows for several dB of MPR to be applied when non-contiguous RB allocation is implemented. The conducted powers and MPR settings in this device are permanently implemented per the above 3GPP requirements.
- 2. Per FCC Guidance, the output power with uplink CA active was measured for the configuration with the highest reported SAR with single carrier for each exposure condition. The power was measured with wideband signal integration over both component carriers.



Figure 9-4
Power Measurement Setup

| FCC ID: ZNFL455DL      | PCTEST*                 | SAR EVALUATION REPORT LG | Approved by: Quality Manager |
|------------------------|-------------------------|--------------------------|------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:                | Dogg 62 of 120               |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset         | Page 63 of 129               |

#### 9.5 **WLAN Conducted Powers**

**Table 9-63** 2.4 GHz WLAN Maximum Average RF Power

|            | 2.4GHz Conducted Power [dBm] |         |                |             |  |  |  |  |  |  |  |
|------------|------------------------------|---------|----------------|-------------|--|--|--|--|--|--|--|
|            |                              | IEEE 1  | Transmission ( | ission Mode |  |  |  |  |  |  |  |
| Freq [MHz] | Channel                      | 802.11b | 802.11g        | 802.11n     |  |  |  |  |  |  |  |
|            |                              | Average | Average        | Average     |  |  |  |  |  |  |  |
| 2412       | 1                            | 20.14   | 16.08          | 15.03       |  |  |  |  |  |  |  |
| 2417       | 2                            |         | 17.96          | 16.35       |  |  |  |  |  |  |  |
| 2437       | 6                            | 20.04   | 18.01          | 16.33       |  |  |  |  |  |  |  |
| 2457       | 10                           |         | 18.16          | 16.53       |  |  |  |  |  |  |  |
| 2462       | 11                           | 20.03   | 16.09          | 14.46       |  |  |  |  |  |  |  |

**Table 9-64** 5 GHz WLAN Maximum Average RF Power

|            | 5GHz (20MHz | ) Conducted | Power [dBm]                 |          |
|------------|-------------|-------------|-----------------------------|----------|
|            |             | IEEE 1      | Transmission <b>Section</b> | Mode     |
| Freq [MHz] | Channel     | 802.11a     | 802.11n                     | 802.11ac |
|            |             | Average     | Average                     | Average  |
| 5180       | 36          | 15.98       | 15.15                       | 15.06    |
| 5200       | 40          | 15.93       | 15.26                       | 15.04    |
| 5220       | 44          | 15.91       | 14.97                       | 14.81    |
| 5240       | 48          | 15.78       | 14.92                       | 14.87    |
| 5260       | 52          | 15.88       | 14.95                       | 14.90    |
| 5280       | 56          | 15.87       | 14.91                       | 14.93    |
| 5300       | 60          | 13.99       | 13.86                       | 13.98    |
| 5320       | 64          | 13.92       | 13.82                       | 13.96    |
| 5500       | 100         | 13.28       | 13.16                       | 13.39    |
| 5600       | 120         | 13.42       | 13.29                       | 13.37    |
| 5620       | 124         | 13.29       | 13.33                       | 13.32    |
| 5720       | 144         | 13.06       | 13.08                       | 13.12    |
| 5745       | 149         | 12.91       | 12.72                       | 12.63    |
| 5785       | 157         | 15.84       | 14.08                       | 14.41    |
| 5825       | 165         | 13.87       | 13.88                       | 13.83    |

| FCC ID: ZNFL455DL      | PCTEST*                 | SAR EVALUATION REPORT | Approved by: Quality Manager |
|------------------------|-------------------------|-----------------------|------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:             | D 04 -f 400                  |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset      | Page 64 of 129               |

**Table 9-65** 2.4 GHz WLAN Reduced Average RF Power

|            | 2.4GHz Conducted Power [dBm] |                        |         |         |  |  |  |  |  |  |
|------------|------------------------------|------------------------|---------|---------|--|--|--|--|--|--|
|            |                              | IEEE Transmission Mode |         |         |  |  |  |  |  |  |
| Freq [MHz] | Channel                      | 802.11b                | 802.11g | 802.11n |  |  |  |  |  |  |
|            |                              | Average                | Average | Average |  |  |  |  |  |  |
| 2412       | 1                            | 16.23                  | 16.08   | 15.03   |  |  |  |  |  |  |
| 2417       | 2                            | N/A                    | N/A     | 16.35   |  |  |  |  |  |  |
| 2437       | 6                            | 16.07                  | 16.12   | 16.33   |  |  |  |  |  |  |
| 2457       | 10                           | N/A                    | 16.33   | 16.53   |  |  |  |  |  |  |
| 2462       | 11                           | 16.03                  | 16.09   | 14.46   |  |  |  |  |  |  |

**Table 9-66** 5 GHz WLAN Reduced Average RF Power

| 5GHz (20N  | /IHz) Conduct<br>[dBm] | ed Power                        |
|------------|------------------------|---------------------------------|
| Freq [MHz] | Channel                | Transmission<br>Mode<br>802.11a |
|            |                        | Average                         |
| 5180       | 36                     | 13.64                           |
| 5200       | 40                     | 13.57                           |
| 5220       | 44                     | 13.61                           |
| 5240       | 48                     | 13.54                           |
| 5260       | 52                     | 13.43                           |
| 5280       | 56                     | 13.47                           |
| 5300       | 60                     | 13.99                           |
| 5320       | 64                     | 13.92                           |
| 5500       | 100                    | 13.28                           |
| 5600       | 120                    | 13.42                           |
| 5620       | 124                    | 13.29                           |
| 5720       | 144                    | 13.06                           |
| 5745       | 149                    | 12.48                           |
| 5785       | 157                    | 12.48                           |
| 5825       | 165                    | 12.59                           |

| FCC ID: ZNFL455DL      | PCTEST*                 | SAR EVALUATION REPORT LG | Approved by: Quality Manager |
|------------------------|-------------------------|--------------------------|------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:                | Dogg 65 of 120               |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset         | Page 65 of 129               |

Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02:

- Power measurements were performed for the transmission mode configuration with the highest maximum output power specified for production units.
- For transmission modes with the same maximum output power specification, powers were measured for the largest channel bandwidth, lowest order modulation and lowest data rate.
- For transmission modes with identical maximum specified output power, channel bandwidth, modulation and data rates, power measurements were required for all identical configurations.
- For each transmission mode configuration, powers were measured for the highest and lowest channels; and at the mid-band channel(s) when there were at least 3 channels supported. For configurations with multiple mid-band channels, due to an even number of channels, both channels were measured.
- The bolded data rate and channel above were tested for SAR.



Figure 9-5 **Power Measurement Setup** 

#### **Bluetooth Conducted Powers** 9.6

**Table 9-67 Bluetooth Average RF Power** 

| _                  | Data           |                | _     | nducted<br>wer |
|--------------------|----------------|----------------|-------|----------------|
| Frequency<br>[MHz] | Rate<br>[Mbps] | Channel<br>No. | [dBm] | [mW]           |
| 2402               | 1.0            | 0              | 8.15  | 6.533          |
| 2441               | 1.0            | 39             | 7.66  | 5.829          |
| 2480               | 1.0            | 78             | 8.54  | 7.144          |
| 2402               | 2.0            | 0              | 4.90  | 3.090          |
| 2441               | 2.0            | 39             | 4.30  | 2.693          |
| 2480               | 2.0            | 78             | 5.52  | 3.561          |
| 2402               | 3.0            | 0              | 4.98  | 3.151          |
| 2441               | 3.0            | 39             | 4.39  | 2.746          |
| 2480               | 3.0            | 78             | 5.59  | 3.624          |

Note: The bolded data rates and channel above were tested for SAR.

| FCC ID: ZNFL455DL      | PCTEST:                 | SAR EVALUATION REPORT | Approved by:  Quality Manager |
|------------------------|-------------------------|-----------------------|-------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:             | D 00 -f 400                   |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset      | Page 66 of 129                |



Figure 9-6
Bluetooth Transmission Plot

# Equation 9-1 Bluetooth Duty Cycle Calculation

$$\textit{Duty Cycle} = \frac{\textit{Pulse Width}}{\textit{Period}} * 100\% = \frac{2.88 \ \textit{ms}}{3.75 \ \textit{ms}} * 100\% = 76.8\%$$

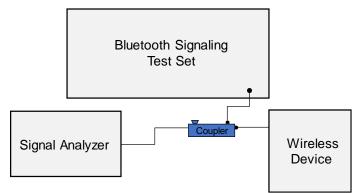



Figure 9-7
Power Measurement Setup

| FCC ID: ZNFL455DL      | PCTEST*                 | SAR EVALUATION REPORT | Approved by:  Quality Manager |
|------------------------|-------------------------|-----------------------|-------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:             | Danie 67 - 6400               |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset      | Page 67 of 129                |

#### 10.1 **Tissue Verification**

**Table 10-1 Measured Head Tissue Properties** 

| Measured Head Tissue Properties |             |                    |           |               |                     |               |                   |         |         |  |
|---------------------------------|-------------|--------------------|-----------|---------------|---------------------|---------------|-------------------|---------|---------|--|
| Calibrated for Tests            |             | Tissue Temp During | Measured  | Measured      | Measured Dielectric | TARGET        | TARGET Dielectric |         |         |  |
| Performed on:                   | Tissue Type | Calibration (°C)   | Frequency | Conductivity, | Constant, ε         | Conductivity, | Constant, ε       | % dev σ | % dev ε |  |
|                                 |             |                    | (MHz)     | σ (S/m)       |                     | σ (S/m)       |                   |         |         |  |
|                                 |             |                    | 680       | 0.844         | 41.641              | 0.888         | 42.305            | -4.95%  | -1.57%  |  |
|                                 |             |                    | 695       | 0.849         | 41.593              | 0.889         | 42.227            | -4.50%  | -1.50%  |  |
|                                 |             |                    | 700       | 0.851         | 41.575              | 0.889         | 42.201            | -4.27%  | -1.48%  |  |
|                                 |             |                    | 710       | 0.855         | 41.543              | 0.890         | 42.149            | -3.93%  | -1.44%  |  |
|                                 |             |                    | 725       | 0.860         | 41.492              | 0.891         | 42.071            | -3.48%  | -1.38%  |  |
| 1/5/2020                        | 700 Head    | 20.4               | 740       | 0.866         | 41.436              | 0.893         | 41.994            | -3.02%  | -1.33%  |  |
|                                 |             |                    | 750       | 0.870         | 41.400              | 0.894         | 41.942            | -2.68%  | -1.29%  |  |
|                                 |             |                    | 755       | 0.871         | 41.383              | 0.894         | 41.916            | -2.57%  | -1.27%  |  |
|                                 |             |                    | 770       | 0.877         | 41.342              | 0.895         | 41.838            | -2.01%  | -1.19%  |  |
|                                 |             |                    | 785       | 0.882         | 41.298              | 0.896         | 41.760            | -1.56%  | -1.11%  |  |
|                                 |             |                    | 800       | 0.888         | 41.252              | 0.897         | 41.682            | -1.00%  | -1.03%  |  |
|                                 |             |                    | 820       | 0.887         | 42.504              | 0.899         | 41.578            | -1.33%  | 2.23%   |  |
| 1/6/2020                        | 835 Head    | 21.1               | 835       | 0.902         | 42.308              | 0.900         | 41.500            | 0.22%   | 1.95%   |  |
|                                 |             |                    | 850       | 0.917         | 42.113              | 0.916         | 41.500            | 0.11%   | 1.48%   |  |
|                                 |             |                    | 820       | 0.903         | 40.374              | 0.899         | 41.578            | 0.44%   | -2.90%  |  |
| 1/8/2020                        | 835 Head    | 20.2               | 835       | 0.909         | 40.306              | 0.900         | 41.500            | 1.00%   | -2.88%  |  |
| , , , , ,                       |             |                    | 850       | 0.915         | 40.249              | 0.916         | 41.500            | -0.11%  | -3.01%  |  |
|                                 |             |                    | 1710      | 1.340         | 39.385              | 1.348         | 40.142            | -0.59%  | -1.89%  |  |
|                                 |             |                    | 1720      | 1.351         | 39.313              | 1.354         | 40.126            | -0.22%  | -2.03%  |  |
|                                 |             |                    | 1745      | 1.379         | 39.193              | 1.368         | 40.087            | 0.80%   | -2.23%  |  |
| 1/4/2020                        | 1750 Head   | 22.0               | 1750      | 1.383         | 39.180              | 1.371         | 40.079            | 0.88%   | -2.24%  |  |
|                                 |             |                    | 1770      | 1.401         | 39.088              | 1.383         | 40.047            | 1.30%   | -2.39%  |  |
|                                 |             |                    | 1790      | 1.420         | 38.988              | 1.394         | 40.016            | 1.87%   | -2.57%  |  |
|                                 |             |                    | 1850      | 1.401         | 39.963              | 1.400         | 40.000            | 0.07%   | -0.09%  |  |
|                                 |             |                    | 1860      | 1.407         | 39.942              | 1.400         | 40.000            | 0.50%   | -0.15%  |  |
|                                 |             |                    | 1880      | 1.419         | 39.908              | 1.400         | 40.000            | 1.36%   | -0.23%  |  |
| 1/6/2020                        | 1900 Head   | 20.0               | 1900      | 1.419         | 39.892              | 1.400         | 40.000            | 2.14%   | -0.27%  |  |
|                                 |             |                    | 1900      | 1.433         | 39.888              | 1.400         | 40.000            | 2.36%   | -0.27%  |  |
|                                 |             |                    |           | 1.436         | 39.884              | 1.400         | 40.000            | 2.57%   | -0.29%  |  |
|                                 |             |                    | 1910      |               | 39.095              |               |                   | 3.25%   | -0.29%  |  |
|                                 |             |                    | 2400      | 1.813         |                     | 1.756         | 39.289            | 3.00%   | -0.49%  |  |
| 12/5/2019                       | 2450 Head   | 20.8               | 2450      | 1.854         | 39.003              | 1.800         | 39.200            |         |         |  |
|                                 |             |                    | 2500      | 1.893         | 38.919              | 1.855         | 39.136            | 2.05%   | -0.55%  |  |
|                                 |             |                    | 2510      | 1.901         | 38.901              | 1.866         | 39.123            | 1.88%   | -0.57%  |  |
|                                 |             |                    | 2400      | 1.814         | 38.303              | 1.756         | 39.289            | 3.30%   | -2.51%  |  |
|                                 |             |                    | 2450      | 1.855         | 38.213              | 1.800         | 39.200            | 3.06%   | -2.52%  |  |
|                                 |             |                    | 2500      | 1.895         | 38.134              | 1.855         | 39.136            | 2.16%   | -2.56%  |  |
|                                 |             |                    | 2510      | 1.903         | 38.107              | 1.866         | 39.123            | 1.98%   | -2.60%  |  |
| 1/8/2020                        | 2450 Head   | 20.7               | 2535      | 1.924         | 38.058              | 1.893         | 39.092            | 1.64%   | -2.65%  |  |
| -, -,                           |             |                    | 2550      | 1.939         | 38.044              | 1.909         | 39.073            | 1.57%   | -2.63%  |  |
|                                 |             |                    | 2560      | 1.948         | 38.036              | 1.920         | 39.06             | 1.46%   | -2.62%  |  |
|                                 |             |                    | 2600      | 1.981         | 37.959              | 1.964         | 39.009            | 0.87%   | -2.69%  |  |
|                                 |             |                    | 2650      | 2.025         | 37.855              | 2.018         | 38.945            | 0.35%   | -2.80%  |  |
|                                 |             |                    | 2680      | 2.053         | 37.822              | 2.051         | 38.907            | 0.10%   | -2.79%  |  |
|                                 |             |                    | 2400      | 1.835         | 37.933              | 1.756         | 39.289            | 4.50%   | -3.45%  |  |
| 1/14/2020                       | 2450 Head   | 23.0               | 2450      | 1.873         | 37.846              | 1.800         | 39.200            | 4.06%   | -3.45%  |  |
|                                 |             |                    | 2500      | 1.908         | 37.798              | 1.855         | 39.136            | 2.86%   | -3.42%  |  |
| T                               |             |                    | 2400      | 1.759         | 37.754              | 1.756         | 39.289            | 0.15%   | -3.91%  |  |
|                                 |             |                    | 2450      | 1.792         | 37.668              | 1.800         | 39.200            | -0.43%  | -3.91%  |  |
|                                 |             |                    | 2550      | 1.863         | 37.526              | 1.909         | 39.073            | -2.41%  | -3.96%  |  |
| 1/16/2020                       | 2450 Head   | 21.6               | 2560      | 1.871         | 37.508              | 1.920         | 39.060            | -2.55%  | -3.97%  |  |
| 1/16/2020                       | 2430 FEdu   | 21.0               | 2600      | 1.903         | 37.459              | 1.964         | 39.009            | -3.11%  | -3.97%  |  |
|                                 |             |                    | 2650      | 1.939         | 37.389              | 2.018         | 38.945            | -3.91%  | -4.00%  |  |
|                                 |             |                    | 2680      | 1.963         | 37.338              | 2.051         | 38.907            | -4.29%  | -4.03%  |  |
|                                 |             |                    | 2700      | 1.978         | 37.310              | 2.073         | 38.882            | -4.58%  | -4.04%  |  |

| FCC ID: ZNFL455DL      | PCTEST:                 | SAR EVALUATION REPORT | Approved by: Quality Manager |
|------------------------|-------------------------|-----------------------|------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:             | Dogg 69 of 120               |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset      | Page 68 of 129               |

| Calibrated for Tests<br>Performed on: | Tissue Type    | Tissue Temp During<br>Calibration (°C) | Measured<br>Frequency<br>(MHz) | Measured<br>Conductivity,<br>σ (S/m) | Measured Dielectric<br>Constant, ε | TARGET<br>Conductivity,<br>σ (S/m) | TARGET Dielectric<br>Constant, ε | % dev σ | % dev ε |
|---------------------------------------|----------------|----------------------------------------|--------------------------------|--------------------------------------|------------------------------------|------------------------------------|----------------------------------|---------|---------|
|                                       |                |                                        | 5250                           | 4.555                                | 34.508                             | 4.706                              | 35.929                           | -3.21%  | -3.96%  |
|                                       |                |                                        | 5260                           | 4.567                                | 34.489                             | 4.717                              | 35.917                           | -3.18%  | -3.98%  |
|                                       |                |                                        | 5270                           | 4.579                                | 34.473                             | 4.727                              | 35.906                           | -3.13%  | -3.99%  |
|                                       |                |                                        | 5280                           | 4.590                                | 34.459                             | 4.737                              | 35.894                           | -3.10%  | -4.00%  |
|                                       |                |                                        | 5290                           | 4.601                                | 34.452                             | 4.748                              | 35.883                           | -3.10%  | -3.99%  |
|                                       |                |                                        | 5300                           | 4.612                                | 34.443                             | 4.758                              | 35.871                           | -3.07%  | -3.98%  |
|                                       |                |                                        | 5310                           | 4.619                                | 34.429                             | 4.768                              | 35.860                           | -3.13%  | -3.99%  |
|                                       |                |                                        | 5320                           | 4.625                                | 34.415                             | 4.778                              | 35.849                           | -3.20%  | -4.00%  |
|                                       |                |                                        | 5560                           | 4.857                                | 34.086                             | 5.024                              | 35.574                           | -3.32%  | -4.18%  |
|                                       |                |                                        | 5580                           | 4.885                                | 34.042                             | 5.045                              | 35.551                           | -3.17%  | -4.24%  |
|                                       |                |                                        | 5600                           | 4.913                                | 34.013                             | 5.065                              | 35.529                           | -3.00%  | -4.27%  |
|                                       |                |                                        | 5610                           | 4.924                                | 33.995                             | 5.076                              | 35.518                           | -2.99%  | -4.29%  |
|                                       |                |                                        | 5620                           | 4.935                                | 33.987                             | 5.086                              | 35.506                           | -2.97%  | -4.28%  |
|                                       |                |                                        | 5640                           | 4.955                                | 33.981                             | 5.106                              | 35.483                           | -2.96%  | -4.23%  |
|                                       |                |                                        | 5660                           | 4.968                                | 33.956                             | 5.127                              | 35.460                           | -3.10%  | -4.24%  |
| 12/9/2019                             | 5200-5800 Head | 22.0                                   | 5670                           | 4.976                                | 33.933                             | 5.137                              | 35.449                           | -3.13%  | -4.28%  |
|                                       |                |                                        | 5680                           | 4.987                                | 33.901                             | 5.147                              | 35.437                           | -3.11%  | -4.33%  |
|                                       |                |                                        | 5690                           | 4.999                                | 33.872                             | 5.158                              | 35.426                           | -3.08%  | -4.39%  |
|                                       |                |                                        | 5700                           | 5.011                                | 33.848                             | 5.168                              | 35.414                           | -3.04%  | -4.42%  |
|                                       |                |                                        | 5710                           | 5.024                                | 33.839                             | 5.178                              | 35.403                           | -2.97%  | -4.42%  |
|                                       |                |                                        | 5720                           | 5.039                                | 33.839                             | 5.188                              | 35.391                           | -2.87%  | -4.39%  |
|                                       |                |                                        | 5745                           | 5.069                                | 33.833                             | 5.214                              | 35.363                           | -2.78%  | -4.33%  |
|                                       |                |                                        | 5750                           | 5.075                                | 33.826                             | 5.219                              | 35.357                           | -2.76%  | -4.33%  |
|                                       |                |                                        | 5755                           | 5.077                                | 33.822                             | 5.224                              | 35.351                           | -2.81%  | -4.33%  |
|                                       |                |                                        | 5765                           | 5.084                                | 33.815                             | 5.234                              | 35.340                           | -2.87%  | -4.32%  |
|                                       |                |                                        | 5775                           | 5.092                                | 33.801                             | 5.245                              | 35.329                           | -2.92%  | -4.33%  |
|                                       |                |                                        | 5785                           | 5.101                                | 33.776                             | 5.255                              | 35.317                           | -2.93%  | -4.36%  |
|                                       |                |                                        | 5795                           | 5.112                                | 33.750                             | 5.265                              | 35.305                           | -2.91%  | -4.40%  |
|                                       |                |                                        | 5800                           | 5.116                                | 33.738                             | 5.270                              | 35.300                           | -2.92%  | -4.42%  |
|                                       |                |                                        | 5805                           | 5.121                                | 33.728                             | 5.275                              | 35.294                           | -2.92%  | -4.44%  |
|                                       |                |                                        | 5825                           | 5.147                                | 33.702                             | 5.296                              | 35.271                           | -2.81%  | -4.45%  |

| FCC ID: ZNFL455DL      | PCTEST*                 | SAR EVALUATION REPORT | Approved by: Quality Manager |
|------------------------|-------------------------|-----------------------|------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:             | Dogg 60 of 120               |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset      | Page 69 of 129               |

**Table 10-2 Measured Body Tissue Properties** 

| Calibrated for Tests Performed on:  12/28/2019         | Tissue Type | Tissue Temp During | Measured                     |                           |                                    |                         |                                  |                         |                                  |
|--------------------------------------------------------|-------------|--------------------|------------------------------|---------------------------|------------------------------------|-------------------------|----------------------------------|-------------------------|----------------------------------|
|                                                        |             | Calibration (°C)   | Frequency                    | Measured<br>Conductivity, | Measured Dielectric<br>Constant. ε | TARGET<br>Conductivity, | TARGET Dielectric<br>Constant, ε | % dev σ                 | % dev                            |
| 12/28/2019                                             |             | Cambration ( C)    | (MHz)                        | σ (S/m)                   |                                    | σ (S/m)                 |                                  |                         |                                  |
| 12/28/2019                                             |             |                    | 680<br>695                   | 0.949<br>0.955            | 53.289<br>53.226                   | 0.958<br>0.959          | 55.804<br>55.745                 | -0.94%<br>-0.42%        | -4.51<br>-4.52                   |
| 12/28/2019                                             |             |                    | 700                          | 0.957                     | 53.206                             | 0.959                   | 55.726                           | -0.42%                  | -4.52                            |
| 12/28/2019                                             |             |                    | 710                          | 0.961                     | 53.170                             | 0.960                   | 55.687                           | 0.10%                   | -4.52                            |
| 12/28/2019                                             |             |                    | 725                          | 0.966                     | 53.136                             | 0.961                   | 55.629                           | 0.52%                   | -4.48                            |
|                                                        | 700 Body    | 21.5               | 740                          | 0.971                     | 53.120                             | 0.963                   | 55.570                           | 0.83%                   | -4.41                            |
|                                                        |             |                    | 750                          | 0.974                     | 53.108                             | 0.964                   | 55.531                           | 1.04%                   | -4.36                            |
|                                                        |             |                    | 755                          | 0.976                     | 53.102                             | 0.964                   | 55.512                           | 1.24%                   | -4.34                            |
|                                                        |             |                    | 770                          | 0.981                     | 53.066                             | 0.965                   | 55.453                           | 1.66%                   | -4.30                            |
|                                                        |             |                    | 785                          | 0.987                     | 53.010                             | 0.966                   | 55.395                           | 2.17%                   | -4.31                            |
|                                                        |             |                    | 800                          | 0.993                     | 52.950                             | 0.967                   | 55.336                           | 2.69%                   | -4.31                            |
|                                                        |             |                    | 820                          | 0.958                     | 53.916                             | 0.969                   | 55.258                           | -1.14%                  | -2.43                            |
| 12/18/2019                                             | 835 Body    | 19.9               | 835                          | 0.966                     | 53.962                             | 0.970                   | 55.200                           | -0.41%                  | -2.24                            |
| 12/30/2019  12/30/2019  1/9/2019  1/10/2019  1/11/2019 |             |                    | 850<br>1710                  | 0.973<br>1.474            | 53.996<br>52.831                   | 0.988<br>1.463          | 55.154<br>53.537                 | -1.52%<br>0.75%         | -2.10<br>-1.32                   |
|                                                        |             |                    | 1720                         | 1.487                     | 52.790                             | 1.469                   | 53.511                           | 1.23%                   | -1.32                            |
|                                                        |             |                    | 1745                         | 1.516                     | 52.684                             | 1.485                   | 53.445                           | 2.09%                   | -1.42                            |
| 12/30/2019                                             | 1750 Body   | 20.7               | 1750                         | 1.521                     | 52.663                             | 1.488                   | 53.432                           | 2.22%                   | -1.44                            |
|                                                        |             |                    | 1770                         | 1.543                     | 52.586                             | 1.501                   | 53.379                           | 2.80%                   | -1.49                            |
|                                                        |             |                    | 1790                         | 1.565                     | 52.512                             | 1.514                   | 53.326                           | 3.37%                   | -1.53                            |
|                                                        |             |                    | 1710                         | 1.464                     | 53.246                             | 1.463                   | 53.537                           | 0.07%                   | -0.54                            |
|                                                        |             |                    | 1720                         | 1.476                     | 53.201                             | 1.469                   | 53.511                           | 0.48%                   | -0.58                            |
| 1/9/2019                                               | 1750 Body   | 21.1               | 1745                         | 1.505                     | 53.091                             | 1.485                   | 53.445                           | 1.35%                   | -0.66                            |
| -,-,                                                   | ,           |                    | 1750                         | 1.510                     | 53.069                             | 1.488                   | 53.432                           | 1.48%                   | -0.68                            |
|                                                        |             |                    | 1770                         | 1.530                     | 52.978                             | 1.501                   | 53.379                           | 1.93%                   | -0.75                            |
|                                                        |             | +                  | 1790                         | 1.550                     | 52.894                             | 1.514                   | 53.326<br>53.537                 | 2.38%<br>1.50%          | -0.81<br>-3.25                   |
|                                                        |             | 1                  | 1710<br>1720                 | 1.485<br>1.496            | 51.796<br>51.759                   | 1.463<br>1.469          | 53.537                           | 1.50%                   | -3.25                            |
|                                                        |             | 1                  | 1720                         | 1.524                     | 51.759                             | 1.485                   | 53.445                           | 2.63%                   | -3.27                            |
| 1/10/2019                                              | 1750 Body   | 22.1               | 1750                         | 1.529                     | 51.640                             | 1.488                   | 53.432                           | 2.76%                   | -3.35                            |
|                                                        |             | 1                  | 1770                         | 1.551                     | 51.559                             | 1.501                   | 53.379                           | 3.33%                   | -3.41                            |
|                                                        |             | 1                  | 1790                         | 1.573                     | 51.481                             | 1.514                   | 53.326                           | 3.90%                   | -3.46                            |
|                                                        |             |                    | 1710                         | 1.476                     | 53.044                             | 1.463                   | 53.537                           | 0.89%                   | -0.92                            |
|                                                        |             |                    | 1720                         | 1.488                     | 52.997                             | 1.469                   | 53.511                           | 1.29%                   | -0.96                            |
| 1/11/2010                                              | 1750 Body   | 20.6               | 1745                         | 1.516                     | 52.891                             | 1.485                   | 53.445                           | 2.09%                   | -1.04                            |
| 1/11/2013                                              | 1730 Body   | 20.0               | 1750                         | 1.522                     | 52.870                             | 1.488                   | 53.432                           | 2.28%                   | -1.05                            |
|                                                        |             |                    | 1770                         | 1.543                     | 52.788                             | 1.501                   | 53.379                           | 2.80%                   | -1.11                            |
|                                                        |             |                    | 1790                         | 1.564                     | 52.709                             | 1.514                   | 53.326                           | 3.30%                   | -1.16                            |
|                                                        |             |                    | 1850                         | 1.528                     | 51.840                             | 1.520                   | 53.300                           | 0.53%                   | -2.74                            |
|                                                        |             |                    | 1860                         | 1.538                     | 51.811                             | 1.520                   | 53.300                           | 1.18%                   | -2.79                            |
| 1/5/2020                                               | 1900 Body   | 22.3               | 1880                         | 1.558                     | 51.745<br>51.678                   | 1.520                   | 53.300                           | 2.50%                   | -2.92<br>-3.04                   |
|                                                        |             |                    | 1900<br>1905                 | 1.578<br>1.583            | 51.660                             | 1.520<br>1.520          | 53.300<br>53.300                 | 3.82%<br>4.14%          | -3.08                            |
|                                                        |             |                    | 1910                         | 1.588                     | 51.643                             | 1.520                   | 53.300                           | 4.47%                   | -3.11                            |
|                                                        |             |                    | 1850                         | 1.514                     | 51.551                             | 1.520                   | 53.300                           | -0.39%                  | -3.28                            |
|                                                        |             |                    | 1860                         | 1.524                     | 51.492                             | 1.520                   | 53.300                           | 0.26%                   | -3.39                            |
| 4 /5 /2020                                             | 1000 D - H  | 22.0               | 1880                         | 1.550                     | 51.420                             | 1.520                   | 53.300                           | 1.97%                   | -3.53                            |
| 1/6/2020                                               | 1900 Body   | 22.0               | 1900                         | 1.577                     | 51.410                             | 1.520                   | 53.300                           | 3.75%                   | -3.55                            |
|                                                        |             |                    | 1905                         | 1.583                     | 51.409                             | 1.520                   | 53.300                           | 4.14%                   | -3.55                            |
|                                                        |             |                    | 1910                         | 1.589                     | 51.407                             | 1.520                   | 53.300                           | 4.54%                   | -3.55                            |
|                                                        |             |                    | 1850                         | 1.524                     | 51.108                             | 1.520                   | 53.300                           | 0.26%                   | -4.11                            |
|                                                        |             |                    | 1860                         | 1.535                     | 51.077                             | 1.520                   | 53.300                           | 0.99%<br>2.43%          | -4.17<br>-4.31                   |
| 1/8/2020                                               | 1900 Body   | 22.1               | 1880                         | 1.557                     | 51.004                             | 1.520                   | 53.300                           | 3.82%                   | -4.31                            |
|                                                        |             |                    | 1900<br>1905                 | 1.578<br>1.583            | 50.931<br>50.912                   | 1.520<br>1.520          | 53.300<br>53.300                 | 4.14%                   | -4.48                            |
|                                                        |             |                    | 1910                         | 1.589                     | 50.895                             | 1.520                   | 53.300                           | 4.54%                   | -4.51                            |
|                                                        |             |                    | 1850                         | 1.523                     | 51.417                             | 1.520                   | 53.300                           | 0.20%                   | -3.53                            |
|                                                        |             |                    | 1860                         | 1.534                     | 51.386                             | 1.520                   | 53.300                           | 0.92%                   | -3.59                            |
| 4 /44 /2020                                            | 1000 D - H  | 24.0               | 1880                         | 1.556                     | 51.313                             | 1.520                   | 53.300                           | 2.37%                   | -3.73                            |
| 1/11/2020                                              | 1900 Body   | 21.8               | 1900                         | 1.579                     | 51.230                             | 1.520                   | 53.300                           | 3.88%                   | -3.88                            |
|                                                        |             | 1                  | 1905                         | 1.584                     | 51.208                             | 1.520                   | 53.300                           | 4.21%                   | -3.92                            |
|                                                        |             |                    | 1910                         | 1.590                     | 51.187                             | 1.520                   | 53.300                           | 4.61%                   | -3.96                            |
| T                                                      |             |                    | 2400                         | 1.984                     | 51.751                             | 1.902                   | 52.767                           | 4.31%                   | -1.93                            |
| 1/5/2020                                               | 2450 Body   | 23.2               | 2450                         | 2.041                     | 51.608                             | 1.950                   | 52.700                           | 4.67%                   | -2.07                            |
| , =, ====                                              | ,           |                    | 2500                         | 2.099                     | 51.452                             | 2.021                   | 52.636                           | 3.86%                   | -2.25                            |
|                                                        |             | +                  | 2510                         | 2.112                     | 51.433                             | 2.035                   | 52.623                           | 3.78%                   | -2.26                            |
|                                                        |             | 1                  | 2400<br>2450                 | 1.976                     | 52.409                             | 1.902                   | 52.767                           | 3.89%                   | -0.68                            |
|                                                        |             | 1                  | 2500                         | 2.013<br>2.068            | 52.372<br>52.254                   | 1.950<br>2.021          | 52.700<br>52.636                 | 3.23%<br>2.33%          | -0.62<br>-0.73                   |
| 1/6/2020                                               | 2450 Body   | 20.6               | 2510                         | 2.082                     | 52.254                             | 2.021                   | 52.623                           | 2.31%                   | -0.73                            |
|                                                        |             | 1                  | 2535                         | 2.101                     | 52.273                             | 2.035                   | 52.592                           | 1.45%                   | -0.59                            |
|                                                        |             |                    | 2550                         | 2.105                     | 52.224                             | 2.092                   | 52.573                           | 0.62%                   | -0.66                            |
|                                                        |             |                    | 2400                         | 1.976                     | 51.783                             | 1.902                   | 52.767                           | 3.89%                   | -1.86                            |
|                                                        |             | 1                  | 2450                         | 2.036                     | 51.644                             | 1.950                   | 52.700                           | 4.41%                   | -2.00                            |
|                                                        |             | 1                  | 2500                         | 2.097                     | 51.492                             | 2.021                   | 52.636                           | 3.76%                   | -2.17                            |
|                                                        |             | 1                  | 2510                         | 2.109                     | 51.466                             | 2.035                   | 52.623                           | 3.64%                   | -2.20                            |
|                                                        |             | 1                  | 2535                         | 2.140                     | 51.390                             | 2.071                   | 52.592                           | 3.33%                   | -2.29                            |
| 1/8/2020                                               | 2450 Body   | 24.2               | 2550                         | 2.158                     | 51.344                             | 2.092                   | 52.573                           | 3.15%                   | -2.34                            |
|                                                        |             |                    | 2560                         | 2.170                     | 51.315                             | 2.106                   | 52.560                           | 3.04%                   | -2.37                            |
|                                                        |             |                    | 2600                         | 2.217                     | 51.187                             | 2.163                   | 52.509                           | 2.50%                   | -2.52                            |
|                                                        |             | 1                  | 2650                         | 2.280                     | 51.032                             | 2.234                   | 52.445                           | 2.06%                   | -2.69                            |
|                                                        |             |                    | 2680                         | 2.316                     | 50.940                             | 2.277                   | 52.407                           | 1.71%                   | -2.80                            |
|                                                        |             | 1                  | 2700                         | 2.339                     | 50.876                             | 2.305                   | 52.382                           | 1.48%                   | -2.88                            |
|                                                        |             | 1                  | 2400<br>2450                 | 1.949<br>2.007            | 50.711<br>50.570                   | 1.902<br>1.950          | 52.767<br>52.700                 | 2.47%                   | -3.90<br>-4.04                   |
|                                                        |             | 1                  | 2500                         | 2.007                     | 50.570                             | 2.021                   | 52.700                           | 2.92%                   | -4.04                            |
|                                                        |             |                    |                              | 2,003                     |                                    |                         |                                  |                         |                                  |
|                                                        |             |                    |                              | 2,075                     |                                    |                         | 52.623                           | 1.97%                   | -4.23                            |
|                                                        |             |                    | 2510<br>2535                 | 2.075<br>2.105            | 50.398<br>50.325                   | 2.035<br>2.071          | 52.623<br>52.592                 |                         |                                  |
| 1/13/2020                                              | 2450 Body   | 21.9               | 2510                         |                           | 50.398<br>50.325<br>50.288         | 2.035<br>2.071<br>2.092 |                                  | 1.97%<br>1.64%<br>1.53% | -4.31                            |
| 1/13/2020                                              | 2450 Body   | 21.9               | 2510<br>2535                 | 2.105                     | 50.325                             | 2.071                   | 52.592                           | 1.64%                   | -4.31<br>-4.35                   |
| 1/13/2020                                              | 2450 Body   | 21.9               | 2510<br>2535<br>2550         | 2.105<br>2.124            | 50.325<br>50.288                   | 2.071<br>2.092          | 52.592<br>52.573                 | 1.64%<br>1.53%          | -4.23<br>-4.31<br>-4.35<br>-4.37 |
| 1/13/2020                                              | 2450 Body   | 21.9               | 2510<br>2535<br>2550<br>2560 | 2.105<br>2.124<br>2.136   | 50.325<br>50.288<br>50.263         | 2.071<br>2.092<br>2.106 | 52.592<br>52.573<br>52.560       | 1.64%<br>1.53%<br>1.42% | -4.31<br>-4.35<br>-4.37          |

| FCC ID: ZNFL455DL      | PCTEST*                 | SAR EVALUATION REPORT | Approved by:  Quality Manager |
|------------------------|-------------------------|-----------------------|-------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:             | Dage 70 of 120                |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset      | Page 70 of 129                |

| Calibrated for Tests<br>Performed on: | Tissue Type    | Tissue Temp During<br>Calibration (°C) | Measured<br>Frequency<br>(MHz) | Measured<br>Conductivity,<br>σ (S/m) | Measured Dielectric<br>Constant, ε | TARGET<br>Conductivity,<br>σ (S/m) | TARGET Dielectric<br>Constant, ε | % dev σ | % dev ε          |
|---------------------------------------|----------------|----------------------------------------|--------------------------------|--------------------------------------|------------------------------------|------------------------------------|----------------------------------|---------|------------------|
|                                       |                |                                        | 5180                           | 5.455                                | 47.102                             | 5.276                              | 49.041                           | 3.39%   | -3.95%           |
|                                       |                |                                        | 5190                           | 5.466                                | 47.095                             | 5.288                              | 49.028                           | 3.37%   | -3.94%           |
|                                       |                |                                        | 5200                           | 5.477                                | 47.072                             | 5.299                              | 49.014                           | 3.36%   | -3.96%           |
|                                       |                |                                        | 5210                           | 5.489                                | 47.054                             | 5.311                              | 49.001                           | 3.35%   | -3.97%           |
|                                       |                |                                        | 5220                           | 5.502                                | 47.032                             | 5.323                              | 48.987                           | 3.36%   | -3.99%           |
|                                       |                |                                        | 5240                           | 5.532                                | 46.982                             | 5.346                              | 48.960                           | 3.48%   | -4.04%           |
|                                       |                |                                        | 5250                           | 5.545                                | 46.967                             | 5.358                              | 48.947                           | 3.49%   | -4.05%           |
|                                       |                |                                        | 5260                           | 5.556                                | 46.957                             | 5.369                              | 48.933                           | 3.48%   | -4.04%           |
|                                       |                |                                        | 5270                           | 5.570                                | 46.937                             | 5.381                              | 48.919                           | 3.51%   | -4.05%           |
|                                       |                |                                        | 5280                           | 5.585                                | 46.908                             | 5.393                              | 48.906                           | 3.56%   | -4.09%           |
|                                       |                |                                        | 5290                           | 5.600                                | 46.886                             | 5.404                              | 48.892                           | 3.63%   | -4.10%           |
|                                       |                |                                        | 5300                           | 5.612                                | 46.888                             | 5.416                              | 48.879                           | 3.62%   | -4.07%           |
|                                       |                |                                        | 5310                           | 5.621                                | 46.875                             | 5.428                              | 48.865                           | 3.56%   | -4.07%           |
|                                       |                |                                        | 5320                           | 5.631                                | 46.853                             | 5.439                              | 48.851                           | 3.53%   | -4.09%           |
|                                       |                |                                        | 5500                           | 5.873                                | 46.530                             | 5.650                              | 48.607                           | 3.95%   | -4.27%           |
|                                       |                |                                        | 5510                           | 5.888                                | 46.517                             | 5.661                              | 48.594                           | 4.01%   | -4.27%           |
|                                       |                |                                        | 5520                           | 5.902                                | 46.495                             | 5.673                              | 48.580                           | 4.04%   | -4.29%           |
|                                       |                |                                        | 5530                           | 5.915                                | 46.486                             | 5.685                              | 48.566                           | 4.05%   | -4.28%           |
|                                       |                |                                        | 5540                           | 5.926                                | 46.478                             | 5.696                              | 48.553                           | 4.04%   | -4.27%           |
|                                       |                |                                        | 5550                           | 5.936                                | 46.461                             | 5.708                              | 48.539                           | 3.99%   | -4.28%           |
|                                       |                |                                        | 5560                           | 5.947                                | 46.438                             | 5.720                              | 48.526                           | 3.97%   | -4.30%           |
| 12/23/2019                            | 5200-5800 Body | 23.2                                   | 5580                           | 5.979                                | 46.386                             | 5.743                              | 48.499                           | 4.11%   | -4.36%           |
|                                       |                |                                        | 5600                           | 6.015                                | 46.347                             | 5.766                              | 48.471                           | 4.32%   | -4.38%           |
|                                       |                |                                        | 5610                           | 6.031                                | 46.331                             | 5.778                              | 48.458                           | 4.38%   | -4.39%           |
|                                       |                |                                        | 5620                           | 6.046                                | 46.322                             | 5.790                              | 48.444                           | 4.42%   | -4.38%           |
|                                       |                |                                        | 5640                           | 6.071                                | 46.303                             | 5.813                              | 48.417                           | 4.44%   | -4.37%           |
|                                       |                |                                        | 5660                           | 6.092                                | 46.273                             | 5.837                              | 48.390                           | 4.37%   | -4.37%           |
|                                       |                |                                        | 5670                           | 6.104                                | 46.253                             | 5.848                              | 48.376                           | 4.38%   | -4.39%           |
|                                       |                |                                        | 5680                           | 6.117                                | 46.227                             | 5.860                              | 48.363                           | 4.39%   | -4.42%           |
|                                       |                |                                        | 5690                           | 6.131                                | 46.199                             | 5.872                              | 48.349                           | 4.41%   | -4.45%           |
|                                       |                |                                        | 5700                           | 6.146                                | 46.171                             | 5.883                              | 48.336                           | 4.47%   | -4.48%           |
|                                       |                |                                        | 5710                           | 6.163                                | 46.166                             | 5.895                              | 48.322                           | 4.55%   | -4.46%           |
|                                       |                |                                        | 5720                           | 6.180                                | 46.160                             | 5.907                              | 48.309                           | 4.62%   | -4.45%           |
|                                       |                |                                        | 5745                           | 6.216                                | 46.128                             | 5.936                              | 48.275                           | 4.72%   | -4.45%           |
|                                       |                |                                        | 5750                           | 6.221                                | 46.117                             | 5.942                              | 48.268                           | 4.70%   | -4.46%           |
|                                       |                |                                        | 5755                           | 6.225                                | 46.111                             | 5.947                              | 48.261                           | 4.67%   | -4.45%           |
|                                       |                |                                        | 5765                           | 6.236                                | 46.103                             | 5.959                              | 48.248                           | 4.65%   | -4.45%           |
|                                       |                |                                        | 5775                           | 6.249                                | 46.083                             | 5.971                              | 48.234                           | 4.66%   | -4.46%           |
|                                       |                |                                        | 5785                           | 6.262                                | 46,062                             | 5.982                              | 48.220                           | 4.68%   | -4.48%           |
|                                       |                |                                        | 5795                           | 6.277                                | 46.037                             | 5.994                              | 48.207                           | 4.72%   | -4.50%           |
|                                       |                |                                        | 5800                           | 6.284                                | 46.023                             | 6.000                              | 48.200                           | 4.73%   | -4.52%           |
|                                       |                |                                        | 5805                           | 6.293                                | 46.013                             | 6.006                              | 48.193                           | 4.78%   | -4.52%           |
|                                       |                |                                        | 5825                           | 6.324                                | 45.988                             | 6.029                              | 48.166                           | 4.89%   | -4.52%           |
|                                       |                |                                        | 5240                           | 5,463                                | 46,953                             | 5.346                              | 48.960                           | 2.19%   | -4.10%           |
|                                       |                |                                        | 5250                           | 5.478                                | 46.920                             | 5.358                              | 48.947                           | 2.24%   | -4.14%           |
|                                       |                |                                        | 5260                           | 5.490                                | 46.897                             | 5.369                              | 48.933                           | 2.25%   | -4.16%           |
|                                       |                |                                        | 5270                           | 5.502                                | 46.889                             | 5.381                              | 48.919                           | 2.25%   | -4.15%           |
|                                       |                |                                        | 5280                           | 5.524                                | 46.878                             | 5.393                              | 48.906                           | 2.43%   | -4.15%           |
|                                       |                |                                        | 5290                           | 5.545                                | 46.848                             | 5.404                              | 48.892                           | 2.61%   | -4.18%           |
|                                       |                |                                        | 5300                           | 5.557                                | 46.819                             | 5.416                              | 48.879                           | 2.60%   | -4.21%           |
|                                       |                |                                        | 5310                           | 5.565                                | 46.803                             | 5.428                              | 48.865                           | 2.52%   | -4.22%           |
|                                       |                |                                        | 5320                           | 5.571                                | 46.794                             | 5.439                              | 48.851                           | 2.43%   | -4.21%           |
| 12/29/2019                            | 5200-5800 Body | 22.9                                   | 5500                           | 5.816                                | 46.501                             | 5.650                              | 48.607                           | 2.94%   | -4.21%           |
| 12/23/2013                            | 3200 3000 Body | 22.3                                   | 5510                           | 5.829                                | 46.481                             | 5.661                              | 48.594                           | 2.97%   | -4.35%           |
|                                       |                |                                        | 5520                           | 5.840                                | 46.480                             | 5.673                              | 48.580                           | 2.94%   | -4.32%           |
|                                       |                |                                        | 5530                           | 5.855                                | 46.474                             | 5.685                              | 48.566                           | 2.99%   | -4.31%           |
|                                       |                |                                        | 5540                           | 5.865                                | 46.458                             | 5.696                              | 48.553                           | 2.97%   | -4.31%           |
|                                       |                |                                        | 5550                           | 5.805                                | 46.433                             | 5.708                              | 48.533                           | 2.86%   | -4.31%           |
|                                       |                |                                        | 5560                           | 5.881                                | 46.433                             | 5.720                              | 48.539<br>48.526                 | 2.86%   | -4.34%           |
|                                       |                |                                        | 5580                           | 5.881                                | 46.423                             |                                    | 48.526<br>48.499                 | 3.05%   | -4.33%<br>-4.34% |
|                                       |                |                                        |                                |                                      |                                    | 5.743                              |                                  | 3.05%   | -4.34%<br>-4.40% |
|                                       |                |                                        | 5600                           | 5.948                                | 46.339                             | 5.766                              | 48.471                           |         |                  |
|                                       |                |                                        | 5610                           | 5.961                                | 46.322                             | 5.778                              | 48.458                           | 3.17%   | -4.41%           |
|                                       |                |                                        | 5220                           | 5.447                                | 48.005                             | 5.323                              | 48.987                           | 2.33%   | -2.00%           |
|                                       |                |                                        | 5240                           | 5.475                                | 47.969                             | 5.346                              | 48.960                           | 2.41%   | -2.02%           |
| 1/5/2020                              | 5200-5800 Body | 22.6                                   | 5250                           | 5.495                                | 47.949                             | 5.358                              | 48.947                           | 2.56%   | -2.04%           |
|                                       | /              |                                        | 5260                           | 5.513                                | 47.923                             | 5.369                              | 48.933                           | 2.68%   | -2.06%           |
|                                       |                |                                        | 5270                           | 5.525                                | 47.895                             | 5.381                              | 48.919                           | 2.68%   | -2.09%           |
|                                       |                |                                        | 5280                           | 5.536                                | 47.887                             | 5.393                              | 48.906                           | 2.65%   | -2.08%           |

The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per KDB Publication 865664 D01v01r04 and IEEE 1528-2013 6.6.1.2). The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software.

| FCC ID: ZNFL455DL      | PCTEST:                 | SAR EVALUATION REPORT LG | Approved by: Quality Manager |
|------------------------|-------------------------|--------------------------|------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:                | Dogo 71 of 120               |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset         | Page 71 of 129               |

## 10.2 Test System Verification

Prior to SAR assessment, the system is verified to  $\pm 10\%$  of the SAR measurement on the reference dipole at the time of calibration by the calibration facility. Full system validation status and result summary can be found in Appendix D.

Table 10-3 System Verification Results – 1g

| System Verification  System Verification  TARGET & MEASURED |                              |                |            |                   |                     |                       |              |             |                                      |                                           |                                            |                         |
|-------------------------------------------------------------|------------------------------|----------------|------------|-------------------|---------------------|-----------------------|--------------|-------------|--------------------------------------|-------------------------------------------|--------------------------------------------|-------------------------|
| SAR<br>System #                                             | Tissue<br>Frequency<br>(MHz) | Tissue<br>Type | Date       | Amb.<br>Temp (°C) | Liquid<br>Temp (°C) | Input<br>Power<br>(W) | Source<br>SN | Probe<br>SN | Measured<br>SAR <sub>1g</sub> (W/kg) | 1 W Target<br>SAR <sub>1g</sub><br>(W/kg) | 1 W Normalized<br>SAR <sub>1g</sub> (W/kg) | Deviation <sub>1g</sub> |
| М                                                           | 750                          | HEAD           | 01/05/2020 | 21.9              | 20.4                | 0.200                 | 1003         | 7308        | 1.740                                | 8.280                                     | 8.700                                      | 5.07%                   |
| D                                                           | 835                          | HEAD           | 01/06/2020 | 22.1              | 21.1                | 0.200                 | 4d133        | 3914        | 1.980                                | 9.430                                     | 9.900                                      | 4.98%                   |
| М                                                           | 835                          | HEAD           | 01/08/2020 | 20.9              | 20.2                | 0.200                 | 4d047        | 7308        | 1.990                                | 9.420                                     | 9.950                                      | 5.63%                   |
| Н                                                           | 1750                         | HEAD           | 01/04/2020 | 22.9              | 22.0                | 0.100                 | 1148         | 7406        | 3.490                                | 37.000                                    | 34.900                                     | -5.68%                  |
| L                                                           | 1900                         | HEAD           | 01/06/2020 | 21.9              | 20.0                | 0.100                 | 5d148        | 7410        | 4.210                                | 39.100                                    | 42.100                                     | 7.67%                   |
| E                                                           | 2450                         | HEAD           | 12/05/2019 | 22.7              | 20.8                | 0.100                 | 981          | 7417        | 5.290                                | 52.300                                    | 52.900                                     | 1.15%                   |
| E                                                           | 2450                         | HEAD           | 01/08/2020 | 22.9              | 20.7                | 0.100                 | 719          | 7417        | 5.550                                | 53.100                                    | 55.500                                     | 4.52%                   |
| E                                                           | 2450                         | HEAD           | 01/14/2020 | 22.7              | 23.0                | 0.100                 | 981          | 7417        | 5.560                                | 52.300                                    | 55.600                                     | 6.31%                   |
| E                                                           | 2600                         | HEAD           | 01/08/2020 | 22.9              | 20.7                | 0.100                 | 1004         | 7417        | 6.030                                | 55.900                                    | 60.300                                     | 7.87%                   |
| Е                                                           | 2600                         | HEAD           | 01/16/2020 | 22.3              | 21.1                | 0.100                 | 1064         | 7417        | 5.730                                | 58.100                                    | 57.300                                     | -1.38%                  |
| Н                                                           | 5250                         | HEAD           | 12/09/2019 | 22.0              | 23.0                | 0.050                 | 1191         | 7406        | 3.780                                | 80.800                                    | 75.600                                     | -6.44%                  |
| Н                                                           | 5600                         | HEAD           | 12/09/2019 | 22.0              | 23.0                | 0.050                 | 1191         | 7406        | 3.910                                | 82.700                                    | 78.200                                     | -5.44%                  |
| Н                                                           | 5750                         | HEAD           | 12/09/2019 | 22.0              | 23.0                | 0.050                 | 1191         | 7406        | 3.610                                | 80.200                                    | 72.200                                     | -9.98%                  |
| L                                                           | 750                          | BODY           | 12/28/2019 | 22.2              | 21.5                | 0.200                 | 1161         | 7410        | 1.810                                | 8.430                                     | 9.050                                      | 7.35%                   |
| L                                                           | 835                          | BODY           | 12/18/2019 | 21.1              | 19.9                | 0.200                 | 4d047        | 7410        | 2.040                                | 9.470                                     | 10.200                                     | 7.71%                   |
| 1                                                           | 1750                         | BODY           | 12/30/2019 | 20.4              | 20.7                | 0.100                 | 1148         | 7357        | 3.480                                | 37.700                                    | 34.800                                     | -7.69%                  |
| М                                                           | 1750                         | BODY           | 01/10/2020 | 22.0              | 22.1                | 0.100                 | 1148         | 7308        | 4.030                                | 37.700                                    | 40.300                                     | 6.90%                   |
| Р                                                           | 1900                         | BODY           | 01/05/2020 | 20.7              | 21.7                | 0.100                 | 5d148        | 7551        | 4.140                                | 39.100                                    | 41.400                                     | 5.88%                   |
| Р                                                           | 1900                         | BODY           | 01/06/2020 | 21.9              | 22.0                | 0.100                 | 5d080        | 7551        | 4.060                                | 39.200                                    | 40.600                                     | 3.57%                   |
| Р                                                           | 1900                         | BODY           | 01/08/2020 | 21.9              | 22.1                | 0.100                 | 5d149        | 7551        | 4.130                                | 39.400                                    | 41.300                                     | 4.82%                   |
| К                                                           | 2450                         | BODY           | 01/05/2020 | 23.4              | 22.2                | 0.100                 | 719          | 7547        | 5.300                                | 50.800                                    | 53.000                                     | 4.33%                   |
| L                                                           | 2450                         | BODY           | 01/06/2020 | 20.6              | 21.9                | 0.100                 | 981          | 7410        | 4.950                                | 50.900                                    | 49.500                                     | -2.75%                  |
| К                                                           | 2450                         | BODY           | 01/08/2020 | 24.2              | 22.8                | 0.100                 | 981          | 7547        | 5.200                                | 50.900                                    | 52.000                                     | 2.16%                   |
| К                                                           | 2450                         | BODY           | 01/13/2020 | 22.9              | 21.9                | 0.100                 | 981          | 7547        | 5.040                                | 50.900                                    | 50.400                                     | -0.98%                  |
| К                                                           | 2600                         | BODY           | 01/08/2020 | 24.2              | 22.8                | 0.100                 | 1064         | 7547        | 5.590                                | 55.600                                    | 55.900                                     | 0.54%                   |
| К                                                           | 2600                         | BODY           | 01/13/2020 | 22.9              | 21.9                | 0.100                 | 1064         | 7547        | 5.350                                | 55.600                                    | 53.500                                     | -3.78%                  |
| G                                                           | 5250                         | BODY           | 12/23/2019 | 23.0              | 22.0                | 0.050                 | 1191         | 7409        | 3.800                                | 77.000                                    | 76.000                                     | -1.30%                  |
| G                                                           | 5600                         | BODY           | 12/23/2019 | 23.0              | 22.0                | 0.050                 | 1191         | 7409        | 4.080                                | 78.600                                    | 81.600                                     | 3.82%                   |
| G                                                           | 5750                         | BODY           | 12/23/2019 | 23.0              | 22.0                | 0.050                 | 1191         | 7409        | 3.880                                | 76.900                                    | 77.600                                     | 0.91%                   |
| G                                                           | 5250                         | BODY           | 01/05/2020 | 23.5              | 22.0                | 0.050                 | 1191         | 7409        | 3.890                                | 77.000                                    | 77.800                                     | 1.04%                   |

| FCC ID: ZNFL455DL         | PCTEST*                 | SAR EVALUATION REPORT | Approved by:  Quality Manager |  |
|---------------------------|-------------------------|-----------------------|-------------------------------|--|
| Document S/N: Test Dates: |                         | DUT Type:             | Dog 72 of 120                 |  |
| 1M1911290211-01-R2.ZNF    | 12/05/2019 - 01/16/2020 | Portable Handset      | Page 72 of 129                |  |

#### **Table 10-4** System Verification Results - 10a

|                 |                              |                |            | <u></u>           | stem v              | erinca                | tion R       | esuit       | 5 – 10g                                |                                         |                                             |                              |
|-----------------|------------------------------|----------------|------------|-------------------|---------------------|-----------------------|--------------|-------------|----------------------------------------|-----------------------------------------|---------------------------------------------|------------------------------|
|                 |                              |                |            |                   |                     | System '              | Verification |             |                                        |                                         |                                             |                              |
| SAR<br>System # | Tissue<br>Frequency<br>(MHz) | Tissue<br>Type | Date       | Amb.<br>Temp (°C) | Liquid<br>Temp (°C) | Input<br>Power<br>(W) | Source<br>SN | Probe<br>SN | Measured<br>SAR <sub>10 g</sub> (W/kg) | 1 W Target<br>SAR <sub>10g</sub> (W/kg) | 1 W Normalized<br>SAR <sub>10g</sub> (W/kg) | Deviation <sub>10g</sub> (%) |
| I               | 1750                         | BODY           | 01/09/2020 | 21.5              | 21.1                | 0.100                 | 1148         | 7357        | 2.070                                  | 19.800                                  | 20.700                                      | 4.55%                        |
| М               | 1750                         | BODY           | 01/11/2020 | 21.4              | 20.6                | 0.100                 | 1148         | 7308        | 2.090                                  | 19.800                                  | 20.900                                      | 5.56%                        |
| Р               | 1900                         | BODY           | 01/06/2020 | 21.9              | 22.0                | 0.100                 | 5d080        | 7551        | 2.090                                  | 20.600                                  | 20.900                                      | 1.46%                        |
| Р               | 1900                         | BODY           | 01/11/2020 | 21.9              | 21.8                | 0.100                 | 5d149        | 7551        | 2.140                                  | 20.700                                  | 21.400                                      | 3.38%                        |
| K               | 2450                         | BODY           | 01/13/2020 | 22.9              | 21.9                | 0.100                 | 981          | 7547        | 2.320                                  | 24.200                                  | 23.200                                      | -4.13%                       |
| K               | 2600                         | BODY           | 01/13/2020 | 22.9              | 21.9                | 0.100                 | 1064         | 7547        | 2.370                                  | 25.000                                  | 23.700                                      | -5.20%                       |
| G               | 5250                         | BODY           | 12/29/2019 | 23.9              | 22.5                | 0.050                 | 1191         | 7409        | 1.080                                  | 21.400                                  | 21.600                                      | 0.93%                        |
| G               | 5600                         | BODY           | 12/29/2019 | 23.9              | 22.5                | 0.050                 | 1191         | 7409        | 1.170                                  | 21.900                                  | 23.400                                      | 6.85%                        |

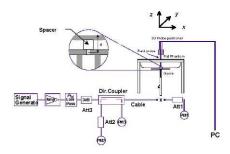



Figure 10-1 System Verification Setup Diagram



Figure 10-2 **System Verification Setup Photo** 

| FCC ID: ZNFL455DL      | PCTEST*                 | SAR EVALUATION REPORT LG | Approved by:  Quality Manager |
|------------------------|-------------------------|--------------------------|-------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:                | D 70 -f 100                   |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset         | Page 73 of 129                |

#### 11 SAR DATA SUMMARY

#### 11.1 **Standalone Head SAR Data**

#### **Table 11-1 GSM 850 Head SAR**

|        |                                          |              |              |                    |             |            |        | caa o    |                  |           |          |            |         |                      |        |
|--------|------------------------------------------|--------------|--------------|--------------------|-------------|------------|--------|----------|------------------|-----------|----------|------------|---------|----------------------|--------|
|        |                                          |              |              |                    |             | MEASU      | JREMEN | T RESU   | LTS              |           |          |            |         |                      |        |
| FREQUI | ENCY                                     | Mode         | Service      | Maximum<br>Allowed | Conducted   | Power      | Side   | Test     | Device<br>Serial | # of Time | Duty     | SAR (1g)   | Scaling | Reported SAR<br>(1g) | Plot # |
| MHz    | Ch.                                      |              |              | Power [dBm]        | Power [dBm] | Drift [dB] |        | Position | Number           | Slots     | Cycle    | (W/kg)     | Factor  | (W/kg)               |        |
| 836.60 | 190                                      | GSM 850      | GSM          | 33.7               | 33.42       | 0.14       | Right  | Cheek    | 05482            | 1         | 1:8.3    | 0.243      | 1.067   | 0.259                |        |
| 836.60 | 190                                      | GSM 850      | GSM          | 33.7               | 33.42       | 0.04       | Right  | Tilt     | 05482            | 1         | 1:8.3    | 0.123      | 1.067   | 0.131                |        |
| 836.60 | 190                                      | GSM 850      | GSM          | 33.7               | 33.42       | -0.04      | Left   | Cheek    | 05482            | 1         | 1:8.3    | 0.244      | 1.067   | 0.260                |        |
| 836.60 | 190                                      | GSM 850      | GSM          | 33.7               | 33.42       | -0.04      | Left   | Tilt     | 05482            | 1         | 1:8.3    | 0.138      | 1.067   | 0.147                |        |
| 836.60 | 190                                      | GSM 850      | GPRS         | 29.7               | 29.42       | 0.12       | Right  | Cheek    | 05482            | 4         | 1:2.076  | 0.308      | 1.067   | 0.329                |        |
| 836.60 | 190                                      | GSM 850      | GPRS         | 29.7               | 29.42       | 0.12       | Right  | Tilt     | 05482            | 4         | 1:2.076  | 0.165      | 1.067   | 0.176                |        |
| 836.60 | 190                                      | GSM 850      | GPRS         | 29.7               | 29.42       | -0.06      | Left   | Cheek    | 05482            | 4         | 1:2.076  | 0.327      | 1.067   | 0.349                | A1     |
| 836.60 | 190                                      | GSM 850      | GPRS         | 29.7               | 29.42       | -0.04      | Left   | Tilt     | 05482            | 4         | 1:2.076  | 0.190      | 1.067   | 0.203                |        |
|        |                                          | ANSI / IEEI  | E C95.1 1992 | - SAFETY LII       | MIT         | Ţ          | Head   |          |                  |           |          |            |         |                      | ,      |
|        | Spatial Peak                             |              |              |                    |             |            |        |          |                  |           | 1.6 W/kg | (mW/g)     |         |                      |        |
|        |                                          | Uncontrolled | Exposure/G   | eneral Popul       | ation       |            |        |          |                  | av        | eraged o | ver 1 gram |         |                      |        |
|        | Uncontrolled Exposure/General Population |              |              |                    |             |            |        |          |                  | av        | eraged o | ver 1 gram |         |                      |        |

#### **Table 11-2 GSM 1900 Head SAR**

|         |                                                     |          |         |                    |             | MEASU      | JREMEN | T RESUI  | LTS              |           |         |           |         |                      |       |
|---------|-----------------------------------------------------|----------|---------|--------------------|-------------|------------|--------|----------|------------------|-----------|---------|-----------|---------|----------------------|-------|
| FREQUI  | ENCY                                                | Mode     | Service | Maximum<br>Allowed | Conducted   | Power      | Side   | Test     | Device<br>Serial | # of Time | Duty    | SAR (1g)  | Scaling | Reported SAR<br>(1g) | Plot# |
| MHz     | Ch.                                                 | ouo      | 5517.55 | Power [dBm]        | Power [dBm] | Drift [dB] | 0.40   | Position | Number           | Slots     | Cycle   | (W/kg)    | Factor  | (W/kg)               |       |
| 1880.00 | 661                                                 | GSM 1900 | GSM     | 30.7               | 30.50       | -0.07      | Right  | Cheek    | 05490            | 1         | 1:8.3   | 0.110     | 1.047   | 0.090                |       |
| 1880.00 | 661                                                 | GSM 1900 | GSM     | 30.7               | 30.50       | 0.03       | Right  | Tilt     | 05490            | 1         | 1:8.3   | 0.095     | 1.047   | 0.099                |       |
| 1880.00 | 661                                                 | GSM 1900 | GSM     | 30.7               | 30.50       | 0.04       | Left   | Cheek    | 05490            | 1         | 1:8.3   | 0.151     | 1.047   | 0.158                |       |
| 1880.00 | 661                                                 | GSM 1900 | GSM     | 30.7               | 30.50       | 0.02       | Left   | Tilt     | 05490            | 1         | 1:8.3   | 0.086     | 1.047   | 0.090                |       |
| 1880.00 | 661                                                 | GSM 1900 | GPRS    | 25.7               | 25.48       | 0.03       | Right  | Cheek    | 05490            | 4         | 1:2.076 | 0.131     | 1.052   | 0.138                |       |
| 1880.00 | 661                                                 | GSM 1900 | GPRS    | 25.7               | 25.48       | 0.02       | Right  | Tilt     | 05490            | 4         | 1:2.076 | 0.111     | 1.052   | 0.117                |       |
| 1880.00 | 661                                                 | GSM 1900 | GPRS    | 25.7               | 25.48       | -0.04      | Left   | Cheek    | 05490            | 4         | 1:2.076 | 0.180     | 1.052   | 0.189                | A2    |
| 1880.00 | 661                                                 | GSM 1900 | GPRS    | 25.7               | 25.48       | 0.16       | Left   | Tilt     | 05490            | 4         | 1:2.076 | 0.107     | 1.052   | 0.113                |       |
|         | ANSI / IEEE C95.1 1992 - SAFETY LIMIT  Spatial Peak |          |         |                    |             |            |        |          |                  |           | Hea     | (mW/g)    |         |                      |       |
|         | Uncontrolled Exposure/General Population            |          |         |                    |             |            |        |          |                  |           | -       | er 1 gram |         |                      |       |

| FCC ID: ZNFL455DL      | PCTEST*                 | SAR EVALUATION REPORT | Approved by: Quality Manager |
|------------------------|-------------------------|-----------------------|------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:             | D 74 - 6 400                 |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset      | Page 74 of 129               |

#### **Table 11-3** UMTS 850 Head SAR

|        |                                          |          |         |                    | U           | WI I 3 0   | о пеа           | u SAK    |                  |        |               |         |                      |        |
|--------|------------------------------------------|----------|---------|--------------------|-------------|------------|-----------------|----------|------------------|--------|---------------|---------|----------------------|--------|
|        |                                          |          |         |                    | МЕ          | ASURE      | MENT R          | ESULTS   |                  |        |               |         |                      |        |
| FREQUI | ENCY                                     | Mode     | Service | Maximum<br>Allowed | Conducted   | Power      | Side            | Test     | Device<br>Serial | Duty   | SAR (1g)      | Scaling | Reported SAR<br>(1g) | Plot # |
| MHz    | Ch.                                      |          |         | Power [dBm]        | Power [dBm] | Drift [dB] |                 | Position | Number           | Cycle  | (W/kg)        | Factor  | (W/kg)               |        |
| 836.60 | 4183                                     | UMTS 850 | RMC     | 24.7               | 24.53       | 0.06       | Right           | Cheek    | 05482            | 1:1    | 0.288         | 1.040   | 0.300                | А3     |
| 836.60 | 4183                                     | UMTS 850 | RMC     | 24.7               | 24.53       | 0.01       | Right           | Tilt     | 05482            | 1:1    | 0.178         | 1.040   | 0.185                |        |
| 836.60 | 4183                                     | UMTS 850 | RMC     | 24.7               | 24.53       | 0.01       | Left            | Cheek    | 05482            | 1:1    | 0.266         | 1.040   | 0.277                |        |
| 836.60 | 4183                                     | UMTS 850 | RMC     | 24.7               | 24.53       | -0.10      | Left            | Tilt     | 05482            | 1:1    | 0.162         | 1.040   | 0.168                |        |
|        | ANSI / IEEE C95.1 1992 - SAFETY LIMIT    |          |         |                    |             |            |                 |          |                  |        | Head          |         |                      |        |
|        | Spatial Peak                             |          |         |                    |             |            | 1.6 W/kg (mW/g) |          |                  |        |               |         |                      |        |
|        | Uncontrolled Exposure/General Population |          |         |                    |             |            |                 |          |                  | averag | ed over 1 gra | ım      |                      |        |

#### **Table 11-4 UMTS 1750 Head SAR**

|         |                                          |           |         |                    |             |            |                 | 1G 0/ 1/ 1 | •                |        |               |         |                      |         |
|---------|------------------------------------------|-----------|---------|--------------------|-------------|------------|-----------------|------------|------------------|--------|---------------|---------|----------------------|---------|
|         |                                          |           |         |                    | ME          | ASURE      | MENT R          | ESULTS     |                  |        |               |         |                      |         |
| FREQUE  | ENCY                                     | Mode      | Service | Maximum<br>Allowed | Conducted   | Power      | Side            | Test       | Device<br>Serial | Duty   | SAR (1g)      | Scaling | Reported SAR<br>(1g) | Plot#   |
| MHz     | Ch.                                      | euc       | 0011100 | Power [dBm]        | Power [dBm] | Drift [dB] | 0.40            | Position   | Number           | Cycle  | (W/kg)        | Factor  | (W/kg)               | . 101 " |
| 1732.40 | 1412                                     | UMTS 1750 | RMC     | 24.7               | 24.59       | 0.19       | Right           | Cheek      | 05482            | 1:1    | 0.153         | 1.026   | 0.157                |         |
| 1732.40 | 1412                                     | UMTS 1750 | RMC     | 24.7               | 24.59       | 0.07       | Right           | Tilt       | 05482            | 1:1    | 0.121         | 1.026   | 0.124                |         |
| 1732.40 | 1412                                     | UMTS 1750 | RMC     | 24.7               | 24.59       | 0.01       | Left            | Cheek      | 05482            | 1:1    | 0.317         | 1.026   | 0.325                | A4      |
| 1732.40 | 1412                                     | UMTS 1750 | RMC     | 24.7               | 24.59       | 0.02       | Left            | Tilt       | 05482            | 1:1    | 0.103         | 1.026   | 0.106                |         |
|         | ANSI / IEEE C95.1 1992 - SAFETY LIMIT    |           |         |                    |             |            |                 |            |                  |        | Head          |         |                      |         |
|         | Spatial Peak                             |           |         |                    |             |            | 1.6 W/kg (mW/g) |            |                  |        |               |         |                      |         |
|         | Uncontrolled Exposure/General Population |           |         |                    |             |            |                 |            |                  | averag | ed over 1 gra | am      |                      |         |

#### **Table 11-5 UMTS 1900 Head SAR**

| MEASUREMENT RESULTS |                                          |           |         |                    |             |            |                 |          |                  |        |               |         |                      |       |
|---------------------|------------------------------------------|-----------|---------|--------------------|-------------|------------|-----------------|----------|------------------|--------|---------------|---------|----------------------|-------|
|                     |                                          |           |         |                    | ME          | ASURE      | MENT R          | ESULTS   |                  |        |               |         |                      |       |
| FREQUI              | ENCY                                     | Mode      | Service | Maximum<br>Allowed | Conducted   | Power      | Side            | Test     | Device<br>Serial | Duty   | SAR (1g)      | Scaling | Reported SAR<br>(1g) | Plot# |
| MHz                 | Ch.                                      |           |         | Power [dBm]        | Power [dBm] | Drift [dB] |                 | Position | Number           | Cycle  | (W/kg)        | Factor  | (W/kg)               |       |
| 1880.00             | 9400                                     | UMTS 1900 | RMC     | 24.7               | 24.60       | 0.04       | Right           | Cheek    | 05490            | 1:1    | 0.166         | 1.023   | 0.170                |       |
| 1880.00             | 9400                                     | UMTS 1900 | RMC     | 24.7               | 24.60       | 0.03       | Right           | Tilt     | 05490            | 1:1    | 0.158         | 1.023   | 0.162                |       |
| 1880.00             | 9400                                     | UMTS 1900 | RMC     | 24.7               | 24.60       | 0.12       | Left            | Cheek    | 05490            | 1:1    | 0.302         | 1.023   | 0.309                | A5    |
| 1880.00             | 9400                                     | UMTS 1900 | RMC     | 24.7               | 24.60       | 0.05       | Left            | Tilt     | 05490            | 1:1    | 0.123         | 1.023   | 0.126                |       |
|                     | ANSI / IEEE C95.1 1992 - SAFETY LIMIT    |           |         |                    |             |            | Head            |          |                  |        |               |         |                      |       |
|                     | Spatial Peak                             |           |         |                    |             |            | 1.6 W/kg (mW/g) |          |                  |        |               |         |                      |       |
|                     | Uncontrolled Exposure/General Population |           |         |                    |             |            |                 |          |                  | averag | ed over 1 gra | am      |                      |       |

| FCC ID: ZNFL455DL      | PCTEST*                 | SAR EVALUATION REPORT | Approved by: Quality Manager |
|------------------------|-------------------------|-----------------------|------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:             | Dogg 75 of 100               |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset      | Page 75 of 129               |

#### **Table 11-6** CDMA BC10 (§90S) Head SAR

|        |              |                  |               |                    | SDIVIA D    | 010 (3     | 300, 1  | icaa c          | ~ · · ·          |        |               |         |                      |        |
|--------|--------------|------------------|---------------|--------------------|-------------|------------|---------|-----------------|------------------|--------|---------------|---------|----------------------|--------|
|        |              |                  |               |                    | MEAS        | SUREME     | ENT RES | ULTS            |                  |        |               |         |                      |        |
| FREQU  | ENCY         | Mode             | Service       | Maximum<br>Allowed | Conducted   | Power      | Side    | Test            | Device<br>Serial | Duty   | SAR (1g)      | Scaling | Reported SAR<br>(1g) | Plot # |
| MHz    | Ch.          |                  |               | Power [dBm]        | Power [dBm] | Drift [dB] |         | Position        | Number           | Cycle  | (W/kg)        | Factor  | (W/kg)               |        |
| 820.10 | 564          | CDMA BC10 (§90S) | RC3 / SO55    | 24.7               | 24.66       | 0.10       | Right   | Cheek           | 05482            | 1:1    | 0.219         | 1.009   | 0.221                | A6     |
| 820.10 | 564          | CDMA BC10 (§90S) | RC3 / SO55    | 24.7               | 24.66       | 0.03       | Right   | Tilt            | 05482            | 1:1    | 0.124         | 1.009   | 0.125                |        |
| 820.10 | 564          | CDMA BC10 (§90S) | RC3 / SO55    | 24.7               | 24.66       | 0.11       | Left    | Cheek           | 05482            | 1:1    | 0.175         | 1.009   | 0.177                |        |
| 820.10 | 564          | CDMA BC10 (§90S) | RC3 / SO55    | 24.7               | 24.66       | 0.01       | Left    | Tilt            | 05482            | 1:1    | 0.101         | 1.009   | 0.102                |        |
| 820.10 | 564          | CDMA BC10 (§90S) | EVDO Rev. A   | 24.7               | 24.69       | 0.02       | Right   | Cheek           | 05482            | 1:1    | 0.197         | 1.002   | 0.197                |        |
| 820.10 | 564          | CDMA BC10 (§90S) | EVDO Rev. A   | 24.7               | 24.69       | 0.07       | Right   | Tilt            | 05482            | 1:1    | 0.112         | 1.002   | 0.112                |        |
| 820.10 | 564          | CDMA BC10 (§90S) | EVDO Rev. A   | 24.7               | 24.69       | 0.02       | Left    | Cheek           | 05482            | 1:1    | 0.158         | 1.002   | 0.158                |        |
| 820.10 | 564          | CDMA BC10 (§90S) | 0.03          | Left               | Tilt        | 05482      | 1:1     | 0.090           | 1.002            | 0.090  |               |         |                      |        |
|        |              | ANSI / IEEE C    | 95.1 1992 - S | AFETY LIMIT        |             |            |         |                 |                  |        | Head          |         |                      |        |
|        | Spatial Peak |                  |               |                    |             |            |         | 1.6 W/kg (mW/g) |                  |        |               |         |                      |        |
|        |              | Uncontrolled E   | xposure/Gene  | eral Populati      | on          |            |         |                 |                  | averag | ed over 1 gra | am      |                      |        |

**Table 11-7** CDMA BC0 (§22H) Head SAR

|        |                                          |                 |                |                    | ODINA I     | (3         | ,.      | ouu o            | •••              |        |               |         |                      |        |
|--------|------------------------------------------|-----------------|----------------|--------------------|-------------|------------|---------|------------------|------------------|--------|---------------|---------|----------------------|--------|
|        |                                          |                 |                |                    | MEA         | SUREM      | ENT RES | SULTS            |                  |        |               |         |                      |        |
| FREQU  | ENCY                                     | Mode            | Service        | Maximum<br>Allowed | Conducted   | Power      | Side    | Test<br>Position | Device<br>Serial | Duty   | SAR (1g)      | Scaling | Reported SAR<br>(1g) | Plot # |
| MHz    | Ch.                                      |                 |                | Power [dBm]        | Power [dBm] | Drift [dB] |         | Position         | Number           | Cycle  | (W/kg)        | Factor  | (W/kg)               |        |
| 836.52 | 384                                      | CDMA BC0 (§22H) | RC3 / SO55     | 24.7               | 24.67       | -0.13      | Right   | Cheek            | 05482            | 1:1    | 0.283         | 1.007   | 0.285                | A7     |
| 836.52 | 384                                      | CDMA BC0 (§22H) | RC3 / SO55     | 24.7               | 24.67       | 0.20       | Right   | Tilt             | 05482            | 1:1    | 0.130         | 1.007   | 0.131                |        |
| 836.52 | 384                                      | CDMA BC0 (§22H) | RC3 / SO55     | 24.7               | 24.67       | 0.03       | Left    | Cheek            | 05482            | 1:1    | 0.222         | 1.007   | 0.224                |        |
| 836.52 | 384                                      | CDMA BC0 (§22H) | RC3 / SO55     | 24.7               | 24.67       | 0.05       | Left    | Tilt             | 05482            | 1:1    | 0.117         | 1.007   | 0.118                |        |
| 836.52 | 384                                      | CDMA BC0 (§22H) | EVDO Rev. A    | 24.7               | 24.70       | -0.11      | Right   | Cheek            | 05482            | 1:1    | 0.237         | 1.000   | 0.237                |        |
| 836.52 | 384                                      | CDMA BC0 (§22H) | EVDO Rev. A    | 24.7               | 24.70       | 0.02       | Right   | Tilt             | 05482            | 1:1    | 0.118         | 1.000   | 0.118                |        |
| 836.52 | 384                                      | CDMA BC0 (§22H) | EVDO Rev. A    | 24.7               | 24.70       | 0.01       | Left    | Cheek            | 05482            | 1:1    | 0.186         | 1.000   | 0.186                |        |
| 836.52 | 384                                      | CDMA BC0 (§22H) | EVDO Rev. A    | 24.7               | 24.70       | 0.03       | Left    | Tilt             | 05482            | 1:1    | 0.106         | 1.000   | 0.106                |        |
|        |                                          | ANSI / IEEE     | C95.1 1992 - S | SAFETY LIMI        | Т           |            | Head    |                  |                  |        |               |         |                      |        |
|        | Spatial Peak                             |                 |                |                    |             |            |         | 1.6 W/kg (mW/g)  |                  |        |               |         |                      |        |
|        | Uncontrolled Exposure/General Population |                 |                |                    |             |            |         |                  |                  | averag | ed over 1 gra | ım      |                      |        |

| FCC ID: ZNFL455DL      | PCTEST:                 | SAR EVALUATION REPORT LG | Approved by: Quality Manager |
|------------------------|-------------------------|--------------------------|------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:                | Dogg 76 of 120               |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset         | Page 76 of 129               |

#### **Table 11-8 PCS CDMA Head SAR**

|         |     |              |              |                        |             | ,          | VIA I IEC | iu OAII  | <u>.                                      </u> |        |                |         |                      |        |
|---------|-----|--------------|--------------|------------------------|-------------|------------|-----------|----------|------------------------------------------------|--------|----------------|---------|----------------------|--------|
|         |     |              |              |                        | ME          | ASURE      | MENT R    | ESULTS   |                                                |        |                |         |                      |        |
| FREQUE  | NCY |              |              | Maximum                | Conducted   | Power      |           | Test     | Device                                         | Dutv   | SAR (1g)       | Scaling | Reported SAR<br>(1g) |        |
| MHz     | Ch. | Mode         | Service      | Allowed<br>Power [dBm] | Power [dBm] | Drift [dB] | Side      | Position | Serial<br>Number                               | Cycle  | (W/kg)         | Factor  | (W/kg)               | Plot # |
| 1880.00 | 600 | PCS CDMA     | RC3 / SO55   | 24.7                   | 24.35       | 0.07       | Right     | Cheek    | 05490                                          | 1:1    | 0.190          | 1.084   | 0.206                |        |
| 1880.00 | 600 | PCS CDMA     | RC3 / SO55   | 24.7                   | 24.35       | 0.09       | Right     | Tilt     | 05490                                          | 1:1    | 0.169          | 1.084   | 0.183                |        |
| 1880.00 | 600 | PCS CDMA     | RC3 / SO55   | 24.7                   | 24.35       | 0.06       | Left      | Cheek    | 05490                                          | 1:1    | 0.339          | 1.084   | 0.367                | A8     |
| 1880.00 | 600 | PCS CDMA     | RC3 / SO55   | 24.7                   | 24.35       | 0.07       | Left      | Tilt     | 05490                                          | 1:1    | 0.159          | 1.084   | 0.172                |        |
| 1880.00 | 600 | PCS CDMA     | EVDO Rev. A  | 24.7                   | 24.27       | 0.09       | Right     | Cheek    | 05490                                          | 1:1    | 0.160          | 1.104   | 0.177                |        |
| 1880.00 | 600 | PCS CDMA     | EVDO Rev. A  | 24.7                   | 24.27       | 0.07       | Right     | Tilt     | 05490                                          | 1:1    | 0.140          | 1.104   | 0.155                |        |
| 1880.00 | 600 | PCS CDMA     | EVDO Rev. A  | 24.7                   | 24.27       | 0.13       | Left      | Cheek    | 05490                                          | 1:1    | 0.279          | 1.104   | 0.308                |        |
| 1880.00 | 600 | PCS CDMA     | EVDO Rev. A  | 24.7                   | 24.27       | 0.00       | Left      | Tilt     | 05490                                          | 1:1    | 0.123          | 1.104   | 0.136                |        |
|         |     | ANSI / IEE   | E C95.1 1992 | - SAFETY LII           | MIT         |            |           |          |                                                |        | Head           |         |                      |        |
|         |     |              | Spatial Pe   | ak                     |             |            |           |          |                                                | 1.6 \  | N/kg (mW/g)    | )       |                      |        |
|         |     | Uncontrolled | d Exposure/G | eneral Popul           | ation       |            |           |          |                                                | averaç | jed over 1 gra | am      |                      |        |

#### **Table 11-9** LTE Band 71 Head SAR

|        |          |     |                |                          |                    |             | М          | EASURE   | MENT  | RESULT   | s       |           |                  |                 |          |         |                      |       |
|--------|----------|-----|----------------|--------------------------|--------------------|-------------|------------|----------|-------|----------|---------|-----------|------------------|-----------------|----------|---------|----------------------|-------|
| FF     | REQUENCY |     | Mode           | Bandwidth                | Maximum<br>Allowed | Conducted   | Power      | MPR [dB] | Side  | Test     | RB Size | RB Offset | Device<br>Serial | Duty            | SAR (1g) | Scaling | Reported SAR<br>(1g) | Plot# |
| MHz    | Cł       | ١.  |                | [MHz]                    | Power [dBm]        | Power [dBm] | Drift [dB] | []       |       | Position |         |           | Number           | Cycle           | (W/kg)   | Factor  | (W/kg)               |       |
| 680.50 | 133297   | Mid | LTE Band 71    | 20                       | 24.7               | 24.70       | -0.08      | 0        | Right | Cheek    | 1       | 50        | 05516            | 1:1             | 0.258    | 1.000   | 0.258                | A9    |
| 680.50 | 133297   | Mid | LTE Band 71    | 0.02                     | 1                  | Right       | Cheek      | 50       | 25    | 05516    | 1:1     | 0.203     | 1.019            | 0.207           |          |         |                      |       |
| 680.50 | 133297   | Mid | LTE Band 71    | 0.00                     | 0                  | Right       | Tilt       | 1        | 50    | 05516    | 1:1     | 0.150     | 1.000            | 0.150           |          |         |                      |       |
| 680.50 |          |     |                |                          |                    |             |            | 1        | Right | Tilt     | 50      | 25        | 05516            | 1:1             | 0.107    | 1.019   | 0.109                |       |
| 680.50 | 133297   | Mid | LTE Band 71    | 20                       | 24.7               | 24.70       | 0.07       | 0        | Left  | Cheek    | 1       | 50        | 05516            | 1:1             | 0.231    | 1.000   | 0.231                |       |
| 680.50 | 133297   | Mid | LTE Band 71    | 20                       | 23.7               | 23.62       | 0.03       | 1        | Left  | Cheek    | 50      | 25        | 05516            | 1:1             | 0.172    | 1.019   | 0.175                |       |
| 680.50 | 133297   | Mid | LTE Band 71    | 20                       | 24.7               | 24.70       | 0.01       | 0        | Left  | Tilt     | 1       | 50        | 05516            | 1:1             | 0.120    | 1.000   | 0.120                |       |
| 680.50 | 133297   | Mid | LTE Band 71    | 20                       | 23.7               | 1           | Left       | Tilt     | 50    | 25       | 05516   | 1:1       | 0.090            | 1.019           | 0.092    |         |                      |       |
|        |          |     | ANSI / IEEE C  | C95.1 1992<br>Spatial Pe |                    | MIT         |            |          |       | •        |         |           |                  | Head<br>kg (mW/ | a)       |         |                      |       |
|        |          |     | Uncontrolled E | •                        |                    | lation      |            |          |       |          |         |           |                  | d over 1 g      |          |         |                      |       |

| FCC ID: ZNFL455DL      | PCTEST"                 | SAR EVALUATION REPORT LG | Approved by: Quality Manager |
|------------------------|-------------------------|--------------------------|------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:                | Dogo 77 of 120               |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset         | Page 77 of 129               |

#### **Table 11-10** LTE Band 12 Head SAR

|        |         |     |               |            |                    |                          |            | MEAS     | UREM  | ENT RE           | SULTS      |         |                               |                  |       |          |                   |                      |       |
|--------|---------|-----|---------------|------------|--------------------|--------------------------|------------|----------|-------|------------------|------------|---------|-------------------------------|------------------|-------|----------|-------------------|----------------------|-------|
| FR     | EQUENCY | ,   | Mode          | Bandwidth  | Maximum<br>Allowed | Conducted<br>Power [dBm] | Power      | MPR [dB] | Side  | Test<br>Position | Modulation | RB Size | RB Offset                     | Device<br>Serial | Duty  | SAR (1g) | Scaling<br>Factor | Reported SAR<br>(1g) | Plot# |
| MHz    | CI      | h.  |               | [MHz]      | Power [dBm]        | Power (abm)              | Drift [dB] |          |       | Position         |            |         |                               | Number           | Cycle | (W/kg)   | Factor            | (W/kg)               |       |
| 707.50 | 23095   | Mid | LTE Band 12   | 10         | 25.2               | 25.17                    | 0.02       | 0        | Right | Cheek            | QPSK       | 1       | 25                            | 05516            | 1:1   | 0.328    | 1.007             | 0.330                | A10   |
| 707.50 | 23095   | Mid | LTE Band 12   | 10         | 24.2               | 24.15                    | -0.03      | 1        | Right | Cheek            | QPSK       | 25      | 0                             | 05516            | 1:1   | 0.244    | 1.012             | 0.247                |       |
| 707.50 | 23095   | Mid | LTE Band 12   | 10         | 25.2               | 25.17                    | -0.01      | 0        | Right | Tilt             | QPSK       | 1       | 25                            | 05516            | 1:1   | 0.163    | 1.007             | 0.164                |       |
| 707.50 | 23095   | Mid | LTE Band 12   | 10         | 24.2               | 24.15                    | 0.01       | 1        | Right | Tilt             | QPSK       | 25      | 0                             | 05516            | 1:1   | 0.122    | 1.012             | 0.123                |       |
| 707.50 | 23095   | Mid | LTE Band 12   | 10         | 25.2               | 25.17                    | 0.08       | 0        | Left  | Cheek            | QPSK       | 1       | 25                            | 05516            | 1:1   | 0.272    | 1.007             | 0.274                |       |
| 707.50 | 23095   | Mid | LTE Band 12   | 10         | 24.2               | 24.15                    | -0.01      | 1        | Left  | Cheek            | QPSK       | 25      | 0                             | 05516            | 1:1   | 0.215    | 1.012             | 0.218                |       |
| 707.50 | 23095   | Mid | LTE Band 12   | 10         | 25.2               | 25.17                    | 0.02       | 0        | Left  | Tilt             | QPSK       | 1       | 25                            | 05516            | 1:1   | 0.132    | 1.007             | 0.133                |       |
| 707.50 | 23095   | Mid | LTE Band 12   | 10         | 24.2               | 24.15                    | -0.06      | 1        | Left  | Tilt             | QPSK       | 25      | 0                             | 05516            | 1:1   | 0.117    | 1.012             | 0.118                |       |
|        |         |     | ANSI / IEEE C | Spatial Pe | ak                 |                          |            |          |       |                  |            |         | Head<br>.6 W/kg (neraged over |                  |       |          |                   |                      |       |

#### **Table 11-11** LTE Band 13 Head SAR

|        |         |     |               |            |                    |                          |            |                                                     |        | <u> </u>         | au Or      |         |           |                                   |       |          |         |                      |        |
|--------|---------|-----|---------------|------------|--------------------|--------------------------|------------|-----------------------------------------------------|--------|------------------|------------|---------|-----------|-----------------------------------|-------|----------|---------|----------------------|--------|
|        |         |     |               |            |                    |                          |            | MEAS                                                | SUREMI | ENT RES          | SULTS      |         |           |                                   |       |          |         |                      |        |
| FR     | EQUENCY | ,   | Mode          | Bandwidth  | Maximum<br>Allowed | Conducted<br>Power [dBm] | Power      | MPR [dB]                                            | Side   | Test<br>Position | Modulation | RB Size | RB Offset | Device<br>Serial                  | Duty  | SAR (1g) | Scaling | Reported SAR<br>(1g) | Plot # |
| MHz    | CI      | h.  |               | [MHz]      | Power [dBm]        | Power [dBm]              | Drift [dB] |                                                     |        | Position         |            |         |           | Number                            | Cycle | (W/kg)   | Factor  | (W/kg)               |        |
| 782.00 | 23230   | Mid | LTE Band 13   | 10         | 24.2               | 24.20                    | 0.05       | 0                                                   | Right  | Cheek            | QPSK       | 1       | 25        | 05516                             | 1:1   | 0.310    | 1.000   | 0.310                |        |
| 782.00 | 23230   | Mid | LTE Band 13   | 10         | 23.2               | 23.20                    | 0.18       | 1                                                   | Right  | Cheek            | QPSK       | 25      | 25        | 05516                             | 1:1   | 0.256    | 1.000   | 0.256                |        |
| 782.00 |         |     |               |            |                    |                          |            |                                                     |        |                  |            |         |           |                                   |       |          |         |                      |        |
| 782.00 | 23230   | Mid | LTE Band 13   | 10         | 23.2               | 23.20                    | 0.06       | 1 Right Tilt QPSK 25 25 05516 1:1 0.138 1.000 0.138 |        |                  |            |         |           |                                   |       |          |         |                      |        |
| 782.00 | 23230   | Mid | LTE Band 13   | 10         | 24.2               | 24.20                    | 0.02       | 0                                                   | Left   | Cheek            | QPSK       | 1       | 25        | 05516                             | 1:1   | 0.319    | 1.000   | 0.319                | A11    |
| 782.00 | 23230   | Mid | LTE Band 13   | 10         | 23.2               | 23.20                    | 0.06       | 1                                                   | Left   | Cheek            | QPSK       | 25      | 25        | 05516                             | 1:1   | 0.237    | 1.000   | 0.237                |        |
| 782.00 | 23230   | Mid | LTE Band 13   | 10         | 24.2               | 24.20                    | 0.10       | 0                                                   | Left   | Tilt             | QPSK       | 1       | 25        | 05516                             | 1:1   | 0.200    | 1.000   | 0.200                |        |
| 782.00 | 23230   | Mid | LTE Band 13   | 10         | 23.2               | 23.20                    | 0.11       | 1                                                   | Left   | Tilt             | QPSK       | 25      | 25        | 05516                             | 1:1   | 0.157    | 1.000   | 0.157                |        |
|        |         |     | ANSI / IEEE C | Spatial Pe | ak                 |                          |            |                                                     |        |                  |            |         |           | Head<br>.6 W/kg (n<br>eraged over | nW/g) |          |         |                      |        |

### **Table 11-12** LTE Band 26 (Cell) Head SAR

|        |         |     |                    |             |                    |             |            | MEAS     |       | ENT RES  | SULTS      |         |           |                  |        |          |         |                      |        |
|--------|---------|-----|--------------------|-------------|--------------------|-------------|------------|----------|-------|----------|------------|---------|-----------|------------------|--------|----------|---------|----------------------|--------|
| FR     | EQUENCY | ,   | Mode               | Bandwidth   | Maximum<br>Allowed | Conducted   | Power      | MPR [dB] | Side  | Test     | Modulation | RB Size | RB Offset | Device<br>Serial | Duty   | SAR (1g) | Scaling | Reported SAR<br>(1g) | Plot # |
| MHz    | CI      | h.  |                    | [MHz]       | Power [dBm]        | Power [dBm] | Drift [dB] |          |       | Position |            |         |           | Number           | Cycle  | (W/kg)   | Factor  | (W/kg)               |        |
| 831.50 | 26865   | Mid | LTE Band 26 (Cell) | 15          | 25.2               | 25.18       | -0.10      | 0        | Right | Cheek    | QPSK       | 1       | 36        | 05516            | 1:1    | 0.354    | 1.005   | 0.356                | A12    |
| 831.50 | 26865   | Mid | LTE Band 26 (Cell) | 15          | 24.2               | 24.20       | 0.02       | 1        | Right | Cheek    | QPSK       | 36      | 0         | 05516            | 1:1    | 0.286    | 1.000   | 0.286                |        |
| 831.50 | 26865   | Mid | LTE Band 26 (Cell) | 15          | 25.2               | 25.18       | 0.02       | 0        | Right | Tilt     | QPSK       | 1       | 36        | 05516            | 1:1    | 0.211    | 1.005   | 0.212                |        |
| 831.50 | 26865   | Mid | LTE Band 26 (Cell) | 15          | 24.2               | 24.20       | 0.02       | 1        | Right | Tilt     | QPSK       | 36      | 0         | 05516            | 1:1    | 0.151    | 1.000   | 0.151                |        |
| 831.50 | 26865   | Mid | LTE Band 26 (Cell) | 15          | 25.2               | 25.18       | -0.03      | 0        | Left  | Cheek    | QPSK       | 1       | 36        | 05516            | 1:1    | 0.288    | 1.005   | 0.289                |        |
| 831.50 | 26865   | Mid | LTE Band 26 (Cell) | 15          | 24.2               | 24.20       | 0.00       | 1        | Left  | Cheek    | QPSK       | 36      | 0         | 05516            | 1:1    | 0.236    | 1.000   | 0.236                |        |
| 831.50 | 26865   | Mid | LTE Band 26 (Cell) | 15          | 25.2               | 25.18       | 0.08       | 0        | Left  | Tilt     | QPSK       | 1       | 36        | 05516            | 1:1    | 0.166    | 1.005   | 0.167                |        |
| 831.50 | 26865   | Mid | LTE Band 26 (Cell) | 15          | 24.2               | 24.20       | 0.05       | 1        | Left  | Tilt     | QPSK       | 36      | 0         | 05516            | 1:1    | 0.129    | 1.000   | 0.129                |        |
|        |         |     | ANSI / IEEE C      |             |                    | MIT         |            |          |       |          | •          |         |           | Head             |        |          |         |                      |        |
|        |         |     |                    | Spatial Per |                    |             |            |          |       |          |            |         |           | .6 W/kg (n       |        |          |         |                      |        |
|        |         |     | Uncontrolled Ex    | xposure/G   | eneral Popul       | lation      |            |          |       |          |            |         | ave       | eraged over      | 1 gram |          |         |                      |        |

| FCC ID: ZNFL455DL      | PCTEST*                 | SAR EVALUATION REPORT | Approved by:  Quality Manager |
|------------------------|-------------------------|-----------------------|-------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:             | Daga 70 of 100                |
| 1M1911290211-01-R2.ZNF | 12/05/2019 – 01/16/2020 | Portable Handset      | Page 78 of 129                |

#### **Table 11-13** LTF Band 66 (AWS) Head SAR

|         |         |     |                      |             |                    |             | .                   | anu      | 4) OO | 4003)            | пеас       | ISAN    | <u> </u>  |                  |               |          |                   |                      |       |
|---------|---------|-----|----------------------|-------------|--------------------|-------------|---------------------|----------|-------|------------------|------------|---------|-----------|------------------|---------------|----------|-------------------|----------------------|-------|
|         |         |     |                      |             |                    |             |                     | MEAS     | UREME | ENT RES          | SULTS      |         |           |                  |               |          |                   |                      |       |
| FR      | EQUENCY |     | Mode                 | Bandwidth   | Maximum<br>Allowed | Conducted   | Power<br>Drift [dB] | MPR [dB] | Side  | Test<br>Position | Modulation | RB Size | RB Offset | Device<br>Serial | Duty<br>Cycle | SAR (1g) | Scaling<br>Factor | Reported SAR<br>(1g) | Plot# |
| MHz     | Ch      | ١.  |                      | [MHz]       | Power [dBm]        | Power [dBm] | ргін (ав)           |          |       | Position         |            |         |           | Number           | Cycle         | (W/kg)   | Factor            | (W/kg)               |       |
| 1745.00 | 132322  | Mid | LTE Band 66<br>(AWS) | 20          | 24.7               | 24.50       | 0.03                | 0        | Right | Cheek            | QPSK       | 1       | 50        | 05516            | 1:1           | 0.165    | 1.047             | 0.173                |       |
| 1745.00 | 132322  | Mid | LTE Band 66<br>(AWS) | 20          | 23.7               | 23.50       | 0.06                | 1        | Right | Cheek            | QPSK       | 50      | 25        | 05516            | 1:1           | 0.134    | 1.047             | 0.140                |       |
| 1745.00 | 132322  | Mid | LTE Band 66<br>(AWS) | 20          | 24.7               | 24.50       | -0.02               | 0        | Right | Tilt             | QPSK       | 1       | 50        | 05516            | 1:1           | 0.159    | 1.047             | 0.166                |       |
| 1745.00 | 132322  | Mid | LTE Band 66<br>(AWS) | 20          | 23.7               | 23.50       | 0.06                | 1        | Right | Tilt             | QPSK       | 50      | 25        | 05516            | 1:1           | 0.119    | 1.047             | 0.125                |       |
| 1745.00 | 132322  | Mid | LTE Band 66<br>(AWS) | 20          | 24.7               | 24.50       | 0.06                | 0        | Left  | Cheek            | QPSK       | 1       | 50        | 05516            | 1:1           | 0.292    | 1.047             | 0.306                | A13   |
| 1745.00 | 132322  | Mid | LTE Band 66<br>(AWS) | 20          | 23.7               | 23.50       | 0.03                | 1        | Left  | Cheek            | QPSK       | 50      | 25        | 05516            | 1:1           | 0.242    | 1.047             | 0.253                |       |
| 1745.00 | 132322  | Mid | LTE Band 66<br>(AWS) | 20          | 24.7               | 24.50       | 0.12                | 0        | Left  | Tilt             | QPSK       | 1       | 50        | 05516            | 1:1           | 0.117    | 1.047             | 0.122                |       |
| 1745.00 | 132322  | Mid | LTE Band 66<br>(AWS) | 20          | 23.7               | 23.50       | 0.10                | 1        | Left  | Tilt             | QPSK       | 50      | 25        | 05516            | 1:1           | 0.092    | 1.047             | 0.096                |       |
|         |         |     | ANSI / IEEE C        | 95.1 1992   | - SAFETY LIF       | VIIT        |                     |          |       |                  |            |         |           | Head             |               |          |                   |                      |       |
|         |         |     |                      | Spatial Pea | ak                 |             |                     |          |       |                  |            |         | 1         | .6 W/kg (n       | nW/g)         |          |                   |                      |       |
|         |         |     | Uncontrolled Ex      | cposure/G   | eneral Popul       | ation       |                     |          |       |                  |            |         | ave       | eraged over      | 1 gram        |          |                   |                      |       |

### **Table 11-14** LTE Band 25 (PCS) Head SAR

|         |         |      |                      |             |                    |             |            | MEAS     | •     | ENT RES  |            |         |           |                  |        |          |         |                      |       |
|---------|---------|------|----------------------|-------------|--------------------|-------------|------------|----------|-------|----------|------------|---------|-----------|------------------|--------|----------|---------|----------------------|-------|
| FRI     | EQUENCY | ,    | Mode                 | Bandwidth   | Maximum<br>Allowed | Conducted   | Power      | MPR [dB] | Side  | Test     | Modulation | RB Size | RB Offset | Device<br>Serial | Duty   | SAR (1g) | Scaling | Reported SAR<br>(1g) | Plot# |
| MHz     | CI      | h.   |                      | [MHz]       | Power [dBm]        | Power [dBm] | Drift [dB] |          |       | Position |            |         |           | Number           | Cycle  | (W/kg)   | Factor  | (W/kg)               | 1     |
| 1905.00 | 26590   | High | LTE Band 25<br>(PCS) | 20          | 24.7               | 24.52       | 0.16       | 0        | Right | Cheek    | QPSK       | 1       | 50        | 05508            | 1:1    | 0.184    | 1.042   | 0.192                |       |
| 1905.00 | 26590   | High | LTE Band 25<br>(PCS) | 20          | 23.7               | 23.56       | 0.11       | 1        | Right | Cheek    | QPSK       | 50      | 0         | 05508            | 1:1    | 0.145    | 1.033   | 0.150                |       |
| 1905.00 | 26590   | High | LTE Band 25<br>(PCS) | 20          | 24.7               | 24.52       | 0.03       | 0        | Right | Tilt     | QPSK       | 1       | 50        | 05508            | 1:1    | 0.180    | 1.042   | 0.188                |       |
| 1905.00 | 26590   | High | LTE Band 25<br>(PCS) | 20          | 23.7               | 23.56       | 0.14       | 1        | Right | Tilt     | QPSK       | 50      | 0         | 05508            | 1:1    | 0.131    | 1.033   | 0.135                |       |
| 1905.00 | 26590   | High | LTE Band 25<br>(PCS) | 20          | 24.7               | 24.52       | 0.04       | 0        | Left  | Cheek    | QPSK       | 1       | 50        | 05508            | 1:1    | 0.326    | 1.042   | 0.340                | A14   |
| 1905.00 | 26590   | High | LTE Band 25<br>(PCS) | 20          | 23.7               | 23.56       | 0.02       | 1        | Left  | Cheek    | QPSK       | 50      | 0         | 05508            | 1:1    | 0.239    | 1.033   | 0.247                |       |
| 1905.00 | 26590   | High | LTE Band 25<br>(PCS) | 20          | 24.7               | 24.52       | 0.05       | 0        | Left  | Tilt     | QPSK       | 1       | 50        | 05508            | 1:1    | 0.145    | 1.042   | 0.151                |       |
| 1905.00 | 26590   | High | LTE Band 25<br>(PCS) | 20          | 23.7               | 23.56       | 0.16       | 1        | Left  | Tilt     | QPSK       | 50      | 0         | 05508            | 1:1    | 0.107    | 1.033   | 0.111                |       |
|         |         |      | ANSI / IEEE C        | 95.1 1992   | - SAFETY LII       | MIT         |            |          |       |          | -          |         |           | Head             |        |          |         |                      |       |
|         |         |      |                      | Spatial Per |                    |             |            |          |       |          |            |         |           | .6 W/kg (n       |        |          |         |                      |       |
|         |         |      | Uncontrolled E       | xposure/G   | eneral Popul       | ation       |            |          |       |          |            |         | ave       | eraged over      | 1 gram |          |         |                      |       |

| FCC ID: ZNFL455DL      | PCTEST*                 | SAR EVALUATION REPORT | Approved by: Quality Manager |
|------------------------|-------------------------|-----------------------|------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:             | Dogg 70 of 120               |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset      | Page 79 of 129               |

#### **Table 11-15** LTE Band 41 Head SAR

|                                           |                                                                                                                                                                     |         |         |            |              |                    |                     | Dan                      |                     |          |       |                  |            |         |           |                                    |               |          |                |                      |        |
|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|------------|--------------|--------------------|---------------------|--------------------------|---------------------|----------|-------|------------------|------------|---------|-----------|------------------------------------|---------------|----------|----------------|----------------------|--------|
|                                           |                                                                                                                                                                     |         |         |            |              |                    |                     | MEASU                    | REMEN               | T RESUL  | TS    |                  |            |         |           |                                    |               |          |                |                      |        |
| 1 CC Uplink   2 CC Uplink, Power<br>Class | Component                                                                                                                                                           |         | FREQUEN | CY         | Mode         | Bandwidth<br>[MHz] | Maxim um<br>Allowed | Conducted<br>Power [dBm] | Power<br>Drift [dB] | MPR [dB] | Side  | Test<br>Position | Modulation | RB Size | RB Offset | Device<br>Serial                   | Duty<br>Cycle | SAR (1g) | Scaling Factor | Reported SAR<br>(1g) | Plot # |
| Olass                                     | Gurrier                                                                                                                                                             | MHz     |         | Ch.        |              | ()                 | Power [dBm]         | Tower (dail)             | Drift [GD]          |          |       | T GSILIOII       |            |         |           | Number                             | Oyele         | (W/kg)   |                | (W/kg)               |        |
| 1 CC Uplink - Power Class 3               | N/A                                                                                                                                                                 | 2636.50 | 41055   | Mid-High   | LTE Band 41  | 20                 | 24.7                | 24.60                    | 0.14                | 0        | Right | Cheek            | QPSK       | 1       | 99        | 05508                              | 1:1.58        | 0.102    | 1.023          | 0.104                | Į.     |
| 1 CC Uplink - Power Class 3               | N/A                                                                                                                                                                 | 2636.50 | 41055   | Mid-High   | LTE Band 41  | 20                 | 23.7                | 23.70                    | 0.12                | 1        | Right | Cheek            | QPSK       | 50      | 0         | 05508                              | 1:1.58        | 0.074    | 1.000          | 0.074                |        |
| 1 CC Uplink - Power Class 3               |                                                                                                                                                                     |         |         |            |              |                    |                     |                          |                     |          |       | Tilt             | QPSK       | 1       | 99        | 05508                              | 1:1.58        | 0.152    | 1.023          | 0.155                |        |
| 1 CC Uplink - Power Class 3               | nk - Power Class 3 N/A 2636.50 41055 Mid-High LTE Band 41 20 23.7 23.70 0.09                                                                                        |         |         |            |              |                    |                     |                          |                     |          |       | Tilt             | QPSK       | 50      | 0         | 05508                              | 1:1.58        | 0.114    | 1.000          | 0.114                |        |
| 1 CC Uplink - Power Class 2               | Jplink - Power Class 2 N/A 2636.50 41055 Mid-High LTE Band 41 20 27.2 26.80 -0.03                                                                                   |         |         |            |              |                    |                     |                          |                     |          | Right | Tilt             | QPSK       | 1       | 99        | 05508                              | 1:2.31        | 0.185    | 1.096          | 0.203                | A15    |
| 2 CC Uplink - Power Class 3               | PCC                                                                                                                                                                 | 2636.50 | 41055   | Mid-High   | LTE Band 41  | 20                 | 24.7                | 24.52                    | 0.16                | 0        | Right | Tilt             | QPSK       |         | 99        | 05508                              | 1:1.58        | 0.143    | 1.042          | 0.149                |        |
| 2 CC Oplink - Power Class 3               | scc                                                                                                                                                                 | 2656.30 | 41253   | iviu-nigri | LIE Ballu 41 | 20                 | 24.7                | 24.52                    | 0.16                | 0        | Right | TIIL             | ursk       | '       | 0         | 05506                              | 1.1.50        | 0.143    | 1.042          | 0.149                |        |
| 2 CC Uplink - Power Class 2               | PCC                                                                                                                                                                 | 2636.50 | 41055   | Mid-High   | LTE Band 41  | 20                 | 27.2                | 26.67                    | -0.02               | 0        | Right | Tilt             | QPSK       |         | 99        | 05508                              | 1:2.31        | 0.170    | 1.130          | 0.192                |        |
| 2 CC Oplink - Power Class 2               | scc                                                                                                                                                                 | 2656.30 | 41253   | iviu-nigri | LIE Ballu 41 | 20                 | 21.2                | 20.07                    | -0.02               | 0        | Right | TIIL             | ursk       | '       | 0         | 05506                              | 1.2.31        | 0.170    | 1.130          | 0.192                |        |
| 1 CC Uplink - Power Class 3               | N/A                                                                                                                                                                 | 2636.50 | 41055   | Mid-High   | LTE Band 41  | 20                 | 24.7                | 24.60                    | 0.12                | 0        | Left  | Cheek            | QPSK       | 1       | 99        | 05508                              | 1:1.58        | 0.116    | 1.023          | 0.119                |        |
| 1 CC Uplink - Power Class 3               | N/A                                                                                                                                                                 | 2636.50 | 41055   | Mid-High   | LTE Band 41  | 20                 | 23.7                | 23.70                    | 0.04                | 1        | Left  | Cheek            | QPSK       | 50      | 0         | 05508                              | 1:1.58        | 0.084    | 1.000          | 0.084                |        |
| 1 CC Uplink - Power Class 3               | N/A                                                                                                                                                                 | 2636.50 | 41055   | Mid-High   | LTE Band 41  | 20                 | 24.7                | 24.60                    | 0.10                | 0        | Left  | Tilt             | QPSK       | 1       | 99        | 05508                              | 1:1.58        | 0.123    | 1.023          | 0.126                |        |
| 1 CC Uplink - Power Class 3               | ver Class 3 N/A 2636.50 41055 Mid-High LTE Band 41 20 23.7 23.70 0.11                                                                                               |         |         |            |              |                    |                     |                          |                     |          |       | Tilt             | QPSK       | 50      | 0         | 05508                              | 1:1.58        | 0.092    | 1.000          | 0.092                |        |
|                                           | Power Class 3 N/A 2636.50 41055 Md-High LTE Band 41 20 23.7 23.70 0.11  ANSI / IEEE C95.11992 - SAFETY LIMIT  Spatial Peak Uncontrolled Exposure/General Population |         |         |            |              |                    |                     |                          |                     |          |       |                  |            |         |           | Head<br>1.6 W/kg (m<br>eraged over |               |          |                |                      |        |

#### **Table 11-16 DTS Head SAR**

|        |     |          |             |                    |                    |                          | N                   | MEASUF | REMENT           | RESUL            | .TS                 |                   |                          |           |                   |                         |                      |        |
|--------|-----|----------|-------------|--------------------|--------------------|--------------------------|---------------------|--------|------------------|------------------|---------------------|-------------------|--------------------------|-----------|-------------------|-------------------------|----------------------|--------|
| FREQUE | NCY | Mode     | Service     | Bandwidth<br>[MHz] | Maximum<br>Allowed | Conducted<br>Power [dBm] | Power<br>Drift [dB] | Side   | Test<br>Position | Device<br>Serial | Data Rate<br>(Mbps) | Duty Cycle<br>(%) | Peak SAR of<br>Area Scan | SAR (1g)  | Scaling<br>Factor | Scaling<br>Factor (Duty | Reported SAR<br>(1g) | Plot # |
| MHz    | Ch. |          |             | [MHZ]              | Power [dBm]        | rower [ubili]            | Driit [dB]          |        | Fosition         | Number           | (wibps)             | (76)              | W/kg                     | (W/kg)    | (Power)           | Cycle)                  | (W/kg)               |        |
| 2412   | 1   | 802.11b  | DSSS        | 22                 | 17.0               | 16.23                    | 0.07                | Right  | Cheek            | 05524            | 1                   | 99.1              | 1.091                    | 0.727     | 1.194             | 1.009                   | 0.876                |        |
| 2437   | 6   | 802.11b  | DSSS        | 22                 | 17.0               | 16.07                    | 0.05                | Right  | Cheek            | 05524            | 1                   | 99.1              | 1.208                    | 0.844     | 1.239             | 1.009                   | 1.055                | A16    |
| 2462   | 11  | 802.11b  | DSSS        | 22                 | 17.0               | 16.03                    | 0.03                | Right  | Cheek            | 05524            | 1                   | 99.1              | 1.121                    | 0.801     | 1.250             | 1.009                   | 1.010                |        |
| 2412   | 1   | 802.11b  | DSSS        | 22                 | 17.0               | 16.23                    | -0.04               | Right  | Tilt             | 05524            | 1                   | 99.1              | 0.680                    | 0.521     | 1.194             | 1.009                   | 0.628                |        |
| 2412   | 1   | 802.11b  | DSSS        | 22                 | 17.0               | 16.23                    | -0.07               | Left   | Cheek            | 05524            | 1                   | 99.1              | 0.327                    | -         | 1.194             | 1.009                   | -                    |        |
| 2412   | 1   | 802.11b  | DSSS        | 22                 | 17.0               | 16.23                    | 0.09                | Left   | Tilt             | 05524            | 1                   | 99.1              | 0.345                    | -         | 1.194             | 1.009                   | -                    |        |
| 2437   | 6   | 802.11b  | DSSS        | 22                 | 17.0               | 16.07                    | 0.13                | Right  | Cheek            | 05524            | 1                   | 99.1              | 1.321                    | 0.825     | 1.239             | 1.009                   | 1.031                |        |
|        |     | ANSI / I | EEE C95.1   | 1992 - SAF         | ETY LIMIT          |                          |                     |        |                  |                  |                     |                   | Hea                      | nd        |                   |                         |                      |        |
|        |     |          | Spati       | ial Peak           |                    |                          |                     |        |                  |                  |                     |                   | 1.6 W/kg                 | (mW/g)    |                   |                         |                      |        |
|        |     | Uncontro | lled Exposi | ure/Genera         | l Population       |                          |                     |        |                  |                  |                     |                   | averaged ov              | er 1 gram |                   |                         |                      |        |

Note: Blue entry represents variability measurement.

| FCC ID: ZNFL455DL      | PCTEST                  | SAR EVALUATION REPORT LG | Approved by: Quality Manager |
|------------------------|-------------------------|--------------------------|------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:                | D 00 -/ 100                  |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset         | Page 80 of 129               |

#### **Table 11-17 NII Head SAR**

|        |     |          |              |            |                    |             |            |        | icau     | <u> </u>         |        |            |                          |           |                   |                         |                      |         |
|--------|-----|----------|--------------|------------|--------------------|-------------|------------|--------|----------|------------------|--------|------------|--------------------------|-----------|-------------------|-------------------------|----------------------|---------|
|        |     |          |              |            |                    |             | N          | IEASUF | REMENT   | RESUL            | TS     |            |                          |           |                   |                         |                      |         |
| FREQUE | NCY | Mode     | Service      | Bandwidth  | Maximum<br>Allowed | Conducted   | Power      | Side   | Test     | Device<br>Serial |        | Duty Cycle | Peak SAR of<br>Area Scan | SAR (1g)  | Scaling<br>Factor | Scaling<br>Factor (Duty | Reported SAR<br>(1g) | Plot#   |
| MHz    | Ch. | mouo     | 0011100      | [MHz]      | Power [dBm]        | Power [dBm] | Drift [dB] | 0.00   | Position | Number           | (Mbps) | (%)        | W/kg                     | (W/kg)    | (Power)           | Cycle)                  | (W/kg)               | 1 101 # |
| 5300   | 60  | 802.11a  | OFDM         | 20         | 14.0               | 13.99       | 0.04       | Right  | Cheek    | 05524            | 6      | 97.0       | 1.043                    | 0.465     | 1.002             | 1.031                   | 0.480                | A17     |
| 5300   | 60  | 802.11a  | OFDM         | 20         | 14.0               | 13.99       | 0.02       | Right  | Tilt     | 05524            | 6      | 97.0       | 0.958                    | 0.424     | 1.002             | 1.031                   | 0.438                |         |
| 5300   | 60  | 802.11a  | OFDM         | 20         | 14.0               | 13.99       | 0.15       | Left   | Cheek    | 05524            | 6      | 97.0       | 0.573                    | -         | 1.002             | 1.031                   | -                    |         |
| 5300   | 60  | 802.11a  | OFDM         | 20         | 14.0               | 13.99       | 0.03       | Left   | Tilt     | 05524            | 6      | 97.0       | 0.590                    | -         | 1.002             | 1.031                   | -                    |         |
| 5600   | 120 | 802.11a  | OFDM         | 20         | 14.0               | 13.42       | 0.06       | Right  | Cheek    | 05524            | 6      | 97.0       | 0.802                    | 0.343     | 1.143             | 1.031                   | 0.404                |         |
| 5600   | 120 | 802.11a  | OFDM         | 20         | 14.0               | 13.42       | 0.03       | Right  | Tilt     | 05524            | 6      | 97.0       | 0.798                    | 0.407     | 1.143             | 1.031                   | 0.480                |         |
| 5600   | 120 | 802.11a  | OFDM         | 20         | 14.0               | 13.42       | 0.02       | Left   | Cheek    | 05524            | 6      | 97.0       | 0.718                    | -         | 1.143             | 1.031                   | -                    |         |
| 5600   | 120 | 802.11a  | OFDM         | 20         | 14.0               | 13.42       | 0.16       | Left   | Tilt     | 05524            | 6      | 97.0       | 0.678                    | -         | 1.143             | 1.031                   | -                    |         |
| 5825   | 165 | 802.11a  | OFDM         | 20         | 13.0               | 12.59       | -0.01      | Right  | Cheek    | 05524            | 6      | 97.0       | 0.720                    | -         | 1.099             | 1.031                   | -                    |         |
| 5825   | 165 | 802.11a  | OFDM         | 20         | 13.0               | 12.59       | 0.02       | Right  | Tilt     | 05524            | 6      | 97.0       | 0.752                    | 0.319     | 1.099             | 1.031                   | 0.361                |         |
| 5825   | 165 | 802.11a  | OFDM         | 20         | 13.0               | 12.59       | 0.03       | Left   | Cheek    | 05524            | 6      | 97.0       | 0.393                    | -         | 1.099             | 1.031                   | -                    |         |
| 5825   | 165 | 802.11a  | OFDM         | 20         | 13.0               | 12.59       | 0.04       | Left   | Tilt     | 05524            | 6      | 97.0       | 0.546                    | -         | 1.099             | 1.031                   | -                    |         |
|        |     | ANSI / I | EEE C95.1    | 1992 - SAF | ETY LIMIT          |             |            | -      |          |                  |        |            | Hea                      | nd        | •                 | •                       |                      | Ī       |
|        |     |          |              | al Peak    |                    |             |            |        |          |                  |        |            | 1.6 W/kg                 | ,         |                   |                         |                      |         |
|        |     | Uncontro | illea Exposi | ire/Genera | l Population       |             |            |        |          |                  |        |            | averaged ov              | er 1 gram |                   |                         |                      |         |

# **Table 11-18**

|         |      |              |              |                    |             |            | บรร    | Head     | SAR              |           |           |               |                         |                         |                      |         |
|---------|------|--------------|--------------|--------------------|-------------|------------|--------|----------|------------------|-----------|-----------|---------------|-------------------------|-------------------------|----------------------|---------|
|         |      |              |              |                    |             | М          | EASURE | MENT R   | RESULT           | s         |           |               |                         |                         |                      |         |
| FREQUE  | ENCY | Mode         | Service      | Maximum<br>Allowed | Conducted   | Power      | Side   | Test     | Device<br>Serial | Data Rate |           | SAR (1g)      | Scaling<br>Factor (Cond | Scaling<br>Factor (Duty | Reported SAR<br>(1g) | Plot#   |
| MHz     | Ch.  | mode         | CCIVICC      | Power [dBm]        | Power [dBm] | Drift [dB] | Oluc   | Position | Number           | (Mbps)    | Cycle (%) | (W/kg)        | Power)                  | Cycle)                  | (W/kg)               | 1 101 # |
| 2480.00 | 78   | Bluetooth    | FHSS         | 9.0                | 8.54        | 0.05       | Right  | Cheek    | 05524            | 1         | 76.8      | 0.196         | 1.112                   | 1.302                   | 0.284                | A18     |
| 2480.00 | 78   | Bluetooth    | FHSS         | 9.0                | 8.54        | -0.03      | Right  | Tilt     | 05524            | 1         | 76.8      | 0.159         | 1.112                   | 1.302                   | 0.230                |         |
| 2480.00 | 78   | Bluetooth    | FHSS         | 9.0                | 8.54        | 0.03       | Left   | Cheek    | 05524            | 1         | 76.8      | 0.055         | 1.112                   | 1.302                   | 0.080                |         |
| 2480.00 | 78   | Bluetooth    | FHSS         | 9.0                | 8.54        | 0.11       | Left   | Tilt     | 05524            | 1         | 76.8      | 0.056         | 1.112                   | 1.302                   | 0.081                |         |
|         |      | ANSI / IEE   | E C95.1 1992 | - SAFETY LII       | MIT         |            |        |          |                  |           |           | Head          |                         |                         |                      |         |
|         |      |              | Spatial Pe   | ak                 |             |            |        |          |                  |           | 1.6       | W/kg (mW/     | g)                      |                         |                      |         |
|         |      | Uncontrolled | Exposure/G   | eneral Popul       | ation       |            |        |          |                  |           | avera     | aged over 1 g | ram                     |                         |                      |         |

| FCC ID: ZNFL455DL      | PCTEST                  | SAR EVALUATION REPORT LG | Approved by: Quality Manager |
|------------------------|-------------------------|--------------------------|------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:                | Danie 04 - 6400              |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset         | Page 81 of 129               |

## 11.2 Standalone Body-Worn SAR Data

**Table 11-19** GSM/UMTS/CDMA Body-Worn SAR Data

|         |      |                  |                 | 0011170            | IVI I S/CL               | ) IVIA L            | Jour    | ••••             | J/(1\ 1            | Julu          |         |             |                   |                      |        |
|---------|------|------------------|-----------------|--------------------|--------------------------|---------------------|---------|------------------|--------------------|---------------|---------|-------------|-------------------|----------------------|--------|
|         |      |                  |                 |                    | MEAS                     | SUREME              | NT RE   | SULTS            |                    |               |         |             |                   |                      |        |
| FREQUE  | NCY  | Mode             | Service         | Maximum<br>Allowed | Conducted<br>Power [dBm] | Power<br>Drift [dB] | Spacing | Device<br>Serial | # of Time<br>Slots | Duty<br>Cycle | Side    | SAR (1g)    | Scaling<br>Factor | Reported SAR<br>(1g) | Plot # |
| MHz     | Ch.  |                  |                 | Power [dBm]        |                          |                     |         | Number           |                    | -,            |         | (W/kg)      |                   | (W/kg)               |        |
| 836.60  | 190  | GSM 850          | GSM             | 33.7               | 33.42                    | -0.03               | 10 mm   | 05490            | 1                  | 1:8.3         | back    | 0.437       | 1.067             | 0.466                |        |
| 824.20  | 128  | GSM 850          | GPRS            | 29.7               | 29.45                    | -0.09               | 10 mm   | 05490            | 4                  | 1:2.076       | back    | 0.568       | 1.059             | 0.602                |        |
| 836.60  | 190  | GSM 850          | GPRS            | 29.7               | 29.42                    | 0.00                | 10 mm   | 05490            | 4                  | 1:2.076       | back    | 0.592       | 1.067             | 0.632                | A19    |
| 848.80  | 251  | GSM 850          | GPRS            | 29.7               | 29.37                    | -0.04               | 10 mm   | 05490            | 4                  | 1:2.076       | back    | 0.577       | 1.079             | 0.623                |        |
| 1880.00 | 661  | GSM 1900         | GSM             | 30.7               | 30.50                    | -0.01               | 10 mm   | 05490            | 1                  | 1:8.3         | back    | 0.362       | 1.047             | 0.379                |        |
| 1880.00 | 661  | GSM 1900         | GPRS            | 25.7               | 25.48                    | -0.01               | 10 mm   | 05490            | 4                  | 1:2.076       | back    | 0.436       | 1.052             | 0.459                | A20    |
| 836.60  | 4183 | UMTS 850         | RMC             | 24.7               | 24.53                    | -0.02               | 10 mm   | 05490            | N/A                | 1:1           | back    | 0.501       | 1.040             | 0.521                | A21    |
| 1712.40 | 1312 | UMTS 1750        | RMC             | 24.7               | 24.57                    | -0.14               | 10 mm   | 05482            | N/A                | 1:1           | back    | 0.789       | 1.030             | 0.813                |        |
| 1732.40 | 1412 | UMTS 1750        | RMC             | 24.7               | 24.59                    | -0.13               | 10 mm   | 05482            | N/A                | 1:1           | back    | 0.819       | 1.026             | 0.840                | A22    |
| 1752.60 | 1513 | UMTS 1750        | RMC             | 24.7               | 24.56                    | -0.04               | 10 mm   | 05482            | N/A                | 1:1           | back    | 0.784       | 1.033             | 0.810                |        |
| 1732.40 | 1412 | UMTS 1750        | RMC             | 24.7               | 24.59                    | 0.04                | 10 mm   | 05482            | N/A                | 1:1           | back    | 0.793       | 1.026             | 0.814                |        |
| 1852.40 | 9262 | UMTS 1900        | RMC             | 24.7               | 24.63                    | 0.00                | 10 mm   | 05482            | N/A                | 1:1           | back    | 0.563       | 1.016             | 0.572                |        |
| 1880.00 | 9400 | UMTS 1900        | RMC             | 24.7               | 24.60                    | -0.12               | 10 mm   | 05482            | N/A                | 1:1           | back    | 0.720       | 1.023             | 0.737                | A23    |
| 1907.60 | 9538 | UMTS 1900        | RMC             | 24.7               | 24.64                    | -0.19               | 10 mm   | 05482            | N/A                | 1:1           | back    | 0.656       | 1.014             | 0.665                |        |
| 820.10  | 564  | CDMA BC10 (§90S) | TDSO / SO32     | 24.7               | 24.70                    | 0.00                | 10 mm   | 05490            | N/A                | 1:1           | back    | 0.359       | 1.000             | 0.359                | A24    |
| 836.52  | 384  | CDMA BC0 (§22H)  | TDSO / SO32     | 24.7               | 24.66                    | -0.20               | 10 mm   | 05490            | N/A                | 1:1           | back    | 0.432       | 1.009             | 0.436                | A26    |
| 1851.25 | 25   | PCS CDMA         | TDSO / SO32     | 24.7               | 24.31                    | 0.04                | 10 mm   | 05490            | N/A                | 1:1           | back    | 0.699       | 1.094             | 0.765                |        |
| 1880.00 | 600  | PCS CDMA         | TDSO / SO32     | 24.7               | 24.29                    | -0.03               | 10 mm   | 05490            | N/A                | 1:1           | back    | 0.800       | 1.099             | 0.879                |        |
| 1908.75 | 1175 | PCS CDMA         | TDSO / SO32     | 24.7               | 24.49                    | 0.03                | 10 mm   | 05490            | N/A                | 1:1           | back    | 0.888       | 1.050             | 0.932                | A28    |
| 1908.75 | 1175 | PCS CDMA         | TDSO / SO32     | 24.7               | 24.49                    | -0.05               | 10 mm   | 05490            | N/A                | 1:1           | back    | 0.873       | 1.050             | 0.917                |        |
|         |      | ANSI / IEEE C    | 95.1 1992 - SAF | ETY LIMIT          |                          |                     |         |                  |                    |               |         | ody         |                   |                      |        |
|         |      |                  | Spatial Peak    |                    |                          |                     |         |                  |                    |               | 1.6 W/k | g (mW/g)    |                   |                      |        |
|         |      | Uncontrolled Ex  | posure/General  | <b>Population</b>  |                          |                     |         |                  |                    | a             | veraged | over 1 gram |                   |                      |        |

Note: Blue entries represent variability measurements.

| FCC ID: ZNFL455DL      | PCTEST                  | SAR EVALUATION REPORT LG | Approved by:  Quality Manager |
|------------------------|-------------------------|--------------------------|-------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:                | D 00 -f 400                   |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset         | Page 82 of 129                |

#### **Table 11-20** LTE Body-Worn SAR

|         |                                                   |      |                    |                              |                    |                          | N                   | IEASURI  | EMENT RE                | ESULTS     |         |           |         |                |               |          |                |                      |        |
|---------|---------------------------------------------------|------|--------------------|------------------------------|--------------------|--------------------------|---------------------|----------|-------------------------|------------|---------|-----------|---------|----------------|---------------|----------|----------------|----------------------|--------|
|         | REQUENCY                                          |      | Mode               | Bandwidth<br>[MHz]           | Maximum<br>Allowed | Conducted<br>Power [dBm] | Power<br>Drift [dB] | MPR [dB] | Device Serial<br>Number | Modulation | RB Size | RB Offset | Spacing | Side           | Duty<br>Cycle | SAR (1g) | Scaling Factor | Reported SAR<br>(1g) | Plot # |
| MHz     | C                                                 | h.   |                    |                              | Power [dBm]        |                          |                     |          |                         |            |         |           |         |                |               | (W/kg)   |                | (W/kg)               |        |
| 680.50  | 133297                                            | Mid  | LTE Band 71        | 20                           | 24.7               | 24.70                    | 0.07                | 0        | 05516                   | QPSK       | 1       | 50        | 10 mm   | back           | 1:1           | 0.462    | 1.000          | 0.462                | A30    |
| 680.50  | 133297                                            | Mid  | LTE Band 71        | 20                           | 23.7               | 23.62                    | -0.03               | 1        | 05516                   | QPSK       | 50      | 25        | 10 mm   | back           | 1:1           | 0.325    | 1.019          | 0.331                |        |
| 707.50  | 23095                                             | Mid  | LTE Band 12        | 10                           | 25.2               | 25.17                    | 0.02                | 0        | 05516                   | QPSK       | 1       | 25        | 10 mm   | back           | 1:1           | 0.555    | 1.007          | 0.559                | A31    |
| 707.50  | 23095                                             | Mid  | LTE Band 12        | 10                           | 24.2               | 24.15                    | -0.06               | 1        | 05516                   | QPSK       | 25      | 0         | 10 mm   | back           | 1:1           | 0.433    | 1.012          | 0.438                |        |
| 782.00  | 23230                                             | Mid  | LTE Band 13        | 10                           | 24.2               | 24.20                    | -0.01               | 0        | 05516                   | QPSK       | 1       | 25        | 10 mm   | back           | 1:1           | 0.597    | 1.000          | 0.597                | A33    |
| 782.00  | 23230                                             | Mid  | LTE Band 13        | 10                           | 23.2               | 23.20                    | -0.01               | 1        | 05516                   | QPSK       | 25      | 25        | 10 mm   | back           | 1:1           | 0.464    | 1.000          | 0.464                |        |
| 831.50  | 26865                                             | Mid  | LTE Band 26 (Cell) | 15                           | 25.2               | 25.18                    | -0.02               | 0        | 05516                   | QPSK       | 1       | 36        | 10 mm   | back           | 1:1           | 0.513    | 1.005          | 0.516                | A34    |
| 831.50  | 831.50 26865 Mid LTE Band 26 (Cell) 15 24.2 24.20 |      |                    |                              |                    |                          |                     |          | 05516                   | QPSK       | 36      | 0         | 10 mm   | back           | 1:1           | 0.410    | 1.000          | 0.410                |        |
| 1720.00 | 132072                                            | Low  | LTE Band 66 (AWS)  | -0.04                        | 0                  | 05516                    | QPSK                | 1        | 50                      | 10 mm      | back    | 1:1       | 0.714   | 1.079          | 0.770         | A35      |                |                      |        |
| 1745.00 | 132322                                            | Mid  | LTE Band 66 (AWS)  | 20                           | 24.7               | 0                        | 05516               | QPSK     | 1                       | 50         | 10 mm   | back      | 1:1     | 0.669          | 1.047         | 0.700    |                |                      |        |
| 1770.00 | 132572                                            | High | LTE Band 66 (AWS)  | 20                           | 24.7               | 24.44                    | 0.00                | 0        | 05516                   | QPSK       | 1       | 50        | 10 mm   | back           | 1:1           | 0.676    | 1.062          | 0.718                |        |
| 1745.00 | 132322                                            | Mid  | LTE Band 66 (AWS)  | 20                           | 23.7               | 23.50                    | -0.05               | 1        | 05516                   | QPSK       | 50      | 25        | 10 mm   | back           | 1:1           | 0.630    | 1.047          | 0.660                |        |
| 1860.00 | 26140                                             | Low  | LTE Band 25 (PCS)  | 20                           | 24.7               | 24.26                    | 0.03                | 0        | 05508                   | QPSK       | 1       | 50        | 10 mm   | back           | 1:1           | 0.708    | 1.107          | 0.784                |        |
| 1882.50 | 26365                                             | Mid  | LTE Band 25 (PCS)  | 20                           | 24.7               | 24.51                    | -0.02               | 0        | 05508                   | QPSK       | 1       | 50        | 10 mm   | back           | 1:1           | 0.768    | 1.045          | 0.803                |        |
| 1905.00 | 26590                                             | High | LTE Band 25 (PCS)  | 20                           | 24.7               | 24.52                    | 0.04                | 0        | 05508                   | QPSK       | 1       | 50        | 10 mm   | back           | 1:1           | 0.826    | 1.042          | 0.861                | A36    |
| 1860.00 | 26140                                             | Low  | LTE Band 25 (PCS)  | 20                           | 23.7               | 23.33                    | -0.02               | 1        | 05508                   | QPSK       | 50      | 25        | 10 mm   | back           | 1:1           | 0.555    | 1.089          | 0.604                |        |
| 1882.50 |                                                   |      |                    |                              |                    |                          |                     |          |                         | QPSK       | 50      | 25        | 10 mm   | back           | 1:1           | 0.587    | 1.062          | 0.623                |        |
| 1905.00 | 26590                                             | High | LTE Band 25 (PCS)  | 20                           | 23.7               | 23.56                    | -0.02               | 1        | 05508                   | QPSK       | 50      | 0         | 10 mm   | back           | 1:1           | 0.649    | 1.033          | 0.670                |        |
| 1905.00 | 26590                                             | High | LTE Band 25 (PCS)  | 20                           | 23.7               | 23.52                    | -0.04               | 1        | 05508                   | QPSK       | 100     | 0         | 10 mm   | back           | 1:1           | 0.633    | 1.042          | 0.660                |        |
|         |                                                   |      | ANSI / IEEE C95    | 5.1 1992 - SA<br>patial Peak | FETY LIMIT         |                          |                     |          |                         | •          |         |           |         | Bo<br>1.6 W/kg | dy<br>(mW/g)  |          |                |                      |        |
|         |                                                   |      | Uncontrolled Exp   | osure/Gener                  | al Population      |                          |                     |          |                         |            |         |           | а       | veraged o      | ver 1 gram    | 1        |                |                      |        |

#### **Table 11-21** LTE 41 Body-Worn SAR

|                                  |           |         |            |             |                    |           |                    | ··· <u> </u> | · • · <i>J</i> |          |               |            |         |           |         |           |        |          |                |                      |        |
|----------------------------------|-----------|---------|------------|-------------|--------------------|-----------|--------------------|--------------|----------------|----------|---------------|------------|---------|-----------|---------|-----------|--------|----------|----------------|----------------------|--------|
|                                  |           |         |            |             |                    |           |                    | MEASUR       | EMENT I        | RESULT   | s             |            |         |           |         |           |        |          |                |                      |        |
| 1 CC Uplink   2 CC Uplink, Power | Component | ı       | FREQUENC   | CY CY       | Mode               | Bandwidth | Maximum<br>Allowed | Conducted    | Power          | MPR [dB] | Device Serial | Modulation | RB Size | RB Offset | Spacing | Side      | Duty   | SAR (1g) | Scaling Factor | Reported SAR<br>(1g) | Plot # |
| Class                            | Carrier   | MHz     |            | Ch.         |                    | [MHz]     | Power [dBm]        | Power [dBm]  | Drift [dB]     |          | Number        |            |         |           |         |           | Cycle  | (W/kg)   |                | (W/kg)               | 1      |
| 1 CC Uplink - Power Class 3      | N/A       | 2636.50 | 41055      | Mid-High    | LTE Band 41        | 20        | 24.7               | 24.60        | 0.09           | 0        | 05516         | QPSK       | 1       | 99        | 10 mm   | back      | 1:1.58 | 0.439    | 1.023          | 0.449                |        |
| 1 CC Uplink - Power Class 3      |           |         |            |             |                    |           |                    |              |                | 1        | 05516         | QPSK       | 50      | 0         | 10 mm   | back      | 1:1.58 | 0.325    | 1.000          | 0.325                |        |
| 1 CC Uplink - Power Class 2      | N/A       | 2636.50 | 41055      | Mid-High    | LTE Band 41        | 20        | 27.2               | 26.80        | 0.08           | 0        | 05516         | QPSK       | 1       | 99        | 10 mm   | back      | 1:2.31 | 0.534    | 1.096          | 0.585                | A37    |
| 2 CC Uplink - Power Class 3      | PCC       | 2636.50 | 41055      | Mid-High    | LTE Band 41        | 20        | 24.7               | 24.52        | 0.02           | 0        | 05516         | QPSK       |         | 99        | 10 mm   | back      | 1:1.58 | 0.421    | 1.042          | 0.439                |        |
| 2 GC Opilitik - Fower Class 3    | SCC       | 2656.30 | 41253      | mid-riigii  | ETE Ballo 41       | 20        | 24.7               | 24.32        | 0.02           | Ů        | 03310         | QF SIC     |         | 0         | 10      | Dack      | 1.1.50 | 0.421    | 1.042          | 0.438                |        |
| 2 CC Uplink - Power Class 2      | PCC       | 2636.50 | 41055      | Mid-High    | LTE Band 41        | 20        | 27.2               | 26.67        | 0.03           | 0        | 05516         | QPSK       |         | 99        | 10 mm   | back      | 1:2.31 | 0.497    | 1.130          | 0.562                |        |
| 2 GC Opilitik - Fower Glass 2    | SCC       | 20.07   | 0.03       | Ů           | 03310              | QF SIC    |                    | 0            | 10             | Dack     | 1.2.51        | 0.487      | 1.130   | 0.302     |         |           |        |          |                |                      |        |
|                                  |           | AN      | ISI / IEEI | E C95.1 199 | 2 - SAFETY LIMIT   |           |                    |              |                |          |               |            |         |           |         | Body      |        |          |                |                      |        |
|                                  |           |         |            | Spatial F   | Peak               |           |                    |              |                |          |               |            |         |           | 1.6 V   | V/kg (mW  | //g)   |          |                |                      | ı      |
|                                  |           | Unco    | ntrolled   | Exposure/   | General Population | n         |                    |              |                |          |               |            |         |           | averag  | ed over 1 | gram   |          |                |                      |        |

#### **Table 11-22** DTS Body-Worn SAR

|      |       |       |                    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  | וטוט                                                                                                                                                    | bouy    | -VVOI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11 3                                                                                                                                                                                                                                                                            | <u> </u>                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------|-------|-------|--------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |       |       |                    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  | MEAS                                                                                                                                                    | SUREME  | NT RE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SULTS                                                                                                                                                                                                                                                                           |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| UENC |       | ode   | Service            |                | Maximum<br>Allowed Power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                  |                                                                                                                                                         | Spacing | Device<br>Serial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Data<br>Rate                                                                                                                                                                                                                                                                    | Side                                                                                                                                  | Duty<br>Cycle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Peak SAR of<br>Area Scan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SAR (1g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Scaling<br>Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Scaling<br>Factor (Duty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Reported SAR<br>(1g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Plot#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| С    | h.    |       |                    | [WITIZ]        | [dBm]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [ubiii]                                          | [ub]                                                                                                                                                    |         | Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (Mbps)                                                                                                                                                                                                                                                                          |                                                                                                                                       | (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | W/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (W/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (Power)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Cycle)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (W/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      | 1 802 | 2.11b | DSSS               | 22             | 21.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20.14                                            | -0.15                                                                                                                                                   | 10 mm   | 05524                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                               | back                                                                                                                                  | 99.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.487                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.358                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      |       | ANS   |                    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  |                                                                                                                                                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                 |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      |       | Uncor |                    | •              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | on                                               |                                                                                                                                                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                 |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      | _     | Ch.   | Ch. Mode 1 802.11b | Mode   Service | Mode   Service   MHz    MHz | Mode   Service   Bandwicth   Milowed Power [dBm] | UENCY   Mode   Service   Bandwidth   Maximum   Allowed Power [dBm]     1   802.11b   DSSS   22   21.0   20.14     ANSI / IEEE C95.1 1992 - SAFETY LIMIT | UENCY   | UENCY   Mode   Service   Bandwidth   Maximum   Allowed Power [dBm]   [dBm]   Spacing   Spacing | UENCY   Mode   Service   Bandwidth   Maximum   Allowed Power   [dBm]   Conducted Power   Power Drift   [dBm]   Spacing   Spacing   Spacing   Number     1   802.11b   DSSS   22   21.0   20.14   -0.15   10 mm   05524     ANSI / IEEE C95.1 1992 - SAFETY LIMIT   Spatial Peak | UENCY   Mode   Service   Bandwidth   Maximum   Allowed Power   (dBm)   Power Drift   (dB)   Spacing   Spacing   Spacing   Rate (Mbps) | Mode   Service   Bandwidth [MHz]   Allowed Power [dBm]   (dBm]   Spacing   Sorial Number   Number | UENCY   Mode   Service   Bandwidth [MHz]   Allowed Power [dBm]   Power [dBm]   Spacing [dBm]   Spacing   Spacing | UENCY   Mode   Service   Bandwidth [MHz]   Allowed Power [dBm]   Power | UENCY   Mode   Service   Bandwidth [MHz]   Maximum Allowed Power [dBm]   Ch.   Mode   1   802.11b   DSS   22   21.0   20.14   -0.15   10 mm   05524   1   back   99.1   0.487   0.358      ANSI / IEEE C95.1 1992 - SAFETY LIMIT   Spatial Peak   Sp | UENCY   Mode   Service   Bandwidth [MHz]   Maximum Allowed Power [dBm]   Ch.   1   802.11b   DSS   22   21.0   20.14   -0.15   10 mm   05524   1   back   99.1   0.487   0.358   1.219      ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak   Spa | UENCY   Mode   Service   Bandwidth [MHz]   Maximum   Allowed Power [dBm]   Power [dB | UENCY   Mode   Service   Bandwidth [MHz]   Maximum   Allowed Power [dBm]   Maximum   Milowed Power [dBm]   M |

| FCC ID: ZNFL455DL      | PCTEST:                 | SAR EVALUATION REPORT | Approved by: Quality Manager |
|------------------------|-------------------------|-----------------------|------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:             | D 00 -f 400                  |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset      | Page 83 of 129               |

#### **Table 11-23** NII Body-Worn SAR

|      |       |         |            |              |                          |       |             |         | , u,          | <u> </u>  | ***  |                |                                  |          |                |              |                      |        |
|------|-------|---------|------------|--------------|--------------------------|-------|-------------|---------|---------------|-----------|------|----------------|----------------------------------|----------|----------------|--------------|----------------------|--------|
|      |       |         |            |              |                          |       |             | MEAS    | SUREMENT      | RESULTS   |      |                |                                  |          |                |              |                      |        |
| FREQ | JENCY | Mode    | Service    |              | Maximum Allowed          |       | Power Drift | Spacing | Device Serial | Data Rate | Side | Duty Cycle (%) | Peak SAR of<br>Area Scan         | SAR (1g) | Scaling Factor |              | Reported SAR<br>(1g) | Plot # |
| MHz  | Ch.   |         |            | [MHz]        | Power [dBm]              | [dBm] | [dB]        |         | Number        | (Mbps)    |      |                | W/kg                             | (W/kg)   | (Power)        | (Duty Cycle) | (W/kg)               |        |
| 5260 | 52    | 802.11a | OFDM       | 20           | 16.0                     | 15.88 | 0.02        | 10 mm   | 05524         | 6         | back | 97.0           | 1.868                            | 0.885    | 1.028          | 1.031        | 0.938                |        |
| 5280 | 56    | 802.11a | OFDM       | 20           | 16.0                     | 15.87 | -0.04       | 10 mm   | 05524         | 6         | back | 97.0           | 2.005                            | 0.900    | 1.030          | 1.031        | 0.956                | A40    |
| 5300 | 60    | 802.11a | OFDM       | 20           | 14.0                     | 13.99 | -0.09       | 10 mm   | 05524         | 6         | back | 97.0           | 1.186                            | 0.571    | 1.002          | 1.031        | 0.590                |        |
| 5320 | 64    | 802.11a | OFDM       | 20           | 14.0                     | 13.92 | -0.08       | 10 mm   | 05524         | 6         | back | 97.0           | 1.101                            | 0.550    | 1.019          | 1.031        | 0.578                |        |
| 5600 | 120   | 802.11a | OFDM       | 20           | 14.0                     | 13.42 | 0.00        | 10 mm   | 05524         | 6         | back | 97.0           | 0.639                            | 0.307    | 1.143          | 1.031        | 0.362                |        |
| 5785 | 157   | 802.11a | OFDM       | 20           | 16.0                     | 15.84 | -0.03       | 10 mm   | 05524         | 6         | back | 97.0           | 1.228                            | 0.589    | 1.038          | 1.031        | 0.630                |        |
| 5280 | 56    | 802.11a | OFDM       | 20           | 16.0                     | 15.87 | -0.09       | 10 mm   | 05524         | 6         | back | 97.0           | 1.824                            | 0.898    | 1.030          | 1.031        | 0.954                |        |
|      |       |         | ANSI / IEE | E C95.1 1992 | 2 - SAFETY LIMIT         |       |             |         |               |           |      |                | Body                             |          |                |              |                      |        |
|      |       | Ur      | ncontrolle | Spatial P    | eak<br>General Populatio | n     |             |         |               |           |      |                | 6 W/kg (mW/g<br>raged over 1 gra |          |                |              |                      |        |

Note: Blue entry represents variability measurement.

#### **Table 11-24 DSS Body-Worn SAR**

|       |      |                |           |                    |             | ME          | ASURE   | MENT F           | RESUL        | ΓS   |               |               |                         |                         |                      |        |
|-------|------|----------------|-----------|--------------------|-------------|-------------|---------|------------------|--------------|------|---------------|---------------|-------------------------|-------------------------|----------------------|--------|
| FREQU | ENCY | Mode           | Service   | Maximum<br>Allowed |             | Power Drift | Spacing | Device<br>Serial | Data<br>Rate | Side | Duty<br>Cycle | SAR (1g)      | Scaling<br>Factor (Cond | Scaling<br>Factor (Duty | Reported SAR<br>(1g) | Plot # |
| MHz   | Ch.  |                |           | Power [dBm]        | Power [dBm] | [dB]        | , ,     | Number           | (Mbps)       |      | (%)           | (W/kg)        | Power)                  | Cycle)                  | (W/kg)               |        |
| 2480  | 78   | Bluetooth      | FHSS      | 9.0                | 8.54        | 0.11        | 10 mm   | 05524            | 1            | back | 76.8          | 0.036         | 1.112                   | 1.302                   | 0.052                | A42    |
|       |      | ANSI / IEEE    | C95.1 199 | 2 - SAFETY         | LIMIT       |             |         |                  |              |      |               | Body          |                         |                         |                      |        |
|       |      |                | Spatial F |                    |             |             |         |                  |              |      | 1             | .6 W/kg (ml   | V/g)                    |                         |                      |        |
|       |      | Uncontrolled E | Exposure  | General Pop        | oulation    |             |         |                  |              |      | ave           | eraged over 1 | gram                    |                         |                      |        |

| FCC ID: ZNFL455DL      | PCTEST:                 | SAR EVALUATION REPORT LG | Approved by:  Quality Manager |
|------------------------|-------------------------|--------------------------|-------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:                | Dogo 94 of 120                |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset         | Page 84 of 129                |

## 11.3 Standalone Hotspot SAR Data

#### **Table 11-25 GPRS/UMTS/CDMA Hotspot SAR Data**

|         |      |                   | GF                | K3/UI                             | VI I S/C                 |                     |         |                            | l SP               | IK L          | ala    |                         |                   |                                |       |
|---------|------|-------------------|-------------------|-----------------------------------|--------------------------|---------------------|---------|----------------------------|--------------------|---------------|--------|-------------------------|-------------------|--------------------------------|-------|
|         |      |                   | ı                 | 1                                 | MEA                      | SUREM               | ENI KE  |                            | 1                  |               | ı      |                         | ı                 | Danasta d SAD                  |       |
| FREQUE  | Ch.  | Mode              | Service           | Maximum<br>Allowed<br>Power [dBm] | Conducted<br>Power [dBm] | Power<br>Drift [dB] | Spacing | Device<br>Serial<br>Number | # of Time<br>Slots | Duty<br>Cycle | Side   | SAR (1g)<br>(W/kg)      | Scaling<br>Factor | Reported SAR<br>(1g)<br>(W/kg) | Plot# |
| 824.20  | 128  | GSM 850           | GPRS              | 29.7                              | 29.45                    | -0.09               | 10 mm   | 05490                      | 4                  | 1:2.076       | back   | 0.568                   | 1.059             | 0.602                          |       |
| 836.60  | 190  | GSM 850           | GPRS              | 29.7                              | 29.42                    | 0.00                | 10 mm   | 05490                      | 4                  | 1:2.076       | back   | 0.592                   | 1.067             | 0.632                          | A19   |
| 848.80  | 251  | GSM 850           | GPRS              | 29.7                              | 29.37                    | -0.04               | 10 mm   | 05490                      | 4                  | 1:2.076       | back   | 0.577                   | 1.079             | 0.623                          |       |
| 836.60  | 190  | GSM 850           | GPRS              | 29.7                              | 29.42                    | -0.04               | 10 mm   | 05490                      | 4                  | 1:2.076       | front  | 0.399                   | 1.067             | 0.426                          |       |
| 836.60  | 190  | GSM 850           | GPRS              | 29.7                              | 29.42                    | -0.04               | 10 mm   | 05490                      | 4                  | 1:2.076       | bottom | 0.220                   | 1.067             | 0.235                          |       |
| 836.60  | 190  | GSM 850           | GPRS              | 29.7                              | 29.42                    | 0.05                | 10 mm   | 05490                      | 4                  | 1:2.076       | right  | 0.578                   | 1.067             | 0.617                          |       |
| 836.60  | 190  | GSM 850           | GPRS              | 29.7                              | 29.42                    | -0.05               | 10 mm   | 05490                      | 4                  | 1:2.076       | left   | 0.355                   | 1.067             | 0.379                          |       |
| 1880.00 | 661  | GSM 1900          | GPRS              | 25.7                              | 25.48                    | -0.01               | 10 mm   | 05490                      | 4                  | 1:2.076       | back   | 0.436                   | 1.052             | 0.459                          | A20   |
| 1880.00 | 661  | GSM 1900          | GPRS              | 25.7                              | 25.48                    | -0.02               | 10 mm   | 05490                      | 4                  | 1:2.076       | front  | 0.262                   | 1.052             | 0.276                          |       |
| 1880.00 | 661  | GSM 1900          | GPRS              | 25.7                              | 25.48                    | -0.01               | 10 mm   | 05490                      | 4                  | 1:2.076       | bottom | 0.261                   | 1.052             | 0.275                          |       |
| 1880.00 | 661  | GSM 1900          | GPRS              | 25.7                              | 25.48                    | 0.09                | 10 mm   | 05490                      | 4                  | 1:2.076       | left   | 0.357                   | 1.052             | 0.376                          |       |
| 836.60  | 4183 | UMTS 850          | RMC               | 24.7                              | 24.53                    | -0.02               | 10 mm   | 05490                      | N/A                | 1:1           | back   | 0.501                   | 1.040             | 0.521                          | A21   |
| 836.60  | 4183 | UMTS 850          | RMC               | 24.7                              | 24.53                    | 0.05                | 10 mm   | 05490                      | N/A                | 1:1           | front  | 0.346                   | 1.040             | 0.360                          |       |
| 836.60  | 4183 | UMTS 850          | RMC               | 24.7                              | 24.53                    | -0.03               | 10 mm   | 05490                      | N/A                | 1:1           | bottom | 0.188                   | 1.040             | 0.196                          |       |
| 836.60  | 4183 | UMTS 850          | RMC               | 24.7                              | 24.53                    | -0.04               | 10 mm   | 05490                      | N/A                | 1:1           | right  | 0.398                   | 1.040             | 0.414                          |       |
| 836.60  | 4183 | UMTS 850          | RMC               | 24.7                              | 24.53                    | 0.02                | 10 mm   | 05490                      | N/A                | 1:1           | left   | 0.295                   | 1.040             | 0.307                          |       |
| 1712.40 | 1312 | UMTS 1750         | RMC               | 24.7                              | 24.57                    | -0.14               | 10 mm   | 05482                      | N/A                | 1:1           | back   | 0.789                   | 1.030             | 0.813                          |       |
| 1732.40 | 1412 | UMTS 1750         | RMC               | 24.7                              | 24.59                    | -0.13               | 10 mm   | 05482                      | N/A                | 1:1           | back   | 0.819                   | 1.026             | 0.840                          | A22   |
| 1752.60 | 1513 | UMTS 1750         | RMC               | 24.7                              | 24.56                    | -0.04               | 10 mm   | 05482                      | N/A                | 1:1           | back   | 0.784                   | 1.033             | 0.810                          |       |
| 1732.40 | 1412 | UMTS 1750         | RMC               | 24.7                              | 24.59                    | 0.04                | 10 mm   | 05482                      | N/A                | 1:1           | front  | 0.485                   | 1.026             | 0.498                          |       |
| 1732.40 | 1412 | UMTS 1750         | RMC               | 24.7                              | 24.59                    | 0.17                | 10 mm   | 05482                      | N/A                | 1:1           | bottom | 0.393                   | 1.026             | 0.403                          |       |
| 1732.40 | 1412 | UMTS 1750         | RMC               | 24.7                              | 24.59                    | 0.02                | 10 mm   | 05482                      | N/A                | 1:1           | left   | 0.679                   | 1.026             | 0.697                          |       |
| 1732.40 | 1412 | UMTS 1750         | RMC               | 24.7                              | 24.59                    | 0.04                | 10 mm   | 05482                      | N/A                | 1:1           | back   | 0.793                   | 1.026             | 0.814                          |       |
| 1852.40 | 9262 | UMTS 1900         | RMC               | 24.7                              | 24.63                    | 0.00                | 10 mm   | 05482                      | N/A                | 1:1           | back   | 0.563                   | 1.016             | 0.572                          |       |
| 1880.00 | 9400 | UMTS 1900         | RMC               | 24.7                              | 24.60                    | -0.12               | 10 mm   | 05482                      | N/A                | 1:1           | back   | 0.720                   | 1.023             | 0.737                          | A23   |
| 1907.60 | 9538 | UMTS 1900         | RMC               | 24.7                              | 24.64                    | -0.19               | 10 mm   | 05482                      | N/A                | 1:1           | back   | 0.656                   | 1.014             | 0.665                          |       |
| 1880.00 | 9400 | UMTS 1900         | RMC               | 24.7                              | 24.60                    | 0.06                | 10 mm   | 05482                      | N/A                | 1:1           | front  | 0.367                   | 1.023             | 0.375                          |       |
| 1880.00 | 9400 | UMTS 1900         | RMC               | 24.7                              | 24.60                    | -0.01               | 10 mm   | 05482                      | N/A                | 1:1           | bottom | 0.356                   | 1.023             | 0.364                          |       |
| 1880.00 | 9400 | UMTS 1900         | RMC               | 24.7                              | 24.60                    | -0.01               | 10 mm   | 05482                      | N/A                | 1:1           | left   | 0.573                   | 1.023             | 0.586                          |       |
| 820.10  | 564  | CDMA BC10 (§90S)  | EVDO Rev. 0       | 24.7                              | 24.70                    | 0.01                | 10 mm   | 05490                      | N/A                | 1:1           | back   | 0.336                   | 1.000             | 0.336                          | A25   |
| 820.10  | 564  | CDMA BC10 (§90S)  | EVDO Rev. 0       | 24.7                              | 24.70                    | 0.01                | 10 mm   | 05490                      | N/A                | 1:1           | front  | 0.236                   | 1.000             | 0.236                          |       |
| 820.10  | 564  | CDMA BC10 (§90S)  | EVDO Rev. 0       | 24.7                              | 24.70                    | 0.01                | 10 mm   | 05490                      | N/A                | 1:1           | bottom | 0.097                   | 1.000             | 0.097                          |       |
| 820.10  | 564  | CDMA BC10 (§90S)  | EVDO Rev. 0       | 24.7                              | 24.70                    | 0.01                | 10 mm   | 05490                      | N/A                | 1:1           | right  | 0.260                   | 1.000             | 0.260                          |       |
| 820.10  | 564  | CDMA BC10 (§90S)  | EVDO Rev. 0       | 24.7                              | 24.70                    | -0.08               | 10 mm   | 05490                      | N/A                | 1:1           | left   | 0.181                   | 1.000             | 0.181                          |       |
| 836.52  | 384  | CDMA BC0 (§22H)   | EVDO Rev. 0       | 24.7                              | 24.69                    | -0.04               | 10 mm   | 05490                      | N/A                | 1:1           | back   | 0.371                   | 1.002             | 0.372                          | A27   |
| 836.52  | 384  | CDMA BC0 (§22H)   | EVDO Rev. 0       | 24.7                              | 24.69                    | 0.03                | 10 mm   | 05490                      | N/A                | 1:1           | front  | 0.265                   | 1.002             | 0.266                          |       |
| 836.52  | 384  | CDMA BC0 (§22H)   | EVDO Rev. 0       | 24.7                              | 24.69                    | 0.10                | 10 mm   | 05490                      | N/A                | 1:1           | bottom | 0.146                   | 1.002             | 0.146                          |       |
| 836.52  | 384  | CDMA BC0 (§22H)   | EVDO Rev. 0       | 24.7                              | 24.69                    | -0.07               | 10 mm   | 05490                      | N/A                | 1:1           | right  | 0.280                   | 1.002             | 0.281                          |       |
| 836.52  | 384  | CDMA BC0 (§22H)   | EVDO Rev. 0       | 24.7                              | 24.69                    | 0.04                | 10 mm   | 05490                      | N/A                | 1:1           | left   | 0.197                   | 1.002             | 0.197                          |       |
| 1851.25 | 25   | PCS CDMA          | EVDO Rev. 0       | 24.7                              | 24.30                    | 0.00                | 10 mm   | 05490                      | N/A                | 1:1           | back   | 0.558                   | 1.096             | 0.612                          |       |
| 1880.00 | 600  | PCS CDMA          | EVDO Rev. 0       | 24.7                              | 24.26                    | -0.03               | 10 mm   | 05490                      | N/A                | 1:1           | back   | 0.606                   | 1.107             | 0.671                          |       |
| 1908.75 | 1175 | PCS CDMA          | EVDO Rev. 0       | 24.7                              | 24.55                    | 0.01                | 10 mm   | 05490                      | N/A                | 1:1           | back   | 0.678                   | 1.035             | 0.702                          | A29   |
| 1880.00 | 600  | PCS CDMA          | EVDO Rev. 0       | 24.7                              | 24.26                    | 0.03                | 10 mm   | 05490                      | N/A                | 1:1           | front  | 0.364                   | 1.107             | 0.403                          |       |
| 1880.00 | 600  | PCS CDMA          | EVDO Rev. 0       | 24.7                              | 24.26                    | -0.09               | 10 mm   | 05490                      | N/A                | 1:1           | bottom | 0.339                   | 1.107             | 0.375                          |       |
| 1880.00 | 600  | PCS CDMA          | EVDO Rev. 0       | 24.7                              | 24.26                    | -0.03               | 10 mm   | 05490                      | N/A                | 1:1           | left   | 0.483                   | 1.107             | 0.535                          |       |
|         |      | ANSI / IEEE C     | 95.1 1992 - SAF   | ETY LIMIT                         |                          |                     |         |                            | 1                  |               | В      | ody                     | 1                 |                                |       |
|         |      | Uncontrolled Ex   | Spatial Peak      | I Population                      |                          |                     |         |                            |                    | ^             |        | g (mW/g)<br>over 1 gram |                   |                                |       |
|         |      | O. OO THE OHEA EX | T 2001 0 001161 6 | opalation                         |                          |                     |         |                            |                    | а             | ·      | or i graill             |                   |                                |       |

Note: Blue entry represents variability measurement.

| FCC ID: ZNFL455DL      | PCTEST                  | SAR EVALUATION REPORT | LG | Approved by:  Quality Manager |
|------------------------|-------------------------|-----------------------|----|-------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:             |    | Daga 95 of 120                |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset      |    | Page 85 of 129                |

#### **Table 11-26** LTE Band 71 Hotspot SAR

|        |         |     |                  |                    |                    |                          |                     | Dank     | <i>4 1</i> 1 1 1 | otspo      | ינ טר   | 11.       |         |          |            |          |                   |                      |       |
|--------|---------|-----|------------------|--------------------|--------------------|--------------------------|---------------------|----------|------------------|------------|---------|-----------|---------|----------|------------|----------|-------------------|----------------------|-------|
|        |         |     |                  |                    |                    |                          |                     | MEASU    | JREMENT          | result     | s       |           |         |          |            |          |                   |                      |       |
| FRE    | EQUENCY |     | Mode             | Bandwidth<br>[MHz] | Maximum<br>Allowed | Conducted<br>Power [dBm] | Power<br>Drift [dB] | MPR [dB] | Device<br>Serial | Modulation | RB Size | RB Offset | Spacing | Side     | Duty Cycle | SAR (1g) | Scaling<br>Factor | Reported SAR<br>(1g) | Plot# |
| MHz    | Ch      |     |                  | [WHZ]              | Power [dBm]        | Fower [ubili]            | Driit [ub]          |          | Number           |            |         |           |         |          |            | (W/kg)   | racioi            | (W/kg)               |       |
| 680.50 | 133297  | Mid | LTE Band 71      | 20                 | 24.7               | 24.70                    | 0.07                | 0        | 05516            | QPSK       | 1       | 50        | 10 mm   | back     | 1:1        | 0.462    | 1.000             | 0.462                | A30   |
| 680.50 | 133297  | Mid | LTE Band 71      | 20                 | 23.7               | 23.62                    | -0.03               | 1        | 05516            | QPSK       | 50      | 25        | 10 mm   | back     | 1:1        | 0.325    | 1.019             | 0.331                |       |
| 680.50 | 133297  | Mid | LTE Band 71      | 20                 | 24.7               | 24.70                    | -0.08               | 0        | 05516            | QPSK       | 1       | 50        | 10 mm   | front    | 1:1        | 0.282    | 1.000             | 0.282                |       |
| 680.50 | 133297  | Mid | LTE Band 71      | 20                 | 23.7               | 23.62                    | 0.01                | 1        | 05516            | QPSK       | 50      | 25        | 10 mm   | front    | 1:1        | 0.222    | 1.019             | 0.226                |       |
| 680.50 | 133297  | Mid | LTE Band 71      | 20                 | 24.7               | 24.70                    | 0.02                | 0        | 05516            | QPSK       | 1       | 50        | 10 mm   | bottom   | 1:1        | 0.119    | 1.000             | 0.119                |       |
| 680.50 | 133297  | Mid | LTE Band 71      | 20                 | 23.7               | 23.62                    | 0.02                | 1        | 05516            | QPSK       | 50      | 25        | 10 mm   | bottom   | 1:1        | 0.086    | 1.019             | 0.088                |       |
| 680.50 | 133297  | Mid | LTE Band 71      | 20                 | 24.7               | 24.70                    | -0.06               | 0        | 05516            | QPSK       | 1       | 50        | 10 mm   | right    | 1:1        | 0.409    | 1.000             | 0.409                |       |
| 680.50 | 133297  | Mid | LTE Band 71      | 20                 | 23.7               | 23.62                    | -0.03               | 1        | 05516            | QPSK       | 50      | 25        | 10 mm   | right    | 1:1        | 0.302    | 1.019             | 0.308                |       |
| 680.50 | 133297  | Mid | LTE Band 71      | 20                 | 24.7               | 24.70                    | -0.15               | 0        | 05516            | QPSK       | 1       | 50        | 10 mm   | left     | 1:1        | 0.244    | 1.000             | 0.244                |       |
| 680.50 | 133297  | Mid | LTE Band 71      | 20                 | 23.7               | 23.62                    | -0.17               | 1        | 05516            | QPSK       | 50      | 25        | 10 mm   | left     | 1:1        | 0.205    | 1.019             | 0.209                |       |
|        |         | A   | NSI / IEEE C95.1 | 1992 - SA          | FETY LIMIT         |                          |                     |          |                  |            |         |           |         | Body     |            |          |                   |                      |       |
|        |         |     | Spa              | tial Peak          |                    |                          |                     |          |                  |            |         |           | 1.6 W   | /kg (mW  | //g)       |          |                   |                      |       |
|        |         | Und | controlled Expos | sure/Gener         | al Population      | 1                        |                     |          |                  |            |         |           | average | d over 1 | gram       |          |                   |                      |       |

### **Table 11-27** LTE Band 12 Hotspot SAR

|        |         |     |                  |                    |                    |                          |                     | MEASU    | REMENT           | RESULT     | s       |           |         |           |            |          |                   |                      |       |
|--------|---------|-----|------------------|--------------------|--------------------|--------------------------|---------------------|----------|------------------|------------|---------|-----------|---------|-----------|------------|----------|-------------------|----------------------|-------|
| FRE    | EQUENCY |     | Mode             | Bandwidth<br>[MHz] | Maximum<br>Allowed | Conducted<br>Power [dBm] | Power<br>Drift [dB] | MPR [dB] | Device<br>Serial | Modulation | RB Size | RB Offset | Spacing | Side      | Duty Cycle | SAR (1g) | Scaling<br>Factor | Reported SAR<br>(1g) | Plot# |
| MHz    | Cł      | ١.  |                  | [WIFIZ]            | Power [dBm]        | rower [ubili]            | Dilit [dB]          |          | Number           |            |         |           |         |           |            | (W/kg)   | Factor            | (W/kg)               |       |
| 707.50 | 23095   | Mid | LTE Band 12      | 10                 | 25.2               | 25.17                    | 0.02                | 0        | 05516            | QPSK       | 1       | 25        | 10 mm   | back      | 1:1        | 0.555    | 1.007             | 0.559                |       |
| 707.50 | 23095   | Mid | LTE Band 12      | 10                 | 24.2               | 24.15                    | -0.06               | 1        | 05516            | QPSK       | 25      | 0         | 10 mm   | back      | 1:1        | 0.433    | 1.012             | 0.438                |       |
| 707.50 | 23095   | Mid | LTE Band 12      | 10                 | 25.2               | 25.17                    | 0.02                | 0        | 05516            | QPSK       | 1       | 25        | 10 mm   | front     | 1:1        | 0.365    | 1.007             | 0.368                |       |
| 707.50 | 23095   | Mid | LTE Band 12      | 10                 | 24.2               | 24.15                    | -0.01               | 1        | 05516            | QPSK       | 25      | 0         | 10 mm   | front     | 1:1        | 0.281    | 1.012             | 0.284                |       |
| 707.50 | 23095   | Mid | LTE Band 12      | 10                 | 25.2               | 25.17                    | 0.06                | 0        | 05516            | QPSK       | 1       | 25        | 10 mm   | bottom    | 1:1        | 0.154    | 1.007             | 0.155                |       |
| 707.50 | 23095   | Mid | LTE Band 12      | 10                 | 24.2               | 24.15                    | 0.02                | 1        | 05516            | QPSK       | 25      | 0         | 10 mm   | bottom    | 1:1        | 0.118    | 1.012             | 0.119                |       |
| 707.50 | 23095   | Mid | LTE Band 12      | 10                 | 25.2               | 25.17                    | 0.07                | 0        | 05516            | QPSK       | 1       | 25        | 10 mm   | right     | 1:1        | 0.625    | 1.007             | 0.629                | A32   |
| 707.50 | 23095   | Mid | LTE Band 12      | 10                 | 24.2               | 24.15                    | 0.10                | 1        | 05516            | QPSK       | 25      | 0         | 10 mm   | right     | 1:1        | 0.481    | 1.012             | 0.487                |       |
| 707.50 | 23095   | Mid | LTE Band 12      | 10                 | 25.2               | 25.17                    | 0.07                | 0        | 05516            | QPSK       | 1       | 25        | 10 mm   | left      | 1:1        | 0.394    | 1.007             | 0.397                |       |
| 707.50 | 23095   | Mid | LTE Band 12      | 10                 | 24.2               | 24.15                    | -0.06               | 1        | 05516            | QPSK       | 25      | 0         | 10 mm   | left      | 1:1        | 0.296    | 1.012             | 0.300                |       |
|        |         | -   | ANSI / IEEE C95. | 1 1992 - SA        | FETY LIMIT         |                          |                     |          |                  |            |         |           |         | Body      |            |          |                   |                      |       |
|        |         |     | Spa              | atial Peak         |                    |                          |                     |          |                  |            |         |           | 1.6 W   | /kg (mV   | V/g)       |          |                   |                      |       |
|        |         | Un  | controlled Expo  | sure/Gener         | al Population      | n                        |                     |          |                  |            |         |           | average | ed over 1 | gram       |          |                   |                      |       |

| FCC ID: ZNFL455DL      | PCTEST                  | SAR EVALUATION REPORT LG | Approved by: Quality Manager |
|------------------------|-------------------------|--------------------------|------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:                | D 00 -f 400                  |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset         | Page 86 of 129               |

#### **Table 11-28** LTE Band 13 Hotspot SAR

|        |        |     |                  |                    |                    |                          |                     | Dank     | <i>a</i> 13 1    | ισιδρυ     | ינטה    |           |         |           |            |          |                   |                      |       |
|--------|--------|-----|------------------|--------------------|--------------------|--------------------------|---------------------|----------|------------------|------------|---------|-----------|---------|-----------|------------|----------|-------------------|----------------------|-------|
|        |        |     |                  |                    |                    |                          |                     | MEASU    | JREMEN           | T RESULT   | s       |           |         |           |            |          |                   |                      |       |
| FRE    | QUENCY |     | Mode             | Bandwidth<br>[MHz] | Maximum<br>Allowed | Conducted<br>Power [dBm] | Power<br>Drift [dB] | MPR [dB] | Device<br>Serial | Modulation | RB Size | RB Offset | Spacing | Side      | Duty Cycle | SAR (1g) | Scaling<br>Factor | Reported SAR<br>(1g) | Plot# |
| MHz    | Cł     | h.  |                  | [WIF12]            | Power [dBm]        | rower [ubili]            | Dilit [db]          |          | Number           |            |         |           |         |           |            | (W/kg)   | racioi            | (W/kg)               |       |
| 782.00 | 23230  | Mid | LTE Band 13      | 10                 | 24.2               | 24.20                    | -0.01               | 0        | 05516            | QPSK       | 1       | 25        | 10 mm   | back      | 1:1        | 0.597    | 1.000             | 0.597                | A33   |
| 782.00 | 23230  | Mid | LTE Band 13      | 10                 | 23.2               | 23.20                    | -0.01               | 1        | 05516            | QPSK       | 25      | 25        | 10 mm   | back      | 1:1        | 0.464    | 1.000             | 0.464                |       |
| 782.00 | 23230  | Mid | LTE Band 13      | 10                 | 24.2               | 24.20                    | -0.03               | 0        | 05516            | QPSK       | 1       | 25        | 10 mm   | front     | 1:1        | 0.409    | 1.000             | 0.409                |       |
| 782.00 | 23230  | Mid | LTE Band 13      | 10                 | 23.2               | 23.20                    | -0.02               | 1        | 05516            | QPSK       | 25      | 25        | 10 mm   | front     | 1:1        | 0.316    | 1.000             | 0.316                |       |
| 782.00 | 23230  | Mid | LTE Band 13      | 10                 | 24.2               | 24.20                    | 0.01                | 0        | 05516            | QPSK       | 1       | 25        | 10 mm   | bottom    | 1:1        | 0.180    | 1.000             | 0.180                |       |
| 782.00 | 23230  | Mid | LTE Band 13      | 10                 | 23.2               | 23.20                    | 0.03                | 1        | 05516            | QPSK       | 25      | 25        | 10 mm   | bottom    | 1:1        | 0.143    | 1.000             | 0.143                |       |
| 782.00 | 23230  | Mid | LTE Band 13      | 10                 | 24.2               | 24.20                    | -0.01               | 0        | 05516            | QPSK       | 1       | 25        | 10 mm   | right     | 1:1        | 0.513    | 1.000             | 0.513                |       |
| 782.00 | 23230  | Mid | LTE Band 13      | 10                 | 23.2               | 23.20                    | 0.03                | 1        | 05516            | QPSK       | 25      | 25        | 10 mm   | right     | 1:1        | 0.408    | 1.000             | 0.408                |       |
| 782.00 | 23230  | Mid | LTE Band 13      | 10                 | 24.2               | 24.20                    | 0.01                | 0        | 05516            | QPSK       | 1       | 25        | 10 mm   | left      | 1:1        | 0.337    | 1.000             | 0.337                |       |
| 782.00 | 23230  | Mid | LTE Band 13      | 10                 | 23.2               | 23.20                    | 0.04                | 1        | 05516            | QPSK       | 25      | 25        | 10 mm   | left      | 1:1        | 0.262    | 1.000             | 0.262                |       |
|        |        |     | ANSI / IEEE C95. | 1 1992 - SA        | FETY LIMIT         |                          |                     |          | · · · · ·        |            |         |           |         | Body      |            |          |                   |                      |       |
|        |        |     | Spa              | atial Peak         |                    |                          |                     |          |                  |            |         |           | 1.6 W   | //kg (mV  | V/g)       |          |                   |                      |       |
|        |        | Un  | controlled Expo  | sure/Gene          | ral Populatio      | n                        |                     |          |                  |            |         |           | average | ed over 1 | gram       |          |                   |                      |       |

**Table 11-29** LTE Band 26 (Cell) Hotspot SAR

|        |         |     |                    |                    |                    |                          |                     | MEASU    | JREMENT          | RESULT     | s       |           |         |          |            |          |                   |                      |        |
|--------|---------|-----|--------------------|--------------------|--------------------|--------------------------|---------------------|----------|------------------|------------|---------|-----------|---------|----------|------------|----------|-------------------|----------------------|--------|
| FRI    | EQUENCY |     | Mode               | Bandwidth<br>[MHz] | Maximum<br>Allowed | Conducted<br>Power [dBm] | Power<br>Drift [dB] | MPR [dB] | Device<br>Serial | Modulation | RB Size | RB Offset | Spacing | Side     | Duty Cycle | SAR (1g) | Scaling<br>Factor | Reported SAR<br>(1g) | Plot # |
| MHz    | CI      | ١.  |                    | [WIF12]            | Power [dBm]        | rower [abili]            | Dilit [GB]          |          | Number           |            |         |           |         |          |            | (W/kg)   | racioi            | (W/kg)               |        |
| 831.50 | 26865   | Mid | LTE Band 26 (Cell) | 15                 | 25.2               | 25.18                    | -0.02               | 0        | 05516            | QPSK       | 1       | 36        | 10 mm   | back     | 1:1        | 0.513    | 1.005             | 0.516                | A34    |
| 831.50 | 26865   | Mid | LTE Band 26 (Cell) | 15                 | 24.2               | 24.20                    | 0.00                | 1        | 05516            | QPSK       | 36      | 0         | 10 mm   | back     | 1:1        | 0.410    | 1.000             | 0.410                |        |
| 831.50 | 26865   | Mid | LTE Band 26 (Cell) | 15                 | 25.2               | 25.18                    | -0.01               | 0        | 05516            | QPSK       | 1       | 36        | 10 mm   | front    | 1:1        | 0.360    | 1.005             | 0.362                |        |
| 831.50 | 26865   | Mid | LTE Band 26 (Cell) | 15                 | 24.2               | 24.20                    | -0.01               | 1        | 05516            | QPSK       | 36      | 0         | 10 mm   | front    | 1:1        | 0.287    | 1.000             | 0.287                |        |
| 831.50 | 26865   | Mid | LTE Band 26 (Cell) | 15                 | 25.2               | 25.18                    | -0.03               | 0        | 05516            | QPSK       | 1       | 36        | 10 mm   | bottom   | 1:1        | 0.199    | 1.005             | 0.200                |        |
| 831.50 | 26865   | Mid | LTE Band 26 (Cell) | 15                 | 24.2               | 24.20                    | -0.06               | 1        | 05516            | QPSK       | 36      | 0         | 10 mm   | bottom   | 1:1        | 0.160    | 1.000             | 0.160                |        |
| 831.50 | 26865   | Mid | LTE Band 26 (Cell) | 15                 | 25.2               | 25.18                    | -0.05               | 0        | 05516            | QPSK       | 1       | 36        | 10 mm   | right    | 1:1        | 0.410    | 1.005             | 0.412                |        |
| 831.50 | 26865   | Mid | LTE Band 26 (Cell) | 15                 | 24.2               | 24.20                    | -0.01               | 1        | 05516            | QPSK       | 36      | 0         | 10 mm   | right    | 1:1        | 0.337    | 1.000             | 0.337                |        |
| 831.50 | 26865   | Mid | LTE Band 26 (Cell) | 15                 | 25.2               | 25.18                    | 0.05                | 0        | 05516            | QPSK       | 1       | 36        | 10 mm   | left     | 1:1        | 0.289    | 1.005             | 0.290                |        |
| 831.50 | ` 1     |     |                    |                    |                    |                          |                     |          | 05516            | QPSK       | 36      | 0         | 10 mm   | left     | 1:1        | 0.226    | 1.000             | 0.226                |        |
|        |         |     | ANSI / IEEE C95.   | 1 1992 - SA        | FETY LIMIT         |                          |                     |          |                  |            |         |           |         | Body     |            |          |                   |                      |        |
|        |         |     | Spa                | tial Peak          |                    |                          |                     |          |                  |            |         |           | 1.6 W   | /kg (mV  | //g)       |          |                   |                      |        |
|        |         | Ur  | controlled Expo    | sure/Gene          | ral Populatio      | n                        |                     |          |                  |            |         |           | average | d over 1 | gram       |          |                   |                      |        |

| FCC ID: ZNFL455DL      | PCTEST*                 | SAR EVALUATION REPORT | Approved by:  Quality Manager |
|------------------------|-------------------------|-----------------------|-------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:             | D 07 100                      |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset      | Page 87 of 129                |

#### **Table 11-30** LTE Band 66 (AWS) Hotspot SAR

|         |         |      |                      |            |                    |             | Built               | <del>, 00 (</del> | ,,,,,,           | , 11013    | 70.     | <u> </u>  |         |           |            |          |         |                      |       |
|---------|---------|------|----------------------|------------|--------------------|-------------|---------------------|-------------------|------------------|------------|---------|-----------|---------|-----------|------------|----------|---------|----------------------|-------|
|         |         |      |                      |            |                    |             | N                   | //EASUR           | EMENT F          | RESULTS    |         |           |         |           |            |          |         |                      |       |
| FRI     | EQUENCY |      | Mode                 | Bandwidth  | Maximum<br>Allowed | Conducted   | Power<br>Drift [dB] | MPR [dB]          | Device<br>Serial | Modulation | RB Size | RB Offset | Spacing | Side      | Duty Cycle | SAR (1g) | Scaling | Reported SAR<br>(1g) | Plot# |
| MHz     | Ch      |      |                      | [MHz]      | Power [dBm]        | Power [dBm] | Drift [dB]          |                   | Number           |            |         |           | .,      |           | ., ., .,   | (W/kg)   | Factor  | (W/kg)               |       |
| 1720.00 | 132072  | Low  | LTE Band 66 (AWS)    | 20         | 24.7               | 24.37       | -0.04               | 0                 | 05516            | QPSK       | 1       | 50        | 10 mm   | back      | 1:1        | 0.714    | 1.079   | 0.770                | A35   |
| 1745.00 | 132322  | Mid  | LTE Band 66 (AWS)    | 20         | 24.7               | 24.50       | -0.08               | 0                 | 05516            | QPSK       | 1       | 50        | 10 mm   | back      | 1:1        | 0.669    | 1.047   | 0.700                |       |
| 1770.00 | 132572  | High | LTE Band 66 (AWS)    | 20         | 24.7               | 24.44       | 0.00                | 0                 | 05516            | QPSK       | 1       | 50        | 10 mm   | back      | 1:1        | 0.676    | 1.062   | 0.718                |       |
| 1745.00 | 132322  | Mid  | LTE Band 66 (AWS)    | 20         | 23.7               | 23.50       | -0.05               | 1                 | 05516            | QPSK       | 50      | 25        | 10 mm   | back      | 1:1        | 0.630    | 1.047   | 0.660                |       |
| 1745.00 | 132322  | Mid  | LTE Band 66 (AWS)    | 20         | 24.7               | 24.50       | -0.02               | 0                 | 05516            | QPSK       | 1       | 50        | 10 mm   | front     | 1:1        | 0.365    | 1.047   | 0.382                |       |
| 1745.00 | 132322  | Mid  | LTE Band 66 (AWS)    | 20         | 23.7               | 23.50       | 0.03                | 1                 | 05516            | QPSK       | 50      | 25        | 10 mm   | front     | 1:1        | 0.286    | 1.047   | 0.299                |       |
| 1745.00 | 132322  | Mid  | LTE Band 66 (AWS)    | 20         | 24.7               | 24.50       | 0.02                | 0                 | 05516            | QPSK       | 1       | 50        | 10 mm   | bottom    | 1:1        | 0.325    | 1.047   | 0.340                |       |
| 1745.00 | 132322  | Mid  | LTE Band 66 (AWS)    | 20         | 23.7               | 23.50       | 0.19                | 1                 | 05516            | QPSK       | 50      | 25        | 10 mm   | bottom    | 1:1        | 0.264    | 1.047   | 0.276                |       |
| 1745.00 | 132322  | Mid  | LTE Band 66 (AWS)    | 20         | 24.7               | 24.50       | -0.01               | 0                 | 05516            | QPSK       | 1       | 50        | 10 mm   | left      | 1:1        | 0.535    | 1.047   | 0.560                |       |
| 1745.00 | 132322  | Mid  | LTE Band 66 (AWS)    | 20         | 23.7               | -0.02       | 1                   | 05516             | QPSK             | 50         | 25      | 10 mm     | left    | 1:1       | 0.438      | 1.047    | 0.459   |                      |       |
|         |         |      | ANSI / IEEE C95.1 1  | 992 - SAFE | TY LIMIT           |             |                     |                   |                  |            |         |           | Body    |           |            |          |         |                      |       |
|         |         |      | Spatia               | l Peak     |                    |             |                     |                   |                  |            |         |           | 1.6 W   | //kg (m\  | V/g)       |          |         |                      |       |
|         |         | ι    | Jncontrolled Exposur | re/General | Population         |             |                     | 1                 |                  |            |         |           | average | ed over 1 | gram       |          |         |                      |       |

### **Table 11-31** LTE Band 25 (PCS) Hotspot SAR

|         |        |      |                    |                    |                    |                          |                     | MEASUF   | REMENT           | RESULTS    | ;       |           |         |           |            |          |                   |                      |        |
|---------|--------|------|--------------------|--------------------|--------------------|--------------------------|---------------------|----------|------------------|------------|---------|-----------|---------|-----------|------------|----------|-------------------|----------------------|--------|
| FRE     | QUENCY | ,    | Mode               | Bandwidth<br>[MHz] | Maximum<br>Allowed | Conducted<br>Power [dBm] | Power<br>Drift [dB] | MPR [dB] | Device<br>Serial | Modulation | RB Size | RB Offset | Spacing | Side      | Duty Cycle | SAR (1g) | Scaling<br>Factor | Reported SAR<br>(1g) | Plot # |
| MHz     | С      | h.   |                    | [WITZ]             | Power [dBm]        | Power (abm)              | Drift [ab]          |          | Number           |            |         |           |         |           |            | (W/kg)   | Factor            | (W/kg)               |        |
| 1860.00 | 26140  | Low  | LTE Band 25 (PCS)  | 20                 | 24.7               | 24.26                    | 0.03                | 0        | 05508            | QPSK       | 1       | 50        | 10 mm   | back      | 1:1        | 0.708    | 1.107             | 0.784                |        |
| 1882.50 | 26365  | Mid  | LTE Band 25 (PCS)  | 20                 | 24.7               | 24.51                    | -0.02               | 0        | 05508            | QPSK       | 1       | 50        | 10 mm   | back      | 1:1        | 0.768    | 1.045             | 0.803                |        |
| 1905.00 | 26590  | High | LTE Band 25 (PCS)  | 20                 | 24.7               | 24.52                    | 0.04                | 0        | 05508            | QPSK       | 1       | 50        | 10 mm   | back      | 1:1        | 0.826    | 1.042             | 0.861                | A36    |
| 1860.00 | 26140  | Low  | LTE Band 25 (PCS)  | 20                 | 23.7               | 23.33                    | -0.02               | 1        | 05508            | QPSK       | 50      | 25        | 10 mm   | back      | 1:1        | 0.555    | 1.089             | 0.604                |        |
| 1882.50 | 26365  | Mid  | LTE Band 25 (PCS)  | 20                 | 23.7               | 23.44                    | -0.03               | 1        | 05508            | QPSK       | 50      | 25        | 10 mm   | back      | 1:1        | 0.587    | 1.062             | 0.623                |        |
| 1905.00 | 26590  | High | LTE Band 25 (PCS)  | 20                 | 23.7               | 23.56                    | -0.02               | 1        | 05508            | QPSK       | 50      | 0         | 10 mm   | back      | 1:1        | 0.649    | 1.033             | 0.670                |        |
| 1905.00 | 26590  | High | LTE Band 25 (PCS)  | 20                 | 23.7               | 23.52                    | -0.04               | 1        | 05508            | QPSK       | 100     | 0         | 10 mm   | back      | 1:1        | 0.633    | 1.042             | 0.660                |        |
| 1905.00 | 26590  | High | LTE Band 25 (PCS)  | 20                 | 24.7               | 24.52                    | 0.02                | 0        | 05508            | QPSK       | 1       | 50        | 10 mm   | front     | 1:1        | 0.461    | 1.042             | 0.480                |        |
| 1905.00 | 26590  | High | LTE Band 25 (PCS)  | 20                 | 23.7               | 23.56                    | 0.08                | 1        | 05508            | QPSK       | 50      | 0         | 10 mm   | front     | 1:1        | 0.342    | 1.033             | 0.353                |        |
| 1905.00 | 26590  | High | LTE Band 25 (PCS)  | 20                 | 24.7               | 24.52                    | -0.05               | 0        | 05508            | QPSK       | 1       | 50        | 10 mm   | bottom    | 1:1        | 0.464    | 1.042             | 0.483                |        |
| 1905.00 | 26590  | High | LTE Band 25 (PCS)  | 20                 | 23.7               | 23.56                    | 0.05                | 1        | 05508            | QPSK       | 50      | 0         | 10 mm   | bottom    | 1:1        | 0.354    | 1.033             | 0.366                |        |
| 1905.00 | 26590  | High | LTE Band 25 (PCS)  | 20                 | 24.7               | 24.52                    | 0.05                | 0        | 05508            | QPSK       | 1       | 50        | 10 mm   | left      | 1:1        | 0.584    | 1.042             | 0.609                |        |
| 1905.00 | 26590  | High | LTE Band 25 (PCS)  | 20                 | 23.7               | 23.56                    | 0.06                | 1        | 05508            | QPSK       | 50      | 0         | 10 mm   | left      | 1:1        | 0.474    | 1.033             | 0.490                |        |
|         |        |      | ANSI / IEEE C95.1  |                    | ETY LIMIT          |                          |                     |          |                  |            |         |           |         | Body      |            |          |                   |                      |        |
|         |        |      |                    | ial Peak           |                    |                          |                     |          |                  |            |         |           |         | //kg (mV  |            |          |                   |                      |        |
|         |        | L    | Incontrolled Expos | ure/Genera         | I Population       |                          |                     |          |                  |            |         |           | average | ed over 1 | gram       |          |                   |                      |        |

| Document S/N: Test Dates: DUT Type: | FCC ID: ZNFL455DL      | PCTEST:                | SAR EVALUATION REPORT | Approved by:  Quality Manager |
|-------------------------------------|------------------------|------------------------|-----------------------|-------------------------------|
|                                     | Document S/N:          | Test Dates:            | DUT Type:             | Dogg 99 of 120                |
| 1M1911290211-01-R2.ZNF              | 1M1911290211-01-R2.ZNF | 12/05/2019 – 01/16/202 | 0 Portable Handset    | Page 88 of 129                |

#### **Table 11-32** LTE Band 41 Hotspot SAR

|                                           |                                                                                       |         |          |            |                   |                    |                    | ana 7                    |                     | эсор.    | <u> </u>         | ***        |         |           |         |           |            |          |                   |                      |          |
|-------------------------------------------|---------------------------------------------------------------------------------------|---------|----------|------------|-------------------|--------------------|--------------------|--------------------------|---------------------|----------|------------------|------------|---------|-----------|---------|-----------|------------|----------|-------------------|----------------------|----------|
|                                           |                                                                                       |         |          |            |                   |                    |                    | MEASURE                  | MENT F              | RESULTS  | 3                |            |         |           |         |           |            |          |                   |                      |          |
| 1 CC Uplink   2 CC Uplink, Power<br>Class | Component                                                                             |         | FREQUE   |            | Mode              | Bandwidth<br>[MHz] | Maximum<br>Allowed | Conducted<br>Power [dBm] | Power<br>Drift [dB] | MPR [dB] | Device<br>Serial | Modulation | RB Size | RB Offset | Spacing | Side      | Duty Cycle | SAR (1g) | Scaling<br>Factor | Reported SAR<br>(1g) | Plot#    |
|                                           |                                                                                       | MHz     |          | Ch.        |                   | [····-]            | Power [dBm]        |                          |                     |          | Number           |            |         |           |         |           |            | (W/kg)   |                   | (W/kg)               | igsquare |
| 1 CC Uplink - Power Class 3               | N/A                                                                                   | 2636.50 | 41055    | Mid-High   | LTE Band 41       | 20                 | 24.7               | 24.60                    | 0.09                | 0        | 05516            | QPSK       | 1       | 99        | 10 mm   | back      | 1:1.58     | 0.439    | 1.023             | 0.449                |          |
| 1 CC Uplink - Power Class 3               | N/A                                                                                   | 2636.50 | 41055    | Mid-High   | LTE Band 41       | 20                 | 23.7               | 23.70                    | -0.04               | 1        | 05516            | QPSK       | 50      | 0         | 10 mm   | back      | 1:1.58     | 0.325    | 1.000             | 0.325                |          |
| 1 CC Uplink - Power Class 3               | N/A                                                                                   | 2636.50 | 41055    | Mid-High   | LTE Band 41       | 20                 | 24.7               | 24.60                    | -0.21               | 0        | 05516            | QPSK       | 1       | 99        | 10 mm   | front     | 1:1.58     | 0.257    | 1.023             | 0.263                |          |
| 1 CC Uplink - Power Class 3               |                                                                                       |         |          |            |                   |                    |                    |                          |                     |          |                  |            | 50      | 0         | 10 mm   | front     | 1:1.58     | 0.220    | 1.000             | 0.220                |          |
| 1 CC Uplink - Power Class 3               | CC Uplink - Power Class 3 N/A 2636.50 41055 Md-High LTE Band 41 20 24.7 24.60 -0.05   |         |          |            |                   |                    |                    |                          |                     |          |                  |            | 1       | 99        | 10 mm   | bottom    | 1:1.58     | 0.502    | 1.023             | 0.514                |          |
| 1 CC Uplink - Power Class 3               | 1 CC Uplink - Power Class 3 N/A 2636.50 41055 Md-High LTE Band 41 20 23.7 23.70 -0.03 |         |          |            |                   |                    |                    |                          |                     |          | 05508            | QPSK       | 50      | 0         | 10 mm   | bottom    | 1:1.58     | 0.429    | 1.000             | 0.429                |          |
| 1 CC Uplink - Power Class 2               | N/A                                                                                   | 2636.50 | 41055    | Mid-High   | LTE Band 41       | 20                 | 27.2               | 26.80                    | 0.03                | 0        | 05508            | QPSK       | 1       | 99        | 10 mm   | bottom    | 1:2.31     | 0.621    | 1.096             | 0.681                | A38      |
|                                           | PCC                                                                                   | 2636.50 | 41055    | Mid-High   | LTE Band 41       |                    | 24.7               | 24.52                    |                     |          |                  | QPSK       | 1       | 99        |         |           |            |          |                   |                      |          |
| 2 CC Uplink - Power Class 3               | scc                                                                                   | 2656.30 | 41253    | Mid-High   | LIE Band 41       | 20                 | 24.7               | 24.52                    | 0.05                | 0        | 05508            | QPSK       | 1       | 0         | 10 mm   | bottom    | 1:1.58     | 0.472    | 1.000             | 0.492                |          |
| 2 CC Uplink - Power Class 2               | PCC                                                                                   | 2636.50 | 41055    | Mid-High   | LTE Band 41       |                    | 27.2               | 26.67                    | 0.10                | 0        |                  | QPSK       | 1       | 99        |         |           |            |          | 1.130             | 0.646                |          |
| 2 CC Uplink - Power Class 2               | scc                                                                                   | 2656.30 | 41253    | iviia-High | LIE Band 41       | 20                 | 21.2               | 26.67                    | 0.10                | 0        | 05508            | UPSK       | 1       | 0         | 10 mm   | bottom    | 1:2.31     | 0.572    | 1.130             | 0.646                |          |
| 1 CC Uplink - Power Class 3               | N/A                                                                                   | 2636.50 | 41055    | Mid-High   | LTE Band 41       | 20                 | 24.7               | 24.60                    | 0.11                | 0        | 05516            | QPSK       | 1       | 99        | 10 mm   | right     | 1:1.58     | 0.132    | 1.023             | 0.135                |          |
| 1 CC Uplink - Power Class 3               | N/A                                                                                   | 2636.50 | 41055    | Mid-High   | LTE Band 41       | 20                 | 23.7               | 23.70                    | 0.03                | 1        | 05516            | QPSK       | 50      | 0         | 10 mm   | right     | 1:1.58     | 0.100    | 1.000             | 0.100                |          |
| 1 CC Uplink - Power Class 3               | Jplink - Power Class 3 N/A 2636.50 41055 Mid-High LTE Band 41 20 24.7 24.60           |         |          |            |                   |                    |                    |                          |                     | 0        | 05516            | QPSK       | 1       | 99        | 10 mm   | left      | 1:1.58     | 0.052    | 1.023             | 0.053                |          |
| 1 CC Uplink - Power Class 3               | plink - Power Class 3 N/A 2636.50 41055 Md-High LTE Band 41 20 23.7 23.70 0           |         |          |            |                   |                    |                    |                          |                     |          |                  | QPSK       | 50      | 0         | 10 mm   | left      | 1:1.58     | 0.045    | 1.000             | 0.045                |          |
|                                           | ANSI / IEEE C95.1 1992 - SAFETY LIMIT                                                 |         |          |            |                   |                    |                    |                          |                     |          |                  |            | •       |           |         | Body      |            |          |                   |                      |          |
|                                           | Spatial Peak                                                                          |         |          |            |                   |                    |                    |                          |                     |          |                  |            |         |           | 1.6 V   | V/kg (mV  | I/g)       |          |                   |                      |          |
|                                           |                                                                                       | Uncont  | rolled E | Exposure/G | eneral Population | 1                  |                    |                          |                     |          |                  |            |         |           | averag  | ed over 1 | gram       |          |                   |                      |          |

**Table 11-33** WI AN Hotspot SAR

|       |                                       |         |           |            |                          |                 | WLAI  | N HOL   | spoi             | . JAI        | τ     |               |                          |          |                   |                         |                      |       |
|-------|---------------------------------------|---------|-----------|------------|--------------------------|-----------------|-------|---------|------------------|--------------|-------|---------------|--------------------------|----------|-------------------|-------------------------|----------------------|-------|
|       |                                       |         |           |            |                          |                 | MEAS  | JREMEI  | NT RES           | ULTS         |       |               |                          |          |                   |                         |                      |       |
| FREQU | IENCY                                 | Mode    | Service   | Bandwidth  | Maximum<br>Allowed Power | Conducted Power |       | Spacing | Device<br>Serial | Data<br>Rate | Side  | Duty<br>Cycle | Peak SAR of<br>Area Scan | SAR (1g) | Scaling<br>Factor | Scaling<br>Factor (Duty | Reported SAR<br>(1g) | Plot# |
| MHz   | Ch.                                   |         |           | [MHz]      | [dBm]                    | [dBm]           | [dB]  |         | Number           | (Mbps)       |       | (%)           | W/kg                     | (W/kg)   | (Power)           | Cycle)                  | (W/kg)               |       |
| 2412  | 1                                     | 802.11b | DSSS      | 22         | 21.0                     | 20.14           | -0.15 | 10 mm   | 05524            | 1            | back  | 99.1          | 0.487                    | 0.358    | 1.219             | 1.009                   | 0.440                | A39   |
| 2412  | 1                                     | 802.11b | DSSS      | 22         | 21.0                     | 20.14           | 0.02  | 10 mm   | 05524            | 1            | front | 99.1          | 0.412                    | 0.284    | 1.219             | 1.009                   | 0.349                |       |
| 2412  | 1                                     | 802.11b | DSSS      | 22         | 21.0                     | 20.14           | -0.03 | 10 mm   | 05524            | 1            | top   | 99.1          | 0.354                    | -        | 1.219             | 1.009                   | -                    |       |
| 2412  | 1                                     | 802.11b | DSSS      | 22         | 21.0                     | 20.14           | -0.01 | 10 mm   | 05524            | 1            | left  | 99.1          | 0.366                    | -        | 1.219             | 1.009                   | -                    |       |
| 5180  | 36                                    | 802.11a | OFDM      | 20         | 16.0                     | 15.98           | -0.08 | 10 mm   | 05524            | 6            | back  | 97.0          | 1.547                    | 0.738    | 1.005             | 1.031                   | 0.765                |       |
| 5200  | 40                                    | 802.11a | OFDM      | 20         | 16.0                     | 15.93           | -0.15 | 10 mm   | 05524            | 6            | back  | 97.0          | 1.519                    | 0.757    | 1.016             | 1.031                   | 0.793                |       |
| 5220  | 44                                    | 802.11a | OFDM      | 20         | 16.0                     | 15.91           | -0.07 | 10 mm   | 05524            | 6            | back  | 97.0          | 1.533                    | 0.823    | 1.021             | 1.031                   | 0.866                | A41   |
| 5240  | 48                                    | 802.11a | OFDM      | 20         | 16.0                     | 15.78           | -0.06 | 10 mm   | 05524            | 6            | back  | 97.0          | 1.610                    | 0.807    | 1.052             | 1.031                   | 0.875                |       |
| 5180  | 36                                    | 802.11a | OFDM      | 20         | 16.0                     | 15.98           | -0.11 | 10 mm   | 05524            | 6            | front | 97.0          | 0.241                    | -        | 1.005             | 1.031                   | -                    |       |
| 5180  | 36                                    | 802.11a | OFDM      | 20         | 16.0                     | 15.98           | 0.13  | 10 mm   | 05524            | 6            | top   | 97.0          | 0.737                    | -        | 1.005             | 1.031                   | -                    |       |
| 5180  | 36                                    | 802.11a | OFDM      | 20         | 16.0                     | 15.98           | -0.14 | 10 mm   | 05524            | 6            | left  | 97.0          | 0.889                    | 0.389    | 1.005             | 1.031                   | 0.403                |       |
| 5785  | 157                                   | 802.11a | OFDM      | 20         | 16.0                     | 15.84           | -0.03 | 10 mm   | 05524            | 6            | back  | 97.0          | 1.228                    | 0.589    | 1.038             | 1.031                   | 0.630                |       |
| 5785  | 157                                   | 802.11a | OFDM      | 20         | 16.0                     | 15.84           | 0.01  | 10 mm   | 05524            | 6            | front | 97.0          | 0.362                    | -        | 1.038             | 1.031                   | -                    |       |
| 5785  | 157                                   | 802.11a | OFDM      | 20         | 16.0                     | 15.84           | -0.01 | 10 mm   | 05524            | 6            | top   | 97.0          | 0.798                    | 0.361    | 1.038             | 1.031                   | 0.386                |       |
| 5785  | 157                                   | 802.11a | OFDM      | 20         | 16.0                     | 15.84           | -0.01 | 10 mm   | 05524            | 6            | left  | 97.0          | 0.598                    | -        | 1.038             | 1.031                   | -                    |       |
|       | ANSI / IEEE C95.1 1992 - SAFETY LIMIT |         |           |            |                          |                 |       |         |                  |              |       |               | В                        | ody      |                   | •                       |                      |       |
|       | Spatial Peak                          |         |           |            |                          |                 |       |         |                  |              |       |               | 1.6 W/k                  | g (mW/g) |                   |                         |                      |       |
|       |                                       | Unc     | ontrolled | Exposure/G | eneral Population        |                 |       |         |                  |              |       | averaged      | over 1 gram              |          |                   |                         |                      |       |

| FCC ID: ZNFL455DL      | PCTEST"                 | SAR EVALUATION REPORT LG | Approved by: Quality Manager |
|------------------------|-------------------------|--------------------------|------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:                | Dogg 90 of 120               |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset         | Page 89 of 129               |

#### **Table 11-34** DSS Hotspot SAR

|           | MEASUREMENT RESULTS |           |                    |                          |                     |         |                  |              |       |               |               |                         |                         |                      |       |  |  |  |  |
|-----------|---------------------|-----------|--------------------|--------------------------|---------------------|---------|------------------|--------------|-------|---------------|---------------|-------------------------|-------------------------|----------------------|-------|--|--|--|--|
| FREQUENCY | Mode                | Service   | Maximum<br>Allowed | Conducted<br>Power [dBm] | Power Drift<br>[dB] | Spacing | Device<br>Serial | Data<br>Rate | Side  | Duty<br>Cycle | SAR (1g)      | Scaling<br>Factor (Cond | Scaling<br>Factor (Duty | Reported SAR<br>(1g) | Plot# |  |  |  |  |
| MHz Ch.   |                     |           | Power [dBm]        | rower [ubin]             | [GD]                |         | Number           | (Mbps)       |       | (%)           | (W/kg)        | Power)                  | Cycle)                  | (W/kg)               |       |  |  |  |  |
| 2480 78   | Bluetooth           | FHSS      | 9.0                | 8.54                     | 0.11                | 10 mm   | 05524            | 1            | back  | 76.8          | 0.036         | 1.112                   | 1.302                   | 0.052                | A42   |  |  |  |  |
| 2480 78   | Bluetooth           | 0.05      | 10 mm              | 05524                    | 1                   | front   | 76.8             | 0.020        | 1.112 | 1.302         | 0.029         |                         |                         |                      |       |  |  |  |  |
| 2480 78   | Bluetooth           | FHSS      | 9.0                | 8.54                     | 0.11                | 10 mm   | 05524            | 1            | top   | 76.8          | 0.026         | 1.112                   | 1.302                   | 0.038                |       |  |  |  |  |
| 2480 78   | Bluetooth           | FHSS      | 9.0                | 8.54                     | -0.04               | 10 mm   | 05524            | 1            | left  | 76.8          | 0.019         | 1.112                   | 1.302                   | 0.028                |       |  |  |  |  |
|           | ANSI / IEEE         | C95.1 199 | 2 - SAFETY         | LIMIT                    |                     |         |                  |              |       |               | Body          |                         |                         |                      |       |  |  |  |  |
|           |                     | Spatial F | Peak               |                          |                     |         |                  |              |       | 1             | .6 W/kg (mV   | V/g)                    |                         |                      |       |  |  |  |  |
|           | Uncontrolled E      | Exposure  | General Pop        | oulation                 |                     |         |                  |              |       | ave           | eraged over 1 | gram                    |                         |                      |       |  |  |  |  |

| FCC ID: ZNFL455DL      | PCTEST*                 | SAR EVALUATION REPORT LG | Approved by: Quality Manager |
|------------------------|-------------------------|--------------------------|------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:                | Dogg 00 of 120               |
| 1M1911290211-01-R2.ZNF | 12/05/2019 – 01/16/2020 | Portable Handset         | Page 90 of 129               |

## 11.4 Standalone Phablet SAR Data

#### **Table 11-35 GPRS/UMTS/CDMA Phablet SAR Data**

|         |      |              |                               | GFK3/C             |                          | UREME      |         |                  | , L   | Julu   |                             |                   |                       |        |
|---------|------|--------------|-------------------------------|--------------------|--------------------------|------------|---------|------------------|-------|--------|-----------------------------|-------------------|-----------------------|--------|
| FREQUE  | ENCY | Mode         | Service                       | Maximum<br>Allowed | Conducted<br>Power [dBm] | Power      | Spacing | Device<br>Serial | Duty  | Side   | SAR (10g)                   | Scaling<br>Factor | Reported SAR<br>(10g) | Plot # |
| MHz     | Ch.  |              |                               | Power [dBm]        | Power [aBm]              | Drift [dB] |         | Number           | Cycle |        | (W/kg)                      | Factor            | (W/kg)                |        |
| 1712.40 | 1312 | UMTS 1750    | RMC                           | 24.7               | 24.57                    | -0.03      | 2 mm    | 05482            | 1:1   | back   | 2.030                       | 1.030             | 2.091                 |        |
| 1732.40 | 1412 | UMTS 1750    | RMC                           | 24.7               | 24.59                    | -0.04      | 2 mm    | 05482            | 1:1   | back   | 2.030                       | 1.026             | 2.083                 |        |
| 1752.60 | 1513 | UMTS 1750    | RMC                           | 24.7               | 24.56                    | -0.05      | 2 mm    | 05482            | 1:1   | back   | 2.110                       | 1.033             | 2.180                 |        |
| 1732.40 | 1412 | UMTS 1750    | RMC                           | 24.7               | 24.59                    | -0.04      | 0 mm    | 05482            | 1:1   | front  | 1.790                       | 1.026             | 1.837                 |        |
| 1732.40 | 1412 | UMTS 1750    | RMC                           | 24.7               | 24.59                    | 0.03       | 0 mm    | 05482            | 1:1   | bottom | 1.210                       | 1.026             | 1.241                 |        |
| 1712.40 | 1312 | UMTS 1750    | RMC                           | 24.7               | 24.57                    | 0.01       | 0 mm    | 05482            | 1:1   | left   | 2.800                       | 1.030             | 2.884                 |        |
| 1732.40 | 1412 | UMTS 1750    | RMC                           | 24.7               | 24.59                    | 0.09       | 0 mm    | 05482            | 1:1   | left   | 2.800                       | 1.026             | 2.873                 |        |
| 1752.60 | 1513 | UMTS 1750    | RMC                           | 24.7               | 24.56                    | -0.08      | 0 mm    | 05482            | 1:1   | left   | 3.060                       | 1.033             | 3.161                 | A43    |
| 1712.40 | 1312 | UMTS 1750    | RMC                           | 22.3               | 22.01                    | -0.09      | 0 mm    | 05482            | 1:1   | back   | 2.230                       | 1.069             | 2.384                 |        |
| 1732.40 | 1412 | UMTS 1750    | RMC                           | 22.3               | 22.03                    | -0.08      | 0 mm    | 05482            | 1:1   | back   | 2.240                       | 1.064             | 2.383                 |        |
| 1752.60 | 1513 | UMTS 1750    | RMC                           | 22.3               | 22.00                    | -0.09      | 0 mm    | 05482            | 1:1   | back   | 2.260                       | 1.072             | 2.423                 |        |
| 1752.60 | 1513 | UMTS 1750    | RMC                           | 24.7               | 24.56                    | -0.08      | 0 mm    | 05482            | 1:1   | left   | 3.000                       | 1.033             | 3.099                 |        |
| 1852.40 | 9262 | UMTS 1900    | RMC                           | 24.7               | 24.63                    | -0.09      | 2 mm    | 05490            | 1:1   | back   | 2.270                       | 1.016             | 2.306                 |        |
| 1880.00 | 9400 | UMTS 1900    | RMC                           | 24.7               | 24.60                    | -0.09      | 2 mm    | 05490            | 1:1   | back   | 2.310                       | 1.023             | 2.363                 |        |
| 1907.60 | 9538 | UMTS 1900    | RMC                           | 24.7               | 24.64                    | -0.06      | 2 mm    | 05490            | 1:1   | back   | 2.360                       | 1.014             | 2.393                 |        |
| 1852.40 | 9262 | UMTS 1900    | RMC                           | 24.7               | 24.63                    | 0.04       | 0 mm    | 05490            | 1:1   | front  | 2.000                       | 1.016             | 2.032                 |        |
| 1880.00 | 9400 | UMTS 1900    | RMC                           | 24.7               | 24.60                    | 0.06       | 0 mm    | 05490            | 1:1   | front  | 2.070                       | 1.023             | 2.118                 |        |
| 1907.60 | 9538 | UMTS 1900    | RMC                           | 24.7               | 24.64                    | 0.05       | 0 mm    | 05490            | 1:1   | front  | 2.130                       | 1.014             | 2.160                 |        |
| 1880.00 | 9400 | UMTS 1900    | RMC                           | 24.7               | 24.60                    | -0.01      | 0 mm    | 05490            | 1:1   | bottom | 1.210                       | 1.023             | 1.238                 |        |
| 1852.40 | 9262 | UMTS 1900    | RMC                           | 24.7               | 24.63                    | -0.01      | 0 mm    | 05490            | 1:1   | left   | 2.630                       | 1.016             | 2.672                 |        |
| 1880.00 | 9400 | UMTS 1900    | RMC                           | 24.7               | 24.60                    | -0.03      | 0 mm    | 05490            | 1:1   | left   | 2.760                       | 1.023             | 2.823                 |        |
| 1907.60 | 9538 | UMTS 1900    | RMC                           | 24.7               | 24.64                    | 0.01       | 0 mm    | 05490            | 1:1   | left   | 2.810                       | 1.014             | 2.849                 |        |
| 1852.40 | 9262 | UMTS 1900    | RMC                           | 22.7               | 22.66                    | -0.07      | 0 mm    | 05490            | 1:1   | back   | 2.620                       | 1.009             | 2.644                 |        |
| 1880.00 | 9400 | UMTS 1900    | RMC                           | 22.7               | 22.64                    | -0.08      | 0 mm    | 05490            | 1:1   | back   | 2.720                       | 1.014             | 2.758                 |        |
| 1907.60 | 9538 | UMTS 1900    | RMC                           | 22.7               | 22.62                    | -0.06      | 0 mm    | 05490            | 1:1   | back   | 2.850                       | 1.019             | 2.904                 | A44    |
| 1851.25 | 25   | PCS CDMA     | EVDO Rev. 0                   | 24.7               | 24.30                    | -0.05      | 2 mm    | 05490            | 1:1   | back   | 2.140                       | 1.096             | 2.345                 |        |
| 1880.00 | 600  | PCS CDMA     | EVDO Rev. 0                   | 24.7               | 24.26                    | -0.05      | 2 mm    | 05490            | 1:1   | back   | 2.150                       | 1.107             | 2.380                 |        |
| 1908.75 | 1175 | PCS CDMA     | EVDO Rev. 0                   | 24.7               | 24.55                    | -0.03      | 2 mm    | 05490            | 1:1   | back   | 2.420                       | 1.035             | 2.505                 |        |
| 1880.00 | 600  | PCS CDMA     | EVDO Rev. 0                   | 24.7               | 24.26                    | 0.01       | 0 mm    | 05490            | 1:1   | front  | 1.630                       | 1.107             | 1.804                 |        |
| 1880.00 | 600  | PCS CDMA     | EVDO Rev. 0                   | 24.7               | 24.26                    | -0.03      | 0 mm    | 05490            | 1:1   | bottom | 1.050                       | 1.107             | 1.162                 |        |
| 1851.25 | 25   | PCS CDMA     | EVDO Rev. 0                   | 24.7               | 24.30                    | 0.09       | 0 mm    | 05490            | 1:1   | left   | 2.290                       | 1.096             | 2.510                 |        |
| 1880.00 | 600  | PCS CDMA     | EVDO Rev. 0                   | 24.7               | 24.26                    | 0.07       | 0 mm    | 05490            | 1:1   | left   | 2.530                       | 1.107             | 2.801                 |        |
| 1908.75 | 1175 | PCS CDMA     | EVDO Rev. 0                   | 24.7               | 24.55                    | 0.03       | 0 mm    | 05490            | 1:1   | left   | 2.520                       | 1.035             | 2.608                 |        |
| 1851.25 | 25   | PCS CDMA     | EVDO Rev. 0                   | 23.0               | 22.63                    | -0.06      | 0 mm    | 05490            | 1:1   | back   | 2.550                       | 1.089             | 2.777                 |        |
| 1880.00 | 600  | PCS CDMA     | EVDO Rev. 0                   | 23.0               | 22.60                    | -0.05      | 0 mm    | 05490            | 1:1   | back   | 2.670                       | 1.096             | 2.926                 |        |
| 1908.75 | 1175 | PCS CDMA     | EVDO Rev. 0                   | 23.0               | 22.80                    | -0.03      | 0 mm    | 05490            | 1:1   | back   | 2.870                       | 1.047             | 3.005                 | A45    |
|         |      | ANSI / IEEE  | C95.1 1992 - S                | AFETY LIMIT        |                          |            |         | 1                | 1     |        | Phablet                     |                   |                       |        |
|         |      | Uncontrolled | Spatial Peak<br>Exposure/Gene | eral Population    | on                       |            |         |                  |       |        | W/kg (mW/g<br>ed over 10 gr |                   |                       |        |

Note: Blue entry represents variability measurement.

| FCC ID: ZNFL455DL      | PCTEST                  | SAR EVALUATION REPORT | <b>L</b> G | Approved by: Quality Manager |
|------------------------|-------------------------|-----------------------|------------|------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:             |            | D 04 -f 400                  |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset      |            | Page 91 of 129               |

#### **Table 11-36** LTE Phablet SAR

|         |                |             |                                      |           |                    |             |            |          | EMENT R        | ESULTS       |          |           |         |                       |            |           |                |                       |        |
|---------|----------------|-------------|--------------------------------------|-----------|--------------------|-------------|------------|----------|----------------|--------------|----------|-----------|---------|-----------------------|------------|-----------|----------------|-----------------------|--------|
| -       | REQUENCY       |             | Mode                                 | Bandwidth | Maximum<br>Allowed | Conducted   | Power      | MPR [dB] | Serial         | Modulation   | RB Size  | RB Offset | Spacing | Side                  | Duty Cycle | SAR (10g) | Scaling Factor | Reported SAR<br>(10g) | Plot # |
| MHz     | CI             |             |                                      | [MHz]     | Power [dBm]        | Power [dBm] | Drift [dB] |          | Number         |              |          |           |         |                       |            | (W/kg)    |                | (W/kg)                |        |
| 1720.00 | 132072         | Low         | LTE Band 66 (AWS)                    | 20        | 24.7               | 24.37       | -0.09      | 0        | 05508<br>05508 | QPSK<br>QPSK | 1        | 50        | 2 mm    | back                  | 1:1        | 1.900     | 1.079          | 2.050                 |        |
| 1770.00 | 132322         | High        | LTE Band 66 (AWS)                    | 20        | 24.7               | 24.50       | -0.09      | 0        | 05508          | QPSK         | 1        | 50        | 2 mm    | back                  | 1:1        | 2.370     | 1.047          | 2.517                 |        |
| 1745.00 | 132322         | Mid         | LTE Band 66 (AWS)                    | 20        | 23.7               | 23.50       | -0.08      | 1        | 05508          | QPSK         | 50       | 25        | 2 mm    | back                  | 1:1        | 1.630     | 1.047          | 1.707                 |        |
| 1745.00 | 132322         | Mid         | LTE Band 66 (AWS)                    | 20        | 23.7               | 23.47       | -0.08      | 1        | 05508          | QPSK         | 100      | 0         | 2 mm    | back                  | 1:1        | 1.640     | 1.054          | 1.729                 |        |
| 1745.00 | 132322         | Mid         | LTE Band 66 (AWS)                    | 20        | 24.7               | 24.50       | -0.02      | 0        | 05508          | QPSK         | 1        | 50        | 0 mm    | front                 | 1:1        | 1.520     | 1.047          | 1.591                 |        |
| 1745.00 | 132322         | Mid         | LTE Band 66 (AWS)                    | 20        | 23.7               | 23.50       | 0.03       | 1        | 05508          | QPSK         | 50       | 25        | 0 mm    | front                 | 1:1        | 1.250     | 1.047          | 1.309                 | _      |
| 1745.00 | 132322         | Mid         | LTE Band 66 (AWS)                    | 20        | 24.7               | 24.50       | -0.05      | 0        | 05508          | QPSK         | 1        | 50        | 0 mm    | bottom                | 1:1        | 0.908     | 1.047          | 0.951                 |        |
| 1745.00 | 132322         | Mid         | LTE Band 66 (AWS)                    | 20        | 23.7               | 23.50       | -0.03      | 1        | 05508          | QPSK         | 50       | 25        | 0 mm    | bottom                | 1:1        | 0.753     | 1.047          | 0.788                 |        |
| 1720.00 | 132072         | Low         | LTE Band 66 (AWS)                    | 20        | 24.7               | 24.37       | 0.03       | 0        | 05508          | QPSK         | 1        | 50        | 0 mm    | left                  | 1:1        | 2.260     | 1.079          | 2.439                 |        |
| 1745.00 | 132322         | Mid         | LTE Band 66 (AWS)                    | 20        | 24.7               | 24.50       | 0.04       | 0        | 05508          | QPSK         | 1        | 50        | 0 mm    | left                  | 1:1        | 2.310     | 1.047          | 2.419                 |        |
| 1770.00 | 132572         | High        | LTE Band 66 (AWS)                    | 20        | 24.7               | 24.44       | 0.04       | 0        | 05508          | QPSK         | 1        | 50        | 0 mm    | left                  | 1:1        | 2.360     | 1.062          | 2.506                 |        |
| 1745.00 | 132322         | Mid         | LTE Band 66 (AWS)                    | 20        | 23.7               | 23.50       | 0.04       | 1        | 05508          | QPSK         | 50       | 25        | 0 mm    | left                  | 1:1        | 1.900     | 1.047          | 1.989                 |        |
| 1745.00 | 132322         | Mid         | LTE Band 66 (AWS)                    | 20        | 23.7               | 23.47       | 0.06       | 1        | 05508          | QPSK         | 100      | 0         | 0 mm    | left                  | 1:1        | 1.890     | 1.054          | 1.992                 |        |
| 1720.00 | 132072         | Low         | LTE Band 66 (AWS)                    | 20        | 22.5               | 22.06       | -0.06      | 0        | 05508          | QPSK         | 1        | 50        | 0 mm    | back                  | 1:1        | 2.380     | 1.107          | 2.635                 |        |
| 1745.00 | 132322         | Mid         | LTE Band 66 (AWS)                    | 20        | 22.5               | 22.17       | -0.12      | 0        | 05508          | QPSK         | 1        | 50        | 0 mm    | back                  | 1:1        | 2.590     | 1.079          | 2.795                 |        |
| 1770.00 | 132572         | High        | LTE Band 66 (AWS)                    | 20        | 22.5               | 22.12       | -0.07      | 0        | 05508          | QPSK         | 1        | 50        | 0 mm    | back                  | 1:1        | 2.540     | 1.091          | 2.771                 |        |
| 1720.00 | 132072         | Low         | LTE Band 66 (AWS)                    | 20        | 22.5               | 22.06       | -0.05      | 0        | 05508          | QPSK         | 50       | 25        | 0 mm    | back                  | 1:1        | 2.550     | 1.107          | 2.823                 |        |
| 1745.00 | 132322         | Mid         | LTE Band 66 (AWS)                    | 20        | 22.5               | 22.07       | -0.04      | 0        | 05508          | QPSK         | 50       | 50        | 0 mm    | back                  | 1:1        | 2.590     | 1.104          | 2.859                 | A46    |
| 1770.00 | 132572         | High        | LTE Band 66 (AWS)                    | 20        | 22.5               | 22.10       | -0.09      | 0        | 05508          | QPSK         | 50       | 25        | 0 mm    | back                  | 1:1        | 2.590     | 1.096          | 2.839                 |        |
| 1770.00 | 132572         | High        | LTE Band 66 (AWS)                    | 20        | 22.5               | 22.05       | -0.01      | 0        | 05508          | QPSK         | 100      | 0         | 0 mm    | back                  | 1:1        | 2.500     | 1.109          | 2.773                 |        |
| 1860.00 | 26140          | Low         | LTE Band 25 (PCS)                    | 20        | 24.7               | 24.26       | -0.07      | 0        | 05508          | QPSK         | 1        | 50        | 2 mm    | back                  | 1:1        | 2.740     | 1.107          | 3.033                 |        |
| 1882.50 | 26365          | Mid         | LTE Band 25 (PCS)                    | 20        | 24.7               | 24.51       | -0.06      | 0        | 05508          | QPSK         | 1        | 50        | 2 mm    | back                  | 1:1        | 2.810     | 1.045          | 2.936                 |        |
| 1905.00 | 26590          | High        | LTE Band 25 (PCS)                    | 20        | 24.7               | 24.52       | -0.06      | 0        | 05508          | QPSK         | 1        | 50        | 2 mm    | back                  | 1:1        | 2.880     | 1.042          | 3.001                 |        |
| 1860.00 | 26140          | Low         | LTE Band 25 (PCS)                    | 20        | 23.7               | 23.33       | -0.08      | 1        | 05508          | QPSK         | 50       | 25        | 2 mm    | back                  | 1:1        | 2.150     | 1.089          | 2.341                 |        |
| 1882.50 | 26365          | Mid         | LTE Band 25 (PCS)                    | 20        | 23.7               | 23.44       | -0.09      | 1        | 05508          | QPSK         | 50       | 25        | 2 mm    | back                  | 1:1        | 2.220     | 1.062          | 2.358                 |        |
| 1905.00 | 26590          | High        | LTE Band 25 (PCS)                    | 20        | 23.7               | 23.56       | -0.11      | 1        | 05508          | QPSK         | 50       | 0         | 2 mm    | back                  | 1:1        | 2.310     | 1.033          | 2.386                 |        |
| 1905.00 | 26590          | High        | LTE Band 25 (PCS)                    | 20        | 23.7               | 23.52       | -0.10      | 1        | 05508          | QPSK         | 100      | 0         | 2 mm    | back                  | 1:1        | 2.200     | 1.042          | 2.292                 |        |
| 1860.00 | 26140          | Low         | LTE Band 25 (PCS)                    | 20        | 24.7               | 24.26       | 0.02       | 0        | 05508          | QPSK         | 1        | 50        | 0 mm    | front                 | 1:1        | 2.180     | 1.107          | 2.413                 |        |
| 1882.50 | 26365          | Mid         | LTE Band 25 (PCS)                    | 20        | 24.7               | 24.51       | 0.09       | 0        | 05508          | QPSK         | 1        | 50        | 0 mm    | front                 | 1:1        | 2.200     | 1.045          | 2.299                 |        |
| 1905.00 | 26590          | High        | LTE Band 25 (PCS)                    | 20        | 24.7               | 24.52       | 0.05       | 0        | 05508          | QPSK         | 1        | 50        | 0 mm    | front                 | 1:1        | 2.300     | 1.042          | 2.397                 |        |
| 1905.00 | 26590          | High        | LTE Band 25 (PCS)                    | 20        | 23.7               | 23.56       | 0.03       | 1        | 05508          | QPSK         | 50       | 0         | 0 mm    | front                 | 1:1        | 1.800     | 1.033          | 1.859                 |        |
| 1905.00 | 26590          | High        | LTE Band 25 (PCS)                    | 20        | 23.7               | 23.52       | 0.02       | 1        | 05508          | QPSK         | 100      | 0         | 0 mm    | front                 | 1:1        | 1.740     | 1.042          | 1.813                 |        |
| 1905.00 | 26590          | High        | LTE Band 25 (PCS)                    | 20        | 24.7               | 24.52       | -0.02      | 0        | 05508          | QPSK         | 1        | 50        | 0 mm    | bottom                | 1:1        | 1.290     | 1.042          | 1.344                 |        |
| 1905.00 | 26590          | High        | LTE Band 25 (PCS)                    | 20        | 23.7               | 23.56       | 0.04       | 1        | 05508          | QPSK         | 50       | 0         | 0 mm    | bottom                | 1:1        | 1.000     | 1.033          | 1.033                 |        |
| 1860.00 | 26140          | Low         | LTE Band 25 (PCS)                    | 20        | 24.7               | 24.26       | 0.01       | 0        | 05508          | QPSK         | 1        | 50        | 0 mm    | left                  | 1:1        | 2.800     | 1.107          | 3.100                 |        |
| 1882.50 | 26365          | Mid         | LTE Band 25 (PCS)                    | 20        | 24.7               | 24.51       | -0.01      | 0        | 05508          | QPSK         | 1        | 50        | 0 mm    | left                  | 1:1        | 2.990     | 1.045          | 3.125                 |        |
| 1905.00 | 26590<br>26140 | High        | LTE Band 25 (PCS)                    | 20        | 24.7               | 24.52       | -0.03      | 0        | 05508          | QPSK<br>QPSK | 1 50     | 50        | 0 mm    | left                  | 1:1        | 2.990     | 1.042          | 3.116                 |        |
| 1860.00 | 26140          | Low         | LTE Band 25 (PCS)  LTE Band 25 (PCS) | 20        | 23.7               | 23.33       | -0.08      | 1        | 05508          | QPSK         | 50<br>50 | 25<br>25  | 0 mm    | left<br>left          | 1:1        | 2.280     | 1.089          | 2.483                 |        |
| 1882.50 | 26365          | Mid<br>High | LTE Band 25 (PCS)                    | 20        | 23.7               | 23.44       | -0.02      | 1        | 05508          | QPSK         | 50       | 0         | 0 mm    | left                  | 1:1        | 2.350     | 1.062          | 2.496                 |        |
| 1905.00 | 26590          | High        | LTE Band 25 (PCS)                    | 20        | 23.7               | 23.56       | -0.05      | 1        | 05508          | QPSK         | 100      | 0         | 0 mm    | left                  | 1:1        | 2.310     | 1.033          | 2.386                 |        |
| 1860.00 | 26140          | Low         | LTE Band 25 (PCS)                    | 20        | 22.7               | 23.52       | -0.10      | 0        | 05508          | QPSK         | 100      | 50        | 0 mm    | back                  | 1:1        | 2.840     | 1.042          | 3.064                 |        |
| 1882.50 | 26365          | Mid         | LTE Band 25 (PCS)                    | 20        | 22.7               | 22.56       | -0.10      | 0        | 05508          | QPSK         | 1        | 50        | 0 mm    | back                  | 1:1        | 2.990     | 1.079          | 3.064                 |        |
| 1905.00 | 26590          | High        | LTE Band 25 (PCS)                    | 20        | 22.7               | 22.55       | -0.11      | 0        | 05508          | QPSK         | 1        | 50        | 0 mm    | back                  | 1:1        | 3.000     | 1.035          | 3.105                 |        |
| 1860.00 | 26140          | Low         | LTE Band 25 (PCS)                    | 20        | 22.7               | 22.39       | -0.09      | 0        | 05508          | QPSK         | 50       | 25        | 0 mm    | back                  | 1:1        | 2.810     | 1.074          | 3.018                 |        |
| 1882.50 | 26365          | Mid         | LTE Band 25 (PCS)                    | 20        | 22.7               | 22.50       | -0.10      | 0        | 05508          | QPSK         | 50       | 25        | 0 mm    | back                  | 1:1        | 2.910     | 1.047          | 3.047                 |        |
| 1905.00 | 26590          | High        | LTE Band 25 (PCS)                    | 20        | 22.7               | 22.58       | -0.11      | 0        | 05508          | QPSK         | 50       | 25        | 0 mm    | back                  | 1:1        | 3.080     | 1.028          | 3.166                 | A47    |
| 1905.00 | 26590          | High        | LTE Band 25 (PCS)                    | 20        | 22.7               | 22.53       | -0.09      | 0        | 05508          | QPSK         | 100      | 0         | 0 mm    | back                  | 1:1        | 2.930     | 1.040          | 3.047                 |        |
| 1905.00 | 26590          | High        | LTE Band 25 (PCS)                    | 20        | 22.7               | 22.58       | -0.10      | 0        | 05508          | QPSK         | 50       | 25        | 0 mm    | back                  | 1:1        | 3.040     | 1.028          | 3.125                 |        |
|         |                |             | ANSI / IEEE C95.1 19                 |           | LIMIT              |             |            |          |                |              |          |           |         | Phablet               |            |           |                |                       |        |
|         |                | u           | Spatial<br>Incontrolled Exposure     |           | pulation           |             |            |          |                |              |          |           |         | V/kg (mW<br>d over 10 |            |           |                |                       |        |
|         |                |             |                                      |           |                    | oriobil     |            |          |                |              |          |           |         |                       |            |           |                |                       |        |

Note: Blue entry represents variability measurement.

| FCC ID: ZNFL455DL      | PCTEST:                 | SAR EVALUATION REPORT LG | Approved by: Quality Manager |
|------------------------|-------------------------|--------------------------|------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:                | Daga 02 of 120               |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset         | Page 92 of 129               |

#### **Table 11-37** LTE 41 Phablet SAR

|                                                          |                    |                   |                         |                                  |           |                        | MFAS        |                | NT RESU  |        | •            |         |           |         |                 |            |           |                |                 |        |
|----------------------------------------------------------|--------------------|-------------------|-------------------------|----------------------------------|-----------|------------------------|-------------|----------------|----------|--------|--------------|---------|-----------|---------|-----------------|------------|-----------|----------------|-----------------|--------|
|                                                          | F                  | REQUENC           | Y                       |                                  | Bandwidth | Maximum                | Conducted   | Power          |          | Serial |              |         | Π         | l       |                 | Т          | SAR (10g) | T              | Reported SAR    |        |
| 1 CC Uplink   2 CC Uplink, Power Class                   | MHz                |                   | Ch.                     | Mode                             | [MHz]     | Allowed<br>Power [dBm] | Power [dBm] | Drift [dB]     | MPR [dB] | Number | Modulation   | RB Size | RB Offset | Spacing | Side            | Duty Cycle | (W/kg)    | Scaling Factor | (10g)<br>(W/kg) | Plot # |
| 1 CC Uplink - Power Class 3                              | 2506.00            | 39750             | Low                     | LTE Band 41                      | 20        | 24.7                   | 24.45       | 0.09           | 0        | 05508  | QPSK         | 1       | 99        | 2 mm    | back            | 1:1.58     | 1.650     | 1.059          | 1.747           |        |
| 1 CC Uplink - Power Class 3                              | 2549.50            | 40185             | Low-Mid                 | LTE Band 41                      | 20        | 24.7                   | 24.44       | 0.08           | 0        | 05508  | QPSK         | 1       | 50        | 2 mm    | back            | 1:1.58     | 1.730     | 1.062          | 1.837           |        |
| 1 CC Uplink - Power Class 3                              | 2593.00            | 40620             | Mid                     | LTE Band 41                      | 20        | 24.7                   | 24.44       | 0.07           | 0        | 05508  | QPSK         | 1       | 0         | 2 mm    | back            | 1:1.58     | 1.540     | 1.062          | 1.635           |        |
| 1 CC Uplink - Power Class 3                              | 2636.50            | 41055             | Mid-High                | LTE Band 41                      | 20        | 24.7                   | 24.60       | -0.05          | 0        | 05508  | QPSK         | 1       | 99        | 2 mm    | back            | 1:1.58     | 1.480     | 1.023          | 1.514           |        |
| 1 CC Uplink - Power Class 3                              | 2680.00            | 41490             | High                    | LTE Band 41                      | 20        | 24.7                   | 24.45       | 0.04           | 0        | 05508  | QPSK         | 1       | 50        | 2 mm    | back            | 1:1.58     | 1.570     | 1.059          | 1.663           |        |
| 1 CC Uplink - Power Class 3                              | 2636.50            | 41055             | Mid-High                | LTE Band 41                      | 20        | 23.7                   | 23.70       | -0.05          | 1        | 05508  | QPSK         | 50      | 0         | 2 mm    | back            | 1:1.58     | 1.210     | 1.000          | 1.210           |        |
| 1 CC Uplink - Power Class 3                              | 2506.00<br>2636.50 | 39750<br>41055    | Low<br>Mid-High         | LTE Band 41                      | 20        | 23.7                   | 23.50       | 0.06           | 1        | 05508  | QPSK         | 100     | 0         | 2 mm    | back            | 1:1.58     | 1.200     | 1.047          | 1.256           |        |
| 1 CC Uplink - Power Class 3                              | 0                  | 05508             | QPSK                    | 1                                | 99        | 0 mm                   | front       | 1:1.58         | 1.230    | 1.023  | 1.258        |         |           |         |                 |            |           |                |                 |        |
| 1 CC Uplink - Power Class 3                              | 1                  | 05508             | QPSK                    | 50                               | 0         | 0 mm                   | front       | 1:1.58         | 1.070    | 1.000  | 1.070        |         |           |         |                 |            |           |                |                 |        |
| 1 CC Uplink - Power Class 3                              | 2506.00<br>2549.50 | 39750             | Low                     | LTE Band 41                      | 20        | 24.7                   | 24.45       | -0.01          | 0        | 05508  | QPSK<br>QPSK | 1       | 99        | 0 mm    | bottom          | 1:1.58     | 1.770     | 1.059          | 1.874           |        |
| 1 CC Uplink - Power Class 3  1 CC Uplink - Power Class 3 | 2549.50            | 40185<br>40620    | Low-Mid<br>Mid          | LTE Band 41                      | 20        | 24.7                   | 24.44       |                | 0        | 05508  | OPSK         | 1       | 0         | 0 mm    | bottom          | 1:1.58     | 1.740     | 1.062          | 1.848           |        |
| 1 CC Uplink - Power Class 3                              | 2636.50            | 41055             | Mid-High                | LTE Band 41                      | 20        | 24.7                   | 24.44       | -0.10<br>-0.04 | 0        | 05508  | QPSK         | 1       | 99        | 0 mm    | bottom          | 1:1.58     | 1.710     | 1.062          | 1.816           |        |
| 1 CC Uplink - Power Class 3                              | 2680.00            | 41490             | Mia-High                | LTE Band 41                      | 20        | 24.7                   | 24.45       | 0.02           | 0        | 05508  | QPSK         | 1       | 50        | 0 mm    | bottom          | 1:1.58     | 2.130     | 1.023          | 2.256           |        |
| 1 CC Uplink - Power Class 3                              | 1                  | 05508             | OPSK                    | 50                               | 25        | 0 mm                   | bottom      | 1:1.58         | 1.480    | 1.059  | 1.560        |         |           |         |                 |            |           |                |                 |        |
| 1 CC Uplink - Power Class 3                              | 1                  | 05508             | QPSK                    | 50                               | 50        | 0 mm                   | bottom      | 1:1.58         | 1.330    | 1.054  | 1.402        |         |           |         |                 |            |           |                |                 |        |
| 1 CC Uplink - Power Class 3                              | 2549.50<br>2593.00 | 40185<br>40620    | Low-Mid<br>Mid          | LTE Band 41                      | 20        | 23.7                   | 23.47       | -0.11          | 1        | 05508  | QPSK         | 50      | 0         | 0 mm    | bottom          | 1:1.58     | 1.390     | 1.059          | 1.472           |        |
| 1 CC Uplink - Power Class 3                              | 2636.50            | 41055             | Mid-High                | LTE Band 41                      | 20        | 23.7                   | 23.70       | -0.08          | 1        | 05508  | QPSK         | 50      | 0         | 0 mm    | bottom          | 1:1.58     | 1.500     | 1.000          | 1.500           |        |
| 1 CC Uplink - Power Class 3                              | 2680.00            | 41490             | High                    | LTE Band 41                      | 20        | 23.7                   | 23.44       | 0.10           | 1        | 05508  | QPSK         | 50      | 0         | 0 mm    | bottom          | 1:1.58     | 1.610     | 1.062          | 1.710           |        |
| 1 CC Uplink - Power Class 3                              | 2506.00            | 39750             | Low                     | LTE Band 41                      | 20        | 23.7                   | 23.50       | 0.13           | 1        | 05508  | QPSK         | 100     | 0         | 0 mm    | bottom          | 1:1.58     | 1.420     | 1.047          | 1.487           |        |
| 1 CC Uplink - Power Class 3                              | 2636.50            | 41055             | Mid-High                | LTE Band 41                      | 20        | 24.7                   | 24.60       | 0.18           | 0        | 05508  | QPSK         | 1       | 99        | 0 mm    | right           | 1:1.58     | 0.083     | 1.023          | 0.085           |        |
| 1 CC Uplink - Power Class 3                              | 2636.50            | 41055             | Mid-High                | LTE Band 41                      | 20        | 23.7                   | 23.70       | 0.03           | 1        | 05508  | QPSK         | 50      | 0         | 0 mm    | right           | 1:1.58     | 0.061     | 1.000          | 0.061           |        |
| 1 CC Uplink - Power Class 3                              | 2636.50            | 41055             | Mid-High                | LTE Band 41                      | 20        | 24.7                   | 24.60       | 0.03           | 0        | 05508  | QPSK         | 1       | 99        | 0 mm    | left            | 1:1.58     | 0.507     | 1.023          | 0.519           |        |
| 1 CC Uplink - Power Class 3                              | 2636.50            | 41055             | Mid-High                | LTE Band 41                      | 20        | 23.7                   | 23.70       | 0.04           | 1        | 05508  | QPSK         | 50      | 0         | 0 mm    | left            | 1:1.58     | 0.437     | 1.000          | 0.437           |        |
| 1 CC Uplink - Power Class 3                              | 2506.00            | 39750             | Low                     | LTE Band 41                      | 20        | 22.7                   | 22.47       | 0.12           | 0        | 05508  | QPSK         | 1       | 50        | 0 mm    | back            | 1:1.58     | 2.150     | 1.054          | 2.266           |        |
| 1 CC Uplink - Power Class 3                              | 2549.50            | 40185             | Low-Mid                 | LTE Band 41                      | 20        | 22.7                   | 22.44       | 0.04           | 0        | 05508  | QPSK         | 1       | 50        | 0 mm    | back            | 1:1.58     | 2.160     | 1.062          | 2.294           |        |
| 1 CC Uplink - Power Class 3                              | 2593.00            | 40620             | Mid                     | LTE Band 41                      | 20        | 22.7                   | 22.46       | 0.06           | 0        | 05508  | QPSK         | 1       | 50        | 0 mm    | back            | 1:1.58     | 2.230     | 1.057          | 2.357           |        |
| 1 CC Uplink - Power Class 3                              | 2636.50            | 41055             | Mid-High                | LTE Band 41                      | 20        | 22.7                   | 22.60       | 0.05           | 0        | 05508  | QPSK         | 1       | 50        | 0 mm    | back            | 1:1.58     | 2.380     | 1.023          | 2.435           |        |
| 1 CC Uplink - Power Class 3                              | 2680.00            | 41490             | High                    | LTE Band 41                      | 20        | 22.7                   | 22.23       | -0.02          | 0        | 05508  | QPSK         | 1       | 50        | 0 mm    | back            | 1:1.58     | 2.180     | 1.114          | 2.429           |        |
| 1 CC Uplink - Power Class 3                              | 2506.00            | 39750             | Low                     | LTE Band 41                      | 20        | 22.7                   | 22.39       | 0.09           | 0        | 05508  | QPSK         | 50      | 50        | 0 mm    | back            | 1:1.58     | 2.210     | 1.074          | 2.374           |        |
| 1 CC Uplink - Power Class 3                              | 2549.50            | 40185             | Low-Mid                 | LTE Band 41                      | 20        | 22.7                   | 22.46       | 0.01           | 0        | 05508  | QPSK         | 50      | 25        | 0 mm    | back            | 1:1.58     | 2.150     | 1.057          | 2.273           |        |
| 1 CC Uplink - Power Class 3                              | 2593.00            | 40620             | Mid                     | LTE Band 41                      | 20        | 22.7                   | 22.43       | 0.06           | 0        | 05508  | QPSK         | 50      | 25        | 0 mm    | back            | 1:1.58     | 2.230     | 1.064          | 2.373           |        |
| 1 CC Uplink - Power Class 3                              | 2636.50            | 41055             | Mid-High                | LTE Band 41                      | 20        | 22.7                   | 22.53       | 0.05           | 0        | 05508  | QPSK         | 50      | 0         | 0 mm    | back            | 1:1.58     | 2.400     | 1.040          | 2.496           |        |
| 1 CC Uplink - Power Class 3                              | 2680.00            | 41490             | High                    | LTE Band 41                      | 20        | 22.7                   | 22.47       | -0.02          | 0        | 05508  | QPSK         | 50      | 25        | 0 mm    | back            | 1:1.58     | 2.180     | 1.054          | 2.298           |        |
| 1 CC Uplink - Power Class 3                              | 2549.50            | 40185             | Low-Mid                 | LTE Band 41                      | 20        | 22.7                   | 22.43       | 0.07           | 0        | 05508  | QPSK         | 100     | 0         | 0 mm    | back            | 1:1.58     | 2.290     | 1.064          | 2.437           |        |
| 1 CC Uplink - Power Class 2                              | 2636.50            | 41055             | Mid-High                | LTE Band 41                      | 20        | 25.2                   | 24.97       | 0.03           | 0        | 05508  | QPSK         | 50      | 0         | 0 mm    | back            | 1:2.31     | 2.920     | 1.054          | 3.078           | A48    |
| 2 CC Uplink - Power Class 3                              | 2636.50            | 41055             | Mid-High                | LTE Band 41                      | 20        | 22.7                   | 22.41       | -0.01          | 0        | 05508  | QPSK         | 50      | 0         | 0 mm    | back            | 1:1.58     | 2.230     | 1.069          | 2.384           |        |
|                                                          | 2616.70            | 40857             |                         |                                  |           |                        | -           |                |          |        |              |         | 50        |         |                 |            | -         |                |                 |        |
| 2 CC Uplink - Power Class 2                              | 2636.50            | 41055             | Mid-High                | LTE Band 41                      | 20        | 25.2                   | 24.68       | 0.05           | 0        | 05508  | QPSK         | 50      | 0         | 0 mm    | back            | 1:2.31     | 2.600     | 1.127          | 2.930           |        |
| 4000000                                                  | 2616.70            | 40857             |                         | 1770                             |           | or =                   | 00.77       | 0.77           |          | 055    | 055          | -       | 50        |         |                 | 4          | 0         | 4              | 0.455           |        |
| 1 CC Uplink - Power Class 3                              | 2506.00            | 39750             | Low                     | LTE Band 41                      | 20        | 22.7                   | 22.39       | 0.03           | 0        | 05508  | QPSK         | 50      | 50        | 0 mm    | back            | 1:1.58     | 2.020     | 1.074          | 2.169           |        |
| 1 CC Uplink - Power Class 2                              | 2636.50            | 41055<br>ANSI / I | Mid-High<br>EEE C95.1 1 | LTE Band 41<br>1992 - SAFETY LIN |           | 25.2                   | 24.97       | 0.00           | 0        | 05508  | QPSK         | 50      | 0         | 0 mm    | back<br>Phablet | 1:2:31     | 2.910     | 1.054          | 3.067           |        |
|                                                          | Spatial Peak       |                   |                         |                                  |           |                        |             |                |          |        |              |         |           | 4.0 V   | V/kg (mV        |            |           |                |                 |        |
|                                                          | U                  | ncontrol          | led Exposu              | re/General Popul                 | ation     |                        |             |                | i        |        |              |         |           | average | d over 10       | grams      |           |                |                 |        |

Note: Blue entries represent variability measurements.

| SHOURILING EASONATERY, INC. | SAR EVALUATION REPORT | Quality Manager |
|-----------------------------|-----------------------|-----------------|
| Test Dates:                 | DUT Type:             | Dama 02 of 120  |
| 12/05/2019 – 01/16/2020     | Portable Handset      | Page 93 of 129  |
|                             | Fest Dates:           |                 |

#### **Table 11-38 WLAN Phablet SAR**

|       |                                       |         |           |                    |                          |                 | ***                 | • • • • • • • • • • • • • • • • • • • • |                  | <b>O</b> 7   |       |               |                          |           |                   |                         |                       |       |
|-------|---------------------------------------|---------|-----------|--------------------|--------------------------|-----------------|---------------------|-----------------------------------------|------------------|--------------|-------|---------------|--------------------------|-----------|-------------------|-------------------------|-----------------------|-------|
|       |                                       |         |           |                    |                          |                 | MEAS                | JREMEI                                  | NT RES           | ULTS         |       |               |                          |           |                   |                         |                       |       |
| FREQU | ENCY                                  | Mode    | Service   | Bandwidth<br>[MHz] | Maximum<br>Allowed Power | Conducted Power | Power Drift<br>[dB] | Spacing                                 | Device<br>Serial | Data<br>Rate | Side  | Duty<br>Cycle | Peak SAR of<br>Area Scan | SAR (10g) | Scaling<br>Factor | Scaling<br>Factor (Duty | Reported SAR<br>(10g) | Plot# |
| MHz   | Ch.                                   |         |           | [WITZ]             | [dBm]                    | [dBm]           | [dB]                |                                         | Number           | (Mbps)       |       | (%)           | W/kg                     | (W/kg)    | (Power)           | Cycle)                  | (W/kg)                |       |
| 5260  | 52                                    | 802.11a | OFDM      | 20                 | 16.0                     | 15.88           | -0.08               | 0 mm                                    | 05524            | 6            | back  | 97.0          | 13.968                   | 1.490     | 1.028             | 1.031                   | 1.579                 |       |
| 5280  | 56                                    | 802.11a | OFDM      | 20                 | 16.0                     | 15.87           | 0.03                | 0 mm                                    | 05524            | 6            | back  | 97.0          | 9.114                    | 1.740     | 1.030             | 1.031                   | 1.848                 | A49   |
| 5320  | 64                                    | 802.11a | OFDM      | 20                 | 14.0                     | 13.92           | -0.17               | 0 mm                                    | 05524            | 6            | back  | 97.0          | 7.447                    | 1.100     | 1.019             | 1.031                   | 1.156                 |       |
| 5260  | 52                                    | 802.11a | OFDM      | 20                 | 16.0                     | 15.88           | -0.16               | 0 mm                                    | 05524            | 6            | front | 97.0          | 2.992                    | 0.322     | 1.028             | 1.031                   | 0.341                 |       |
| 5260  | 52                                    | 802.11a | OFDM      | 20                 | 16.0                     | 15.88           | 0.02                | 0 mm                                    | 05524            | 6            | top   | 97.0          | 3.178                    | -         | 1.028             | 1.031                   | -                     |       |
| 5260  | 52                                    | 802.11a | OFDM      | 20                 | 16.0                     | 15.88           | 0.01                | 0 mm                                    | 05524            | 6            | left  | 97.0          | 7.384                    | 0.939     | 1.028             | 1.031                   | 0.995                 |       |
| 5600  | 120                                   | 802.11a | OFDM      | 20                 | 14.0                     | 13.42           | 0.04                | 0 mm                                    | 05524            | 6            | back  | 97.0          | 5.088                    | 0.734     | 1.143             | 1.031                   | 0.865                 |       |
| 5600  | 120                                   | 802.11a | OFDM      | 20                 | 14.0                     | 13.42           | 0.08                | 0 mm                                    | 05524            | 6            | front | 97.0          | 1.165                    | 0.129     | 1.143             | 1.031                   | 0.152                 |       |
| 5600  | 120                                   | 802.11a | OFDM      | 20                 | 14.0                     | 13.42           | 0.02                | 0 mm                                    | 05524            | 6            | top   | 97.0          | 1.471                    | -         | 1.143             | 1.031                   | -                     |       |
| 5600  | 00 120 802.11a OFDM 20 14.0 13.42     |         |           |                    |                          |                 |                     |                                         | 05524            | 6            | left  | 97.0          | 4.534                    | 0.358     | 1.143             | 1.031                   | 0.422                 |       |
|       | ANSI / IEEE C95.1 1992 - SAFETY LIMIT |         |           |                    |                          |                 |                     |                                         |                  |              |       |               | Ph                       | ablet     |                   |                         |                       |       |
|       | Spatial Peak                          |         |           |                    |                          |                 |                     |                                         |                  |              |       |               | 4.0 W/k                  | g (mW/g)  |                   |                         |                       |       |
|       |                                       | Unce    | ontrolled | Exposure/Ge        | eneral Populatio         |                 |                     |                                         |                  |              |       | averaged o    | ver 10 grams             |           |                   |                         |                       |       |

#### 11.5 SAR Test Notes

#### **General Notes:**

- 1. The test data reported are the worst-case SAR values according to test procedures specified in IEEE 1528-2013, and FCC KDB Publication 447498 D01v06.
- 2. Batteries are fully charged at the beginning of the SAR measurements.
- 3. Liquid tissue depth was at least 15.0 cm for all frequencies.
- 4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
- 5. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v06.
- 6. Device was tested using a fixed spacing for body-worn accessory testing. A separation distance of 10 mm was considered because the manufacturer has determined that there will be body-worn accessories available in the marketplace for users to support this separation distance.
- 7. Per FCC KDB Publication 648474 D04v01r03, body-worn SAR was evaluated without a headset connected to the device. When the standalone reported body-worn SAR was > 1.2 W/kg, additional bodyworn SAR evaluations using a headset cable were required.
- 8. Per FCC KDB 865664 D01v01r04, variability SAR tests were performed when the measured SAR results for a frequency band were greater than or equal to 0.8 W/kg. Repeated SAR measurements are highlighted in the tables above for clarity. Please see Section 13 for variability analysis.
- 9. During SAR Testing for the Wireless Router conditions per FCC KDB Publication 941225 D06v02r01, the actual Portable Hotspot operation (with actual simultaneous transmission of a transmitter with WIFI) was not activated (See Section 6.7 for more details).
- 10. Per FCC KDB Publication 648474 D04v01r03, this device is considered a "phablet" since the diagonal dimension is > 160 mm and < 200 mm. Therefore, phablet SAR tests are required when wireless router mode does not apply or if wireless router 1g SAR > 1.2 W/kg.
- 11. This device utilizes power reduction for some wireless modes and technologies, as outlined in Section 1.3. The maximum output power allowed for each transmitter and exposure condition was evaluated for SAR compliance based on expected use conditions and simultaneous transmission scenarios.
- 12. Unless otherwise noted, when 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds for 1g SAR.
- 13. Additional SAR tests for phablet SAR were evaluated per KDB 616217 Section 6 (See Section 6.9 for more information)

| FCC ID: ZNFL455DL      | PCTEST*                 | SAR EVALUATION REPORT | Approved by:  Quality Manager |
|------------------------|-------------------------|-----------------------|-------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:             | Dana 04 at 400                |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset      | Page 94 of 129                |

#### **GSM Test Notes:**

- Body-Worn accessory testing is typically associated with voice operations. Therefore, GSM voice was evaluated for body-worn SAR.
- Justification for reduced test configurations per KDB Publication 941225 D01v03r01 and October 2013
  TCB Workshop Notes: The source-based frame-averaged output power was evaluated for all
  GPRS/EDGE slot configurations. The configuration with the highest target frame averaged output power
  was evaluated for hotspot SAR. When the maximum frame-averaged powers are equivalent across two or
  more slots (within 0.25 dB), the configuration with the most number of time slots was tested.
- 3. Per FCC KDB Publication 447498 D01v06, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg for 1g evaluations then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel was used.
- GPRS was additionally evaluated for head and body-worn exposure conditions to address possible VoIP scenarios.

#### CDMA Notes:

- Head SAR for CDMA2000 mode was tested under RC3/SO55 per FCC KDB Publication 941225 D01v03r01.
- Body-Worn SAR was tested with 1x RTT with TDSO / SO32 FCH Only. EVDO Rev0 and RevA and TDSO / SO32 FCH+SCH SAR tests were not required per the 3G SAR Test Reduction Procedure in FCC KDB Publication 941225 D01v03r01.
- 3. CDMA Wireless Router SAR is measured using Subtype 0/1 Physical Layer configurations for Rev. 0 according to KDB 941225 D01v03r01 procedures for data devices. Wireless Router SAR tests for Subtype 2 of Rev.A and 1x RTT configurations were not required per the 3G SAR Test Reduction Policy in KDB Publication 941225 D01v03r01.
- 4. Head SAR was additionally evaluated using EVDO Rev. A to determine compliance for VoIP operations.
- 5. Per FCC KDB Publication 447498 D01v06, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg for 1g evaluations then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel was used.

#### **UMTS Notes:**

- UMTS mode was tested under RMC 12.2 kbps with HSPA Inactive per KDB Publication 941225 D01v03r01. AMR and HSPA SAR was not required per the 3G Test Reduction Procedure in KDB Publication 941225 D01v03r01.
- 2. Per FCC KDB Publication 447498 D01v06, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg for 1g evaluations then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel was used.

#### LTE Notes:

- LTE test configurations are determined according to SAR Evaluation Considerations for LTE Devices in FCC KDB Publication 941225 D05v02r04. The general test procedures used for testing can be found in Section 8.6.4.
- 2. MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 6.2.5 under Table 6.2.3-1.
- A-MPR was disabled for all SAR tests by setting NS=01 and MCC=001 on the base station simulator. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).

| FCC ID: ZNFL455DL      | PCTEST*                 | SAR EVALUATION REPORT LG | Approved by:  Quality Manager |
|------------------------|-------------------------|--------------------------|-------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:                | Dogo 05 of 120                |
| 1M1911290211-01-R2.ZNF | 12/05/2019 – 01/16/2020 | Portable Handset         | Page 95 of 129                |

© 2020 PCTEST Engineering Laboratory, Inc.

09/11/2019

- 4. Per FCC KDB Publication 447498 D01v06, when the reported LTE Band 41 SAR measured at the highest output power channel in a given a test configuration was > 0.6 W/kg for 1g evaluations, testing at the other channels was required for such test configurations.
- 5. TDD LTE was tested per the guidance provided in FCC KDB Publication 941225 D05v02r04. Testing was performed using UL-DL configuration 0 with 6 UL subframes and 2 S subframes using extended cyclic prefix only and special subframe configuration 6. SAR tests were performed at maximum output power and worst-case transmission duty factor in extended cyclic prefix. Per 3GPP 36.211 Section 4, the duty factor for special subframe configuration 6 using extended cyclic prefix is 0.633.
- 6. Per KDB Publication 941225 D05Av01r02, SAR for downlink only LTE CA operations was not needed since the maximum average output power in LTE CA mode was not >0.25 dB higher than the maximum output power when downlink carrier aggregation was inactive.
- 7. This device supports Power Class 2 and Power Class 3 operations for LTE Band 41. The highest available duty cycle for Power Class 2 operations is 43.3 % using UL-DL configuration 1. Per FCC Guidance, all SAR tests were performed using Power Class 3. SAR with power class 2 at the available duty factor was additionally performed for the power class 3 configuration with the highest SAR configuration for each exposure conditions. Please see Section 14 for linearity results.
- 8. For LTE Band 41, per FCC guidance, SAR was first measured with only a single carrier active in the uplink (carrier aggregation not active). For each exposure condition, the uplink CA scenario with two component carriers was additionally tested for the configuration with the highest SAR when carrier aggregation was not active. The SCC was configured with the closest available contiguous channel. The two component carriers were configured so the resource blocks are physically allocated side by side to achieve the maximum output power.

#### WLAN Notes:

- 1. For held-to-ear, and hotspot, and phablet operations, the initial test position procedures were applied. The test position with the highest extrapolated peak SAR will be used as the initial test position. When reported SAR for the initial test position is ≤ 0.4 W/kg for 1g evaluations, no additional testing for the remaining test positions was required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is ≤ 0.8 W/kg or all test positions are measured.
- Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 2.4 GHz WIFI
  single transmission chain operations, the highest measured maximum output power channel for DSSS
  was selected for SAR measurement. SAR for OFDM modes (2.4 GHz 802.11g/n/ax) was not required due
  to the maximum allowed powers and the highest reported DSSS SAR. See Section 8.7.5 for more
  information.
- 3. Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 5 GHz WIFI single transmission chain operations, the initial test configuration was selected according to the transmission mode with the highest maximum allowed powers. Other transmission modes were not investigated since the highest reported SAR for initial test configuration adjusted by the ratio of maximum output powers is less than 1.2 W/kg for 1g evaluations. See Section 8.7.6 for more information.
- 4. When the maximum reported 1g averaged SAR is ≤0.8 W/kg, SAR testing on additional channels was not required. Otherwise, SAR for the next highest output power channel was required until the reported SAR result was ≤ 1.20 W/kg for 1g evaluations or all test channels were measured.
- 5. The device was configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools. The reported SAR was scaled to the 100% transmission duty factor to determine compliance. Procedures used to measure the duty factor are identical to that in the associated EMC test reports.

#### **Bluetooth Notes**

- Bluetooth SAR was measured with the device connected to a call box with hopping disabled with DH5
  operation and Tx Tests test mode type. Per October 2016 TCB Workshop Notes, the reported SAR was
  scaled to the 100% transmission duty factor to determine compliance. See Section 9.6 for the time
  domain plot and calculation for the duty factor of the device.
- 2. Head and Hotspot Bluetooth SAR were evaluated for BT BR tethering applications.

| FCC ID: ZNFL455DL                      | PCTEST*                 | SAR EVALUATION REPORT | LG | Approved by: Quality Manager |
|----------------------------------------|-------------------------|-----------------------|----|------------------------------|
| Document S/N:                          | Test Dates:             | DUT Type:             |    | Dogo 06 of 120               |
| 1M1911290211-01-R2.ZNF                 | 12/05/2019 - 01/16/2020 | Portable Handset      |    | Page 96 of 129               |
| 20 PCTEST Engineering Laboratory, Inc. |                         |                       |    | REV 21.4 M                   |

### 12 FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS

#### 12.1 Introduction

The following procedures adopted from FCC KDB Publication 447498 D01v06 are applicable to devices with built-in unlicensed transmitters such as 802.11 and Bluetooth devices which may simultaneously transmit with the licensed transmitter.

#### 12.2 Simultaneous Transmission Procedures

This device contains transmitters that may operate simultaneously. Therefore, simultaneous transmission analysis is required. Per FCC KDB Publication 447498 D01v06 4.3.2 and IEEE 1528-2013 Section 6.3.4.1.2, simultaneous transmission SAR test exclusion may be applied when the sum of the 1g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is ≤1.6 W/kg. The different test positions in an exposure condition may be considered collectively to determine SAR test exclusion according to the sum of 1g or 10g SAR.

### 12.3 Head SAR Simultaneous Transmission Analysis

Table 12-1
Simultaneous Transmission Scenario with 2.4 GHz WLAN (Held to Ear)

| Exposure<br>Condition | Mode                  | 2G/3G/4G<br>SAR (W/kg) | 2.4 GHz<br>WLAN SAR<br>(W/kg) | Σ SAR<br>(W/kg) |
|-----------------------|-----------------------|------------------------|-------------------------------|-----------------|
|                       |                       | 1                      | 2                             | 1+2             |
|                       | GSM/GPRS 850          | 0.349                  | 1.055                         | 1.404           |
|                       | GSM/GPRS 1900         | 0.189                  | 1.055                         | 1.244           |
|                       | UMTS 850              | 0.300                  | 1.055                         | 1.355           |
|                       | UMTS 1750             | 0.325                  | 1.055                         | 1.380           |
|                       | UMTS 1900             | 0.309                  | 1.055                         | 1.364           |
|                       | CDMA/EVDO BC10 (§90S) | 0.221                  | 1.055                         | 1.276           |
|                       | CDMA/EVDO BC0 (§22H)  | 0.285                  | 1.055                         | 1.340           |
| Head SAR              | PCS CDMA/EVDO         | 0.367                  | 1.055                         | 1.422           |
|                       | LTE Band 71           | 0.258                  | 1.055                         | 1.313           |
|                       | LTE Band 12           | 0.330                  | 1.055                         | 1.385           |
|                       | LTE Band 13           | 0.319                  | 1.055                         | 1.374           |
|                       | LTE Band 26 (Cell)    | 0.356                  | 1.055                         | 1.411           |
|                       | LTE Band 66 (AWS)     | 0.306                  | 1.055                         | 1.361           |
|                       | LTE Band 25 (PCS)     | 0.340                  | 1.055                         | 1.395           |
|                       | LTE Band 41           | 0.203                  | 1.055                         | 1.258           |

| FCC ID: ZNFL455DL      | PCTEST*                 | SAR EVALUATION REPORT | Approved by: Quality Manager |
|------------------------|-------------------------|-----------------------|------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:             | Dogo 07 of 120               |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset      | Page 97 of 129               |

© 2020 PCTEST Engineering Laboratory, Inc.

REV 21.4 M 09/11/2019

**Table 12-2** Simultaneous Transmission Scenario with 5 GHz WLAN (Held to Ear)

| Exposure<br>Condition | Mode                  | 2G/3G/4G<br>SAR (W/kg) | 5 GHz WLAN<br>SAR (W/kg) | Σ SAR<br>(W/kg) |
|-----------------------|-----------------------|------------------------|--------------------------|-----------------|
|                       |                       | 1                      | 2                        | 1+2             |
|                       | GSM/GPRS 850          | 0.349                  | 0.480                    | 0.829           |
|                       | GSM/GPRS 1900         | 0.189                  | 0.480                    | 0.669           |
|                       | UMTS 850              | 0.300                  | 0.480                    | 0.780           |
|                       | UMTS 1750             | 0.325                  | 0.480                    | 0.805           |
|                       | UMTS 1900             | 0.309                  | 0.480                    | 0.789           |
|                       | CDMA/EVDO BC10 (§90S) | 0.221                  | 0.480                    | 0.701           |
|                       | CDMA/EVDO BC0 (§22H)  | 0.285                  | 0.480                    | 0.765           |
| Head SAR              | PCS CDMA/EVDO         | 0.367                  | 0.480                    | 0.847           |
|                       | LTE Band 71           | 0.258                  | 0.480                    | 0.738           |
|                       | LTE Band 12           | 0.330                  | 0.480                    | 0.810           |
|                       | LTE Band 13           | 0.319                  | 0.480                    | 0.799           |
|                       | LTE Band 26 (Cell)    | 0.356                  | 0.480                    | 0.836           |
|                       | LTE Band 66 (AWS)     | 0.306                  | 0.480                    | 0.786           |
|                       | LTE Band 25 (PCS)     | 0.340                  | 0.480                    | 0.820           |
|                       | LTE Band 41           | 0.203                  | 0.480                    | 0.683           |

**Table 12-3** Simultaneous Transmission Scenario with Bluetooth (Held to Ear)

| Simulane              | ous mansinission ocei | iailo Witii L          | Jidelootii (ii          | eid to Lai j    |
|-----------------------|-----------------------|------------------------|-------------------------|-----------------|
| Exposure<br>Condition | Mode                  | 2G/3G/4G<br>SAR (W/kg) | Bluetooth<br>SAR (W/kg) | Σ SAR<br>(W/kg) |
|                       |                       | 1                      | 2                       | 1+2             |
|                       | GSM/GPRS 850          | 0.349                  | 0.284                   | 0.633           |
|                       | GSM/GPRS 1900         | 0.189                  | 0.284                   | 0.473           |
|                       | UMTS 850              | 0.300                  | 0.284                   | 0.584           |
|                       | UMTS 1750             | 0.325                  | 0.284                   | 0.609           |
|                       | UMTS 1900             | 0.309                  | 0.284                   | 0.593           |
|                       | CDMA/EVDO BC10 (§90S) | 0.221                  | 0.284                   | 0.505           |
|                       | CDMA/EVDO BC0 (§22H)  | 0.285                  | 0.284                   | 0.569           |
| Head SAR              | PCS CDMA/EVDO         | 0.367                  | 0.284                   | 0.651           |
|                       | LTE Band 71           | 0.258                  | 0.284                   | 0.542           |
|                       | LTE Band 12           | 0.330                  | 0.284                   | 0.614           |
|                       | LTE Band 13           | 0.319                  | 0.284                   | 0.603           |
|                       | LTE Band 26 (Cell)    | 0.356                  | 0.284                   | 0.640           |
|                       | LTE Band 66 (AWS)     | 0.306                  | 0.284                   | 0.590           |
|                       | LTE Band 25 (PCS)     | 0.340                  | 0.284                   | 0.624           |
|                       | LTE Band 41           | 0.203                  | 0.284                   | 0.487           |

| FCC ID: ZNFL455DL      | PCTEST*                 | SAR EVALUATION REPORT | Approved by: Quality Manager |
|------------------------|-------------------------|-----------------------|------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:             | Dogg 00 of 120               |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset      | Page 98 of 129               |

Table 12-4
Simultaneous Transmission Scenario with 5GHz WLAN and Bluetooth (Held to Ear)

| Exposure<br>Condition | Mode                  | 2G/3G/4G<br>SAR (W/kg) | 5 GHz WLAN<br>SAR (W/kg) | Bluetooth<br>SAR (W/kg) | Σ SAR (W/kg) |
|-----------------------|-----------------------|------------------------|--------------------------|-------------------------|--------------|
|                       |                       | 1                      | 2                        | 3                       | 1+2+3        |
|                       | GSM/GPRS 850          | 0.349                  | 0.480                    | 0.284                   | 1.113        |
|                       | GSM/GPRS 1900         | 0.189                  | 0.480                    | 0.284                   | 0.953        |
|                       | UMTS 850              | 0.300                  | 0.480                    | 0.284                   | 1.064        |
|                       | UMTS 1750             | 0.325                  | 0.480                    | 0.284                   | 1.089        |
|                       | UMTS 1900             | 0.309                  | 0.480                    | 0.284                   | 1.073        |
|                       | CDMA/EVDO BC10 (§90S) | 0.221                  | 0.480                    | 0.284                   | 0.985        |
|                       | CDMA/EVDO BC0 (§22H)  | 0.285                  | 0.480                    | 0.284                   | 1.049        |
| Head SAR              | PCS CDMA/EVDO         | 0.367                  | 0.480                    | 0.284                   | 1.131        |
|                       | LTE Band 71           | 0.258                  | 0.480                    | 0.284                   | 1.022        |
|                       | LTE Band 12           | 0.330                  | 0.480                    | 0.284                   | 1.094        |
|                       | LTE Band 13           | 0.319                  | 0.480                    | 0.284                   | 1.083        |
|                       | LTE Band 26 (Cell)    | 0.356                  | 0.480                    | 0.284                   | 1.120        |
|                       | LTE Band 66 (AWS)     | 0.306                  | 0.480                    | 0.284                   | 1.070        |
|                       | LTE Band 25 (PCS)     | 0.340                  | 0.480                    | 0.284                   | 1.104        |
|                       | LTE Band 41           | 0.203                  | 0.480                    | 0.284                   | 0.967        |

## 12.4 Body-Worn Simultaneous Transmission Analysis

Table 12-5
Simultaneous Transmission Scenario with 2.4 GHz WLAN (Body-Worn at 1.0 cm)

| Exposure<br>Condition | Mode               | 2G/3G/4G<br>SAR (W/kg) | 2.4 GHz<br>WLAN SAR<br>(W/kg) | Σ SAR<br>(W/kg) |
|-----------------------|--------------------|------------------------|-------------------------------|-----------------|
|                       |                    | 1                      | 2                             | 1+2             |
|                       | GSM/GPRS 850       | 0.632                  | 0.440                         | 1.072           |
|                       | GSM/GPRS 1900      | 0.459                  | 0.440                         | 0.899           |
|                       | UMTS 850           | 0.521                  | 0.440                         | 0.961           |
|                       | UMTS 1750          | 0.840                  | 0.440                         | 1.280           |
|                       | UMTS 1900          | 0.737                  | 0.440                         | 1.177           |
|                       | CDMA BC10 (§90S)   | 0.359                  | 0.440                         | 0.799           |
|                       | CDMA BC0 (§22H)    | 0.436                  | 0.440                         | 0.876           |
| Body-Worn             | PCS CDMA           | 0.932                  | 0.440                         | 1.372           |
|                       | LTE Band 71        | 0.462                  | 0.440                         | 0.902           |
|                       | LTE Band 12        | 0.559                  | 0.440                         | 0.999           |
|                       | LTE Band 13        | 0.597                  | 0.440                         | 1.037           |
|                       | LTE Band 26 (Cell) | 0.516                  | 0.440                         | 0.956           |
|                       | LTE Band 66 (AWS)  | 0.770                  | 0.440                         | 1.210           |
|                       | LTE Band 25 (PCS)  | 0.861                  | 0.440                         | 1.301           |
|                       | LTE Band 41        | 0.585                  | 0.440                         | 1.025           |

| FCC ID: ZNFL455DL      | PCTEST*                 | SAR EVALUATION REPORT LG | Approved by:  Quality Manager |
|------------------------|-------------------------|--------------------------|-------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:                | Daga 00 of 120                |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset         | Page 99 of 129                |

**Table 12-6** Simultaneous Transmission Scenario with 5 GHz WLAN (Body-Worn at 1.0 cm)

| aneous Transmission Scenario with 5 GHz WLAN (Body-Worn at 1 |                    |                        |                             |                 |       |
|--------------------------------------------------------------|--------------------|------------------------|-----------------------------|-----------------|-------|
| Exposure<br>Condition                                        | Mode               | 2G/3G/4G<br>SAR (W/kg) | 5 GHz<br>WLAN SAR<br>(W/kg) | Σ SAR<br>(W/kg) | SPLSR |
|                                                              |                    | 1                      | 2                           | 1+2             | 1+2   |
|                                                              | GSM/GPRS 850       | 0.632                  | 0.956                       | 1.588           | N/A   |
|                                                              | GSM/GPRS 1900      | 0.459                  | 0.956                       | 1.415           | N/A   |
|                                                              | UMTS 850           | 0.521                  | 0.956                       | 1.477           | N/A   |
|                                                              | UMTS 1750          | 0.840                  | 0.956                       | See Note 1      | 0.02  |
|                                                              | UMTS 1900          | 0.737                  | 0.956                       | See Note 1      | 0.02  |
|                                                              | CDMA BC10 (§90S)   | 0.359                  | 0.956                       | 1.315           | N/A   |
|                                                              | CDMA BC0 (§22H)    | 0.436                  | 0.956                       | 1.392           | N/A   |
| Body-Worn                                                    | PCS CDMA           | 0.932                  | 0.956                       | See Note 1      | 0.02  |
|                                                              | LTE Band 71        | 0.462                  | 0.956                       | 1.418           | N/A   |
|                                                              | LTE Band 12        | 0.559                  | 0.956                       | 1.515           | N/A   |
|                                                              | LTE Band 13        | 0.597                  | 0.956                       | 1.553           | N/A   |
|                                                              | LTE Band 26 (Cell) | 0.516                  | 0.956                       | 1.472           | N/A   |
|                                                              | LTE Band 66 (AWS)  | 0.770                  | 0.956                       | See Note 1      | 0.02  |
|                                                              | LTE Band 25 (PCS)  | 0.861                  | 0.956                       | See Note 1      | 0.02  |
|                                                              | LTE Band 41        | 0.585                  | 0.956                       | 1.541           | N/A   |

Note 1: No evaluation was performed to determine the aggregate 1g SAR for these configurations as the SPLS ratio between the antenna pairs was not greater than 0.04 per FCC KDB 447498 D01v06. See Section 12.7 for detailed SPLS ratio analysis.

**Table 12-7** Simultaneous Transmission Scenario with Bluetooth (Body-Worn at 1.0 cm)

| Exposure<br>Condition | Mode               | 2G/3G/4G | Bluetooth<br>SAR (W/kg) | Σ SAR<br>(W/kg) |
|-----------------------|--------------------|----------|-------------------------|-----------------|
|                       |                    | 1        | 2                       | 1+2             |
|                       | GSM/GPRS 850       | 0.632    | 0.052                   | 0.684           |
|                       | GSM/GPRS 1900      | 0.459    | 0.052                   | 0.511           |
|                       | UMTS 850           | 0.521    | 0.052                   | 0.573           |
|                       | UMTS 1750          | 0.840    | 0.052                   | 0.892           |
|                       | UMTS 1900          | 0.737    | 0.052                   | 0.789           |
|                       | CDMA BC10 (§90S)   | 0.359    | 0.052                   | 0.411           |
|                       | CDMA BC0 (§22H)    | 0.436    | 0.052                   | 0.488           |
| Body-Worn             | PCS CDMA           | 0.932    | 0.052                   | 0.984           |
|                       | LTE Band 71        | 0.462    | 0.052                   | 0.514           |
|                       | LTE Band 12        | 0.559    | 0.052                   | 0.611           |
|                       | LTE Band 13        | 0.597    | 0.052                   | 0.649           |
|                       | LTE Band 26 (Cell) | 0.516    | 0.052                   | 0.568           |
|                       | LTE Band 66 (AWS)  | 0.770    | 0.052                   | 0.822           |
|                       | LTE Band 25 (PCS)  | 0.861    | 0.052                   | 0.913           |
|                       | LTE Band 41        | 0.585    | 0.052                   | 0.637           |

| FCC ID: ZNFL455DL      | PCTEST*                 | SAR EVALUATION REPORT | Approved by:  Quality Manager |
|------------------------|-------------------------|-----------------------|-------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:             | Dage 400 of 420               |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset      | Page 100 of 129               |

**Table 12-8** Simultaneous Transmission Scenario 5GHz WLAN and Bluetooth (Body-Worn at 1.0 cm)

| Exposure<br>Condition | Mode Mode          | 2G/3G/4G<br>SAR (W/kg) | 5 GHz<br>WLAN SAR<br>(W/kg) | Bluetooth<br>SAR (W/kg) | Σ SAR<br>(W/kg) |
|-----------------------|--------------------|------------------------|-----------------------------|-------------------------|-----------------|
|                       |                    | 1                      | 2                           | 3                       | 1+2+3           |
|                       | GSM/GPRS 850       | 0.632                  | 0.956                       | 0.052                   | See Note 1      |
|                       | GSM/GPRS 1900      | 0.459                  | 0.956                       | 0.052                   | 1.467           |
|                       | UMTS 850           | 0.521                  | 0.956                       | 0.052                   | 1.529           |
|                       | UMTS 1750          | 0.840                  | 0.956                       | 0.052                   | See Note 1      |
|                       | UMTS 1900          | 0.737                  | 0.956                       | 0.052                   | See Note 1      |
|                       | CDMA BC10 (§90S)   | 0.359                  | 0.956                       | 0.052                   | 1.367           |
|                       | CDMA BC0 (§22H)    | 0.436                  | 0.956                       | 0.052                   | 1.444           |
| Body-Worn             | PCS CDMA           | 0.932                  | 0.956                       | 0.052                   | See Note 1      |
|                       | LTE Band 71        | 0.462                  | 0.956                       | 0.052                   | 1.470           |
|                       | LTE Band 12        | 0.559                  | 0.956                       | 0.052                   | 1.567           |
|                       | LTE Band 13        | 0.597                  | 0.956                       | 0.052                   | See Note 1      |
|                       | LTE Band 26 (Cell) | 0.516                  | 0.956                       | 0.052                   | 1.524           |
|                       | LTE Band 66 (AWS)  | 0.770                  | 0.956                       | 0.052                   | See Note 1      |
|                       | LTE Band 25 (PCS)  | 0.861                  | 0.956                       | 0.052                   | See Note 1      |
|                       | LTE Band 41        | 0.585                  | 0.956                       | 0.052                   | 1.593           |

Note 1: Please see section 12.8 for detailed simultaneous transmission analysis.

| FCC ID: ZNFL455DL      | PCTEST:                 | SAR EVALUATION REPORT LG | Approved by:  Quality Manager |
|------------------------|-------------------------|--------------------------|-------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:                | Dage 404 of 420               |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset         | Page 101 of 129               |

## 12.5 Hotspot SAR Simultaneous Transmission Analysis

Per FCC KDB Publication 941225 D06v02r01, the devices edges with antennas more than 2.5 cm from edge are not required to be evaluated for SAR ("-").

(\*) For test positions that were not required to be evaluated for WLAN SAR per FCC KDB publication 248227, the worst case WLAN SAR result for the applicable exposure conditions was used for simultaneous transmission analysis

Table 12-9
Simultaneous Transmission Scenario with 2.4 GHz WLAN (Hotspot at 1.0 cm)

| Exposure<br>Condition | Mode               | 2G/3G/4G<br>SAR (W/kg) | 2.4 GHz<br>WLAN SAR<br>(W/kg) | Σ SAR (W/kg) |
|-----------------------|--------------------|------------------------|-------------------------------|--------------|
|                       |                    | 1                      | 2                             | 1+2          |
|                       | GPRS 850           | 0.632                  | 0.440                         | 1.072        |
|                       | GPRS 1900          | 0.459                  | 0.440                         | 0.899        |
|                       | UMTS 850           | 0.521                  | 0.440                         | 0.961        |
|                       | UMTS 1750          | 0.840                  | 0.440                         | 1.280        |
|                       | UMTS 1900          | 0.737 0.440            |                               | 1.177        |
|                       | EVDO BC10 (§90S)   | 0.336                  | 0.440                         | 0.776        |
| Hotopot               | EVDO BC0 (§22H)    | 0.372                  | 0.440                         | 0.812        |
| Hotspot<br>SAR        | PCS EVDO           | 0.702                  | 0.440                         | 1.142        |
| OAIX                  | LTE Band 71        | 0.462                  | 0.440                         | 0.902        |
|                       | LTE Band 12        | 0.629                  | 0.440                         | 1.069        |
|                       | LTE Band 13        | 0.597                  | 0.440                         | 1.037        |
|                       | LTE Band 26 (Cell) | 0.516                  | 0.440                         | 0.956        |
|                       | LTE Band 66 (AWS)  | 0.770                  | 0.440                         | 1.210        |
|                       | LTE Band 25 (PCS)  | 0.861                  | 0.440                         | 1.301        |
|                       | LTE Band 41        | 0.681                  | 0.440                         | 1.121        |

| FCC ID: ZNFL455DL      | PCTEST*                 | SAR EVALUATION REPORT | Approved by:  Quality Manager |
|------------------------|-------------------------|-----------------------|-------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:             | Dogg 102 of 120               |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset      | Page 102 of 129               |

**Table 12-10** Simultaneous Transmission Scenario with 5 GHz WLAN (Hotspot at 1.0 cm)

|           | Simuita             | neous                                      | ıransmı           | ssion 5             | ario with 5 GHZ WLAN (Hotspot at 1.0 cm) |       |                     |                         |                            |                 |                             |                     |             |
|-----------|---------------------|--------------------------------------------|-------------------|---------------------|------------------------------------------|-------|---------------------|-------------------------|----------------------------|-----------------|-----------------------------|---------------------|-------------|
|           | Exposur<br>Conditio |                                            | Мо                | de                  |                                          |       | 9/3G/4G<br>R (W/kg) | 5 GH<br>WLAN S<br>(W/kg | SAR                        | Σ               | SAR (V                      | V/kg)               |             |
|           |                     |                                            |                   |                     |                                          |       | 1                   | 2                       |                            |                 | 1+2                         |                     |             |
|           |                     |                                            | GPRS              | 850                 |                                          |       | 0.632               | 0.87                    | 5                          |                 | 1.507                       | 7                   |             |
|           |                     |                                            | GPRS              | 1900                |                                          |       | 0.459               | 0.87                    | 5                          |                 | 1.334                       | 4                   |             |
|           |                     |                                            | UMTS              | 850                 |                                          |       | 0.521               | 0.87                    | 5                          |                 | 1.396                       | 3                   |             |
|           |                     |                                            | UMTS 1750         |                     |                                          | 0.840 | 0.87                | 5                       | See                        | Table           | Below                       |                     |             |
|           |                     |                                            | UMTS 1900         |                     |                                          |       | 0.737               | 0.87                    | 5                          | Sec             | Table                       | Below               |             |
|           |                     | E                                          | VDO BC            | 10 (§90             | S)                                       |       | 0.336               | 0.87                    | 5                          |                 | 1.21                        | 1                   |             |
|           | Hotspor             | , <u> </u>                                 | VDO BO            | 0 (§22H             | <del>1</del> )                           |       | 0.372               | 0.87                    | 5                          |                 | 1.247                       | 7                   |             |
|           | SAR                 | ` <u> </u>                                 | PCS E             | EVDO                |                                          |       | 0.702               | 0.87                    | 5                          |                 | 1.577                       | 7                   |             |
|           | LTE                 |                                            | LTE Ba            |                     |                                          | 0.462 |                     |                         | 0.875                      |                 | 1.337                       |                     |             |
|           |                     | LTE Ba                                     |                   |                     | 0.629                                    |       |                     | 0.875                   |                            | 1.504           |                             |                     |             |
|           |                     |                                            | LTE Ba            |                     |                                          |       | 0.597               | 0.87                    |                            | 1.472           |                             |                     |             |
|           |                     |                                            | TE Band           |                     | _                                        |       | 0.516               | 0.87                    |                            |                 | 1.39                        |                     |             |
|           |                     |                                            | TE Band           |                     | ,                                        |       | 0.770               | 0.87                    |                            |                 | Table                       |                     |             |
|           |                     | <u>                                   </u> | TE Band           |                     | S)                                       |       | 0.861 0.875         |                         |                            | See Table Below |                             |                     |             |
|           |                     |                                            | LTE Ba            | and 41              |                                          | 0.681 |                     | 0.87                    | )                          |                 | 1.556                       | o                   |             |
| Simult Tx | Configuration       | UMTS 1750<br>SAR (W/kg                     |                   | Σ SAR<br>(W/kg)     | SPL                                      | SR    | Simult Tx           | Configuration           | UMTS 1<br>SAR (W           |                 | 5 GHz<br>VLAN SAR<br>(W/kg) | Σ SAR<br>(W/kg)     | SPLSR       |
|           |                     | 1                                          | 2                 | 1+2                 | 1+3                                      |       |                     |                         | 1                          |                 | 2                           | 1+2                 | 1+2         |
|           | Back<br>Front       | 0.840<br>0.498                             | 0.875<br>0.875*   | See Note 1<br>1.373 | 0.0<br>N/A                               |       |                     | Back<br>Front           | 0.73                       |                 | 0.875<br>0.875*             | See Note 1<br>1.250 | 0.02<br>N/A |
| Hotspot   | Тор                 | -                                          | 0.386             | 0.386               | N/A                                      |       | Hotspot             | Тор                     | -                          |                 | 0.386                       | 0.386               | N/A         |
| SAR       | Bottom              | 0.403                                      | -                 | 0.403               | N/A                                      |       | SAR                 | Bottom                  | 0.364                      | 1               | -                           | 0.364               | N/A         |
|           | Right<br>Left       | 0.697                                      | 0.403             | 0.000<br>1.100      | N/A<br>N/A                               |       | -                   | Right<br>Left           | 0.586                      | 3               | 0.403                       | 0.000<br>0.989      | N/A<br>N/A  |
| Simult Tx | Configuration       | LTE Band<br>66 (AWS)<br>SAR (W/kg          | 5 GHz<br>WLAN SAR | Σ SAR<br>(W/kg)     | SPL                                      |       | Simult Tx           | Configuration           | LTE Ba<br>25 (PC<br>SAR (W | nd<br>S) W      | 5 GHz<br>/LAN SAR<br>(W/kg) | Σ SAR<br>(W/kg)     | SPLSR       |
|           |                     | 1                                          | 2                 | 1+2                 | 1+                                       |       |                     |                         | 1                          |                 | 2                           | 1+2                 | 1+2         |
|           | Back                | 0.770                                      | 0.875             | See Note 1          | 0.0                                      |       |                     | Back                    | 0.861                      |                 | 0.875                       | See Note 1          | 0.02        |
| Hotspot   | Front<br>Top        | 0.382                                      | 0.875*<br>0.386   | 1.257<br>0.386      | N/.                                      |       | Hotspot             | Front<br>Top            | 0.480                      |                 | 0.875*<br>0.386             | 1.355<br>0.386      | N/A<br>N/A  |
| SAR       | Bottom              | 0.340                                      | -                 | 0.340               | N/.                                      | Α     | SAR                 | Bottom                  | 0.483                      |                 | -                           | 0.483               | N/A         |
|           | Right               | - 0.500                                    | - 0.400           | 0.000               | N/                                       |       | ļ [                 | Right                   | -                          |                 | - 0.400                     | 0.000               | N/A         |
|           | Left                | 0.560                                      | 0.403             | 0.963               | N/                                       | Α     |                     | Left                    | 0.609                      |                 | 0.403                       | 1.012               | N/A         |

Note1: No evaluation was performed to determine the aggregate 1g SAR for these configurations as the SPLS ratio between the antenna pairs was not greater than 0.04 per FCC KDB 447498 D01v06. See Section 12.7 for detailed SPLS ratio analysis.

| FCC ID: ZNFL455DL      | PCTEST                  | SAR EVALUATION REPORT LG | Approved by: Quality Manager |
|------------------------|-------------------------|--------------------------|------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:                | Dama 400 at 400              |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset         | Page 103 of 129              |

**Table 12-11** Simultaneous Transmission Scenario with Bluetooth (Hotspot at 1.0 cm)

| Simultaneous Transmission Scenario with Bluetooth (notspot at 1.0 cm |                    |                        |                         |              |  |  |  |  |
|----------------------------------------------------------------------|--------------------|------------------------|-------------------------|--------------|--|--|--|--|
| Exposure<br>Condition                                                | Mode               | 2G/3G/4G<br>SAR (W/kg) | Bluetooth<br>SAR (W/kg) | Σ SAR (W/kg) |  |  |  |  |
|                                                                      |                    | 1                      | 2                       | 1+2          |  |  |  |  |
|                                                                      | GPRS 850           | 0.632                  | 0.052                   | 0.684        |  |  |  |  |
|                                                                      | GPRS 1900          | 0.459                  | 0.052                   | 0.511        |  |  |  |  |
|                                                                      | UMTS 850           | 0.521                  | 0.052                   | 0.573        |  |  |  |  |
|                                                                      | UMTS 1750          | 0.840                  | 0.052                   | 0.892        |  |  |  |  |
|                                                                      | UMTS 1900          | 0.737                  | 0.052                   | 0.789        |  |  |  |  |
|                                                                      | EVDO BC10 (§90S)   | 0.336                  | 0.052                   | 0.388        |  |  |  |  |
| Hotopot                                                              | EVDO BC0 (§22H)    | 0.372                  | 0.052                   | 0.424        |  |  |  |  |
| Hotspot<br>SAR                                                       | PCS EVDO           | 0.702                  | 0.052                   | 0.754        |  |  |  |  |
| O/ ii C                                                              | LTE Band 71        | 0.462                  | 0.052                   | 0.514        |  |  |  |  |
|                                                                      | LTE Band 12        | 0.629                  | 0.052                   | 0.681        |  |  |  |  |
|                                                                      | LTE Band 13        | 0.597                  | 0.052                   | 0.649        |  |  |  |  |
|                                                                      | LTE Band 26 (Cell) | 0.516                  | 0.052                   | 0.568        |  |  |  |  |
|                                                                      | LTE Band 66 (AWS)  | 0.770                  | 0.052                   | 0.822        |  |  |  |  |
|                                                                      | LTE Band 25 (PCS)  | 0.861                  | 0.052                   | 0.913        |  |  |  |  |
|                                                                      | LTE Band 41        | 0.681                  | 0.052                   | 0.733        |  |  |  |  |

| FCC ID: ZNFL455DL      | PCTEST SHOULD LADORATE THE | SAR EVALUATION REPORT | <b>L</b> G | Approved by:  Quality Manager |
|------------------------|----------------------------|-----------------------|------------|-------------------------------|
| Document S/N:          | Test Dates:                | DUT Type:             |            | Dogo 104 of 120               |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020    | Portable Handset      |            | Page 104 of 129               |

**Table 12-12** Simultaneous Transmission Scenario with 5GHz and Bluetooth (Hotspot at 1.0 cm)

5 GHz

Bluetooth

|          | Exposure<br>Condition |                                    | Mode                        |                             | 2G/3G/4<br>SAR (W/       |          | WL      | AN SAR<br>W/kg)    |   | SAR<br>W/kg)                      |                        | AR (W/ko     | 3)                         |
|----------|-----------------------|------------------------------------|-----------------------------|-----------------------------|--------------------------|----------|---------|--------------------|---|-----------------------------------|------------------------|--------------|----------------------------|
| _        |                       |                                    |                             |                             | 1                        |          |         | 2                  |   | 3                                 |                        | 1+2+3        |                            |
|          |                       | (                                  | GPRS 85                     | 0                           | 0.632                    | <u> </u> | (       | 0.875 0.0          |   | 0.052                             |                        | 1.559        |                            |
|          |                       | G                                  | PRS 190                     | 00                          | 0.459                    | )        | (       | 0.875              | ( | 0.052                             |                        | 1.386        |                            |
|          |                       | ι                                  | JMTS 85                     | 0                           | 0.521                    |          | (       | 0.875              | ( | 0.052                             |                        | 1.448        |                            |
|          |                       | L                                  | IMTS 175                    | 0                           | 0.840                    | )        | (       | 0.875              |   | 0.052                             | See                    | Table Bel    | ow                         |
| Ī        |                       | L                                  | IMTS 190                    | 00                          | 0.737                    | ,        | (       | 0.875              |   | 0.052                             | See                    | Table Bel    | ow                         |
|          |                       | EVDO                               | DBC10 (                     | §90S)                       | 0.336                    | ò        | (       | 0.875              |   | 0.052                             |                        | 1.263        |                            |
|          | Hotopot               | EVD                                | O BC0 (§                    | 22H)                        | 0.372                    | 2        | (       | 0.875              |   | 0.052                             |                        | 1.299        |                            |
|          | Hotspot<br>SAR        | P                                  | CS EVD                      | 0                           | 0.702                    | -        | (       | 0.875              |   | 0.052                             | See                    | Table Belo   | ow                         |
|          | O/ II C               | L                                  | TE Band                     | 71                          | 0.462                    | 2        | (       | 0.875              |   | 0.052                             |                        | 1.389        |                            |
|          |                       | Lī                                 | ΓE Band                     | 12                          | 0.629                    | )        | (       | 0.875              | ( | 0.052                             |                        | 1.556        |                            |
|          |                       | Lī                                 | TE Band                     | 13                          | 0.597                    | ,        | (       | 0.875              | ( | 0.052                             |                        | 1.524        |                            |
|          |                       | LTE                                | Band 26                     | (Cell)                      | 0.516                    | 516      |         | 0.875              | ( | 0.052                             |                        | 1.443        |                            |
|          |                       | LTE E                              | Band 66 (                   | AWS)                        | 0.770                    | )        | (       | 0.875              | ( | 0.052                             | See                    | Table Bel    | ow                         |
|          |                       | LTE E                              | 3and 25 (                   | PCS)                        | 0.861                    |          | (       | 0.875              | ( | 0.052                             | See                    | Table Bel    | ow                         |
|          |                       | L7                                 | ΓE Band                     | 41                          | 0.681                    |          | (       | 0.875              | ( | 0.052                             | See                    | Table Bel    | ow                         |
| Simult T | x Configuration       | UMTS 1750<br>SAR (W/kg)            | 5 GHz<br>WLAN SAR<br>(W/kg) | Bluetooth<br>SAR (W/kg)     | Σ SAR<br>(W/kg)          | Sim      | nult Tx | Configuration      | 0 | JMTS 190<br>SAR (W/kg             | IVVI AN S              | AR SAR (W/kg | Σ SAR<br>(W/kg)            |
|          |                       | 1                                  | 2                           | 3                           | 1+2+3                    |          |         |                    |   | 1                                 | 2                      | 3            | 1+2+3                      |
|          | Back                  | 0.840                              | 0.875                       | 0.052                       | See Note 1               |          |         | Back               |   | 0.737                             | 0.875                  | 0.052        | See Note 1                 |
| Hotspot  | Front<br>Top          | 0.498                              | 0.875*<br>0.386             | 0.029<br>0.038              | 1.402<br>0.424           | Hot      | tspot   | Front<br>Top       |   | 0.375                             | 0.875*<br>0.386        | 0.029        | <b>1.279</b><br>0.424      |
| SAR      | Bottom                | 0.403                              | -                           | -                           | 0.403                    | s        | AR      | Bottom             |   | 0.364                             | -                      | -            | 0.364                      |
|          | Right                 | 0.697                              | 0.403                       | -                           | 0.000                    |          |         | Right              | _ | 0.586                             | 0.403                  | -            | 0.000                      |
| Simult T | Left  x Configuration | PCS EVDO<br>SAR (W/kg)             | 5 GHz                       | 0.028  Bluetooth SAR (W/kg) | 1.128<br>Σ SAR<br>(W/kg) | Sim      | nult Tx | Left Configuration |   | LTE Band<br>66 (AWS)<br>SAR (W/kg | 5 GHz<br>WLAN S.       | AR SAR (W/kg | 1.017<br>Σ SAR<br>) (W/kg) |
|          |                       | 1                                  | 2                           | 3                           | 1+2+3                    |          |         |                    |   | 1                                 | 2                      | 3            | 1+2+3                      |
|          | Back                  | 0.702                              | 0.875                       | 0.052                       | See Note 1               |          |         | Back               |   | 0.770                             | 0.875                  | 0.052        | See Note 1                 |
|          | Front                 | 0.403                              | 0.875*                      | 0.029                       | 1.307                    | l        |         | Front              |   | 0.382                             | 0.875*                 | 0.029        | 1.286                      |
| Hotspot  |                       | 0.275                              | 0.386                       | 0.038                       | 0.424                    |          | tspot   | Top                |   | - 0.240                           | 0.386                  | 0.038        | 0.424                      |
| SAR      | Bottom<br>Right       | 0.375                              | -                           | -                           | 0.375<br>0.000           | 5        | AR      | Bottom<br>Right    |   | 0.340                             | + :                    |              | 0.340                      |
|          | Left                  | 0.535                              | 0.403                       | 0.028                       | 0.966                    | 1        |         | Left               |   | 0.560                             | 0.403                  | 0.028        | 0.991                      |
| Simult T |                       | LTE Band<br>25 (PCS)<br>SAR (W/kg) | 5 GHz<br>WLAN SAR<br>(W/kg) | Bluetooth<br>SAR (W/kg)     | Σ SAR<br>(W/kg)          | Simu     | ılt Tx  | Configuration      |   |                                   | 5 GHz WLA<br>SAR (W/kg | N Bluetooth  | Σ SAR<br>(W/kg)            |
|          |                       | 1                                  | 2                           | 3                           | 1+2+3                    | İ        |         |                    |   | 1                                 | 2                      | 3            | 1+2+3                      |
|          | Back                  | 0.861                              | 0.875                       | 0.052                       | See Note 1               |          |         | Back               |   | ).449                             | 0.875                  | 0.052        | 1.376                      |
| Hotspot  | Front                 | 0.480                              | 0.875*                      | 0.029                       | 1.384                    | 110.7    | [       | Front              | 0 | ).263                             | 0.875*                 | 0.029        | 1.167                      |
| SAR      | Top<br>Bottom         | 0.483                              | 0.386                       | 0.038                       | 0.424<br>0.483           | Hots     |         | Top                |   | .681                              | 0.386                  | 0.038        | 0.424<br>0.681             |
| OAK      | Right                 | -                                  | -                           | -                           | 0.403                    | 3/       | "`      | Bottom<br>Right    |   | 0.135                             |                        | -            | 0.681                      |
|          | Left                  | 0.609                              | 0.403                       | 0.028                       | 1.040                    |          |         | Left               |   | 0.053                             | 0.403                  | 0.028        | 0.484                      |
|          |                       |                                    |                             |                             |                          |          |         |                    |   |                                   |                        |              |                            |

Note 1: Please see section 12.8 for detailed simultaneous transmission analysis.

| FCC ID: ZNFL455DL      | PCTEST:                 | SAR EVALUATION REPORT | Approved by:  Quality Manager |
|------------------------|-------------------------|-----------------------|-------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:             | Dags 405 of 420               |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset      | Page 105 of 129               |

### **Phablet Simultaneous Transmission Analysis**

Per FCC KDB Publication 941225 D06v02r01, the devices edges with antennas more than 2.5 cm from edge are not required to be evaluated for SAR ("-").

(\*) For test positions that were not required to be evaluated for WLAN SAR per FCC KDB publication 248227, the worst case WLAN SAR result for the applicable exposure conditions was used for simultaneous transmission analysis

Per FCC KDB Publication 648474 D04 Handset SAR, Phablet SAR tests were not required if wireless router 1g SAR (scaled to the maximum output power, including tolerance) < 1.2 W/kg. Therefore, no further analysis beyond the tables included in this section was required to determine that possible simultaneous transmission scenarios would not exceed the SAR limit.

For SAR summation, the highest reported SAR across all test distances was used as the most conservative evaluation for simultaneous transmission analysis for each device edge.

**Table 12-13** Simultaneous Transmission Scenario with 5 GHz WLAN (Phablet)

| Sillultaneous Transmission Scenario With 5 GHz WLAN (Filablet) |               |                        |                             |                 |              |       |               |               |                             |                                   |                             |                 |       |
|----------------------------------------------------------------|---------------|------------------------|-----------------------------|-----------------|--------------|-------|---------------|---------------|-----------------------------|-----------------------------------|-----------------------------|-----------------|-------|
|                                                                |               | Exposure<br>Condition  |                             | Mode            |              |       |               | G/4G<br>W/kg) | 5 GHz<br>WLAN SAR<br>(W/kg) | ΣSAR                              | (W/kg)                      |                 |       |
|                                                                |               |                        |                             |                 |              |       | 1             | 1             | 2                           | 1+                                | 2                           |                 |       |
|                                                                |               |                        | U                           | JMTS 1750       | )            |       | 3.1           | 161           | 1.848                       | See Tabl                          | e Below                     |                 |       |
|                                                                |               |                        | U                           | JMTS 1900       |              |       | 2.9           | 904           | 1.848                       | See Tabl                          | e Below                     |                 |       |
|                                                                |               | Phablet                | Р                           | CS EVDC         | )            | 3.005 |               | 005           | 1.848                       | See Tabl                          | e Below                     |                 |       |
|                                                                |               | SAR                    |                             | Band 66 (A      |              |       | 2.859         |               | 1.848                       | See Tabl                          |                             |                 |       |
|                                                                |               |                        |                             | Band 25 (F      |              |       |               | 166           | 1.848                       | See Table Below                   |                             |                 |       |
|                                                                |               |                        | -                           | LTE Band 41     |              |       |               | 078           | 1.848                       | See Table Below                   |                             |                 |       |
|                                                                |               |                        |                             | L Dana 4        | <del> </del> |       | 71            | 770           | 1.040                       | OCC TODA                          | o Bolow                     |                 |       |
| Simult Tx                                                      | Configuration | UMTS 1750<br>SAR (W/kg |                             | SAR (W/kg)      | SPL          | .SR   | S             | Simult Tx     |                             | UMTS 1900<br>SAR (W/kg)           | 5 GHz<br>WLAN SAR<br>(W/kg) | Σ SAR<br>(W/kg) | SPLSR |
|                                                                |               | 1                      | 2                           | 1+2             | 1+           | -2    |               |               |                             | 1                                 | 2                           | 1+2             | 1+2   |
|                                                                | Back          | 2.423                  | 1.848                       | See Note        |              |       |               |               | Back                        | 2.904                             | 1.848                       | See Note 1      | 0.08  |
| 1                                                              | Front         | 1.837                  | 0.341                       | 2.178           | N/           |       | <b>—</b> II.  |               | Front                       | 2.160                             | 0.341                       | 2.501           | N/A   |
| Phablet                                                        | Top           | -                      | 1.848*                      | 1.848           | N/           |       | <b>  </b>   ' | Phablet       | Top                         | -                                 | 1.848*                      | 1.848           | N/A   |
| SAR                                                            | Bottom        | 1.241                  | -                           | 1.241           | N/           |       |               | SAR           | Bottom                      | 1.238                             | -                           | 1.238           | N/A   |
| 1                                                              | Right         | -                      |                             | 0.000           | N/           |       | <b></b>    -  |               | Right                       | -                                 | -                           | -               | N/A   |
|                                                                | Left          | 3.161                  | 0.995                       | See Note        | 1 0.0        | )/    | ᆚ             |               | Left                        | 2.849                             | 0.995                       | 3.844           | N/A   |
| Simult Tx                                                      | Configuration | PCS EVDO<br>SAR (W/kg) | 5 GHz<br>WLAN SAR<br>(W/kg) | Σ SAR<br>(W/kg) | SPLSF        | ₹     | Sii           | imult Tx      | Configuration               | LTE Band<br>66 (AWS)<br>SAR (W/kg | 5 GHz<br>WLAN SA<br>(W/kg)  | S SAR (W/kg)    | SPLSR |
|                                                                |               | 1                      | 2                           | 1+2             | 1+2          |       |               |               |                             | 1                                 | 2                           | 1+2             | 1+2   |
|                                                                | Back          | 3.005                  | 1.848                       | See Note 1      | 0.09         |       |               |               | Back                        | 2.859                             | 1.848                       | See Note 1      | 0.08  |
| [                                                              | Front         | 1.804                  | 0.341                       | 2.145           | N/A          | A     |               | 11 1          | Front                       | 1.591                             | 0.341                       | 1.932           | N/A   |
| Phablet                                                        | Top           | -                      | 1.848*                      | 1.848           | N/A          |       | 1             | Phablet       | Top                         | -                                 | 1.848*                      | 1.848           | N/A   |
| SAR                                                            | Bottom        | 1.162                  | -                           | 1.162           | N/A          |       | 1             | SAR           | Bottom                      | 0.951                             | -                           | 0.951           | N/A   |
| [                                                              | Right         | -                      | -                           | 0.000           | N/A          |       | 1             |               | Right                       | -                                 | -                           | 0.000           | N/A   |
|                                                                | Left          | 2.801                  | 0.995                       | 3.796           | N/A          |       |               |               | Left                        | 2.506                             | 0.995                       | 3.501           | N/A   |

| FCC ID: ZNFL455DL      |                         | SAR EVALUATION REPORT | Approved by: Quality Manager |  |
|------------------------|-------------------------|-----------------------|------------------------------|--|
| Document S/N:          | Test Dates:             | DUT Type:             | D 400 -f 400                 |  |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset      | Page 106 of 129              |  |

| Simult Tx | Configuration | LTE Band 25<br>(PCS) SAR<br>(W/kg) | 5 GHz WLAN<br>SAR (W/kg) | Σ SAR<br>(W/kg) | SPLSR | Simult Tx | Configuration | LTE Band<br>41 SAR<br>(W/kg) | 5 GHz<br>WLAN SAR<br>(W/kg) | Σ SAR<br>(W/kg) | SPLSR |
|-----------|---------------|------------------------------------|--------------------------|-----------------|-------|-----------|---------------|------------------------------|-----------------------------|-----------------|-------|
|           |               | 1                                  | 2                        | 1+2             | 1+2   |           |               | 1                            | 2                           | 1+2             | 1+2   |
|           | Back          | 3.166                              | 1.848                    | See Note 1      | 0.09  | Phablet   | Back          | 3.078                        | 1.848                       | See Note 1      | 0.08  |
|           | Front         | 2.413                              | 0.341                    | 2.754           | N/A   |           | Front         | 1.258                        | 0.341                       | 1.599           | N/A   |
| Phablet   | Тор           | -                                  | 1.848*                   | 1.848           | N/A   |           | Top           | -                            | 1.848*                      | 1.848           | N/A   |
| SAR       | Bottom        | 1.344                              | -                        | 1.344           | N/A   | SAR       | Bottom        | 2.256                        | -                           | 2.256           | N/A   |
|           | Right         | -                                  | -                        | -               | N/A   |           | Right         | 0.085                        | -                           | 0.085           | N/A   |
|           | Left          | 3.125                              | 0.995                    | See Note 1      | 0.06  |           | Left          | 0.519                        | 0.995                       | 1.514           | N/A   |

Note 1: No evaluation was performed to determine the aggregate 10g SAR for these configurations as the SPLS ratio between the antenna pairs was not greater than 0.10 per FCC KDB 447498 D01v06. See Section 12.7 for detailed SPLS ratio analysis.

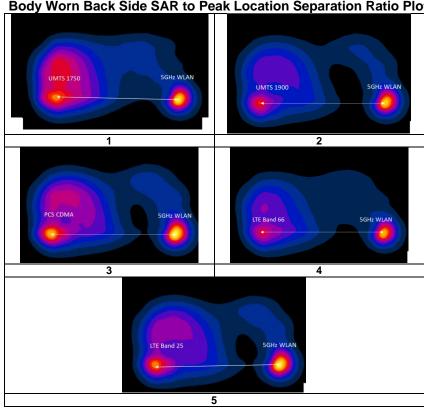
#### 12.7 **SPLSR Evaluation and Analysis**

Per FCC KDB Publication 447498 D01v06, when the sum of the standalone transmitters is more than 1.6 W/kg for 1g and 4 W/kg for 10g, the SAR sum to peak locations can be analyzed to determine SAR distribution overlaps. When the SAR peak to location ratio (shown below) for each pair of antennas is  $\leq$  0.04 for 1g and  $\leq$ 0.10 for 10g, simultaneous SAR evaluation is not required. The distance between the transmitters was calculated using the following formula.

Distance<sub>Tx1-Tx2</sub> = R<sub>i</sub> = 
$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$
 (Body-Worn, Hotspot, Phablet)   
SPLS Ratio =  $\frac{(SAR_1+SAR_2)^{1.5}}{R_i}$ 

### 12.7.1 Back Side SPLSR Evaluation and Analysis

**Table 12-14** Peak SAR Locations for Body-Worn Back Side


| Mode/Band         | x (mm) | y (mm) | Reported<br>SAR (W/kg) |
|-------------------|--------|--------|------------------------|
| 5 GHz WLAN        | 3.00   | 69.00  | 0.956                  |
| UMTS 1750         | 0.50   | -58.50 | 0.840                  |
| UMTS 1900         | 3.50   | -57.00 | 0.737                  |
| PCS CDMA          | 3.50   | -57.00 | 0.932                  |
| LTE Band 66 (AWS) | 2.00   | -57.00 | 0.770                  |
| LTE Band 25 (PCS) | 3.50   | -57.00 | 0.861                  |

| FCC ID: ZNFL455DL      |                         | SAR EVALUATION REPORT | Approved by:  Quality Manager |
|------------------------|-------------------------|-----------------------|-------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:             | D 407 400                     |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset      | Page 107 of 129               |

**Table 12-15** Body Worn Back Side SAR to Peak Location Separation Ratio Calculations

| Anten      | Standalone SAR<br>(W/kg) |       | Standalone<br>SAR Sum<br>(W/kg) | Peak SAR<br>Separation<br>Distance (mm) | SPLS Ratio | Plot<br>Number                         |   |
|------------|--------------------------|-------|---------------------------------|-----------------------------------------|------------|----------------------------------------|---|
| Ant "a"    | Ant "b"                  | а     | b                               | a+b                                     | $D_{a-b}$  | (a+b) <sup>1.5</sup> /D <sub>a-b</sub> |   |
| 5 GHz WLAN | UMTS 1750                | 0.956 | 0.840                           | 1.796                                   | 127.52     | 0.02                                   | 1 |
| 5 GHz WLAN | UMTS 1900                | 0.956 | 0.737                           | 1.693                                   | 126.00     | 0.02                                   | 2 |
| 5 GHz WLAN | PCS CDMA                 | 0.956 | 0.932                           | 1.888                                   | 126.00     | 0.02                                   | 3 |
| 5 GHz WLAN | LTE Band 66 (AWS)        | 0.956 | 0.770                           | 1.726                                   | 126.00     | 0.02                                   | 4 |
| 5 GHz WLAN | LTE Band 25 (PCS)        | 0.956 | 0.861                           | 1.817                                   | 126.00     | 0.02                                   | 5 |

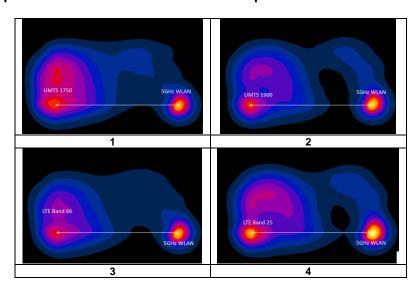
**Table 12-16 Body Worn Back Side SAR to Peak Location Separation Ratio Plots** 



| FCC ID: ZNFL455DL         | PCTEST:                 | SAR EVALUATION REPORT LG | Approved by: Quality Manager |  |
|---------------------------|-------------------------|--------------------------|------------------------------|--|
| Document S/N: Test Dates: |                         | DUT Type:                | Dage 400 of 420              |  |
| 1M1911290211-01-R2.ZNF    | 12/05/2019 - 01/16/2020 | Portable Handset         | Page 108 of 129              |  |

#### 12.7.2

#### **Hotspot SPLSR Evaluation and Analysis**


Table 12-17
Peak SAR Locations for Hotspot

| Mode/Band         | x (mm) | y (mm) | Reported<br>SAR (W/kg) |
|-------------------|--------|--------|------------------------|
| 5 GHz WLAN        | 1.00   | 68.00  | 0.875                  |
| UMTS 1750         | 0.50   | -58.50 | 0.840                  |
| UMTS 1900         | 3.50   | -57.00 | 0.737                  |
| LTE Band 66 (AWS) | 2.00   | -57.00 | 0.770                  |
| LTE Band 25 (PCS) | 3.50   | -57.00 | 0.861                  |

Table 12-18
Hotspot Back Side SAR to Peak Location Separation Ratio Calculations

| 1100       | spot baok olac oak | _ooai.o. | i ocparatioi             | i italio oaloait | 1110110          |                                        |          |  |  |
|------------|--------------------|----------|--------------------------|------------------|------------------|----------------------------------------|----------|--|--|
|            | Antenna Pair       |          | Standalone SAR<br>(W/kg) |                  | Standalone SAR   |                                        | Peak SAR |  |  |
| Anten      |                    |          |                          |                  | Separation       | SPLS Ratio                             | Plot     |  |  |
|            |                    | ( ۷۷ /   | rg)                      | (W/kg)           | Distance (mm)    |                                        | Number   |  |  |
| Ant "a"    | Ant "b"            | а        | b                        | a+b              | D <sub>a-b</sub> | (a+b) <sup>1.5</sup> /D <sub>a-b</sub> |          |  |  |
| 5 GHz WLAN | UMTS 1750          | 0.875    | 0.840                    | 1.715            | 126.50           | 0.02                                   | 1        |  |  |
| 5 GHz WLAN | UMTS 1900          | 0.875    | 0.737                    | 1.612            | 125.02           | 0.02                                   | 2        |  |  |
| 5 GHz WLAN | LTE Band 66 (AWS)  | 0.875    | 0.770                    | 1.645            | 125.00           | 0.02                                   | 3        |  |  |
| 5 GHz WLAN | LTE Band 25 (PCS)  | 0.875    | 0.861                    | 1.736            | 125.02           | 0.02                                   | 4        |  |  |

Table 12-19
Hotspot Back Side SAR to Peak Location Separation Ratio Plots



| FCC ID: ZN | NFL455DL       | PCTEST:                 | SAR EVALUATION REPORT | LG | Approved by:  Quality Manager |
|------------|----------------|-------------------------|-----------------------|----|-------------------------------|
| Document   | S/N:           | Test Dates:             | DUT Type:             |    | Dags 400 of 420               |
| 1M1911290  | )211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset      |    | Page 109 of 129               |

#### **Phablet SPLSR Evaluation and Analysis** 12.7.3

**Table 12-20 Peak SAR Locations for Phablet Back Side** 

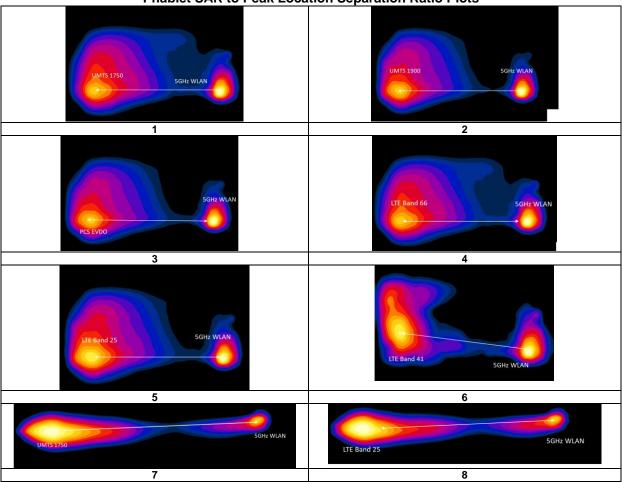
| Mode/Band          | x (mm) | y (mm) | Reported SAR<br>(W/kg) |
|--------------------|--------|--------|------------------------|
| 5 GHz WLAN Phablet | 1.00   | 66.00  | 1.848                  |
| UMTS 1750          | 2.00   | -58.50 | 2.423                  |
| UMTS 1900          | 2.00   | -58.50 | 2.904                  |
| PCS EVDO           | 2.00   | -57.00 | 3.005                  |
| LTE Band 66 (AWS)  | 7.80   | -69.00 | 2.859                  |
| LTE Band 25 (PCS)  | 0.50   | -60.00 | 3.166                  |
| LTE Band 41        | -15.40 | -66.00 | 3.078                  |

**Table 12-21** Phablet Back side SAR to Peak Location Separation Ratio Calculations

| Antenna Pair       |                   |       | one SAR<br>/kg) | Standalone<br>SAR Sum<br>(W/kg) | Peak SAR<br>Separation<br>Distance (mm) | SPLS Ratio                             | Plot<br>Number |
|--------------------|-------------------|-------|-----------------|---------------------------------|-----------------------------------------|----------------------------------------|----------------|
| Ant "a"            | Ant "b"           | а     | b               | a+b                             | D <sub>a-b</sub>                        | (a+b) <sup>1.5</sup> /D <sub>a-b</sub> |                |
| 5 GHz WLAN Phablet | UMTS 1750         | 1.848 | 2.423           | 4.271                           | 124.50                                  | 0.07                                   | 1              |
| 5 GHz WLAN Phablet | UMTS 1900         | 1.848 | 2.904           | 4.752                           | 124.50                                  | 0.08                                   | 2              |
| 5 GHz WLAN Phablet | PCS EVDO          | 1.848 | 3.005           | 4.853                           | 123.00                                  | 0.09                                   | 3              |
| 5 GHz WLAN Phablet | LTE Band 66 (AWS) | 1.848 | 2.859           | 4.707                           | 135.17                                  | 0.08                                   | 4              |
| 5 GHz WLAN Phablet | LTE Band 25 (PCS) | 1.848 | 3.166           | 5.014                           | 126.00                                  | 0.09                                   | 5              |
| 5 GHz WLAN Phablet | LTE Band 41       | 1.848 | 3.078           | 4.926                           | 133.01                                  | 0.08                                   | 6              |

| FCC ID: ZNFL455DL      | PCTEST*                 | SAR EVALUATION REPORT | Approved by:  Quality Manager |
|------------------------|-------------------------|-----------------------|-------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:             | Dogg 440 of 420               |
| 1M1911290211-01-R2.ZNF | 12/05/2019 – 01/16/2020 | Portable Handset      | Page 110 of 129               |

**Table 12-22** Peak SAR Locations for Phablet Left Edge


| Mode/Band          | x (mm) | y (mm) | Reported SAR<br>(W/kg) |
|--------------------|--------|--------|------------------------|
| 5 GHz WLAN phablet | -32.00 | 68.00  | 0.995                  |
| UMTS 1750          | -25.10 | -58.90 | 3.161                  |
| LTE Band 25 (PCS)  | -27.50 | -73.00 | 3.125                  |

**Table 12-23** 

Phablet Left Edge SAR to Peak Location Separation Ratio Calculations

|   | Antenna Pair                 |                   | Standalone SAR<br>(W/kg) |       | SAR Sum   Separation   SPLS Ratio |                  | SPLS Ratio                             | Plot<br>Number |
|---|------------------------------|-------------------|--------------------------|-------|-----------------------------------|------------------|----------------------------------------|----------------|
|   | Ant "a"                      | Ant "b"           | а                        | b     | a+b                               | D <sub>a-b</sub> | (a+b) <sup>1.5</sup> /D <sub>a-b</sub> |                |
|   | 5 GHz WLAN phablet UMTS 1750 |                   | 0.995                    | 3.161 | 4.156                             | 127.09           | 0.07                                   | 7              |
| Γ | 5 GHz WLAN phablet           | LTE Band 25 (PCS) | 0.995                    | 3.125 | 4.12                              | 141.07           | 0.06                                   | 8              |

**Table 12-24** Phablet SAR to Peak Location Separation Ratio Plots



| FCC ID: ZNFL455DL      | PCTEST*                 | SAR EVALUATION REPORT | Approved by:  Quality Manager |
|------------------------|-------------------------|-----------------------|-------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:             | Dogg 111 of 120               |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset      | Page 111 of 129               |

## 12.8 Additional Simultaneous SAR Evaluation and Analysis for Main Band, Bluetooth and 5 GHz WLAN Operations

Per KDB Publication 865664, when the sum of the transmitters potentially operating simultaneously is greater than the 1.6 W/kg or 4.0 W/kg and the sum to peak SAR location separation ratio between any pair of transmitters is more than 0.04 for 1g or 0.1 for 10g, SAR tests are required for simultaneous transmission to determine the aggregate 1g or 10g SAR. When required, each transmitter is tested for simultaneous transmission in the configuration, channel and operating mode that resulted in the highest SAR during the stand-alone evaluation.

The Bluetooth and 5GHz WLAN transmitters are co-located antenna pair and spatially separated from 2G/3G/4G antenna. Per November 2019 TCB Workshop Notes, enlarged volumetric scans on co-located antenna pair were performed for the Bluetooth and 5GHz WLAN. The SPLSR procedure for the spatially separated 2G/3G/4G antenna and aggregated SAR distribution of the co-located Bluetooth/5GHz WLAN antenna pair was applied according to KDB Publication 447498.

# 12.8.1 Body-worn Back Side Volumetric SAR Evaluation and Analysis for Bluetooth, and 5GHz WLAN Simultaneous Transmission

## Table 12-25 Simultaneous Transmission SAR Analysis

| Band/ Mode          | Configuration                                        | Frequency [MHz] | Measured<br>Standalone 1g SAR<br>[W/kg] | Maximum<br>Allowed Power<br>[dBm] | Conducted<br>Power [dBm] | Duty<br>Cycle (%) | Scaling Factor<br>(Cond Power) | Scaling Factor<br>(Duty Cycle) | Volumetric<br>1g SAR<br>[W/kg] | Scaled Volumetric<br>1g SAR [W/kg] | Volumetric SAR<br>Plot Number |
|---------------------|------------------------------------------------------|-----------------|-----------------------------------------|-----------------------------------|--------------------------|-------------------|--------------------------------|--------------------------------|--------------------------------|------------------------------------|-------------------------------|
| Bluetooth           | Back side, Ch. 78, 1 Mbps,<br>10 mm                  | 2480            | 0.036                                   | 9                                 | 8.54                     | 76.8              | 1.112                          | 1.302                          | 0.049                          | 0.072                              | A50                           |
| 5GHz WLAN Body Worn | Back side, 802.11a, 20 MHz, Ch. 56, 6<br>Mbps, 10 mm | 5280            | 0.900                                   | 16                                | 15.87                    | 97.0              | 1.030                          | 1.031                          | 0.871                          | 0.925                              | A51                           |

| Simultaneous | Transmission Bands/Modes | Scaled Multi-Band SAR (W/kg) | Simultaneous<br>SAR Plot |
|--------------|--------------------------|------------------------------|--------------------------|
| Bluetooth    | 5GHz WLAN Body Worn      | 0.952                        | A53                      |

#### Note:

- 1. All volumetric zoom scans were performed with DASY52 SAR system version 52.10. Post processor SEMCAD X Versions 14.6.12 (7470) multiband combiner requires enlarged zoom scans to overlap but does not require measurement point resolutions within the volumes to be identical for interpolation and superposition.
- 2. Each antenna was evaluated independently using the channel/configuration that produced the highest measured SAR when the standalone SAR was tested.
- 3. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v05. The simultaneous transmission SAR results of the individual transmitters were scaled using SEMCAD X during processing.

| FCC ID: ZNFL455DL      | PCTEST*                 | SAR EVALUATION REPORT | Approved by:  Quality Manager |
|------------------------|-------------------------|-----------------------|-------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:             | Dogg 442 of 420               |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset      | Page 112 of 129               |

# 12.8.2 Body-worn SPLSR Evaluation and Analysis for Main Band, Bluetooth and 5GHz WLAN simultaneous Transmission

Table 12-26
Peak SAR Locations for Body-worn Back Side

|                          | <u> </u> |        |                        |
|--------------------------|----------|--------|------------------------|
| Mode/Band                | x (mm)   | y (mm) | Reported SAR<br>(W/kg) |
| 5 GHz WLAN and Bluetooth | 7.00     | 68.00  | 0.952                  |
| GPRS 850                 | -31.00   | 1.50   | 0.632                  |
| UMTS 1750                | 0.50     | -58.50 | 0.840                  |
| UMTS 1900                | 3.50     | -57.00 | 0.737                  |
| PCS CDMA                 | 3.50     | -57.00 | 0.932                  |
| LTE Band 13              | -29.50   | -5.00  | 0.597                  |
| LTE Band 66 (AWS)        | 2.00     | -57.00 | 0.770                  |
| LTE Band 25 (PCS)        | 3.50     | -57.00 | 0.861                  |

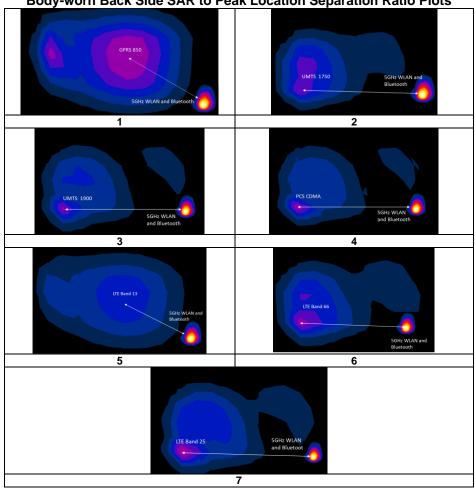

The Bluetooth and 5 GHz WIFI SAR values above represent the aggregate distributions from the simultaneous transmission (volumetric) SAR evaluation.

Table 12-27
Body-worn Back Side SAR to Peak Location Separation Ratio Plots

| Antenna                  | Antenna Pair      |       |       | Standalone<br>SAR Sum<br>(W/kg) | Peak SAR Separation Distance (mm) | SPLS Ratio                             | Plot<br>Number |
|--------------------------|-------------------|-------|-------|---------------------------------|-----------------------------------|----------------------------------------|----------------|
| Ant "a"                  | Ant "b"           | a b   |       | a+b                             | D <sub>a-b</sub>                  | (a+b) <sup>1.5</sup> /D <sub>a-b</sub> |                |
| 5 GHz WLAN and Bluetooth | GPRS 850          | 0.952 | 0.632 | 1.584                           | 76.59                             | 0.03                                   | 1              |
| 5 GHz WLAN and Bluetooth | UMTS 1750         | 0.952 | 0.840 | 1.792                           | 126.67                            | 0.02                                   | 2              |
| 5 GHz WLAN and Bluetooth | UMTS 1900         | 0.952 | 0.737 | 1.689                           | 125.05                            | 0.02                                   | 3              |
| 5 GHz WLAN and Bluetooth | PCS CDMA          | 0.952 | 0.932 | 1.884                           | 125.05                            | 0.02                                   | 4              |
| 5 GHz WLAN and Bluetooth | LTE Band 13       | 0.952 | 0.597 | 1.549                           | 81.62                             | 0.02                                   | 5              |
| 5 GHz WLAN and Bluetooth | LTE Band 66 (AWS) | 0.952 | 0.770 | 1.722                           | 125.10                            | 0.02                                   | 6              |
| 5 GHz WLAN and Bluetooth | LTE Band 25 (PCS) | 0.952 | 0.861 | 1.813                           | 125.05                            | 0.02                                   | 7              |

| FCC ID: ZNFL455DL      | PCTEST                  | SAR EVALUATION REPORT | Approved by:  Quality Manager |
|------------------------|-------------------------|-----------------------|-------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:             | Dage 442 of 420               |
| 1M1911290211-01-R2.ZNF | 12/05/2019 – 01/16/2020 | Portable Handset      | Page 113 of 129               |

**Table 12-28** Body-worn Back Side SAR to Peak Location Separation Ratio Plots



| FCC ID: ZNFL455DL      |                         | SAR EVALUATION REPORT | Approved by: Quality Manager |
|------------------------|-------------------------|-----------------------|------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:             | D 444                        |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset      | Page 114 of 129              |

# 12.8.3 Hotspot Back Side Volumetric SAR Evaluation and Analysis for Bluetooth, and 5GHz WLAN Simultaneous Transmission

## Table 12-29 Simultaneous Transmission SAR Analysis

| Band/ Mode        | Configuration                                        | Frequency [MHz] | Measured<br>Standalone 1g SAR<br>[W/kg] | Maximum<br>Allowed Power<br>[dBm] | Conducted<br>Power [dBm] | Duty<br>Cycle (%) | Scaling Factor<br>(Cond Power) | Scaling Factor<br>(Duty Cycle) | Volumetric<br>1g SAR<br>[W/kg] | Scaled Volumetric<br>1g SAR [W/kg] | Volumetric SAR<br>Plot Number |
|-------------------|------------------------------------------------------|-----------------|-----------------------------------------|-----------------------------------|--------------------------|-------------------|--------------------------------|--------------------------------|--------------------------------|------------------------------------|-------------------------------|
| Bluetooth         | Back side, Ch. 78, 1 Mbps,<br>10 mm                  | 2480            | 0.036                                   | 9                                 | 8.54                     | 76.8              | 1.112                          | 1.302                          | 0.049                          | 0.072                              | A50                           |
| 5GHz WLAN Hotspot | Back side, 802.11a, 20 MHz, Ch. 48, 6<br>Mbps, 10 mm | 5240            | 0.807                                   | 16                                | 15.78                    | 97.0              | 1.052                          | 1.031                          | 0.790                          | 0.857                              | A52                           |

| Simultaneous | Transmission Bands/Modes | Scaled Multi-Band SAR (W/kg) | Simultaneous |
|--------------|--------------------------|------------------------------|--------------|
|              |                          |                              | SAR Plot     |
| Bluetooth    | 5GHz WLAN Hotspot        | 0.891                        | A54          |

#### Note:

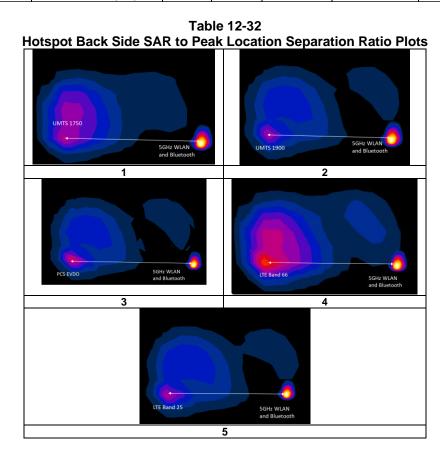
- 1. All volumetric zoom scans were performed with DASY52 SAR system version 52.10.2.1504 Post processor SEMCAD X Versions 14.6.12 (7470) multiband combiner requires enlarged zoom scans to overlap but does not require measurement point resolutions within the volumes to be identical for interpolation and superposition.
- 2. Each antenna was evaluated independently using the channel/configuration that produced the highest measured SAR when the standalone SAR was tested.
- 3. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v05. The simultaneous transmission SAR results of the individual transmitters were scaled using SEMCAD X during processing.

## 12.8.4 Hotspot SPLSR Evaluation and Analysis for Main Band, Bluetooth and 5GHz WLAN simultaneous Transmission

Table 12-30
Peak SAR Locations for Hotspot Back Side

| Mode/Band                | x (mm) | y (mm) | Reported SAR<br>(W/kg) |
|--------------------------|--------|--------|------------------------|
| 5 GHz WLAN and Bluetooth | 3.00   | 72.00  | 0.891                  |
| UMTS 1750                | 0.50   | -58.50 | 0.840                  |
| UMTS 1900                | 3.50   | -57.00 | 0.737                  |
| PCS EVDO                 | 3.50   | -57.00 | 0.702                  |
| LTE Band 66 (AWS)        | 2.00   | -57.00 | 0.770                  |
| LTE Band 25 (PCS)        | 3.50   | -57.00 | 0.861                  |

The Bluetooth and 5 GHz WIFI SAR values above represent the aggregate distributions from the simultaneous transmission (volumetric) SAR evaluation.


| FCC ID: ZNFL455DL      | PCTEST                  | SAR EVALUATION REPORT | Approved by:  Quality Manager |
|------------------------|-------------------------|-----------------------|-------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:             | Dage 115 of 120               |
| 1M1911290211-01-R2.ZNF | 12/05/2019 – 01/16/2020 | Portable Handset      | Page 115 of 129               |

© 2020 PCTEST Engineering Laboratory, Inc.

09/11/2019

Table 12-31
Hotspot Back Side SAR to Peak Location Separation Ratio Plots

| Antenna                                    | Antenna Pair      |       |       | Standalone<br>SAR Sum<br>(W/kg) | Peak SAR<br>Separation<br>Distance (mm) | SPLS Ratio                             | Plot<br>Number |
|--------------------------------------------|-------------------|-------|-------|---------------------------------|-----------------------------------------|----------------------------------------|----------------|
| Ant "a"                                    | Ant "b"           | а     | b     | a+b                             | D <sub>a-b</sub>                        | (a+b) <sup>1.5</sup> /D <sub>a-b</sub> |                |
| 5 GHz WLAN and Bluetooth                   | UMTS 1750         | 0.891 | 0.840 | 1.731                           | 130.52                                  | 0.02                                   | 1              |
| 5 GHz WLAN and Bluetooth                   | UMTS 1900         | 0.891 | 0.737 | 1.628                           | 129.00                                  | 0.02                                   | 2              |
| 5 GHz WLAN and Bluetooth                   | PCS EVDO          | 0.891 | 0.702 | 1.593                           | 129.00                                  | 0.02                                   | 3              |
| 5 GHz WLAN and Bluetooth                   | LTE Band 66 (AWS) | 0.891 | 0.770 | 1.661                           | 129.00                                  | 0.02                                   | 4              |
| 5 GHz WLAN and Bluetooth LTE Band 25 (PCS) |                   | 0.891 | 0.861 | 1.752                           | 129.00                                  | 0.02                                   | 5              |



#### 12.9 Simultaneous Transmission Conclusion

The above analysis for all the worst-case simultaneous transmission conditions were below the SAR limit. Therefore, the above analysis is sufficient to determine that simultaneous transmission cases will not exceed the SAR limit per FCC KDB Publication 447498 D01v06 and IEEE 1528-2013 Section 6.3.4.1.2.

| FCC ID: ZNFL455DL      | PCTEST*                 | SAR EVALUATION REPORT | Approved by: Quality Manager |
|------------------------|-------------------------|-----------------------|------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:             | Dogg 116 of 120              |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset      | Page 116 of 129              |

#### 13 SAR MEASUREMENT VARIABILITY

#### 13.1 Measurement Variability

Per FCC KDB Publication 865664 D01v01r04, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement Variability was assessed using the following procedures for each frequency band:

- 1) When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once.
- 2) A second repeated measurement was performed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg (~ 10% from the 1g SAR limit).
- 3) A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- 4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg
- 5) When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

Table 13-1 Head SAR Measurement Variability Results

|      |                                                                                                   |         |                           | HEAD VA                               | RIABILIT            | Y RESUL              | TS                          |        |                             |       |                             |       |        |     |
|------|---------------------------------------------------------------------------------------------------|---------|---------------------------|---------------------------------------|---------------------|----------------------|-----------------------------|--------|-----------------------------|-------|-----------------------------|-------|--------|-----|
| Band | Rand FREQUENCY Mode                                                                               | Service | vice Side                 |                                       | Data Rate<br>(Mbps) | Measured<br>SAR (1g) | 1st<br>Repeated<br>SAR (1g) | Ratio  | 2nd<br>Repeated<br>SAR (1g) | Ratio | 3rd<br>Repeated<br>SAR (1g) | Ratio |        |     |
|      | MHz                                                                                               | Ch.     |                           |                                       |                     |                      |                             | (W/kg) | (W/kg)                      |       | (W/kg)                      |       | (W/kg) |     |
| 2450 | 2437.00                                                                                           | 6       | 802.11b, 22 MHz Bandwidth | DSSS                                  | Right               | Cheek                | 1                           | 0.844  | 0.825                       | 1.02  | N/A                         | N/A   | N/A    | N/A |
|      | ANSI / IEEE C95.1 1992 - SAFETY LIMIT<br>Spatial Peak<br>Uncontrolled Exposure/General Population |         |                           | - SAFETY LIMIT  Head  1.6 W/kg (mW/g) |                     |                      |                             |        |                             |       |                             |       |        |     |

Table 13-2
Body SAR Measurement Variability Results

|        |                          | Body OAN Micasurement Variability Nesults |                                 |             |        |                 |         |                      |                             |          |                             |       |                             |       |
|--------|--------------------------|-------------------------------------------|---------------------------------|-------------|--------|-----------------|---------|----------------------|-----------------------------|----------|-----------------------------|-------|-----------------------------|-------|
|        | BODY VARIABILITY RESULTS |                                           |                                 |             |        |                 |         |                      |                             |          |                             |       |                             |       |
| Band   | FREQUENCY                | NCY                                       | Mode                            | Service Ra  |        | Side            | Spacing | Measured<br>SAR (1g) | 1st<br>Repeated<br>SAR (1g) | Ratio    | 2nd<br>Repeated<br>SAR (1g) | Ratio | 3rd<br>Repeated<br>SAR (1g) | Ratio |
|        | MHz                      | Ch.                                       |                                 |             | (Mbps) |                 |         | (W/kg)               | (W/kg)                      |          | (W/kg)                      |       | (W/kg)                      |       |
| 1750 1 | 1732.40                  | 1412                                      | UMTS 1750                       | RMC         | N/A    | back            | 10 mm   | 0.819                | 0.793                       | 1.03     | N/A                         | N/A   | N/A                         | N/A   |
| 1900 1 | 1908.75                  | 1175                                      | PCS CDMA                        | TDSO / SO32 | N/A    | back            | 10 mm   | 0.888                | 0.873                       | 1.02     | N/A                         | N/A   | N/A                         | N/A   |
| 5250 5 | 5280.00                  | 56                                        | 802.11a, 20 MHz Bandwidth       | OFDM        | 6      | back            | 10 mm   | 0.898                | 0.900                       | 1.00     | N/A                         | N/A   | N/A                         | N/A   |
|        |                          |                                           | ANSI / IEEE C95.1 1992 - SAFET  | TY LIMIT    |        |                 |         |                      |                             | Во       | dy                          | •     |                             |       |
|        | Spatial Peak             |                                           |                                 |             |        | 1.6 W/kg (mW/g) |         |                      |                             |          |                             |       |                             |       |
|        |                          |                                           | Uncontrolled Exposure/General F | opulation   |        |                 |         |                      | ave                         | eraged o | ver 1 gram                  |       |                             |       |

| FCC ID: ZNFL455DL      | PCTEST                  | SAR EVALUATION REPORT LG | Approved by: Quality Manager |
|------------------------|-------------------------|--------------------------|------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:                | D 447 -f 400                 |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset         | Page 117 of 129              |

## Table 13-3 Phablet SAR Measurement Variability Results

|      | Thabiet OAN Measurement variability Nesauts           |       |                                     |                           |      |         |                       |                              |          |                              |       |                              |       |  |
|------|-------------------------------------------------------|-------|-------------------------------------|---------------------------|------|---------|-----------------------|------------------------------|----------|------------------------------|-------|------------------------------|-------|--|
|      | PHABLET VARIABILITY RESULTS                           |       |                                     |                           |      |         |                       |                              |          |                              |       |                              |       |  |
| Band | FREQUE                                                | NCY   | Mode                                | Service                   | Side | Spacing | Measured<br>SAR (10g) | 1st<br>Repeated<br>SAR (10g) | Ratio    | 2nd<br>Repeated<br>SAR (10g) | Ratio | 3rd<br>Repeated<br>SAR (10g) | Ratio |  |
|      | MHz                                                   | Ch.   |                                     |                           |      |         | (W/kg)                | (W/kg)                       |          | (W/kg)                       |       | (W/kg)                       |       |  |
| 1750 | 1752.60                                               | 1513  | UMTS 1750                           | RMC                       | left | 0 mm    | 3.060                 | 3.000                        | 1.02     | N/A                          | N/A   | N/A                          | N/A   |  |
| 1900 | 1905.00                                               | 26590 | LTE Band 25 (PCS), 20 MHz Bandwidth | QPSK, 50 RB, 25 RB Offset | back | 0 mm    | 3.080                 | 3.040                        | 1.01     | N/A                          | N/A   | N/A                          | N/A   |  |
| 2450 | 2506.00                                               | 39750 | LTE Band 41, 20 MHz Bandwidth       | QPSK, 50 RB, 50 RB Offset | back | 0 mm    | 2.210                 | 2.020                        | 1.09     | N/A                          | N/A   | N/A                          | N/A   |  |
| 2600 | 2636.50                                               | 41055 | LTE Band 41, 20 MHz Bandwidth       | QPSK, 50 RB, 0 RB Offset  | back | 0 mm    | 2.920                 | 2.910                        | 1.00     | N/A                          | N/A   | N/A                          | N/A   |  |
|      | ANSI / IEEE C95.1 1992 - SAFETY LIMIT                 |       |                                     |                           |      |         | •                     | •                            | Pha      | blet                         |       | •                            |       |  |
|      | Spatial Peak Uncontrolled Exposure/General Population |       |                                     |                           |      |         |                       | 4                            | 1.0 W/kg | (mW/g)                       |       |                              |       |  |
|      |                                                       |       |                                     |                           |      |         |                       | ave                          | raged ov | er 10 gram                   | S     |                              |       |  |

#### 13.2 Measurement Uncertainty

The measured SAR was <1.5 W/kg for 1g and <3.75 W/kg for 10g for all frequency bands. Therefore, per KDB Publication 865664 D01v01r04, the extended measurement uncertainty analysis per IEEE 1528-2013 was not required.

| FCC ID: ZNFL455DL      | PCTEST*                 | SAR EVALUATION REPORT | Approved by: Quality Manager |
|------------------------|-------------------------|-----------------------|------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:             | Dogg 440 of 420              |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset      | Page 118 of 129              |

#### 14 ADDITIONAL TESTING PER FCC GUIDANCE

#### 14.1 LTE Band 41 Power Class 2 and Power Class 3 Linearity

This device supports Power Class 2 and Power Class 3 operations for LTE Band 41. The highest available duty cycle for Power Class 2 operations is 43.3 % using UL-DL configuration 1. Per May 2017 TCB Workshop Notes based on the device behavior, all SAR tests were performed using Power Class 3. SAR with Power Class 2 at the highest power and available duty factor was additionally performed for the Power Class 3 configuration with the highest SAR for each exposure condition. The linearity between the Power Class 2 and Power Class 3 SAR results and the respective frame averaged powers was calculated to determine that the results were linear. When ULCA is active, the linearity between the Power Class 2 with ULCA active and Power Class 3 with ULCA active SAR results and the respective frame averaged powers was calculated to determine that the results were linear. Per May 2017 TCB Workshop, no additional SAR measurements were required since the linearity between power classes was < 10% and all reported SAR values were < 1.4 W/kg for 1g and < 3.5 W/kg for 10g. LTE Band 41 SAR testing with power class 2 at the highest power and available duty factor was additionally performed for the power class 3 configuration with the highest SAR for each exposure condition.

Table 14-1 LTE Band 41 Head Linearity Data

| LTE Band 41 PC3 | LTE Band 41 PC2                   |
|-----------------|-----------------------------------|
| 24.70           | 27.20                             |
| 24.60           | 26.80                             |
| 0.152           | 0.185                             |
| 288.40          | 478.63                            |
| 63.3%           | 43.3%                             |
| 182.56          | 207.25                            |
|                 | 7.21%                             |
|                 | 24.60<br>0.152<br>288.40<br>63.3% |

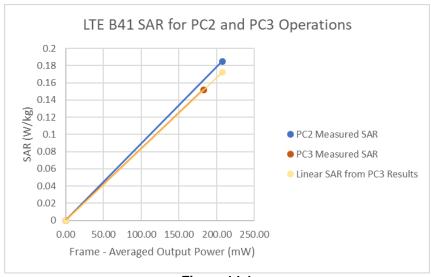



Figure 14-1 LTE Band 41 Head Linearity

| FCC ID: ZNFL455DL      | PCTEST                  | SAR EVALUATION REPORT | Approved by:  Quality Manager |
|------------------------|-------------------------|-----------------------|-------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:             | Dage 110 of 120               |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset      | Page 119 of 129               |

**Table 14-2** LTE Band 41 ULCA Head Linearity Data

|                                     | LTE Band 41 PC3 | LTE Band 41 PC2 |  |  |  |
|-------------------------------------|-----------------|-----------------|--|--|--|
|                                     |                 |                 |  |  |  |
| Maximum Allowed Output Power (dBm)  | 24.70           | 27.20           |  |  |  |
| Measured Output Power (dBm)         | 24.52           | 26.67           |  |  |  |
| Measured SAR (W/kg)                 | 0.143           | 0.170           |  |  |  |
| Measured Power (mW)                 | 283.14          | 464.52          |  |  |  |
| Duty Cycle                          | 63.3%           | 43.3%           |  |  |  |
| Frame Averaged Output Power (mW)    | 179.23          | 201.14          |  |  |  |
| % deviation from expected linearity |                 | 5.93%           |  |  |  |

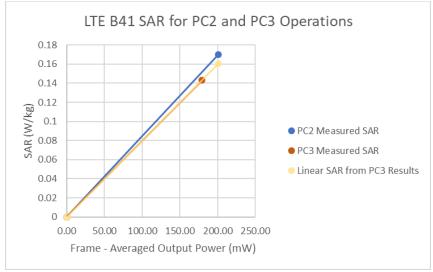



Figure 14-2 LTE Band 41 ULCA Head Linearity

**Table 14-3** LTE Band 41 Body-Worn Linearity Data

|                                     | LTE Band 41 PC3 | LTE Band 41 PC2 |  |  |  |
|-------------------------------------|-----------------|-----------------|--|--|--|
|                                     |                 |                 |  |  |  |
| Maximum Allowed Output Power (dBm)  | 24.70           | 27.20           |  |  |  |
| Measured Output Power (dBm)         | 24.60           | 26.80           |  |  |  |
| Measured SAR (W/kg)                 | 0.439           | 0.534           |  |  |  |
| Measured Power (mW)                 | 288.40          | 478.63          |  |  |  |
| Duty Cycle                          | 63.3%           | 43.3%           |  |  |  |
| Frame Averaged Output Power (mW)    | 182.56          | 207.25          |  |  |  |
| % deviation from expected linearity |                 | 7.15%           |  |  |  |

| FCC ID: ZNFL455DL                      | PCTEST"                 | SAR EVALUATION REPORT | LG | Approved by: Quality Manager |
|----------------------------------------|-------------------------|-----------------------|----|------------------------------|
| Document S/N:                          | Test Dates:             | DUT Type:             |    | Dogg 120 of 120              |
| 1M1911290211-01-R2.ZNF                 | 12/05/2019 - 01/16/2020 | Portable Handset      |    | Page 120 of 129              |
| 20 PCTEST Engineering Laboratory, Inc. |                         |                       |    | REV 21.4 M                   |

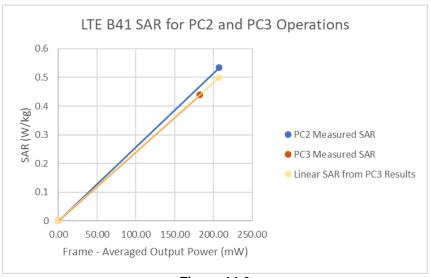



Figure 14-3 LTE Band 41 Body-Worn Linearity

**Table 14-4** LTE Band 41 ULCA Body-Worn Linearity Data

|                                     | LTE Band 41 PC3 | LTE Band 41 PC2 |  |
|-------------------------------------|-----------------|-----------------|--|
|                                     |                 |                 |  |
| Maximum Allowed Output Power (dBm)  | 24.70           | 27.20           |  |
| Measured Output Power (dBm)         | 24.52           | 26.67           |  |
| Measured SAR (W/kg)                 | 0.421           | 0.497           |  |
| Measured Power (mW)                 | 283.14          | 464.52          |  |
| Duty Cycle                          | 63.3%           | 43.3%           |  |
| Frame Averaged Output Power (mW)    | 179.23          | 201.14          |  |
| % deviation from expected linearity |                 | 5.19%           |  |
|                                     |                 |                 |  |



Figure 14-4 LTE Band 41 ULCA Body-Worn Linearity

|     |                                        |                         | -                     |            |                               |
|-----|----------------------------------------|-------------------------|-----------------------|------------|-------------------------------|
|     | FCC ID: ZNFL455DL                      | PCTEST:                 | SAR EVALUATION REPORT | <b>L</b> G | Approved by:  Quality Manager |
|     | Document S/N:                          | Test Dates:             | DUT Type:             |            | Page 121 of 129               |
|     | 1M1911290211-01-R2.ZNF                 | 12/05/2019 - 01/16/2020 | Portable Handset      |            | Fage 121 01 129               |
| 202 | 20 PCTEST Engineering Laboratory, Inc. |                         |                       |            | REV 21.4 M                    |

**Table 14-5** LTE Band 41 Hotspot Linearity Data

| LIL Band 41 Hotspot Emeanty Data    |                 |                 |  |  |  |  |
|-------------------------------------|-----------------|-----------------|--|--|--|--|
|                                     | LTE Band 41 PC3 | LTE Band 41 PC2 |  |  |  |  |
|                                     |                 |                 |  |  |  |  |
| Maximum Allowed Output Power (dBm)  | 24.70           | 27.20           |  |  |  |  |
| Measured Output Power (dBm)         | 24.60           | 26.80           |  |  |  |  |
| Measured SAR (W/kg)                 | 0.502           | 0.621           |  |  |  |  |
| Measured Power (mW)                 | 288.40          | 478.63          |  |  |  |  |
| Duty Cycle                          | 63.3%           | 43.3%           |  |  |  |  |
| Frame Averaged Output Power (mW)    | 182.56          | 207.25          |  |  |  |  |
| % deviation from expected linearity |                 | 8.97%           |  |  |  |  |

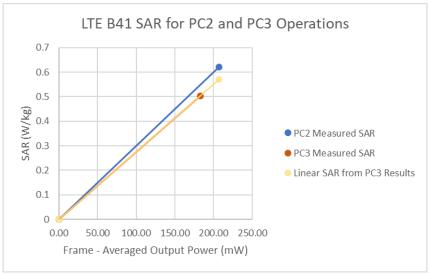



Figure 14-5 LTE Band 41 Hotspot Linearity

**Table 14-6** LTE Band 41 ULCA Hotspot Linearity Data

| LTE Band 41 PC3 | LTE Band 41 PC2                            |
|-----------------|--------------------------------------------|
|                 |                                            |
| 24.70           | 27.20                                      |
| 24.52           | 26.67                                      |
| 0.472           | 0.572                                      |
| 283.14          | 464.52                                     |
| 63.3%           | 43.3%                                      |
| 179.23          | 201.14                                     |
|                 | 7.99%                                      |
|                 | 24.70<br>24.52<br>0.472<br>283.14<br>63.3% |

| FCC ID: ZNFL455DL      | PCTEST*                 | SAR EVALUATION REPORT | Approved by: Quality Manager |
|------------------------|-------------------------|-----------------------|------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:             | Dogg 422 of 420              |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset      | Page 122 of 129              |

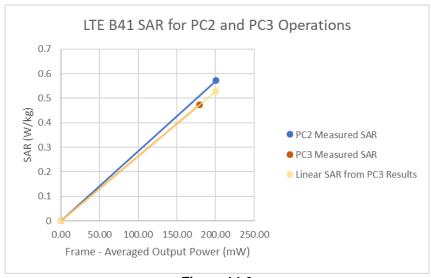



Figure 14-6
LTE Band 41 ULCA Hotspot Linearity

Table 14-7
LTE Band 41 Phablet Reduced Linearity Data

| Til Dana ii i nabiot itodaoca Imoanty Data |                               |  |  |  |  |  |
|--------------------------------------------|-------------------------------|--|--|--|--|--|
| LTE Band 41 PC3                            | LTE Band 41 PC2               |  |  |  |  |  |
|                                            |                               |  |  |  |  |  |
| 22.70                                      | 25.20                         |  |  |  |  |  |
| 22.53                                      | 24.97                         |  |  |  |  |  |
| 2.400                                      | 2.920                         |  |  |  |  |  |
| 179.06                                     | 314.05                        |  |  |  |  |  |
| 63.3%                                      | 43.3%                         |  |  |  |  |  |
| 113.35                                     | 135.98                        |  |  |  |  |  |
|                                            | 1.41%                         |  |  |  |  |  |
|                                            | LTE Band 41 PC3  22.70  22.53 |  |  |  |  |  |

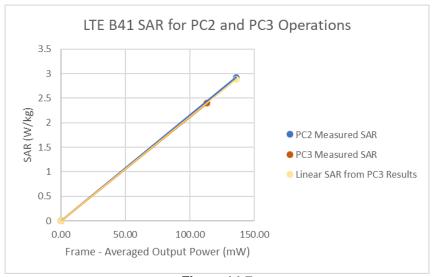



Figure 14-7
LTE Band 41 Phablet Linearity

| FCC ID: ZNFL455DL      | PCTEST                  | SAR EVALUATION REPORT LG | Approved by: Quality Manager |
|------------------------|-------------------------|--------------------------|------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:                | Domo 102 of 100              |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset         | Page 123 of 129              |

**Table 14-8** LTE Band 41 ULCA Phablet Linearity Data

|                                     | LTE Band 41 PC3 | LTE Band 41 PC2 |
|-------------------------------------|-----------------|-----------------|
|                                     |                 |                 |
| Maximum Allowed Output Power (dBm)  | 22.70           | 25.20           |
| Measured Output Power (dBm)         | 22.41           | 24.68           |
| Measured SAR (W/kg)                 | 2.230           | 2.600           |
| Measured Power (mW)                 | 174.18          | 293.76          |
| Duty Cycle                          | 63.3%           | 43.3%           |
| Frame Averaged Output Power (mW)    | 110.26          | 127.20          |
| % deviation from expected linearity |                 | 1.06%           |

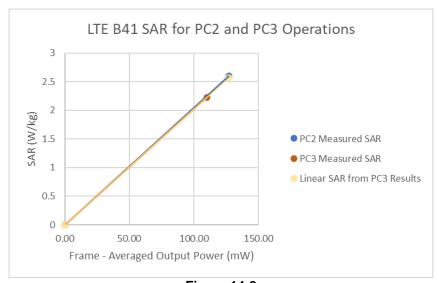



Figure 14-8 LTE Band 41 ULCA Phablet Linearity

| FCC ID: ZNFL455DL      | PCTEST*                 | SAR EVALUATION REPORT LG | Approved by:  Quality Manager |
|------------------------|-------------------------|--------------------------|-------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:                | D 404 4400                    |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset         | Page 124 of 129               |

| Manufacturer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Cal Date                                                                                                                                                                                        | Cal Interval                                                                                                                                                                                                      | Cal Due                                                                                                                                                                                                       | Serial Number                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Agilent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8753ES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S-Parameter Network Analyzer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3/11/2019                                                                                                                                                                                       | Annual                                                                                                                                                                                                            | 3/11/2020                                                                                                                                                                                                     | US39170122                                                                                                                 |
| Agilent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8753ES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S-Parameter Network Analyzer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8/26/2019                                                                                                                                                                                       | Annual                                                                                                                                                                                                            | 8/26/2020                                                                                                                                                                                                     | MY40000670                                                                                                                 |
| Agilent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8753ES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S-Parameter Vector Network Analyzer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9/19/2019                                                                                                                                                                                       | Annual                                                                                                                                                                                                            | 9/19/2020                                                                                                                                                                                                     | MY40003841                                                                                                                 |
| Agilent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E4438C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ESG Vector Signal Generator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5/22/2019                                                                                                                                                                                       | Annual                                                                                                                                                                                                            | 5/22/2020                                                                                                                                                                                                     | MY45091346                                                                                                                 |
| Agilent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E4438C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ESG Vector Signal Generator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5/23/2019                                                                                                                                                                                       | Annual                                                                                                                                                                                                            | 5/23/2020                                                                                                                                                                                                     | MY47270002                                                                                                                 |
| Agilent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E4438C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ESG Vector Signal Generator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3/8/2019                                                                                                                                                                                        | Biennial                                                                                                                                                                                                          | 3/8/2021                                                                                                                                                                                                      | MY42082385                                                                                                                 |
| Agilent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E4438C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ESG Vector Signal Generator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3/11/2019                                                                                                                                                                                       | Biennial                                                                                                                                                                                                          | 3/11/2021                                                                                                                                                                                                     | MY45090700                                                                                                                 |
| Agilent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E5515C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Wireless Communications Test Set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6/26/2019                                                                                                                                                                                       | Annual                                                                                                                                                                                                            | 6/26/2020                                                                                                                                                                                                     | MY50267125                                                                                                                 |
| Agilent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E5515C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Wireless Communications Test Set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9/25/2019                                                                                                                                                                                       | Annual                                                                                                                                                                                                            | 9/25/2020                                                                                                                                                                                                     | GB43304278                                                                                                                 |
| Agilent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E5515C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Wireless Communications Test Set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2/7/2018                                                                                                                                                                                        | Triennial                                                                                                                                                                                                         | 2/7/2021                                                                                                                                                                                                      | GB43304447                                                                                                                 |
| Agilent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N5182A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MXG Vector Signal Generator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7/10/2019                                                                                                                                                                                       | Annual                                                                                                                                                                                                            | 7/10/2020                                                                                                                                                                                                     | MY47420800                                                                                                                 |
| Agilent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N9020A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MXA Signal Analyzer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4/20/2019                                                                                                                                                                                       | Annual                                                                                                                                                                                                            | 4/20/2020                                                                                                                                                                                                     | US46470561                                                                                                                 |
| Agilent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N9030A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PXA Signal Analyzer (44GHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6/12/2019                                                                                                                                                                                       | Annual                                                                                                                                                                                                            | 6/12/2020                                                                                                                                                                                                     | MY52350166                                                                                                                 |
| Agilent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E5515C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Wireless Communications Test Set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2/28/2018                                                                                                                                                                                       | Biennial                                                                                                                                                                                                          | 2/28/2020                                                                                                                                                                                                     | GB41450275                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15S1G6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Amplifier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CBT                                                                                                                                                                                             | N/A                                                                                                                                                                                                               | CBT                                                                                                                                                                                                           | 433972                                                                                                                     |
| Amplifier Research                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                 | N/A                                                                                                                                                                                                               | CBT                                                                                                                                                                                                           | 433974                                                                                                                     |
| Amplifier Research                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15S1G6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Amplifier<br>Amplifier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CBT                                                                                                                                                                                             |                                                                                                                                                                                                                   |                                                                                                                                                                                                               |                                                                                                                            |
| Amplifier Research                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15S1G6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CBT                                                                                                                                                                                             | N/A                                                                                                                                                                                                               | CBT                                                                                                                                                                                                           | 433975                                                                                                                     |
| Amplifier Research                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15S1G6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Amplifier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CBT                                                                                                                                                                                             | N/A                                                                                                                                                                                                               | CBT                                                                                                                                                                                                           | 433976                                                                                                                     |
| Anritsu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MA24106A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | USB Power Sensor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1/31/2019                                                                                                                                                                                       | Annual                                                                                                                                                                                                            | 1/31/2020                                                                                                                                                                                                     | 1244524                                                                                                                    |
| Anritsu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MA24106A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | USB Power Sensor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3/5/2019                                                                                                                                                                                        | Annual                                                                                                                                                                                                            | 3/5/2020                                                                                                                                                                                                      | 1344555                                                                                                                    |
| Anritsu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MA24106A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | USB Power Sensor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4/17/2019                                                                                                                                                                                       | Annual                                                                                                                                                                                                            | 4/17/2020                                                                                                                                                                                                     | 1344556                                                                                                                    |
| Anritsu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MA24106A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | USB Power Sensor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7/15/2019                                                                                                                                                                                       | Annual                                                                                                                                                                                                            | 7/15/2020                                                                                                                                                                                                     | 1349513                                                                                                                    |
| Anritsu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MA2411B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Pulse Power Sensor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3/6/2019                                                                                                                                                                                        | Annual                                                                                                                                                                                                            | 3/6/2020                                                                                                                                                                                                      | 1339018                                                                                                                    |
| Anritsu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MA2411B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Pulse Power Sensor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6/11/2019                                                                                                                                                                                       | Annual                                                                                                                                                                                                            | 6/11/2020                                                                                                                                                                                                     | 1207364                                                                                                                    |
| Anritsu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MA2411B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Pulse Power Sensor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8/8/2019                                                                                                                                                                                        | Annual                                                                                                                                                                                                            | 8/8/2020                                                                                                                                                                                                      | 1339008                                                                                                                    |
| Anritsu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MT8820C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Radio Communication Analyzer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3/29/2019                                                                                                                                                                                       | Annual                                                                                                                                                                                                            | 3/29/2020                                                                                                                                                                                                     | 6201300731                                                                                                                 |
| Anritsu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MT8821C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Radio Communication Analyzer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1/25/2019                                                                                                                                                                                       | Annual                                                                                                                                                                                                            | 1/25/2020                                                                                                                                                                                                     | 6261895213                                                                                                                 |
| Anritsu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MT8821C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Radio Communication Analyzer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3/6/2019                                                                                                                                                                                        | Annual                                                                                                                                                                                                            | 3/6/2020                                                                                                                                                                                                      | 6201381794                                                                                                                 |
| Anritsu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MT8821C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Radio Communication Analyzer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5/13/2019                                                                                                                                                                                       | Annual                                                                                                                                                                                                            | 5/13/2020                                                                                                                                                                                                     | 6201524637                                                                                                                 |
| Anritsu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MT8862A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Wireless Connectivity Test Set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8/8/2019                                                                                                                                                                                        | Annual                                                                                                                                                                                                            | 8/8/2020                                                                                                                                                                                                      | 6261782395                                                                                                                 |
| Anritsu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ML2496A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Power Meter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11/6/2019                                                                                                                                                                                       | Annual                                                                                                                                                                                                            | 11/6/2020                                                                                                                                                                                                     | 1405003                                                                                                                    |
| Control Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Therm./Clock/Humidity Monitor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6/29/2019                                                                                                                                                                                       | Biennial                                                                                                                                                                                                          | 6/29/2021                                                                                                                                                                                                     | 192291470                                                                                                                  |
| Control Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Therm./Clock/Humidity Monitor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6/29/2019                                                                                                                                                                                       | Biennial                                                                                                                                                                                                          | 6/29/2021                                                                                                                                                                                                     | 192291455                                                                                                                  |
| Control Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Therm./Clock/Humidity Monitor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6/29/2019                                                                                                                                                                                       | Biennial                                                                                                                                                                                                          | 6/29/2021                                                                                                                                                                                                     | 192291455                                                                                                                  |
| Control Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Therm./Clock/Humidity Monitor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6/29/2019                                                                                                                                                                                       | Biennial                                                                                                                                                                                                          | 6/29/2021                                                                                                                                                                                                     | 192291463                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4352                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Long Stem Thermometer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6/26/2019                                                                                                                                                                                       | Biennial                                                                                                                                                                                                          | 6/26/2021                                                                                                                                                                                                     | 192291463                                                                                                                  |
| Control Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                 |                                                                                                                                                                                                                   |                                                                                                                                                                                                               |                                                                                                                            |
| Control Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4352                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Long Stem Thermometer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6/26/2019                                                                                                                                                                                       | Biennial                                                                                                                                                                                                          | 6/26/2021                                                                                                                                                                                                     | 192282753                                                                                                                  |
| Control Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4352                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ultra Long Stem Thermometer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11/29/2018                                                                                                                                                                                      | Biennial                                                                                                                                                                                                          | 11/29/2020                                                                                                                                                                                                    | 181766801                                                                                                                  |
| Control Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4352                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ultra Long Stem Thermometer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11/29/2018                                                                                                                                                                                      | Biennial                                                                                                                                                                                                          | 11/29/2020                                                                                                                                                                                                    | 181766777                                                                                                                  |
| Keysight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 772D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Dual Directional Coupler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CBT                                                                                                                                                                                             | N/A                                                                                                                                                                                                               | CBT                                                                                                                                                                                                           | MY52180215                                                                                                                 |
| Keysight Technologies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 85033E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7/2/2019                                                                                                                                                                                        | Annual                                                                                                                                                                                                            | 7/2/2020                                                                                                                                                                                                      | MY53401181                                                                                                                 |
| Keysight Technologies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N6705B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DC Power Analyzer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4/27/2019                                                                                                                                                                                       | Biennial                                                                                                                                                                                                          | 4/27/2021                                                                                                                                                                                                     | MY53004059                                                                                                                 |
| MCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BW-N6W5+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6dB Attenuator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CBT                                                                                                                                                                                             | N/A                                                                                                                                                                                                               | CBT                                                                                                                                                                                                           | 1139                                                                                                                       |
| Mini Circuits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PWR-SEN-4GHS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | USB Power Sensor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4/19/2019                                                                                                                                                                                       | Annual                                                                                                                                                                                                            | 4/19/2020                                                                                                                                                                                                     | 11401010036                                                                                                                |
| MiniCircuits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SLP-2400+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Low Pass Filter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CBT                                                                                                                                                                                             | N/A                                                                                                                                                                                                               | CBT                                                                                                                                                                                                           | R8979500903                                                                                                                |
| MiniCircuits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | VLF-6000+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Low Pass Filter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CBT                                                                                                                                                                                             | N/A                                                                                                                                                                                                               | CBT                                                                                                                                                                                                           | N/A                                                                                                                        |
| Mini-Circuits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BW-N20W5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Power Attenuator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CBT                                                                                                                                                                                             | N/A                                                                                                                                                                                                               | CBT                                                                                                                                                                                                           | 1226                                                                                                                       |
| Mini-Circuits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NLP-1200+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Low Pass Filter DC to 1000 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CBT                                                                                                                                                                                             | N/A                                                                                                                                                                                                               | CBT                                                                                                                                                                                                           | N/A                                                                                                                        |
| Mini-Circuits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NLP-2950+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Low Pass Filter DC to 2700 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CBT                                                                                                                                                                                             | N/A                                                                                                                                                                                                               | CBT                                                                                                                                                                                                           | N/A                                                                                                                        |
| Pasternack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NC-100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Torque Wrench                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5/23/2018                                                                                                                                                                                       | Biennial                                                                                                                                                                                                          | 5/23/2020                                                                                                                                                                                                     | N/A                                                                                                                        |
| Pasternack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PE2209-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Bidirectional Coupler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CBT                                                                                                                                                                                             | N/A                                                                                                                                                                                                               | CBT                                                                                                                                                                                                           | N/A                                                                                                                        |
| Pasternack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PE2208-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Bidirectional Coupler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CBT                                                                                                                                                                                             | N/A                                                                                                                                                                                                               | CBT                                                                                                                                                                                                           | N/A                                                                                                                        |
| Rohde & Schwarz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CMW500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Radio Communication Tester                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8/26/2019                                                                                                                                                                                       | Annual                                                                                                                                                                                                            | 8/26/2020                                                                                                                                                                                                     | 100976                                                                                                                     |
| Rohde & Schwarz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CMW500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Radio Communication Tester                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8/27/2019                                                                                                                                                                                       | Annual                                                                                                                                                                                                            | 8/27/2020                                                                                                                                                                                                     | 116743                                                                                                                     |
| Rohde & Schwarz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CMW500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Radio Communication Tester                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10/4/2019                                                                                                                                                                                       | Annual                                                                                                                                                                                                            | 10/4/2020                                                                                                                                                                                                     | 166462                                                                                                                     |
| Rohde & Schwarz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ZNLE6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Vector Network Analyzer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10/11/2019                                                                                                                                                                                      | Annual                                                                                                                                                                                                            | 10/11/2020                                                                                                                                                                                                    | 101307                                                                                                                     |
| Rohde& Schwarz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CMW500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Wideband Radio Communication Tester                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7/12/2019                                                                                                                                                                                       | Annual                                                                                                                                                                                                            | 7/12/2020                                                                                                                                                                                                     | 145645                                                                                                                     |
| Rohde& Schwarz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CMW500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                 | Annual                                                                                                                                                                                                            |                                                                                                                                                                                                               | 151849                                                                                                                     |
| Rohde & Schwarz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CMU200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Wideband Radio Communication Tester                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7/24/2019<br>6/3/2019                                                                                                                                                                           |                                                                                                                                                                                                                   | 7/24/2020<br>6/3/2020                                                                                                                                                                                         | 109892                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Base Station Simulator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                 | Annual                                                                                                                                                                                                            |                                                                                                                                                                                                               |                                                                                                                            |
| SPEAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D750V3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 750 MHz SAR Dipole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10/19/2018                                                                                                                                                                                      | Biennial                                                                                                                                                                                                          | 10/19/2020                                                                                                                                                                                                    | 1161                                                                                                                       |
| SPEAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D750V3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 750 MHz SAR Dipole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1/15/2018                                                                                                                                                                                       | Biennial                                                                                                                                                                                                          | 1/15/2020                                                                                                                                                                                                     | 1003                                                                                                                       |
| SPEAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D835V2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 835 MHz SAR Dipole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10/19/2018                                                                                                                                                                                      | Biennial                                                                                                                                                                                                          | 10/19/2020                                                                                                                                                                                                    | 4d133                                                                                                                      |
| SPEAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D835V2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 835 MHz SAR Dipole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3/13/2019                                                                                                                                                                                       | Annual                                                                                                                                                                                                            | 3/13/2020                                                                                                                                                                                                     | 4d047                                                                                                                      |
| SPEAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D1750V2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1750 MHz SAR Dipole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5/15/2019                                                                                                                                                                                       | Annual                                                                                                                                                                                                            | 5/15/2020                                                                                                                                                                                                     | 1148                                                                                                                       |
| SPEAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D1900V2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1900 MHz SAR Dipole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2/21/2019                                                                                                                                                                                       | Annual                                                                                                                                                                                                            | 2/21/2020                                                                                                                                                                                                     | 5d148                                                                                                                      |
| SPEAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D1900V2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1900 MHz SAR Dipole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10/23/2018                                                                                                                                                                                      | Biennial                                                                                                                                                                                                          | 10/23/2020                                                                                                                                                                                                    | 5d149                                                                                                                      |
| SPEAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D1900V2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1900 MHz SAR Dipole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10/23/2018                                                                                                                                                                                      | Biennial                                                                                                                                                                                                          | 10/23/2020                                                                                                                                                                                                    | 5d080                                                                                                                      |
| SPEAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D2600V2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2600 MHz SAR Dipole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4/11/2018                                                                                                                                                                                       | Biennial                                                                                                                                                                                                          | 4/11/2020                                                                                                                                                                                                     | 1004                                                                                                                       |
| SPEAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D2450V2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2450 MHz SAR Dipole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8/16/2018                                                                                                                                                                                       | Biennial                                                                                                                                                                                                          | 8/16/2020                                                                                                                                                                                                     | 981                                                                                                                        |
| SPEAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D2450V2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2450 MHz SAR Dipole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8/14/2019                                                                                                                                                                                       | Annual                                                                                                                                                                                                            | 8/14/2020                                                                                                                                                                                                     | 719                                                                                                                        |
| SPEAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D2600V2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2600 MHz SAR Dipole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6/14/2019                                                                                                                                                                                       | Annual                                                                                                                                                                                                            | 6/14/2020                                                                                                                                                                                                     | 1064                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D5GHzV2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5 GHz SAR Dipole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9/17/2019                                                                                                                                                                                       | Annual                                                                                                                                                                                                            | 9/17/2020                                                                                                                                                                                                     | 1191                                                                                                                       |
| SPEAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3 driz SAR Dipole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9/1//2019                                                                                                                                                                                       | Ailiuai                                                                                                                                                                                                           |                                                                                                                                                                                                               |                                                                                                                            |
| SPEAG<br>SPEAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DAK-3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Dielectric Assessment Kit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5/7/2019                                                                                                                                                                                        | Annual                                                                                                                                                                                                            | 5/7/2020                                                                                                                                                                                                      | 1070                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                 | Annual<br>Annual                                                                                                                                                                                                  | 5/7/2020<br>10/22/2020                                                                                                                                                                                        | 1070<br>1091                                                                                                               |
| SPEAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DAK-3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Dielectric Assessment Kit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5/7/2019                                                                                                                                                                                        |                                                                                                                                                                                                                   |                                                                                                                                                                                                               |                                                                                                                            |
| SPEAG<br>SPEAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DAK-3.5<br>DAK-3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Dielectric Assessment Kit<br>Dielectric Assessment Kit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5/7/2019<br>10/22/2019                                                                                                                                                                          | Annual                                                                                                                                                                                                            | 10/22/2020                                                                                                                                                                                                    | 1091                                                                                                                       |
| SPEAG<br>SPEAG<br>SPEAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DAK-3.5<br>DAK-3.5<br>DAE4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Dielectric Assessment Kit<br>Dielectric Assessment Kit<br>Dasy Data Acquisition Electronics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5/7/2019<br>10/22/2019<br>6/20/2019                                                                                                                                                             | Annual<br>Annual                                                                                                                                                                                                  | 10/22/2020<br>6/20/2020                                                                                                                                                                                       | 1091<br>1334                                                                                                               |
| SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DAK-3.5<br>DAK-3.5<br>DAE4<br>DAE4<br>DAE4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Dielectric Assessment Kit Dielectric Assessment Kit Dasy Data Acquisition Electronics Dasy Data Acquisition Electronics Dasy Data Acquisition Electronics                                                                                                                                                                                                                                                                                                                                                                                                                        | 5/7/2019<br>10/22/2019<br>6/20/2019<br>9/17/2019<br>2/13/2019                                                                                                                                   | Annual<br>Annual<br>Annual                                                                                                                                                                                        | 10/22/2020<br>6/20/2020<br>9/17/2020                                                                                                                                                                          | 1091<br>1334<br>1333<br>665                                                                                                |
| SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DAK-3.5<br>DAK-3.5<br>DAE4<br>DAE4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Dielectric Assessment Kit Dielectric Assessment Kit Dasy Data Acquisition Electronics                                                                                                                                                                                                                                                                                                                                                    | 5/7/2019<br>10/22/2019<br>6/20/2019<br>9/17/2019<br>2/13/2019<br>2/14/2019                                                                                                                      | Annual<br>Annual<br>Annual<br>Annual                                                                                                                                                                              | 10/22/2020<br>6/20/2020<br>9/17/2020<br>2/13/2020<br>2/14/2020                                                                                                                                                | 1091<br>1334<br>1333<br>665<br>1272                                                                                        |
| SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DAK-3.5<br>DAK-3.5<br>DAE4<br>DAE4<br>DAE4<br>DAE4<br>DAE4<br>DAE4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Dielectric Assessment Kit Dielectric Assessment Kit Dielectric Assessment Kit Dasy Data Acquisition Electronics                                                                                                                                                                                                                                                                                        | 5/7/2019<br>10/22/2019<br>6/20/2019<br>9/17/2019<br>2/13/2019<br>2/14/2019<br>7/11/2019                                                                                                         | Annual<br>Annual<br>Annual<br>Annual<br>Annual                                                                                                                                                                    | 10/22/2020<br>6/20/2020<br>9/17/2020<br>2/13/2020<br>2/14/2020<br>7/11/2020                                                                                                                                   | 1091<br>1334<br>1333<br>665<br>1272<br>1322                                                                                |
| SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DAK-3.5<br>DAK-3.5<br>DAE4<br>DAE4<br>DAE4<br>DAE4<br>DAE4<br>DAE4<br>DAE4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Dielectric Assessment Kit Dielectric Assessment Kit Dasy Data Acquisition Electronics                                                                                                                                                                                                                                                                                | 5/7/2019<br>10/22/2019<br>6/20/2019<br>9/17/2019<br>2/13/2019<br>2/14/2019<br>7/11/2019<br>4/18/2019                                                                                            | Annual Annual Annual Annual Annual Annual Annual Annual                                                                                                                                                           | 10/22/2020<br>6/20/2020<br>9/17/2020<br>2/13/2020<br>2/14/2020                                                                                                                                                | 1091<br>1334<br>1333<br>665<br>1272<br>1322<br>1407                                                                        |
| SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DAK-3.5  DAK-3.5  DAE4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Dielectric Assessment Kit Dielectric Assessment Kit Dielectric Assessment Kit Dasy Data Acquisition Electronics                                                                                                                                                                                  | 5/7/2019<br>10/22/2019<br>6/20/2019<br>9/17/2019<br>2/13/2019<br>2/14/2019<br>7/11/2019<br>4/18/2019<br>7/11/2019                                                                               | Annual                                                                                                                                             | 10/22/2020<br>6/20/2020<br>9/17/2020<br>2/13/2020<br>2/14/2020<br>7/11/2020<br>4/18/2020<br>7/11/2020                                                                                                         | 1091<br>1334<br>1333<br>665<br>1272<br>1322<br>1407                                                                        |
| SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DAK-3.5  DAK-3.5  DAE4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Dielectric Assessment Kit Dielectric Assessment Kit Dasy Data Acquisition Electronics                                                                                                                                        | 5/7/2019<br>10/22/2019<br>6/20/2019<br>9/17/2019<br>2/13/2019<br>2/14/2019<br>7/11/2019<br>4/18/2019<br>7/11/2019<br>8/14/2019                                                                  | Annual                                                                                                                               | 10/22/2020<br>6/20/2020<br>9/17/2020<br>2/13/2020<br>2/14/2020<br>7/11/2020<br>4/18/2020<br>7/11/2020<br>8/14/2020                                                                                            | 1091<br>1334<br>1333<br>665<br>1272<br>1322<br>1407<br>1323                                                                |
| SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DAK-3.5  DAK-3.5  DAE4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Dielectric Assessment Kit Dielectric Assessment Kit Dies (Dielectric Assessment Kit Dasy Data Acquisition Electronics                                                                      | 5/7/2019<br>10/22/2019<br>6/20/2019<br>9/17/2019<br>2/13/2019<br>2/14/2019<br>7/11/2019<br>4/18/2019<br>8/14/2019<br>5/8/2019                                                                   | Annual                                                                                                                        | 10/22/2020<br>6/20/2020<br>9/17/2020<br>2/13/2020<br>2/14/2020<br>7/11/2020<br>4/18/2020<br>7/11/2020<br>8/14/2020<br>5/8/2020                                                                                | 1091<br>1334<br>1333<br>665<br>1272<br>1322<br>1407<br>1323<br>1450<br>728                                                 |
| SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DAK-3.5  DAK-3.5  DAE4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Dielectric Assessment Kit Dielectric Assessment Kit Dasy Data Acquisition Electronics SAR Probe                        | 5/7/2019<br>10/22/2019<br>6/20/2019<br>9/17/2019<br>9/17/2019<br>2/13/2019<br>2/13/2019<br>7/11/2019<br>4/18/2019<br>7/11/2019<br>5/8/2019<br>6/19/2019                                         | Annual                                                                                                                 | 10/22/2020<br>6/20/2020<br>9/17/2020<br>2/13/2020<br>2/14/2020<br>7/11/2020<br>4/18/2020<br>7/11/2020<br>8/14/2020<br>5/8/2020<br>6/19/2020                                                                   | 1091<br>1334<br>1333<br>665<br>1272<br>1322<br>1407<br>1323<br>1450<br>728<br>7409                                         |
| SPEAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DAK-3.5  DAK-3.5  DAE4   Dielectric Assessment Kit Dielectric Assessment Kit Dasy Data Acquisition Electronics SaR Probe SAR Probe                                                                                  | 5/7/2019<br>10/22/2019<br>6/20/2019<br>9/17/2019<br>2/13/2019<br>2/13/2019<br>2/14/2019<br>7/11/2019<br>4/18/2019<br>7/11/2019<br>8/14/2019<br>5/8/2019<br>9/19/2019                            | Annual                                                                              | 10/22/2020<br>6/20/2020<br>9/17/2020<br>9/17/2020<br>2/13/2020<br>2/14/2020<br>7/11/2020<br>4/18/2020<br>7/11/2020<br>8/14/2020<br>6/19/2020<br>9/19/2020                                                     | 1091<br>1334<br>1333<br>665<br>1272<br>1322<br>1407<br>1323<br>1450<br>728<br>7409                                         |
| SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DAK-3.5  DAK-3.5  DAK-3.5  DAE4  EX3DV4  EX3DV4  EX3DV4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Dielectric Assessment Kit Dielectric Assessment Kit Dasy Data Acquisition Electronics SAR Probe SAR Probe SAR Probe                                                                                                          | 5/7/2019<br>10/22/2019<br>6/20/2019<br>9/17/2019<br>2/13/2019<br>2/14/2019<br>7/11/2019<br>7/11/2019<br>8/14/2019<br>5/8/2019<br>6/19/2019<br>9/19/2019<br>2/19/2019                            | Annual                                           | 10/22/2020<br>6/20/2020<br>9/17/2020<br>2/13/2020<br>2/14/2020<br>7/11/2020<br>7/11/2020<br>8/14/2020<br>5/8/2020<br>6/19/2020<br>9/19/2020<br>2/19/2020                                                      | 1091<br>1334<br>1333<br>665<br>1272<br>1322<br>1407<br>1323<br>1450<br>728<br>7409<br>7551<br>7417                         |
| SPEAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DAK-3.5  DAK-3.5  DAE4  EXBOV4  EXBOV4  EXBOV4  EXBOV4  EXBOV4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Dielectric Assessment Kit Dielectric Assessment Kit Dasy Data Acquisition Electronics SAR Probe SAR Probe SAR Probe SAR Probe                            | 5/7/2019<br>10/22/2019<br>6/20/2019<br>9/17/2019<br>2/13/2019<br>2/13/2019<br>2/14/2019<br>4/18/2019<br>7/11/2019<br>8/14/2019<br>5/8/2019<br>6/19/2019<br>9/19/2019<br>2/19/2019<br>2/19/2019  | Annual                                                                              | 10/22/2020<br>6/20/2020<br>9/17/2020<br>2/13/2020<br>2/14/2020<br>7/11/2020<br>4/18/2020<br>5/8/2020<br>6/19/2020<br>9/19/2020<br>2/19/2020                                                                   | 1091<br>1334<br>1333<br>6665<br>1272<br>1322<br>1407<br>1323<br>1450<br>728<br>7409<br>7417<br>3914                        |
| SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DAK-3.5  DAK-3.5  DAK-3.5  DAE4  EX3DV4  EX3DV4  EX3DV4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Dielectric Assessment Kit Dielectric Assessment Kit Dies Dielectric Assessment Kit Dasy Data Acquisition Electronics ARR Probe SAR Probe SAR Probe SAR Probe SAR Probe SAR Probe                                                                               | 5/7/2019<br>10/22/2019<br>10/22/2019<br>9/17/2019<br>9/17/2019<br>2/13/2019<br>2/14/2019<br>7/11/2019<br>4/18/2019<br>8/14/2019<br>5/8/2019<br>9/19/2019<br>9/19/2019<br>2/19/2019<br>5/16/2019 | Annual                      | 10/22/2020<br>6/20/2020<br>9/17/2020<br>2/13/2020<br>2/14/2020<br>7/11/2020<br>7/11/2020<br>8/14/2020<br>7/11/2020<br>8/14/2020<br>6/19/2020<br>9/19/2020<br>2/19/2020<br>5/16/2020                           | 1091<br>1334<br>1333<br>665<br>1272<br>1322<br>1407<br>1323<br>1450<br>728<br>7409<br>7551<br>7417<br>3914<br>7406         |
| SPEAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DAK-3.5  DAK-3.5  DAE4  EXBOV4  EXBOV4  EXBOV4  EXBOV4  EXBOV4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Dielectric Assessment Kit Dielectric Assessment Kit Dasy Data Acquisition Electronics SAR Probe SAR Probe SAR Probe SAR Probe                            | 5/7/2019<br>10/22/2019<br>6/20/2019<br>9/17/2019<br>2/13/2019<br>2/13/2019<br>2/14/2019<br>4/18/2019<br>7/11/2019<br>8/14/2019<br>5/8/2019<br>6/19/2019<br>9/19/2019<br>2/19/2019<br>2/19/2019  | Annual                                                         | 10/22/2020<br>6/20/2020<br>9/17/2020<br>2/13/2020<br>2/14/2020<br>7/11/2020<br>4/18/2020<br>5/8/2020<br>6/19/2020<br>9/19/2020<br>2/19/2020                                                                   | 1091<br>1334<br>1333<br>665<br>1272<br>1322<br>1407<br>1323<br>1450<br>728<br>7409<br>7551<br>7417<br>3914<br>7406<br>7410 |
| SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG | DAK-3.5 DAK-3.5 DAK-3.5 DAE4 DAE4 DAE4 DAE4 DAE4 DAE4 DAE4 DAE4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Dielectric Assessment Kit Dielectric Assessment Kit Dies Dielectric Assessment Kit Dasy Data Acquisition Electronics ARR Probe SAR Probe SAR Probe SAR Probe SAR Probe SAR Probe                                                                               | 5/7/2019<br>10/22/2019<br>10/22/2019<br>9/17/2019<br>9/17/2019<br>2/13/2019<br>2/14/2019<br>7/11/2019<br>4/18/2019<br>8/14/2019<br>5/8/2019<br>9/19/2019<br>9/19/2019<br>2/19/2019<br>5/16/2019 | Annual                      | 10/22/2020<br>6/20/2020<br>6/20/2020<br>9/17/2020<br>2/13/2020<br>2/13/2020<br>2/14/2020<br>4/18/2020<br>7/11/2020<br>6/19/2020<br>9/19/2020<br>2/19/2020<br>2/19/2020<br>5/16/2020<br>7/16/2020<br>7/15/2020 | 1091<br>1334<br>1333<br>665<br>1272<br>1322<br>1407<br>1323<br>1450<br>728<br>7409<br>7551<br>7417<br>3914<br>7406         |
| SPEAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DAK-3.5 DAK-3.5 DAK-3.5 DAE4 DAE4 DAE4 DAE4 DAE4 DAE4 DAE4 DAE4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Dielectric Assessment Kit  Dielectric Assessment Kit  Dasy Data Acquisition Electronics  Sar Probe   5/7/2019<br>10/22/2019<br>10/22/2019<br>9/17/2019<br>9/17/2019<br>2/13/2019<br>7/11/2019<br>4/18/2019<br>5/8/2019<br>5/8/2019<br>9/19/2019<br>2/19/2019<br>2/19/2019<br>7/16/2019               | Annual | 10/22/2020<br>6/20/2020<br>9/17/2020<br>2/13/2020<br>2/13/2020<br>2/14/2020<br>7/11/2020<br>4/18/2020<br>7/11/2020<br>5/8/2020<br>6/19/2020<br>2/19/2020<br>2/19/2020<br>7/16/2020<br>7/16/2020               | 1091<br>1334<br>1333<br>665<br>1272<br>1322<br>1407<br>1323<br>1450<br>728<br>7409<br>7551<br>7417<br>3914<br>7406<br>7410 |

Note: Equipment was solely used during its calibration period

Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements.

| FCC ID: ZNFL455DL      | PCTEST                  | SAR EVALUATION REPORT LG | Approved by:  Quality Manager |
|------------------------|-------------------------|--------------------------|-------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:                | Dage 125 of 120               |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset         | Page 125 of 129               |

© 2020 PCTEST Engineering Laboratory, Inc.

REV 21.4 M 09/11/2019

| a                                                                             | С      | d     | e=     | f    | g      | h =            | i =            | k              |
|-------------------------------------------------------------------------------|--------|-------|--------|------|--------|----------------|----------------|----------------|
|                                                                               |        |       | f(d,k) |      |        | c x f/e        | c x g/e        |                |
|                                                                               | Tol.   | Prob. |        | ci   | Ci     | 1gm            | 10gms          |                |
| Uncertainty Component                                                         | (± %)  | Dist. | Div.   | 1gm  | 10 gms | u <sub>i</sub> | u <sub>i</sub> | V <sub>i</sub> |
|                                                                               | (= ,0, | D.000 | 5      |      |        | (± %)          | (± %)          | • •            |
| Measurement System                                                            | ·      |       |        |      |        | , , , , ,      |                |                |
| Probe Calibration                                                             | 6.55   | Ν     | 1      | 1.0  | 1.0    | 6.6            | 6.6            | $\infty$       |
| Axial Isotropy                                                                | 0.25   | Ν     | 1      | 0.7  | 0.7    | 0.2            | 0.2            | $\infty$       |
| Hemishperical Isotropy                                                        | 1.3    | Ν     | 1      | 0.7  | 0.7    | 0.9            | 0.9            | $\infty$       |
| Boundary Effect                                                               | 2.0    | R     | 1.73   | 1.0  | 1.0    | 1.2            | 1.2            | œ              |
| Linearity                                                                     | 0.3    | Ν     | 1      | 1.0  | 1.0    | 0.3            | 0.3            | $\infty$       |
| System Detection Limits                                                       | 0.25   | R     | 1.73   | 1.0  | 1.0    | 0.1            | 0.1            | œ              |
| Readout Electronics                                                           | 0.3    | Ν     | 1      | 1.0  | 1.0    | 0.3            | 0.3            | ×              |
| Response Time                                                                 | 0.8    | R     | 1.73   | 1.0  | 1.0    | 0.5            | 0.5            | $\infty$       |
| Integration Time                                                              | 2.6    | R     | 1.73   | 1.0  | 1.0    | 1.5            | 1.5            | $\infty$       |
| RF Ambient Conditions - Noise                                                 | 3.0    | R     | 1.73   | 1.0  | 1.0    | 1.7            | 1. <i>7</i>    | $\infty$       |
| RF Ambient Conditions - Reflections                                           | 3.0    | R     | 1.73   | 1.0  | 1.0    | 1.7            | 1. <i>7</i>    | œ              |
| Probe Positioner Mechanical Tolerance                                         | 0.4    | R     | 1.73   | 1.0  | 1.0    | 0.2            | 0.2            | $\infty$       |
| Probe Positioning w/ respect to Phantom                                       | 6.7    | R     | 1.73   | 1.0  | 1.0    | 3.9            | 3.9            | × ×            |
| Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation | 4.0    | R     | 1.73   | 1.0  | 1.0    | 2.3            | 2.3            | œ              |
| Test Sample Related                                                           |        |       |        |      |        |                |                |                |
| Test Sample Positioning                                                       | 2.7    | Ν     | 1      | 1.0  | 1.0    | 2.7            | 2.7            | 35             |
| Device Holder Uncertainty                                                     | 1.67   | Ν     | 1      | 1.0  | 1.0    | 1.7            | 1. <i>7</i>    | 5              |
| Output Power Variation - SAR drift measurement                                | 5.0    | R     | 1.73   | 1.0  | 1.0    | 2.9            | 2.9            | $\infty$       |
| SAR Scaling                                                                   | 0.0    | R     | 1.73   | 1.0  | 1.0    | 0.0            | 0.0            | $\infty$       |
| Phantom & Tissue Parameters                                                   |        |       |        |      |        |                |                |                |
| Phantom Uncertainty (Shape & Thickness tolerances)                            | 7.6    | R     | 1.73   | 1.0  | 1.0    | 4.4            | 4.4            | 8              |
| Liquid Conductivity - measurement uncertainty                                 | 4.2    | N     | 1      | 0.78 | 0.71   | 3.3            | 3.0            | 10             |
| Liquid Permittivity - measurement uncertainty                                 | 4.1    | N     | 1      | 0.23 | 0.26   | 1.0            | 1.1            | 10             |
| Liquid Conductivity - Temperature Uncertainty                                 | 3.4    | R     | 1.73   | 0.78 | 0.71   | 1.5            | 1.4            | œ              |
| Liquid Permittivity - Temperature Unceritainty                                | 0.6    | R     | 1.73   | 0.23 | 0.26   | 0.1            | 0.1            | $\infty$       |
| Liquid Conductivity - deviation from target values                            | 5.0    | R     | 1.73   | 0.64 | 0.43   | 1.8            | 1.2            | × ×            |
| Liquid Permittivity - deviation from target values                            | 5.0    | R     | 1.73   | 0.60 | 0.49   | 1.7            | 1.4            | ∞              |
| Combined Standard Uncertainty (k=1)                                           | 1 2.0  | RSS   | , 5    | 0.00 | 1 5.15 | 11.5           | 11.3           | 60             |
| <u> </u>                                                                      |        |       |        |      |        |                |                | 00             |
| Expanded Uncertainty                                                          |        | k=2   |        |      |        | 23.0           | 22.6           |                |
| (95% CONFIDENCE LEVEL)                                                        |        |       |        |      |        |                |                |                |

| FCC ID: ZNFL455DL      | PCTEST                  | SAR EVALUATION REPORT | Approved by: Quality Manager |
|------------------------|-------------------------|-----------------------|------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:             | Dage 126 of 120              |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset      | Page 126 of 129              |

#### 17 CONCLUSION

#### 17.1 Measurement Conclusion

The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the FCC and Innovation, Science, and Economic Development Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

| FCC ID: ZNFL455DL      | PCTEST*                 | SAR EVALUATION REPORT | Approved by: Quality Manager |
|------------------------|-------------------------|-----------------------|------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:             | D 407 400                    |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset      | Page 127 of 129              |

#### 18 REFERENCES

- [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.
- [2] ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006.
- [3] ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992.
- [4] ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, December 2002.
- [5] IEEE Standards Coordinating Committee 39 Standards Coordinating Committee 34 IEEE Std. 1528-2013, IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.
- [6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- [7] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- [8] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 1 -124.
- [9] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada; 1987, pp. 29-36.
- [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [15] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.
- [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.

| FCC ID: ZNFL455DL      | PCTEST*                 | SAR EVALUATION REPORT | Approved by: Quality Manager |
|------------------------|-------------------------|-----------------------|------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:             | Dogg 129 of 120              |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset      | Page 128 of 129              |

© 2020 PCTEST Engineering Laboratory, Inc.

09/11/2019

- [18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10kHz-300GHz, Jan. 1995.
- [19] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [20] IEC 62209-1, Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Part 1: Devices used next to the ear (Frequency range of 300 MHz to 6 GHz), July 2016.
- [21] Innovation, Science, Economic Development Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 5, March 2015.
- [22] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz 300 GHz, 2015
- [23] FCC SAR Test Procedures for 2G-3G Devices, Mobile Hotspot and UMPC Devices KDB Publications 941225, D01-D07
- [24] SAR Measurement Guidance for IEEE 802.11 Transmitters, KDB Publication 248227 D01
- [25] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publications 648474 D03-D04
- [26] FCC SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers, FCC KDB Publication 616217 D04
- [27] FCC SAR Measurement and Reporting Requirements for 100MHz 6 GHz, KDB Publications 865664 D01-D02
- [28] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D02
- [29] Anexo à Resolução No. 533, de 10 de Septembro de 2009.
- [30] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), Mar. 2010.

| FCC ID: ZNFL455DL      | PCTEST*                 | SAR EVALUATION REPORT | Approved by: Quality Manager |
|------------------------|-------------------------|-----------------------|------------------------------|
| Document S/N:          | Test Dates:             | DUT Type:             | Dage 420 of 420              |
| 1M1911290211-01-R2.ZNF | 12/05/2019 - 01/16/2020 | Portable Handset      | Page 129 of 129              |

### APPENDIX A: SAR TEST DATA

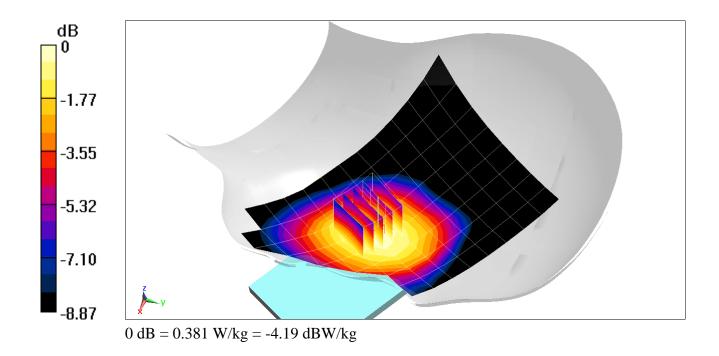
DUT: ZNFL455DL; Type: Portable Handset; Serial: 05482

Communication System: UID 0, GSM GPRS; 4 Tx slots; Frequency: 836.6 MHz; Duty Cycle: 1:2.076 Medium: 835 Head; Medium parameters used (interpolated):  $f = 836.6 \text{ MHz}; \ \sigma = 0.904 \text{ S/m}; \ \epsilon_r = 42.288; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Left Section

Test Date: 01-06-2020; Ambient Temp: 22.1°C; Tissue Temp: 21.1°C

Probe: EX3DV4 - SN3914; ConvF(9.5, 9.5, 9.5) @ 836.6 MHz; Calibrated: 2/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1272; Calibrated: 2/14/2019
Phantom: Twin-SAM V5.0 Left 30; Type: QD 000 P40 CD; Serial: 1687
Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

Mode: GSM 850, Left Head, Cheek, Mid.ch, 4 Tx slots


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 19.48 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 0.413 W/kg

SAR(1 g) = 0.327 W/kg



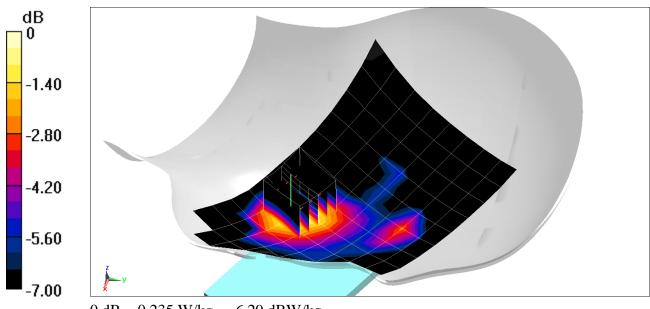
DUT: ZNFL455DL; Type: Portable Handset; Serial: 05490

Communication System: UID 0, GSM GPRS; 4 Tx slots; Frequency: 1880 MHz; Duty Cycle: 1:2.076 Medium: 1900 Head; Medium parameters used:  $f = 1880 \text{ MHz}; \ \sigma = 1.419 \text{ S/m}; \ \epsilon_r = 39.908; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Left Section

Test Date: 01-06-2020; Ambient Temp: 21.9°C; Tissue Temp: 20.0°C

Probe: EX3DV4 - SN7410; ConvF(8.11, 8.11, 8.11) @ 1880 MHz; Calibrated: 7/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2019 Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966 Measurement SW: DASY52, Version 52.10 (2):SEMCAD X Version 14.6.12 (7470)

Mode: GPRS 1900, Left Head, Cheek, Mid.ch, 4 Tx slots


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.83 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.278 W/kg

SAR(1 g) = 0.180 W/kg



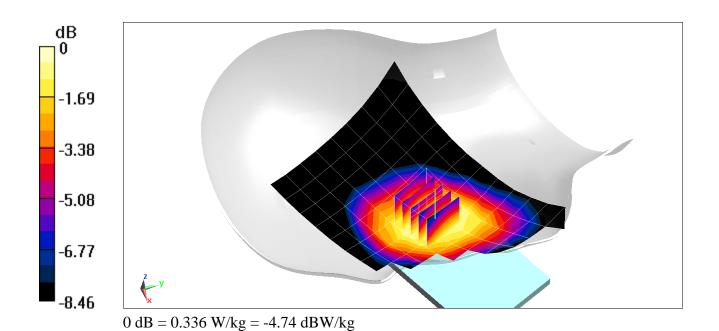
DUT: ZNFL455DL; Type: Portable Handset; Serial: 05482

Communication System: UID 0, UMTS; Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium: 835 Head; Medium parameters used (interpolated):  $f = 836.6 \text{ MHz}; \ \sigma = 0.904 \text{ S/m}; \ \epsilon_r = 42.288; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Right Section

Test Date: 01-06-2020; Ambient Temp: 22.1°C; Tissue Temp: 21.1°C

Probe: EX3DV4 - SN3914; ConvF(9.5, 9.5, 9.5) @ 836.6 MHz; Calibrated: 2/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 2/14/2019 Phantom: Twin-SAM V5.0 Left 30; Type: QD 000 P40 CD; Serial: 1687 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

#### Mode: UMTS 850, Right Head, Cheek, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.10 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 0.360 W/kg

SAR(1 g) = 0.288 W/kg



DUT: ZNFL455DL; Type: Portable Handset; Serial: 05482

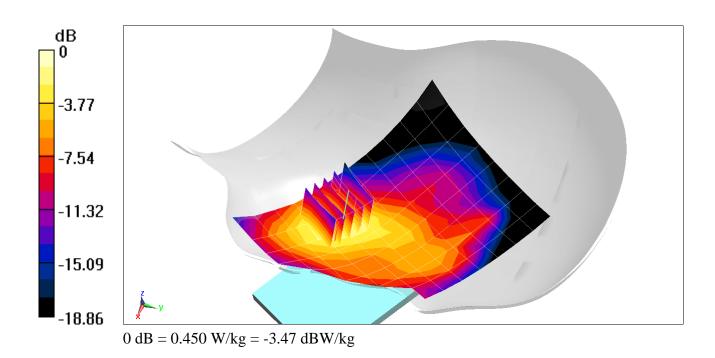
Communication System: UID 0, UMTS; Frequency: 1732.4 MHz; Duty Cycle: 1:1 Medium: 1750 Head; Medium parameters used (interpolated):  $f = 1732.4 \text{ MHz}; \ \sigma = 1.365 \text{ S/m}; \ \epsilon_r = 39.253; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Left Section

Test Date: 01-04-2020; Ambient Temp: 22.9°C; Tissue Temp: 22.0°C

Probe: EX3DV4 - SN7406; ConvF(8.57, 8.57, 8.57) @ 1732.4 MHz; Calibrated: 5/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn728; Calibrated: 5/8/2019

Phantom: Twin-SAM V5.0 Left 30; Type: QD 000 P40 CD; Serial: 1715 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

#### Mode: UMTS 1750, Left Head, Cheek, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.52 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.532 W/kg

SAR(1 g) = 0.317 W/kg



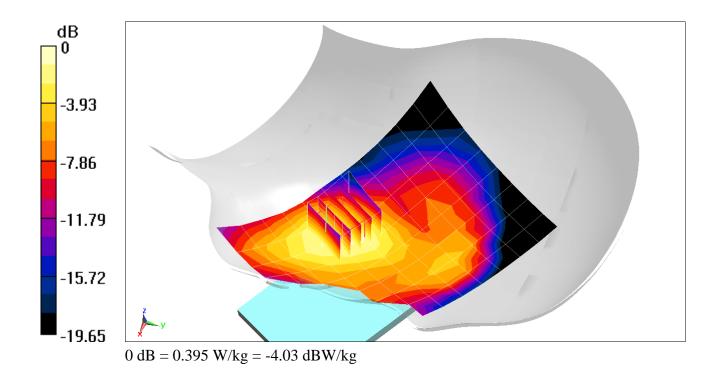
DUT: ZNFL455DL; Type: Portable Handset; Serial: 05490

Communication System: UID 0, UMTS; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: 1900 Head; Medium parameters used:  $f = 1880 \text{ MHz}; \ \sigma = 1.419 \text{ S/m}; \ \epsilon_r = 39.908; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Left Section

Test Date: 01-06-2020; Ambient Temp: 21.9°C; Tissue Temp: 20.0°C

Probe: EX3DV4 - SN7410; ConvF(8.11, 8.11, 8.11) @ 1880 MHz; Calibrated: 7/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1322; Calibrated: 7/11/2019
Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966
Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

#### Mode: UMTS 1900, Left Head, Cheek, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.13 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 0.471 W/kg

SAR(1 g) = 0.302 W/kg



DUT: ZNFL455DL; Type: Portable Handset; Serial: 05482

Communication System: UID 0, Cellular CDMA; Frequency: 820.1 MHz; Duty Cycle: 1:1 Medium: 835 Head; Medium parameters used (interpolated):  $f = 820.1 \text{ MHz}; \ \sigma = 0.903 \text{ S/m}; \ \epsilon_r = 40.373; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Right Section

Test Date: 01-08-2020; Ambient Temp: 20.9°C; Tissue Temp: 20.2°C

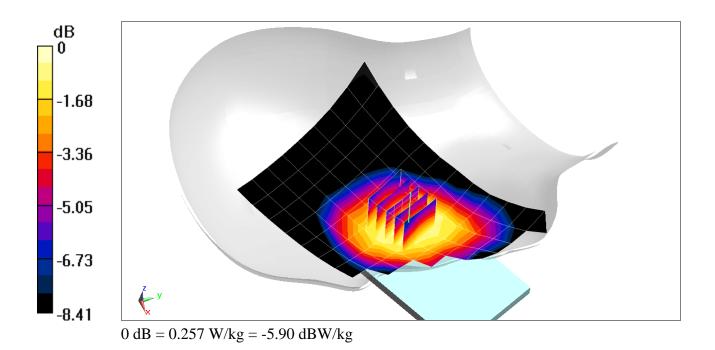
Probe: EX3DV4 - SN7308; ConvF(9.87, 9.87, 9.87) @ 820.1 MHz; Calibrated: 8/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1450; Calibrated: 8/14/2019

Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1964

Measurement SW: DASY52, Version 52.10 (2):SEMCAD X Version 14.6.12 (7470)

#### Mode: Cell. CDMA, BC 10, Right Head, Cheek, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.81 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 0.279 W/kg

SAR(1 g) = 0.219 W/kg



DUT: ZNFL455DL; Type: Portable Handset; Serial: 05482

Communication System: UID 0, CDMA; Frequency: 836.52 MHz; Duty Cycle: 1:1 Medium: 835 Head; Medium parameters used (interpolated):  $f = 836.52 \text{ MHz}; \ \sigma = 0.91 \text{ S/m}; \ \epsilon_r = 40.3; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Right Section

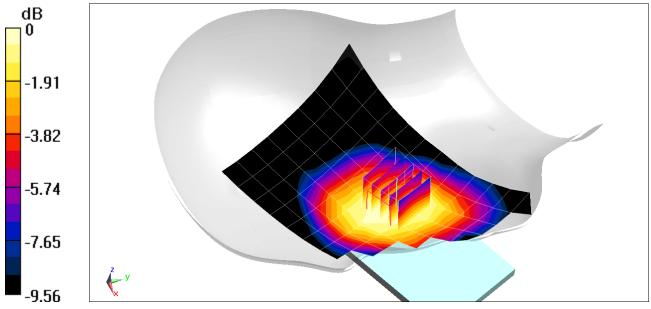
Test Date: 01-08-2020; Ambient Temp: 20.9°C; Tissue Temp: 20.2°C

Probe: EX3DV4 - SN7308; ConvF(9.87, 9.87, 9.87) @ 836.52 MHz; Calibrated: 8/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1450; Calibrated: 8/14/2019 Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1964

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

#### Mode: Cell. CDMA, BC 0, Right Head, Cheek, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.93 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 0.360 W/kg

SAR(1 g) = 0.283 W/kg



DUT: ZNFL455DL; Type: Portable Handset; Serial: 05490

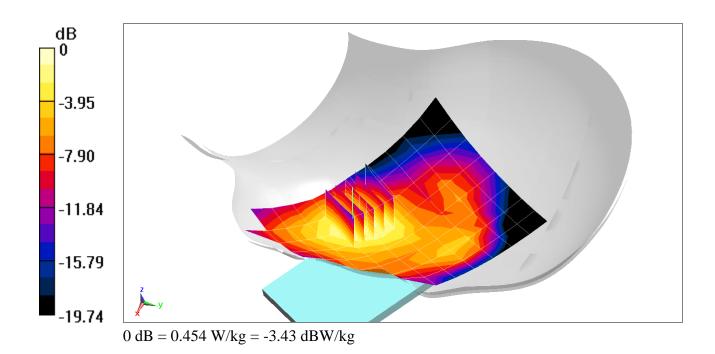
Communication System: UID 0, PCS CDMA; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: 1900 Head; Medium parameters used:  $f = 1880 \text{ MHz}; \ \sigma = 1.419 \text{ S/m}; \ \epsilon_r = 39.908; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Left Section

Test Date: 01-06-2020; Ambient Temp: 21.9°C; Tissue Temp: 20.0°C

Probe: EX3DV4 - SN7410; ConvF(8.11, 8.11, 8.11) @ 1880 MHz; Calibrated: 7/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2019 Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966

Mode: PCS CDMA, Left Head, Cheek, Mid.ch

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)


Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 16.03 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 0.533 W/kg

SAR(1 g) = 0.339 W/kg



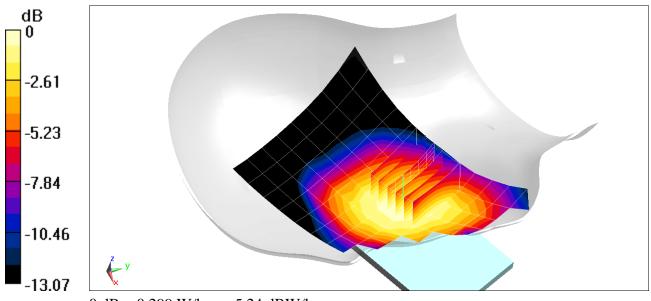
DUT: ZNFL455DL; Type: Portable Handset; Serial: 05516

Communication System: UID 0, LTE Band 71; Frequency: 680.5 MHz; Duty Cycle: 1:1 Medium: 700 Head; Medium parameters used (interpolated):  $f = 680.5 \text{ MHz}; \ \sigma = 0.844 \text{ S/m}; \ \epsilon_r = 41.64; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Right Section

Test Date: 01-05-2020; Ambient Temp: 21.9°C; Tissue Temp: 20.4°C

Probe: EX3DV4 - SN7308; ConvF(10.2, 10.2, 10.2) @ 680.5 MHz; Calibrated: 8/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1450; Calibrated: 8/14/2019
Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1964
Measurement SW: DASY52, Version 52.10 (2):SEMCAD X Version 14.6.12 (7470)

## Mode: LTE Band 71, Right Head, Cheek, Mid.ch, 20 MHz Bandwidth QPSK, 1 RB, 50 RB Offset


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (7x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.04 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 0.324 W/kg

SAR(1 g) = 0.258 W/kg



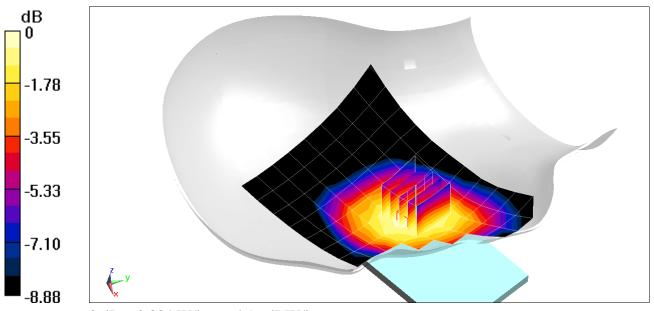
DUT: ZNFL455DL; Type: Portable Handset; Serial: 05516

Communication System: UID 0, LTE Band 12; Frequency: 707.5 MHz; Duty Cycle: 1:1 Medium: 700 Head; Medium parameters used (interpolated):  $f = 707.5 \text{ MHz}; \ \sigma = 0.854 \text{ S/m}; \ \epsilon_r = 41.551; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Right Section

Test Date: 01-05-2020; Ambient Temp: 21.9°C; Tissue Temp: 20.4°C

Probe: EX3DV4 - SN7308; ConvF(10.2, 10.2, 10.2) @ 707.5 MHz; Calibrated: 8/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1450; Calibrated: 8/14/2019
Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1964
Measurement SW: DASY52, Version 52.10 (2):SEMCAD X Version 14.6.12 (7470)

## Mode: LTE Band 12, Right Head, Cheek, Mid.ch, 10 MHz Bandwidth QPSK, 1 RB, 25 RB Offset


Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan(5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.47 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.410 W/kg

SAR(1 g) = 0.328 W/kg



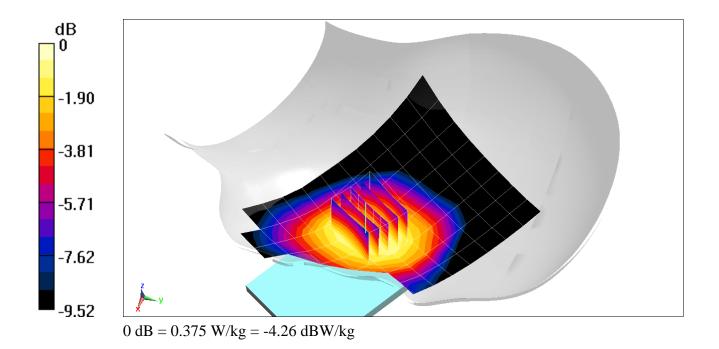
DUT: ZNFL455DL; Type: Portable Handset; Serial: 05516

Communication System: UID 0, LTE Band 13; Frequency: 782 MHz; Duty Cycle: 1:1 Medium: 700 Head; Medium parameters used (interpolated):  $f = 782 \text{ MHz}; \ \sigma = 0.881 \text{ S/m}; \ \epsilon_r = 41.307; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Left Section

Test Date: 01-05-2020; Ambient Temp: 21.9°C; Tissue Temp: 20.4°C

Probe: EX3DV4 - SN7308; ConvF(10.2, 10.2, 10.2) @ 782 MHz; Calibrated: 8/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1450; Calibrated: 8/14/2019
Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1964
Measurement SW: DASY52, Version 52.10 (2):SEMCAD X Version 14.6.12 (7470)

## Mode: LTE Band 13, Left Head, Cheek, Mid.ch, QPSK, 10 MHz Bandwidth QPSK, 1 RB, 25 RB Offset


Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 19.84 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.403 W/kg

SAR(1 g) = 0.319 W/kg



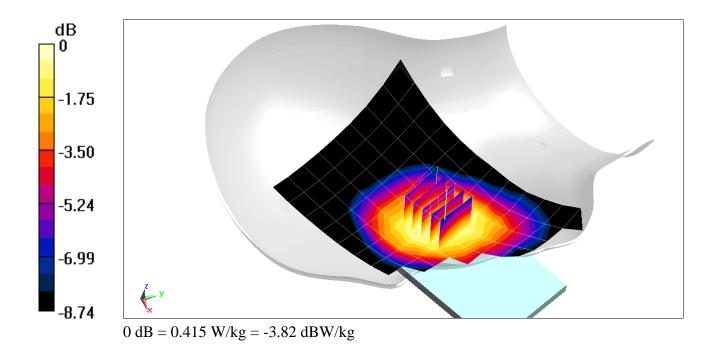
DUT: ZNFL455DL; Type: Portable Handset; Serial: 05516

Communication System: UID 0, LTE Band 26; Frequency: 831.5 MHz; Duty Cycle: 1:1 Medium: 835 Head; Medium parameters used (interpolated):  $f = 831.5 \text{ MHz}; \ \sigma = 0.907 \text{ S/m}; \ \epsilon_r = 40.322; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Right Section

Test Date: 01-08-2020; Ambient Temp: 20.9°C; Tissue Temp: 20.2°C

Probe: EX3DV4 - SN7308; ConvF(9.87, 9.87, 9.87) @ 831.5 MHz; Calibrated: 8/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1450; Calibrated: 8/14/2019
Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1964
Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

## Mode: LTE Band 26 (Cell.), Right Head, Cheek, Mid.ch, 15 MHz Bandwidth QPSK, 1 RB, 36 RB Offset


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.87 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 0.449 W/kg

SAR(1 g) = 0.354 W/kg



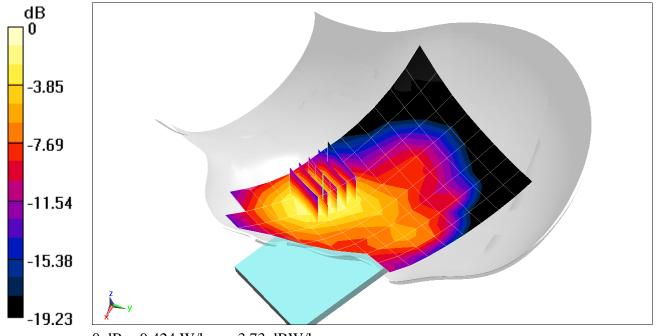
DUT: ZNFL455DL; Type: Portable Handset; Serial: 05516

Communication System: UID 0, LTE Band 66 (AWS); Frequency: 1745 MHz; Duty Cycle: 1:1 Medium: 1750 Head; Medium parameters used:  $f = 1745 \text{ MHz}; \ \sigma = 1.379 \text{ S/m}; \ \epsilon_r = 39.193; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Left Section

Test Date: 01-04-2020; Ambient Temp: 22.9°C; Tissue Temp: 22.0°C

Probe: EX3DV4 - SN7406; ConvF(8.57, 8.57, 8.57) @ 1745 MHz; Calibrated: 5/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn728; Calibrated: 5/8/2019
Phantom: Twin-SAM V5.0 Left 30; Type: QD 000 P40 CD; Serial: 1715
Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

## Mode: LTE Band 66 (AWS), Left Head, Cheek, Mid.ch, 20 MHz Bandwidth QPSK, 1 RB, 50 RB Offset


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.95 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 0.496 W/kg

SAR(1 g) = 0.292 W/kg



0 dB = 0.424 W/kg = -3.73 dBW/kg

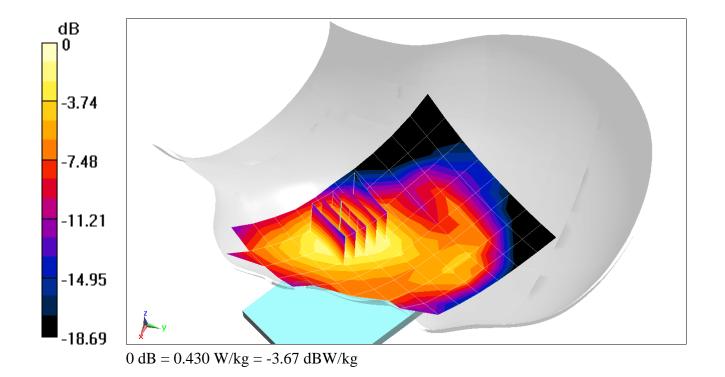
DUT: ZNFL455DL; Type: Portable Handset; Serial: 05508

Communication System: UID 0, LTE Band 25 (PCS); Frequency: 1905 MHz; Duty Cycle: 1:1 Medium: 1900 Head; Medium parameters used:  $f = 1905 \text{ MHz}; \ \sigma = 1.433 \text{ S/m}; \ \epsilon_r = 39.888; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Left Section

Test Date: 01-06-2020; Ambient Temp: 21.9°C; Tissue Temp: 20.0°C

Probe: EX3DV4 - SN7410; ConvF(8.11, 8.11, 8.11) @ 1905 MHz; Calibrated: 7/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1322; Calibrated: 7/11/2019
Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966
Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

## Mode: LTE Band 25 (PCS), Left Head, Cheek, High.ch, 20 MHz Bandwidth QPSK, 1 RB, 50 RB Offset


Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.85 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.512 W/kg

SAR(1 g) = 0.326 W/kg



DUT: ZNFL455DL; Type: Portable Handset; Serial: 05508

Communication System: UID 0, LTE Band 41 (Class 2); Frequency: 2636.5 MHz; Duty Cycle: 1:2.31 Medium: 2450 Head; Medium parameters used (interpolated):  $f = 2636.5 \text{ MHz}; \ \sigma = 1.929 \text{ S/m}; \ \epsilon_r = 37.408; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Right Section

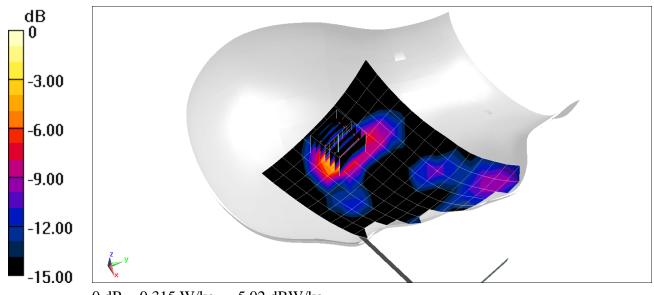
Test Date: 01-16-2020; Ambient Temp: 22.3°C; Tissue Temp: 21.1°C

Probe: EX3DV4 - SN7417; ConvF(7.17, 7.17, 7.17) @ 2636.5 MHz; Calibrated: 2/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn665; Calibrated: 2/13/2019

Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1647 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

# Mode: LTE Band 41, Power Class 2, Right Head, Tilt, Mid-High.ch, 20 MHz Bandwidth, QPSK, 1 RB, 99 RB Offset


Area Scan (11x17x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.53 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.409 W/kg

SAR(1 g) = 0.185 W/kg



DUT: ZNFL455DL; Type: Portable Handset; Serial: 05524

Communication System: UID 0, IEEE 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium: 2450 Head; Medium parameters used (interpolated):  $f = 2437 \text{ MHz}; \ \sigma = 1.844 \text{ S/m}; \ \epsilon_r = 39.027; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Right Section

Test Date: 12-05-2019; Ambient Temp: 22.7°C; Tissue Temp: 20.8°C

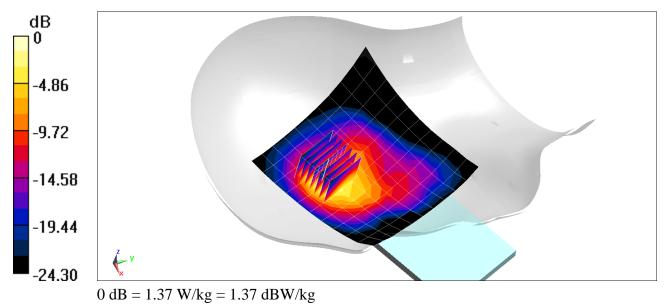
Probe: EX3DV4 - SN7417; ConvF(7.46, 7.46, 7.46) @ 2437 MHz; Calibrated: 2/19/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 2/13/2019

Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1647

Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

#### Mode: IEEE 802.11b, 22 MHz Bandwidth, Right Head, Cheek, Ch 6, 1 Mbps


Area Scan (11x11x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (8x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.263 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 1.83 W/kg

SAR(1 g) = 0.844 W/kg



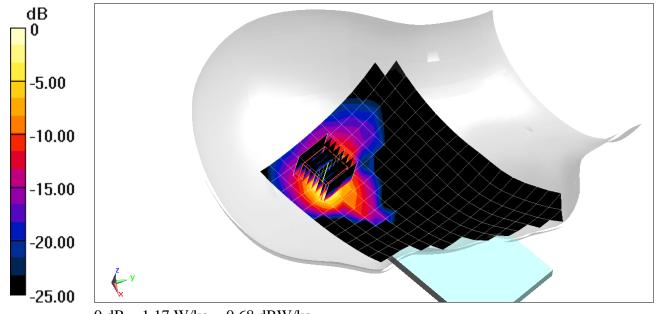
DUT: ZNFL455DL; Type: Portable Handset; Serial: 05524

Communication System: UID 0, IEEE 802.11a; Frequency: 5300 MHz; Duty Cycle: 1:1 Medium: 5200-5800 Head; Medium parameters used:  $f = 5300 \text{ MHz}; \ \sigma = 4.612 \text{ S/m}; \ \epsilon_r = 34.443; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Right Section

Test Date: 12-09-2019; Ambient Temp: 22.0°C; Tissue Temp: 23.0°C

Probe: EX3DV4 - SN7406; ConvF(5.54, 5.54, 5.54) @ 5300 MHz; Calibrated: 5/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn728; Calibrated: 5/8/2019
Phantom: Twin-SAM V5.0 Left 20; Type: QD 000 P40 CD; Serial: 1715
Measurement SW: DASY52, Version 52.10 (2):SEMCAD X Version 14.6.12 (7470)

Mode: IEEE 802.11a, U-NII-2A, 20 MHz Bandwidth, Right Head, Cheek, Ch 60, 6 Mbps


Area Scan (13x10x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Reference Value = 0.6800 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 1.85 W/kg

SAR(1 g) = 0.465 W/kg



0 dB = 1.17 W/kg = 0.68 dBW/kg

DUT: ZNFL455DL; Type: Portable Handset; Serial: 05524

Communication System: UID 0, Bluetooth; Frequency: 2480 MHz; Duty Cycle: 1:1.302 Medium: 2450 Head; Medium parameters used (interpolated):  $f = 2480 \text{ MHz}; \ \sigma = 1.879 \text{ S/m}; \ \epsilon_r = 38.165; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Right Section

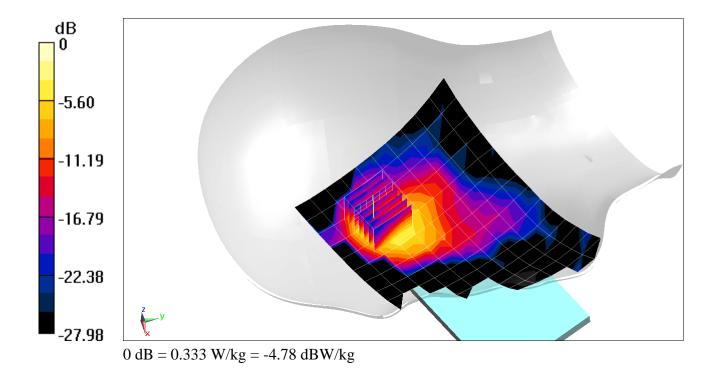
Test Date: 01-08-2020; Ambient Temp: 22.9°C; Tissue Temp: 20.7°C

Probe: EX3DV4 - SN7417; ConvF(7.46, 7.46, 7.46) @ 2480 MHz; Calibrated: 2/19/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 2/13/2019

Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1647 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

#### Mode: Bluetooth, Right Head, Cheek, Ch 78, 1 Mbps


Area Scan (11x17x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.76 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.437 W/kg

SAR(1 g) = 0.196 W/kg



DUT: ZNFL455DL; Type: Portable Handset; Serial: 05490

Communication System: UID 0, GSM GPRS; 4 Tx slots; Frequency: 836.6 MHz; Duty Cycle: 1:2.076 Medium: 835 Body; Medium parameters used (interpolated):  $f = 836.6 \text{ MHz}; \ \sigma = 0.967 \text{ S/m}; \ \epsilon_r = 53.966; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section; Space: 1.0 cm

Test Date: 12-18-2019; Ambient Temp: 21.1°C; Tissue Temp: 19.9°C

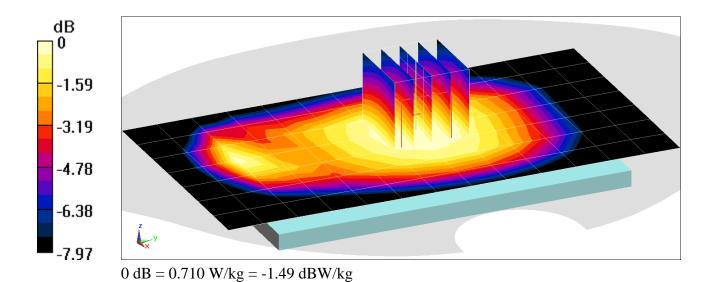
Probe: EX3DV4 - SN7410; ConvF(9.79, 9.79, 9.79) @ 836.6 MHz; Calibrated: 7/16/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1322; Calibrated: 7/11/2019

Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1630

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

#### Mode: GPRS 850, Body SAR, Back side, Mid.ch, 4 Tx Slots


Area Scan (8x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 25.20 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 0.768 W/kg

SAR(1 g) = 0.592 W/kg



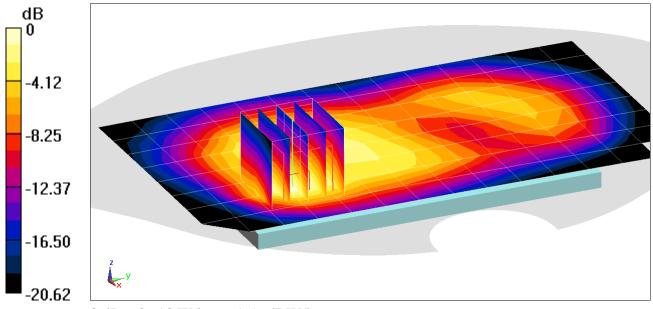
DUT: ZNFL455DL; Type: Portable Handset; Serial: 05490

Communication System: UID 0, GSM GPRS; 4 Tx slots; Frequency: 1880 MHz; Duty Cycle: 1:2.076 Medium: 1900 Body; Medium parameters used:  $f = 1880 \text{ MHz}; \ \sigma = 1.55 \text{ S/m}; \ \epsilon_r = 51.42; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-06-2020; Ambient Temp: 21.9°C; Tissue Temp: 22.0°C

Probe: EX3DV4 - SN7551; ConvF(7.69, 7.69, 7.69) @ 1880 MHz; Calibrated: 9/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1333; Calibrated: 9/17/2019
Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792
Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

#### Mode: GPRS 1900, Body SAR, Back side, Mid.ch, 4 Tx Slots


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.84 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.850 W/kg

SAR(1 g) = 0.436 W/kg



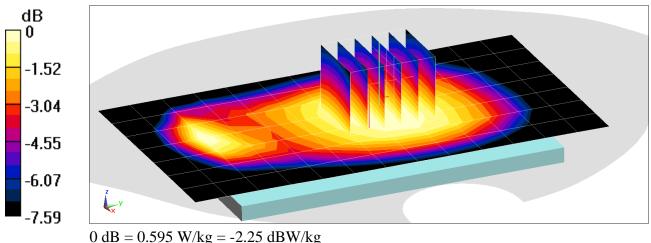
0 dB = 0.698 W/kg = -1.56 dBW/kg

DUT: ZNFL455DL; Type: Portable Handset; Serial: 05490

Communication System: UID 0, UMTS; Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium: 835 Body; Medium parameters used (interpolated):  $f = 836.6 \text{ MHz}; \ \sigma = 0.967 \text{ S/m}; \ \epsilon_r = 53.966; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 12-18-2019; Ambient Temp: 21.1°C; Tissue Temp: 19.9°C

Probe: EX3DV4 - SN7410; ConvF(9.79, 9.79, 9.79) @ 836.6 MHz; Calibrated: 7/16/2019


Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2019

Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1630

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: UMTS 850, Body SAR, Back side, Mid.ch

**Area Scan (8x14x1):** Measurement grid: dx=15mm, dy=15mm **Zoom Scan (5x6x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 22.18 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 0.645 W/kgSAR(1 g) = 0.501 W/kg



DUT: ZNFL455DL; Type: Portable Handset; Serial: 05482

Communication System: UID 0, UMTS; Frequency: 1732.4 MHz; Duty Cycle: 1:1 Medium: 1750 Body; Medium parameters used (interpolated):  $f = 1732.4 \text{ MHz}; \ \sigma = 1.501 \text{ S/m}; \ \epsilon_r = 52.737; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section; Space: 1.0 cm

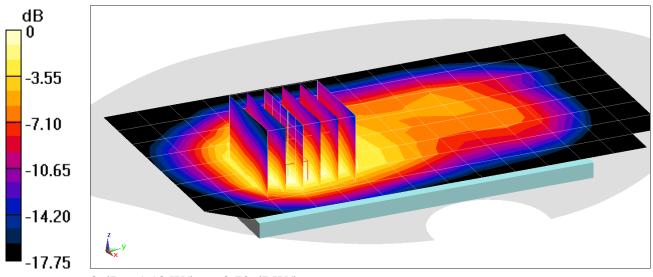
Test Date: 12-30-2019; Ambient Temp: 20.4°C; Tissue Temp: 20.7°C

Probe: EX3DV4 - SN7357; ConvF(8.26, 8.26, 8.26) @ 1732.4 MHz; Calibrated: 4/24/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/18/2019

Phantom: Right Back Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1692 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

#### Mode: UMTS 1750, Body SAR, Back side, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (16x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.37 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 1.43 W/kg

SAR(1 g) = 0.819 W/kg



0 dB = 1.18 W/kg = 0.72 dBW/kg

#### DUT: ZNFL455DL; Type: Portable Handset; Serial: 05482

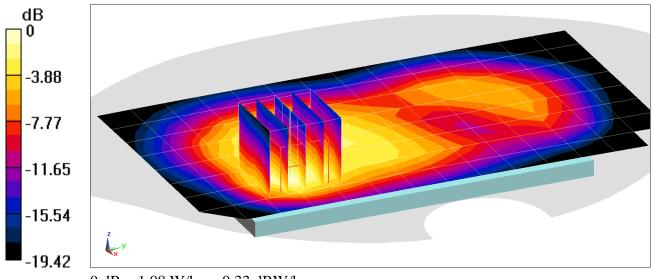
Communication System: UID 0, UMTS; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: 1900 Body; Medium parameters used:  $f = 1880 \text{ MHz}; \ \sigma = 1.558 \text{ S/m}; \ \epsilon_r = 51.745; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-05-2020; Ambient Temp: 20.7°C; Tissue Temp: 21.7°C

Probe: EX3DV4 - SN7551; ConvF(7.69, 7.69, 7.69) @ 1880 MHz; Calibrated: 9/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 9/17/2019 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

#### Mode: UMTS 1900, Body SAR, Back side, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.24 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 1.40 W/kg

SAR(1 g) = 0.720 W/kg



0 dB = 1.08 W/kg = 0.33 dBW/kg

#### DUT: ZNFL455DL; Type: Portable Handset; Serial: 05490

Communication System: UID 0, CDMA; Frequency: 820.1 MHz; Duty Cycle: 1:1 Medium: 835 Body; Medium parameters used (interpolated):  $f = 820.1 \text{ MHz}; \ \sigma = 0.958 \text{ S/m}; \ \epsilon_r = 53.916; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section; Space: 1.0 cm

Test Date: 12-18-2019; Ambient Temp: 21.1°C; Tissue Temp: 19.9°C

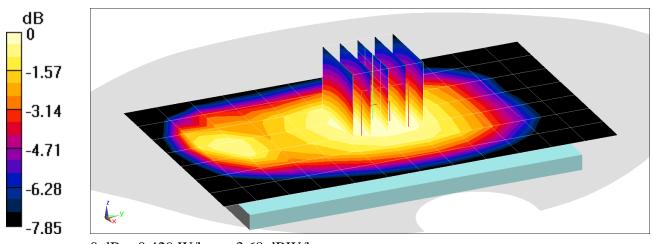
Probe: EX3DV4 - SN7410; ConvF(9.79, 9.79, 9.79) @ 820.1 MHz; Calibrated: 7/16/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1322; Calibrated: 7/11/2019

Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1630

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

#### Mode: Cell. CDMA BC10, Body SAR, Back side, Mid.ch


Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 19.74 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 0.466 W/kg

SAR(1 g) = 0.359 W/kg



0 dB = 0.429 W/kg = -3.68 dBW/kg

#### DUT: ZNFL455DL; Type: Portable Handset; Serial: 05490

Communication System: UID 0, CDMA; Frequency: 820.1 MHz; Duty Cycle: 1:1 Medium: 835 Body; Medium parameters used (interpolated):  $f = 820.1 \text{ MHz}; \ \sigma = 0.958 \text{ S/m}; \ \epsilon_r = 53.916; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section; Space: 1.0 cm

Test Date: 12-18-2019; Ambient Temp: 21.1°C; Tissue Temp: 19.9°C

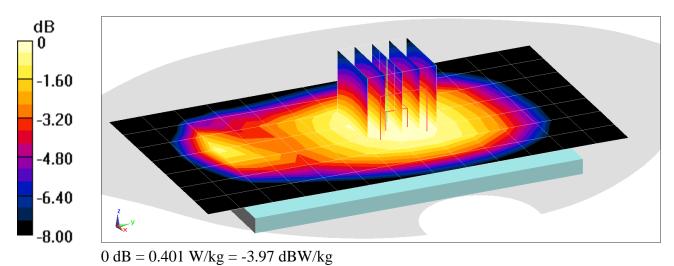
Probe: EX3DV4 - SN7410; ConvF(9.79, 9.79, 9.79) @ 820.1 MHz; Calibrated: 7/16/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2019

Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1630

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

#### Mode: Cell. EVDO BC10, Body SAR, Back side, Mid.ch


Area Scan (8x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 19.05 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.434 W/kg

SAR(1 g) = 0.336 W/kg



#### DUT: ZNFL455DL; Type: Portable Handset; Serial: 05490

Communication System: UID 0, CDMA; Frequency: 836.52 MHz; Duty Cycle: 1:1 Medium: 835 Body; Medium parameters used (interpolated):  $f = 836.52 \text{ MHz}; \ \sigma = 0.967 \text{ S/m}; \ \epsilon_r = 53.965; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section; Space: 1.0 cm

Test Date: 12-18-2019; Ambient Temp: 21.1°C; Tissue Temp: 19.9°C

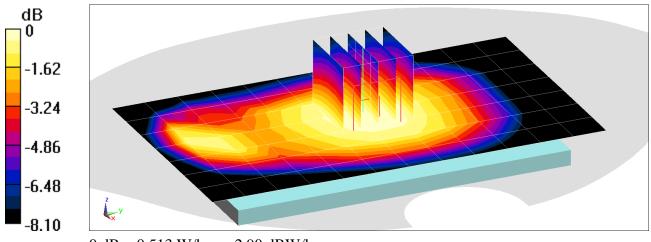
Probe: EX3DV4 - SN7410; ConvF(9.79, 9.79, 9.79) @ 836.52 MHz; Calibrated: 7/16/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2019

Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1630

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

#### Mode: Cell. CDMA, BC 0, Body SAR, Back side, Mid.ch


Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.54 V/m; Power Drift = -0.20 dB

Peak SAR (extrapolated) = 0.559 W/kg

SAR(1 g) = 0.432 W/kg



0 dB = 0.513 W/kg = -2.90 dBW/kg

DUT: ZNFL455DL; Type: Portable Handset; Serial: 05490

Communication System: UID 0, CDMA; Frequency: 836.52 MHz; Duty Cycle: 1:1 Medium: 835 Body; Medium parameters used (interpolated):  $f = 836.52 \text{ MHz}; \ \sigma = 0.967 \text{ S/m}; \ \epsilon_r = 53.965; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section; Space: 1.0 cm

Test Date: 12-18-2019; Ambient Temp: 21.1°C; Tissue Temp: 19.9°C

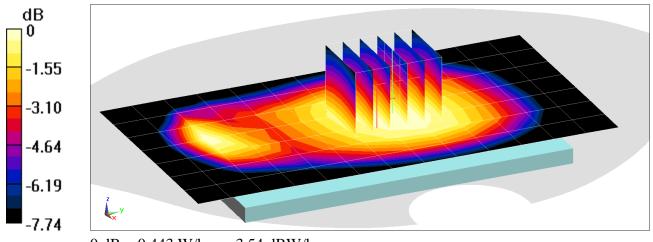
Probe: EX3DV4 - SN7410; ConvF(9.79, 9.79, 9.79) @ 836.52 MHz; Calibrated: 7/16/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2019

Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1630

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

#### Mode: Cell. EVDO, BC 0, Body SAR, Back side, Mid.ch


Area Scan (8x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.96 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.479 W/kg

SAR(1 g) = 0.371 W/kg



DUT: ZNFL455DL; Type: Portable Handset; Serial: 05490

Communication System: UID 0, CDMA; Frequency: 1908.75 MHz; Duty Cycle: 1:1 Medium: 1900 Body; Medium parameters used (interpolated):  $f = 1908.75 \text{ MHz}; \ \sigma = 1.588 \text{ S/m}; \ \epsilon_r = 51.407; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section; Space: 1.0 cm

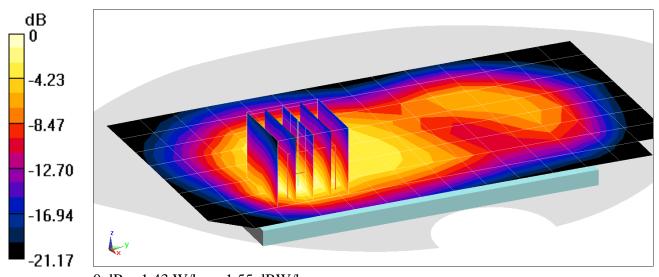
Test Date: 01-06-2020; Ambient Temp: 21.9°C; Tissue Temp: 22.0°C

Probe: EX3DV4 - SN7551; ConvF(7.69, 7.69, 7.69) @ 1908.75 MHz; Calibrated: 9/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 9/17/2019

Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

#### Mode: PCS CDMA, Body SAR, Back side, High.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 25.08 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 1.75 W/kg

SAR(1 g) = 0.888 W/kg



0 dB = 1.43 W/kg = 1.55 dBW/kg

DUT: ZNFL455DL; Type: Portable Handset; Serial: 05490

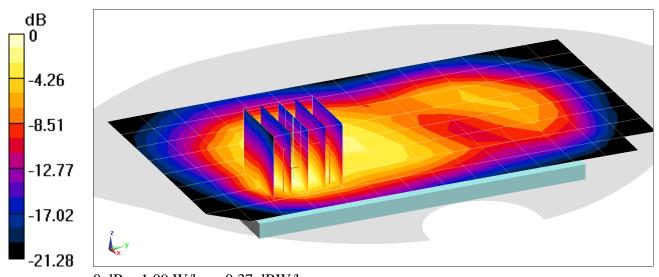
Communication System: UID 0, CDMA; Frequency: 1908.75 MHz; Duty Cycle: 1:1 Medium: 1900 Body; Medium parameters used (interpolated):  $f = 1908.75 \text{ MHz}; \ \sigma = 1.588 \text{ S/m}; \ \epsilon_r = 51.407; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-06-2020; Ambient Temp: 21.9°C; Tissue Temp: 22.0°C

Probe: EX3DV4 - SN7551; ConvF(7.69, 7.69, 7.69) @ 1908.75 MHz; Calibrated: 9/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 9/17/2019

Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

#### Mode: PCS EVDO, Body SAR, Back side, High.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.85 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 1.32 W/kg

SAR(1 g) = 0.678 W/kg



DUT: ZNFL455DL; Type: Portable Handset; Serial: 05516

Communication System: UID 0, LTE Band 71; Frequency: 680.5 MHz; Duty Cycle: 1:1 Medium: 700 Body; Medium parameters used (interpolated):  $f = 680.5 \text{ MHz}; \ \sigma = 0.949 \text{ S/m}; \ \epsilon_r = 53.287; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section; Space: 1.0 cm

Test Date: 12-28-2019; Ambient Temp: 22.2°C; Tissue Temp: 21.5°C

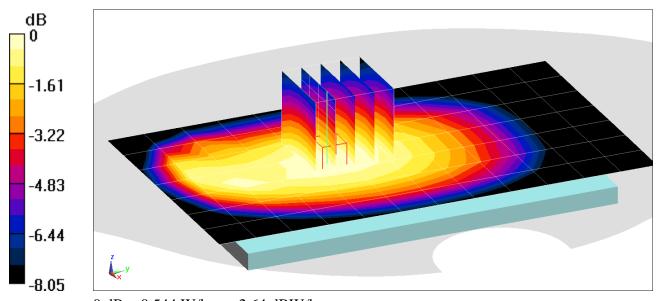
Probe: EX3DV4 - SN7410; ConvF(10.01, 10.01, 10.01) @ 680.5 MHz; Calibrated: 7/16/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2019

Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1630

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

# Mode: LTE Band 71, Body SAR, Back side, Mid.ch, 20 MHz Bandwidth QPSK, 1 RB, 50 RB Offset


Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.97 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 0.584 W/kg

SAR(1 g) = 0.462 W/kg



0 dB = 0.544 W/kg = -2.64 dBW/kg

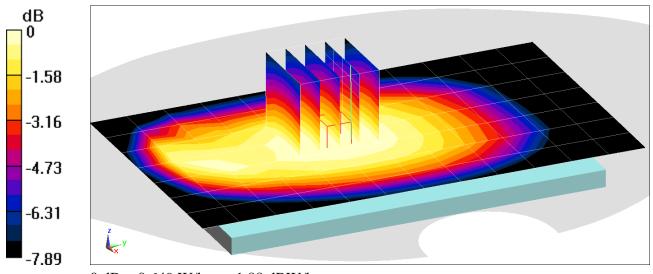
DUT: ZNFL455DL; Type: Portable Handset; Serial: 05516

Communication System: UID 0, LTE Band 12; Frequency: 707.5 MHz; Duty Cycle: 1:1 Medium: 700 Body; Medium parameters used (interpolated):  $f = 707.5 \text{ MHz}; \ \sigma = 0.96 \text{ S/m}; \ \epsilon_r = 53.179; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section; Space: 1.0 cm

Test Date: 12-28-2019; Ambient Temp: 22.2°C; Tissue Temp: 21.5°C

Probe: EX3DV4 - SN7410; ConvF(10.01, 10.01, 10.01) @ 707.5 MHz; Calibrated: 7/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1322; Calibrated: 7/11/2019
Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1630
Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

# Mode: LTE Band 12, Body SAR, Back side, Mid.ch, 10 MHz Bandwidth QPSK, 1 RB, 25 RB Offset


Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.48 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.698 W/kg

SAR(1 g) = 0.555 W/kg



DUT: ZNFL455DL; Type: Portable Handset; Serial: 05516

Communication System: UID 0, LTE Band 12; Frequency: 707.5 MHz; Duty Cycle: 1:1 Medium: 700 Body; Medium parameters used (interpolated):  $f = 707.5 \text{ MHz}; \ \sigma = 0.96 \text{ S/m}; \ \epsilon_r = 53.179; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section; Space: 1.0 cm

Test Date: 12-28-2019; Ambient Temp: 22.2°C; Tissue Temp: 21.5°C

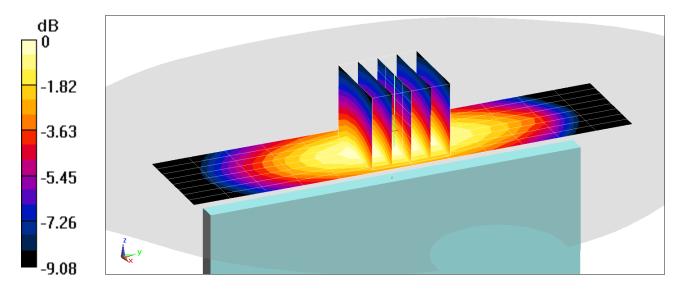
Probe: EX3DV4 - SN7410; ConvF(10.01, 10.01, 10.01) @ 707.5 MHz; Calibrated: 7/16/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2019

Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1630

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

# Mode: LTE Band 12, Body SAR, Right Edge, Mid.ch, 10 MHz Bandwidth QPSK, 1 RB, 25 RB Offset


Area Scan (9x13x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 26.16 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 0.889 W/kg

SAR(1 g) = 0.625 W/kg



0 dB = 0.800 W/kg = -0.97 dBW/kg

DUT: ZNFL455DL; Type: Portable Handset; Serial: 05516

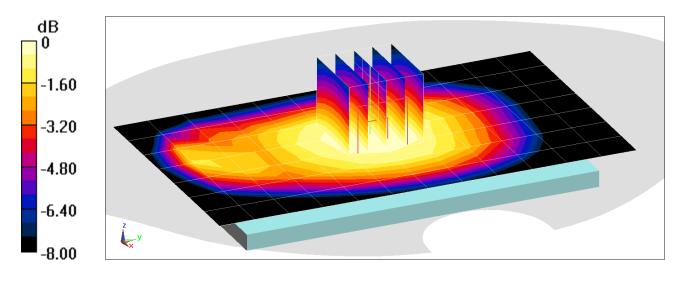
Communication System: UID 0, LTE Band 13; Frequency: 782 MHz; Duty Cycle: 1:1 Medium: 700 Body; Medium parameters used (interpolated):  $f = 782 \text{ MHz}; \ \sigma = 0.985 \text{ S/m}; \ \epsilon_r = 53.021; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section; Space: 1.0 cm

Test Date: 12-28-2019; Ambient Temp: 22.2°C; Tissue Temp: 21.5°C

Probe: EX3DV4 - SN7410; ConvF(10.01, 10.01, 10.01) @ 782 MHz; Calibrated: 7/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2019

Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1630 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

# Mode: LTE Band 13, Body SAR, Back side, Mid.ch, 10 MHz Bandwidth QPSK, 1 RB, 25 RB Offset


Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 25.19 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.761 W/kg

SAR(1 g) = 0.597 W/kg



0 dB = 0.709 W/kg = -1.49 dBW/kg

DUT: ZNFL455DL; Type: Portable Handset; Serial: 05516

Communication System: UID 0, LTE Band 26; Frequency: 831.5 MHz; Duty Cycle: 1:1 Medium: 835 Body; Medium parameters used (interpolated):  $f = 831.5 \text{ MHz}; \ \sigma = 0.964 \text{ S/m}; \ \epsilon_r = 53.951; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section; Space: 1.0 cm

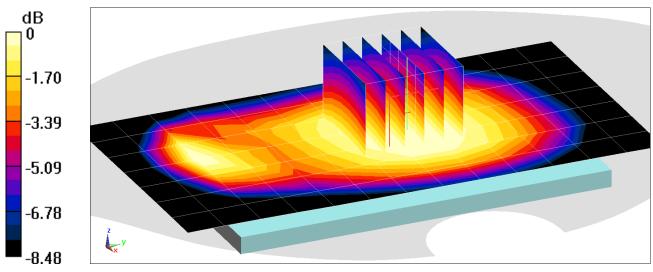
Test Date: 12-18-2019; Ambient Temp: 21.1°C; Tissue Temp: 19.9°C

Probe: EX3DV4 - SN7410; ConvF(9.79, 9.79, 9.79) @ 831.5 MHz; Calibrated: 7/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1322; Calibrated: 7/11/2019 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1630

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

# Mode: LTE Band 26 (Cell.), Body SAR, Back side, Mid.ch, 15 MHz Bandwidth QPSK, 1 RB, 36 RB Offset


Area Scan (8x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.33 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 0.658 W/kg

SAR(1 g) = 0.513 W/kg



0 dB = 0.609 W/kg = -2.15 dBW/kg

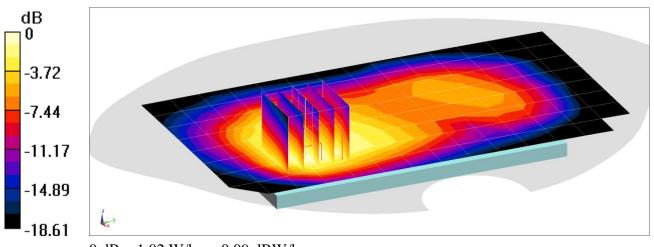
DUT: ZNFL455DL; Type: Portable Handset; Serial: 05516

Communication System: UID 0, LTE Band 66 (AWS); Frequency: 1720 MHz; Duty Cycle: 1:1 Medium: 1750 Body; Medium parameters used:  $f = 1720 \text{ MHz}; \ \sigma = 1.496 \text{ S/m}; \ \epsilon_r = 51.759; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-10-2020; Ambient Temp: 22.0°C; Tissue Temp: 22.1°C

Probe: EX3DV4 - SN7308;ConvF(8.25, 8.25, 8.25) @ 1720 MHz; Calibrated: 8/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1450; Calibrated: 8/14/2019
Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1964
Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

# Mode: LTE Band 66 (AWS), Body SAR, Back side, Low.ch, 20 MHz Bandwidth QPSK, 1 RB, 50 RB Offset


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.52 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 1.27 W/kg

SAR(1 g) = 0.714 W/kg



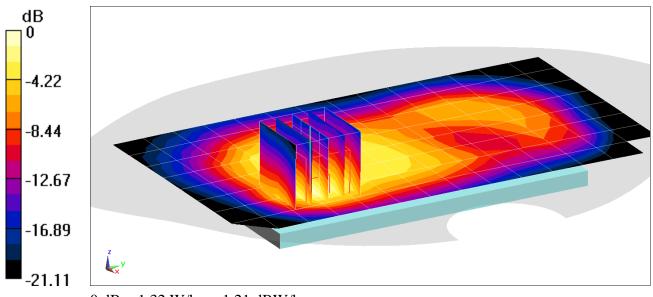
DUT: ZNFL455DL; Type: Portable Handset; Serial: 05508

Communication System: UID 0, LTE Band 25 (PCS); Frequency: 1905 MHz; Duty Cycle: 1:1 Medium: 1900 Body; Medium parameters used:  $f = 1905 \text{ MHz}; \ \sigma = 1.583 \text{ S/m}; \ \epsilon_r = 50.912; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-08-2020; Ambient Temp: 21.9°C; Tissue Temp: 22.1°C

Probe: EX3DV4 - SN7551; ConvF(7.69, 7.69, 7.69) @ 1905 MHz; Calibrated: 9/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1333; Calibrated: 9/17/2019
Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792
Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

# Mode: LTE Band 25 (PCS), Body SAR, Back side, High.ch, 20 MHz Bandwidth QPSK, 1 RB, 50 RB Offset


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.04 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 1.62 W/kg

SAR(1 g) = 0.826 W/kg



0 dB = 1.32 W/kg = 1.21 dBW/kg

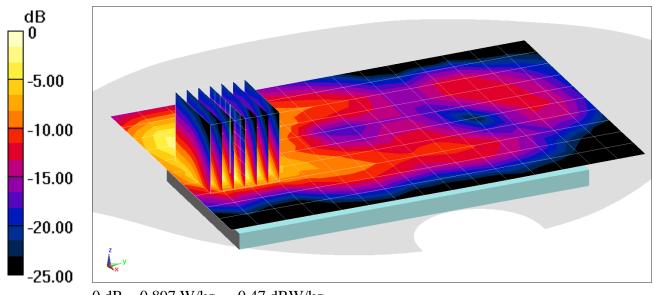
DUT: ZNFL455DL; Type: Portable Handset; Serial: 05516

Communication System: UID 0, LTE Band 41 (Class 2); Frequency: 2636.5 MHz; Duty Cycle: 1:2.31 Medium: 2450 Body; Medium parameters used (interpolated):  $f = 2636.5 \text{ MHz}; \ \sigma = 2.263 \text{ S/m}; \ \epsilon_r = 51.074; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-08-2020; Ambient Temp: 24.2°C; Tissue Temp: 22.8°C

Probe: EX3DV4 - SN7547; ConvF(7.18, 7.18, 7.18) @ 2636.5 MHz; Calibrated: 7/15/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1323; Calibrated: 7/11/2019
Phantom: LeftTwin-SAM V5.0; Type: QD 000 P40 CD; Serial: TP1375
Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

# Mode: LTE Band 41 PC2, Body SAR, Back side Mid-High.ch, 20 MHz Bandwidth QPSK, 1 RB, 99 RB Offset


Area Scan (11x16x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (8x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

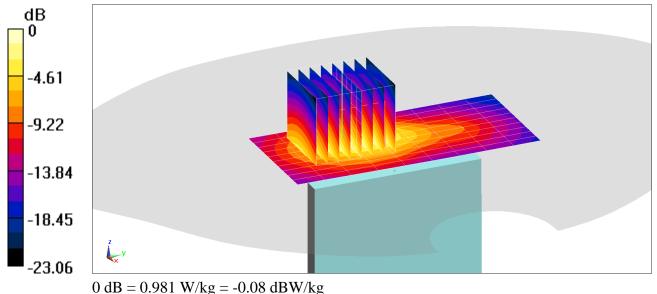
Reference Value = 12.95 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 1.23 W/kg

SAR(1 g) = 0.534 W/kg



DUT: ZNFL455DL; Type: Portable Handset; Serial: 05508


Communication System: UID 0, LTE Band 41 (Class 2); Frequency: 2636.5 MHz; Duty Cycle: 1:2.31 Medium: 2450 Body; Medium parameters used (interpolated):  $f = 2636.5 \text{ MHz}; \ \sigma = 2.227 \text{ S/m}; \ \varepsilon_r = 50.026; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-13-2020; Ambient Temp: 22.9°C; Tissue Temp: 21.9°C

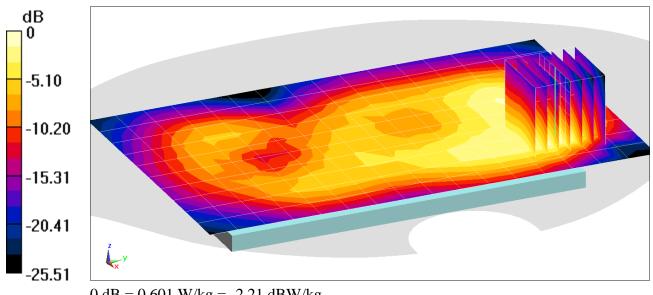
Probe: EX3DV4 - SN7547; ConvF(7.18, 7.18, 7.18) @ 2636.5 MHz; Calibrated: 7/15/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 7/11/2019 Phantom: LeftTwin-SAM V5.0; Type: QD 000 P40 CD; Serial: TP1375 Measurement SW: DASY52, Version 52.10 (2):SEMCAD X Version 14.6.12 (7470)

#### Mode: LTE Band 41 PC2, Body SAR, Bottom Edge, Mid-High.ch, 20 MHz Bandwidth QPSK, 1 RB, 99 RB Offset

**Area Scan (11x10x1):** Measurement grid: dx=5mm, dy=12mm **Zoom Scan** (7x8x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 16.93 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 1.25 W/kgSAR(1 g) = 0.621 W/kg



DUT: ZNFL455DL; Type: Portable Handset; Serial: 05524


Communication System: UID 0, 802.11b; Frequency: 2412 MHz; Duty Cycle: 1:1 Medium: 2450 Body; Medium parameters used (interpolated):  $f = 2412 \text{ MHz}; \sigma = 1.985 \text{ S/m}; \epsilon_r = 52.4; \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-06-2020; Ambient Temp: 20.6°C; Tissue Temp: 21.9°C

Probe: EX3DV4 - SN7410; ConvF(7.44, 7.44, 7.44) @ 2412 MHz; Calibrated: 7/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2019 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1630 Measurement SW: DASY52, Version 52.10 (2):SEMCAD X Version 14.6.12 (7470)

#### Mode: IEEE 802.11b, 22 MHz Bandwidth, Body SAR Ch 1, 1 Mbps, Back Side

**Area Scan (11x17x1):** Measurement grid: dx=12mm, dy=12mm **Zoom Scan** (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 14.39 V/m; Power Drift = -0.15 dB Peak SAR (extrapolated) = 0.757 W/kgSAR(1 g) = 0.358 W/kg



DUT: ZNFL455DL; Type: Portable Handset; Serial: 05524

Communication System: UID 0, 802.11a 5.2-5.8 GHz Band; Frequency: 5280 MHz; Duty Cycle: 1:1 Medium: 5200-5800 Body; Medium parameters used:  $f = 5280 \text{ MHz}; \ \sigma = 5.585 \text{ S/m}; \ \epsilon_r = 46.908; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section; Space: 1.0 cm

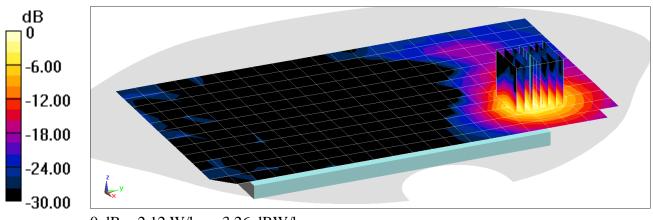
Test Date: 12-23-2019; Ambient Temp: 23.0°C; Tissue Temp: 22.0°C

Probe: EX3DV4 - SN7409; ConvF(4.7, 4.7, 4.7) @ 5280 MHz; Calibrated: 6/19/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 6/20/2019 Phantom: Front; Type: QD 000 P40 CD; Serial: 1686

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: IEEE 802.11a, UNII-2A, 20 MHz Bandwidth, Body SAR Ch 56, 6 Mbps, Back Side


Area Scan (13x22x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Reference Value = 13.71 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 3.45 W/kg

SAR(1 g) = 0.900 W/kg



0 dB = 2.12 W/kg = 3.26 dBW/kg

DUT: ZNFL455DL; Type: Portable Handset; Serial: 05524

Communication System: UID 0, 802.11a 5.2-5.8 GHz Band; Frequency: 5220 MHz; Duty Cycle: 1:1 Medium: 5200-5800 Body; Medium parameters used:  $f = 5220 \text{ MHz}; \ \sigma = 5.502 \text{ S/m}; \ \epsilon_r = 47.032; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section; Space: 1.0 cm

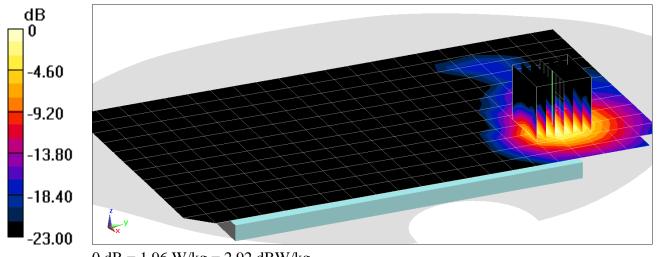
Test Date: 12-23-2019; Ambient Temp: 23.0°C; Tissue Temp: 22.0°C

Probe: EX3DV4 - SN7409; ConvF(4.7, 4.7, 4.7) @ 5220 MHz; Calibrated: 6/19/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 6/20/2019 Phantom: Front; Type: QD 000 P40 CD; Serial: 1686

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

#### Mode: IEEE 802.11a, UNII-1, 20 MHz Bandwidth, Body SAR Ch 44, 6 Mbps, Back Side


Area Scan (9x9x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Reference Value = 13.30 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 3.09 W/kg

SAR(1 g) = 0.823 W/kg



0 dB = 1.96 W/kg = 2.92 dBW/kg

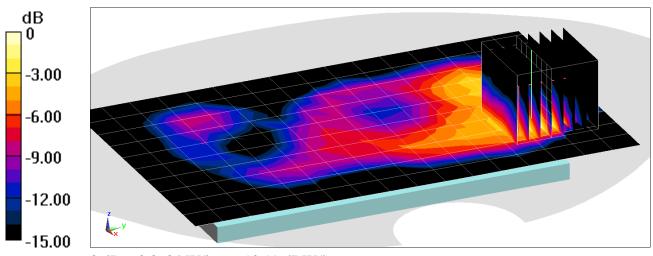
DUT: ZNFL455DL; Type: Portable Handset; Serial: 05524

Communication System: UID 0, Bluetooth; Frequency: 2480 MHz; Duty Cycle: 1:1.302 Medium: 2450 Body; Medium parameters used (interpolated):  $f = 2480 \text{ MHz}; \ \sigma = 2.076 \text{ S/m}; \ \epsilon_r = 51.514; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-05-2020; Ambient Temp: 23.4°C; Tissue Temp: 22.2°C

Probe: EX3DV4 - SN7547; ConvF(7.3, 7.3, 7.3) @ 2480 MHz; Calibrated: 7/15/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1323; Calibrated: 7/11/2019
Phantom: LeftTwin-SAM V5.0; Type: QD 000 P40 CD; Serial: TP1375
Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

#### Mode: Bluetooth, Body SAR, Ch 78, 1 Mbps, Back Side


Area Scan (11x17x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.993 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 0.0790 W/kg

SAR(1 g) = 0.036 W/kg



0 dB = 0.0604 W/kg = -12.19 dBW/kg

DUT: ZNFL455DL; Type: Portable Handset; Serial: 05482

Communication System: UID 0, UMTS; Frequency: 1752.6 MHz; Duty Cycle: 1:1 Medium: 1750 Body; Medium parameters used (interpolated):  $f = 1752.6 \text{ MHz}; \ \sigma = 1.513 \text{ S/m}; \ \epsilon_r = 53.057; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section; Space: 0.0 cm

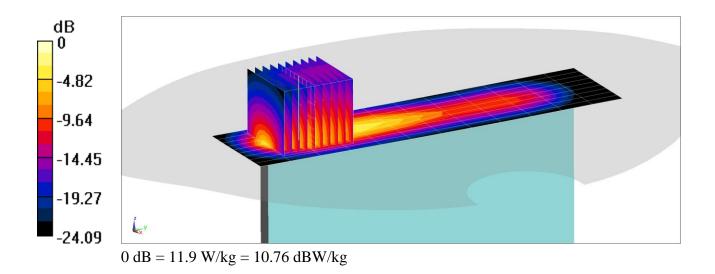
Test Date: 01-09-2020; Ambient Temp: 21.5°C; Tissue Temp: 21.1°C

Probe: EX3DV4 - SN7357; ConvF(8.26, 8.26, 8.26) @ 1752.6 MHz; Calibrated: 4/24/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/18/2019

Phantom: Right Back Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1692 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

#### Mode: UMTS 1750, Phablet SAR, Left Edge, High.ch


Area Scan (10x13x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (10x10x8)/Cube 0: Measurement grid: dx=3.8mm, dy=3.8mm, dz=1.4mm; Graded Ratio: 1.4

Reference Value = 72.49 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 22.1 W/kg

SAR(10 g) = 3.06 W/kg



DUT: ZNFL455DL; Type: Portable Handset; Serial: 05490

Communication System: UID 0, UMTS; 1907.6 MHz; Duty Cycle: 1:1 Medium: 1900 Body; Medium parameters used (interpolated):  $f = 1907.6 \text{ MHz}; \ \sigma = 1.586 \text{ S/m}; \ \epsilon_r = 51.408; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section; Space: 0.0 cm

Test Date: 01-06-2020; Ambient Temp: 21.9°C; Tissue Temp: 22.0°C

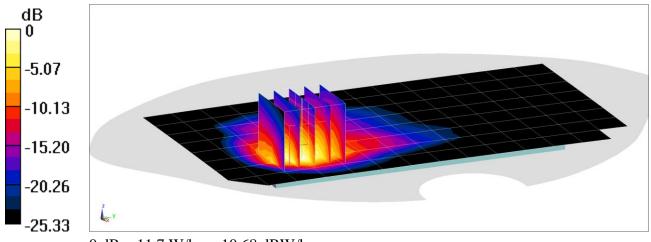
Probe: EX3DV4 - SN7551; ConvF(7.69, 7.69, 7.69) @ 1907.6 MHz; Calibrated: 9/19/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 9/17/2019

Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

#### Mode: UMTS 1900, Phablet SAR, Back side, High.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 69.44 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 17.0 W/kg

SAR(10 g) = 2.85 W/kg



0 dB = 11.7 W/kg = 10.68 dBW/kg

DUT: ZNFL455DL; Type: Portable Handset; Serial: 05490

Communication System: UID 0, CDMA; 1908.75 MHz; Duty Cycle: 1:1 Medium: 1900 Body; Medium parameters used (interpolated): f = 1908.75 MHz;  $\sigma = 1.588$  S/m;  $\epsilon_r = 51.407$ ;  $\rho = 1000$  kg/m<sup>3</sup> Phantom section: Flat Section; Space: 0.0 cm

Test Date: 01-06-2020; Ambient Temp: 21.9°C; Tissue Temp: 22.0°C

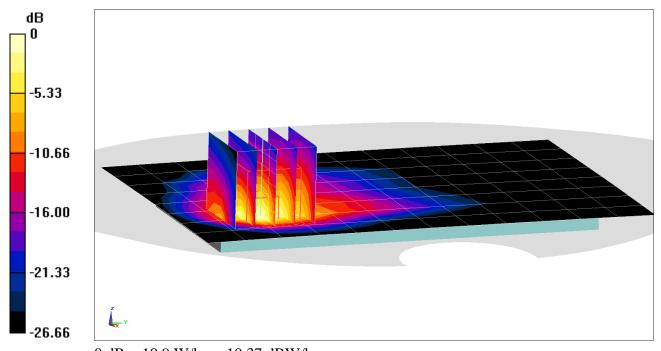
Probe: EX3DV4 - SN7551;ConvF(7.69, 7.69, 7.69) @ 1908.75 MHz; Calibrated: 9/19/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 9/17/2019

Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

#### Mode: PCS EVDO, Phablet SAR, Back side, High.ch


Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 71.02 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 16.7 W/kg

SAR(10 g) = 2.87 W/kg



0 dB = 10.9 W/kg = 10.37 dBW/kg

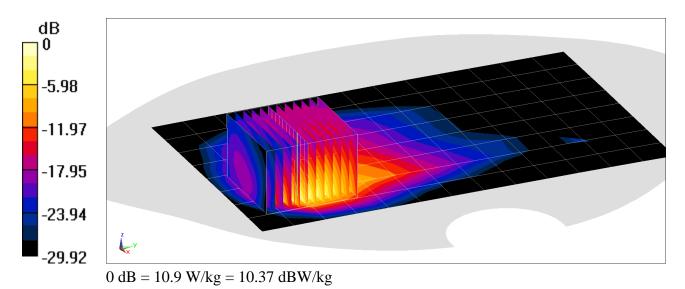
DUT: ZNFL455DL; Type: Portable Handset; Serial: 05508

Communication System: UID 0, LTE Band 66 (AWS); Frequency: 1745 MHz; Duty Cycle: 1:1 Medium: 1750 Body; Medium parameters used:  $f = 1745 \text{ MHz}; \ \sigma = 1.517 \text{ S/m}; \ \epsilon_r = 52.891; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section; Space: 0.0 cm

Test Date: 01-11-2020; Ambient Temp: 21.4°C; Tissue Temp: 20.6°C

Probe: EX3DV4 - SN7308; ConvF(8.25, 8.25, 8.25) @ 1745 MHz; Calibrated: 8/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1450; Calibrated: 8/14/2019
Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1964
Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

# Mode: LTE Band 66 (AWS), Phablet SAR, Back side, Mid.ch, 20 MHz Bandwidth QPSK, 50 RB, 50 RB Offset


Area Scan(9x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (12x12x8)/Cube 0: Measurement grid: dx=3.9mm, dy=3.9mm, dz=1.4mm; Graded Ratio: 1.4

Reference Value = 64.49 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 17.3 W/kg

SAR(10 g) = 2.59 W/kg



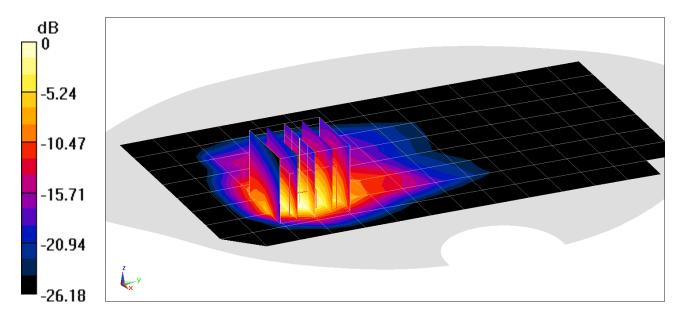
DUT: ZNFL455DL; Type: Portable Handset; Serial: 05508

Communication System: UID 0, LTE Band 25 (PCS); 1905 MHz; Duty Cycle: 1:1 Medium: 1900 Body; Medium parameters used:  $f = 1905 \text{ MHz}; \ \sigma = 1.584 \text{ S/m}; \ \epsilon_r = 51.208; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section; Space: 0.0 cm

Test Date: 01-11-2020; Ambient Temp: 21.9°C; Tissue Temp: 21.8°C

Probe: EX3DV4 - SN7551;ConvF(7.69, 7.69, 7.69) @ 1905 MHz; Calibrated: 9/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1333; Calibrated: 9/17/2019
Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792
Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

# Mode: LTE Band 25 (PCS), Phablet SAR, Back side, High.ch, 20 MHz Bandwidth QPSK, 50 RB, 25 RB Offset


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 71.14 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 19.1 W/kg

SAR(10 g) = 3.08 W/kg



0 dB = 12.4 W/kg = 10.93 dBW/kg

DUT: ZNFL455DL; Type: Portable Handset; Serial: 05508

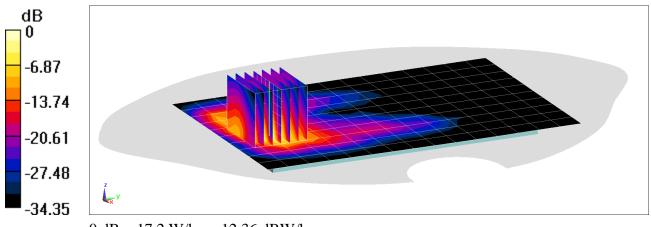
Communication System: UID 0, LTE Band 41 (Class 2); Frequency: 2636.5 MHz; Duty Cycle: 1:2.31 Medium: 2450 Body; Medium parameters used (interpolated):  $f = 2636.5 \text{ MHz}; \ \sigma = 2.227 \text{ S/m}; \ \epsilon_r = 50.026; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section; Space: 0.0 cm

Test Date: 01-13-2020; Ambient Temp: 22.9°C; Tissue Temp: 21.9°C

Probe: EX3DV4 - SN7547;ConvF(7.18, 7.18, 7.18) @ 2636.5 MHz; Calibrated: 7/15/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 7/11/2019 Phantom: LeftTwin-SAM V5.0; Type: QD 000 P40 CD; Serial: TP1375

Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

# Mode: LTE Band 41 PC2, Phablet SAR, Back side, Mid-High.ch, 20 MHz Bandwidth QPSK, 50 RB, 0 RB Offset


Area Scan (11x16x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (8x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 66.81 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 25.3 W/kg

SAR(10 g) = 2.92 W/kg



DUT: ZNFL455DL; Type: Portable Handset; Serial: 05524

Communication System: UID 0, 802.11a 5.2-5.8 GHz Band; Frequency: 5280 MHz; Duty Cycle: 1:1 Medium: 5200-5800 Body; Medium parameters used:  $f = 5280 \text{ MHz}; \ \sigma = 5.524 \text{ S/m}; \ \epsilon_r = 46.878; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section; Space: 0.0 cm

Test Date: 12-29-2019; Ambient Temp: 23.9°C; Tissue Temp: 22.5°C

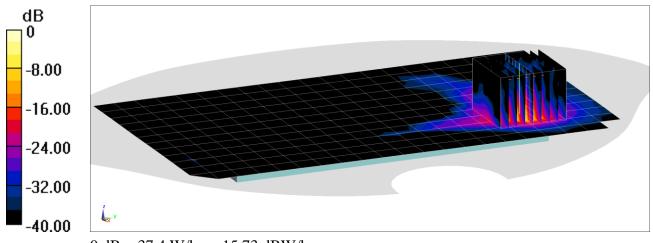
Probe: EX3DV4 - SN7409; ConvF(4.7, 4.7, 4.7) @ 5280 MHz; Calibrated: 6/19/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 6/20/2019 Phantom: Front; Type: QD 000 P40 CD; Serial: 1686

riantoin. Front, Type. QD 000 F to CD, Serial. 1000

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

#### Mode: IEEE 802.11a, U-NII-2A, 20 MHz Bandwidth, Phablet SAR Ch 56, 6 Mbps, Back Side


Area Scan (13x22x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (9x9x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Reference Value = 1.100 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 70.5 W/kg

SAR(10 g) = 1.74 W/kg



0 dB = 37.4 W/kg = 15.73 dBW/kg