| Appendixes for Report | | | | | | |---------------------------------------|---|---|--|--|--| | SAR_FCC_ISED_6230031 DUT Information | | | | | | | Manufacturer | Panasonic Entertainment & Communication Co. | Ltd | | | | | Brand Name | KX-TGEA60 | ., Ltd. | | | | | Model Under Test | KX-TGEA60 | | | | | | FCC ID | ACJ96NKX-TGEA60A | | | | | | Type / Category | handset | | | | | | Intended Use | | ☐ > 20 cm to human body (mobile/fixed device) | | | | | intoriada dec | □ - ⊠ next to the ear | □ body-worn □ limb-worn | | | | | | ☐ hand-held ☐ front-of-face | □ body supported □ clothing-integrated | | | | | | Prepared by | | | | | | | IMST GmbH, Test Center | | | | | | Testion Laboration | Carl-Friedrich-Gauß-Str. 2 – 4 | | | | | | Testing Laboratory | 47475 Kamp-Lintfort | | | | | | | Germany | | | | | | | Prepared for | | | | | | | Applicant | Manufacturer | | | | | | Panasonic Corporation of North America | Panasonic Corporation | | | | | Applicant / Manufacturer | Two Riverfront Plaza, 9th Floor 1006, Oaza Kadoma, Kadoma-shi | | | | | | Newark, 07102-5490, NJ Osaka 571-8501 | | | | | | | | USA Japan | | | | | | Test Specification | | | | | | | Applied Standard / Rule | FCC CFR 47 § 2.1093; IEC/IEEE 62209-1528; | | | | | | Exposure Category | ☐ general public / uncontrolled exposure | occupational / controlled exposure | | | | | Test Result | ☐ PASS ☐ FAIL | | | | | | | Report Information | | | | | | Data Stored | 6230031 | | | | | | Issue Date | January 16, 2023 | | | | | | Revision Date | | | | | | | Revision Number* | ** | | | | | | | *A new revision replaces all previous revisio | ons and thus, become invalid herewith. | | | | | | Appendix A - Pictures | | | | | | | Appendix B - SAR Distribution Plots | | | | | | Annondivos | Appendix C - System Verification Plots | | | | | | Appendixes | Appendix D – Certificates of Conformity | | | | | | | Appendix E - Calibration Certificates for DAEs | I Proboe | | | | | | Appendix F – Calibration Certificates for E-Field Probes | | | | | | | Appendix G – Calibration Certificates for Dipole | 8 | | | | # **Appendix B - SAR Distribution Plots** # Worst Case SAR Measurement Plots for Head and Body Worn Configuration Test Laboratory: IMST GmbH, DASY Yellow (II); File Name: KX-TGEA60_2Dy_DECT_CH2_Im_1.da4 DUT: Panasonic; Type: KX-TGEA60; Serial: 01 **Program Name: DECT US** Communication System: DECT US; Frequency: 1924.99 MHz; Duty Cycle: 1:24 Medium parameters used: f = 1925 MHz; $\sigma = 1.42$ mho/m; $\varepsilon_r = 41.4$; $\rho = 1000$ kg/m³ Phantom section: Left Section # DASY4 Configuration: - Probe: ET3DV6R SN1579; ConvF(5.46, 5.46, 5.46); Calibrated: 2/25/2022 - Sensor-Surface: 4mm (Mechanical Surface Detection) - Electronics: DAE3 Sn335; Calibrated: 2/17/2022 - Phantom: SAM 1340; Type: QD 000 P40 CB; Serial: TP-1340 - Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186 Cheek Left/Area Scan (7x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.034 mW/g Cheek Left/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 3.22 V/m; Power Drift = 0.127 dB Peak SAR (extrapolated) = 0.053 W/kg SAR(1 g) = 0.029 mW/g; SAR(10 g) = 0.016 mW/g Maximum value of SAR (measured) = 0.033 mW/g Minimum distance from peak to all points 3 dB below in M1 = 14.0 mm Ratio of SAR at M2 to SAR at M1 = 55.60 % Plot. 1: SAR distribution plot for DECT, channel 2, head configuration, left cheek. Test Laboratory: IMST GmbH, DASY Yellow (II); File Name: KX-TGEA60 2Dy DECT CH2 front.da4 DUT: Panasonic; Type: KX-TGEA60; Serial: 01 **Program Name: DECT US** Communication System: DECT US; Frequency: 1924.99 MHz; Duty Cycle: 1:24 Medium parameters used: f = 1925 MHz; $\sigma = 1.42$ mho/m; $\epsilon_r = 41.4$; $\rho = 1000$ kg/m³ Phantom section: Flat Section # **DASY4** Configuration: - Probe: ET3DV6R SN1579; ConvF(5.46, 5.46, 5.46); Calibrated: 2/25/2022 - Sensor-Surface: 4mm (Mechanical Surface Detection) - Electronics: DAE3 Sn335; Calibrated: 2/17/2022 - Phantom: SAM 1340; Type: QD 000 P40 CB; Serial: TP-1340 - Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186 Body Worn/Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.023 mW/g Body Worn/Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=6mm, dy=6mm, dz=5mm Reference Value = 3.10 V/m; Power Drift = 0.147 dB Peak SAR (extrapolated) = 0.043 W/kg SAR(1 g) = 0.023 mW/g; SAR(10 g) = 0.012 mW/g Maximum value of SAR (measured) = 0.026 mW/g Minimum distance from peak to all points 3 dB below in M1 = 12.0 mm Ratio of SAR at M2 to SAR at M1 = 53.69 % Plot. 2: SAR distribution plot for DECT, channel 2, body-worn configuration, front side, 0mm gap. # **Appendix C - System Verification Plots** Test Laboratory: IMST GmbH, DASY Yellow (II); File Name: 2022-12-19 1900h 2Dy 1579 335.da4 DUT: D1900V2 - SN535; Type: D1900V2; Serial: SN535 Program Name: System Performance Check at 1900 MHz Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.4 \text{ mho/m}$; $\varepsilon_r = 41.6$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section #### **DASY4** Configuration: - Probe: ET3DV6R SN1579; ConvF(5.46, 5.46, 5.46); Calibrated: 2/25/2022 - Sensor-Surface: 4mm (Mechanical Surface Detection) - Electronics: DAE3 Sn335; Calibrated: 2/17/2022 - Phantom: SAM 1340; Type: QD 000 P40 CB; Serial: TP-1340 - Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186 d=10mm, Pin=250mW/Area Scan (5x8x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 9.90 mW/g d=10mm, Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 101.8 V/m; Power Drift = 0.008 dB Peak SAR (extrapolated) = 15.9 W/kg SAR(1 g) = 9.48 mW/g; SAR(10 g) = 5.03 mW/g Maximum value of SAR (measured) = 10.7 mW/g Plot. 3: SAR Verification Measurement 1900 MHz. # Appendix D – Certificates of Conformity Schmid & Partner Engineering AG a q e p Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com Certificate of conformity | oor arroate or come. | | | |-----------------------|---|--| | Item | Dosimetric Assessment System DASY4 | | | Type No | SD 000 401A, SD 000 402A | | | Software Version No | DASY 4.7 | | | Manufacturer / Origin | Schmid & Partner Engineering AG | | | | Zeughausstrasse 43, CH-8004 Zürich, Switzerland | | #### References - [1] IEEE 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - IEC 62209 1, "Specific Absorption Rate (SAR) in the frequency range of 300 MHz to 3 GHz -Measurement Procedure, Part 1: Hand-held mobile wireless communication devices", February 2005 - IEC 62209 2, "Evaluation of Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices in the Frequency Range of 30 MHz to 6 GHz: Human models, Instrumentation and Procedures, Part 2: Procedure to determine the Specific Absorption Rate (SAR) for ... including accessories and multiple transmitters", March 2010 - KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" - ANSI-C63.19-2011, "American National Standard for Methods of Measurement of Compatibility between Wireless Communication Devices and Hearing Aids", May 2011 #### Conformity We certify that this system is designed to be fully compliant with the standards [1 - 5] for RF emission tests of wireless devices. The uncertainty of the measurements with this system was evaluated according to the above standards and is documented in the applicable chapters of the DASY4 system handbook and in Chapter 27 of the DASY5 system handbook. The uncertainty values represent current state of methodology and are subject to changes. They are applicable to all laboratories using DASY4 provided the following requirements are met (responsibility of the system end user): - the system is used by an experienced engineer who follows the manual and the guidelines taught during the training provided by SPEAG, - the probe and validation dipoles have been calibrated for the relevant frequency bands and media 2) within the requested period, - the DAE has been calibrated within the requested period, - the "minimum distance" between probe sensor and inner phantom shell and the radiation source is 4) selected properly, - the system performance check has been successful, - the operational mode of the DUT is CW, CDMA, FDMA or TDMA (GSM, DCS, PCS, IS136, PDC) and the measurement/integration time per point is ≥ 500 ms, - if applicable, the probe modulation factor is evaluated and applied according to field level, modulation and frequency, - the dielectric parameters of the liquid are conform with the standard requirement, 8) - the DUT has been positioned as described in the manual. - the uncertainty values from the calibration certificates, and the laboratory and measurement equipment dependent uncertainties, are updated by end user accordingly. Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 April 1985 Beag.com, http://www.speag.com Signature / Stamp 19.09.2016 Date Page 1 (1) Doc No 880 - SD00040XA-Standards_1609 - G KP/FB Schmid & Partner Engineering AG S a q е Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com ## Certificate of Conformity / First Article Inspection | Item | SAM Twin Phantom V4.0 and V5.0 | | | |--------------|--|--|--| | Type No | QD 000 P40 C | | | | Series No | TP-1150 and higher | | | | Manufacturer | Untersee Composites | | | | | Knebelstrasse 8, CH-8268 Mannenbach, Switzerland | | | #### Tests Complete tests were made on the pre-series QD 000 P40 A, # TP-1001, on the series first article QD 000 P40 B # TP-1006. Certain parameters are retested on series items. | Test | Requirement | Details | Units tested | |----------------------|-----------------------------------|-------------------------------|--------------------| | Dimensions | Compliant with the geometry | IT'IS CAD File * | First article, | | | according to the CAD model. | | Samples | | Material thickness | 2mm +/- 0.2mm in flat section, | in flat section, | First article, | | of shell | other locations: +/- 0.2mm with | in the cheek area | Samples, | | | respect to CAD file | | TP-1314 ff. | | Material thickness | 6mm +/- 0.2mm at ERP | | First article, All | | at ERP | | | items | | Material | rel. permittivity 2 – 5, | rel. permittivity 3.5 +/- 0.5 | Material | | parameters | loss tangent ≤ 0.05, at f ≤ 6 GHz | loss tangent ≤ 0.05 | samples | | Material resistivity | Compatibility with tissue | Compatible with SPEAG | Phantoms, | | | simulating liquids . | liquids. ** | Material sample | | Sagging | Sagging of the flat section in | < 1% for filling height up | Prototypes, | | | tolerance when filled with tissue | to 155 mm | Sample testing | | | simulating liquid. | | | The IT'IS CAD file is derived from [2] and is also within the tolerance requirements of the shapes of the other documents. - OET Bulletin 65, Supplement C, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields", Edition 01-01 - IEEE 1528-2003, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques, December 2003 - IEC 62209-1 ed1.0, "Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", 2005-02-18 - IEC 62209-2 ed1.0, "Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", 2010-03-30 Based on the sample tests above, we certify that this item is in compliance with the uncertainty requirements of hand-held SAR measurements and system performance checks as specified in [1 - 4] and further standards. peag Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerlan Phony 41 44 25 3100 Lag + Clause 5 9779 25.07.2011 Date Signature / Stamp Doc No 881 - QD 000 P40 C - H 1 (1) Fig. 5: Certificate of conformity for the used SAM phantom. Note: Compatibility restrictions apply certain liquid components mentioned in the standard, containing e.g. DGBE, DGMHE or Triton X-100. Observe technical note on material compatibility. Schmid & Partner Engineering AG s p e a g Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com # Certificate of Conformity / First Article Inspection | Item | Oval Flat Phantom ELI 4.0 | |--------------|---------------------------| | Type No | QD OVA 001 B | | Series No | 1003 and higher | | Manufacturer | SPEAG | | | Zeughausstrasse 43 | | | CH-8004 Zürich | | | Switzerland | ## Tests Complete tests were made on the prototype units QD OVA 001 AA 1001, QD OVA 001 AB 1002, pre-series units QD OVA 001 BA 1003-1005 as well as on the series units QD OVA 001 BB, 1006 ff. | Test | Requirement | Details | Units tested | |------------------------|---|--|---| | Dimensions | Compliant with the standard IEC 62209 – 2 [1] requirements | Dimensions of bottom
for 300 MHz – 6 GHz:
longitudinal = 600 mm
(max. dimension)
width= 400 mm (min
dimension)
depth= 190 mm
Shape: ellipse | Prototypes,
Samples | | Material thickness | Compliant with the standard IEC
62209 – 2 [1] requirements | Bottom plate:
2.0mm +/- 0.2mm | Prototypes,
All items | | Material
parameters | Dielectric parameters for required
frequencies | 300 MHz – 6 GHz
Rel. permittivity = 4 +/-1,
Loss tangent ≤ 0.05 | Material
sample | | Material resistivity | The material has been tested to be
compatible with the liquids defined in
the standards if handled and cleaned
according to the instructions.
Observe Technical Note for material
compatibility. | DEGMBE based simulating liquids | Equivalent
phantoms,
Material
sample | | Sagging | Compliant with the requirements
according to the standard.
Sagging of the flat section when filled
with tissue simulating liquid | < 1% typical < 0.8% if
filled with 155mm of
HSL900 and without
DUT below | Prototypes,
Sample
testing | #### Standards [1] IEC 62209 – 2, Draft Version 0.9, "Evaluation of Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices in the Frequency Range of 30 MHz to 6 GHz: Human models, Instrumentation and Procedures Part 2: Procedure to determine the Specific Absorption Rate (SAR) for ... including accessories and multiple transmitters", December 2004 #### Conformity Based on the sample tests above, we certify that this item is in compliance with the standard [1]. Signature / Stamp O7.07.2005 Schmill & Partner Engineering AG Zeughes/Scrosse 43/8004 Zurich Switzerend Phone 41 1-245-200-7-6-4-1-200-7-6-4-1-200-7-6-1-200-7-6-1-200-7-6-1-200-7-6-1-200-7-6-1-200 Doc No 881 - QD OVA 001 B - C Page 1 (1) Fig. 11: Certificate of conformity for the ELI phantom. # Appendix E – Calibration Certificates for DAEs **DAE 3 - SN: 335** Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates IMST Client Certificate No: DAE3-335_Feb22 # **CALIBRATION CERTIFICATE** DAE3 - SD 000 D03 AA - SN: 335 Object QA CAL-06.v30 Calibration procedure(s) Calibration procedure for the data acquisition electronics (DAE) February 17, 2022 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID # | Cai Date (Certificate No.) | Scrieduled Calibration | |-------------------------------|--------------------|----------------------------|------------------------| | Keithley Multimeter Type 2001 | SN: 0810278 | 31-Aug-21 (No:31368) | Aug-22 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Auto DAE Calibration Unit | SE UWS 053 AA 1001 | 24-Jan-22 (in house check) | In house check: Jan-23 | | Calibrator Box V2.1 | SE UMS 006 AA 1002 | 24-Jan-22 (in house check) | In house check: Jan-23 | Calibrated by: Name Adrian Gehring Function Laboratory Technician Approved by: Deputy Manager Sven Kühn This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Issued: February 17, 2022 Certificate No: DAE3-335_Feb22 Page 1 of 5 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates ## Glossary DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. # Methods Applied and Interpretation of Parameters - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty. - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement. - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement. - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage. - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements. - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance. - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement. - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated. - Power consumption: Typical value for information. Supply currents in various operating modes. Certificate No: DAE3-335_Feb22 Page 2 of 5 # **DC Voltage Measurement** A/D - Converter Resolution nominal $\begin{array}{lll} \mbox{High Range:} & 1 \mbox{LSB} = & 6.1 \mu\mbox{V} \,, & \mbox{full range} = & -100...+300 \,\mbox{mV} \\ \mbox{Low Range:} & 1 \mbox{LSB} = & 61 \mbox{nV} \,, & \mbox{full range} = & -1......+3 \mbox{mV} \\ \mbox{DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec} \end{array}$ | Calibration Factors | X | Υ | Z | |---------------------|-----------------------|-----------------------|-----------------------| | High Range | 403.985 ± 0.02% (k=2) | 404.552 ± 0.02% (k=2) | 403.663 ± 0.02% (k=2) | | Low Range | 3.95814 ± 1.50% (k=2) | 3.96994 ± 1.50% (k=2) | 3.96254 ± 1.50% (k=2) | # **Connector Angle** | Connector Angle to be used in DASY system | 345.5 ° ± 1 ° | |---|---------------| |---|---------------| Certificate No: DAE3-335_Feb22 Page 3 of 5 # Appendix (Additional assessments outside the scope of SCS0108) 1. DC Voltage Linearity | High Range | Reading (µV) | Difference (μV) | Error (%) | |-------------------|--------------|-----------------|-----------| | Channel X + Input | 200031.34 | -4.57 | -0.00 | | Channel X + Input | 20008.70 | 2.68 | 0.01 | | Channel X - Input | -20000.84 | 4.95 | -0.02 | | Channel Y + Input | 200031.97 | -3.25 | -0.00 | | Channel Y + Input | 20006.37 | 0.42 | 0.00 | | Channel Y - Input | -20003.32 | 2.63 | -0.01 | | Channel Z + Input | 200032.84 | -2.50 | -0.00 | | Channel Z + Input | 20006.62 | 0.62 | 0.00 | | Channel Z - Input | -20004,90 | 1.04 | -0.01 | | Low Range | Reading (µV) | Difference (μV) | Error (%) | |-------------------|--------------|-----------------|-----------| | Channel X + Input | 2001.82 | 0.36 | 0.02 | | Channel X + Input | 201.38 | -0.02 | -0.01 | | Channel X - Input | -198.22 | 0.40 | -0.20 | | Channel Y + Input | 2001.02 | -0.25 | -0.01 | | Channel Y + Input | 200.55 | -0.71 | -0.35 | | Channel Y - Input | -199.80 | -1.10 | 0.56 | | Channel Z + Input | 2001.69 | 0.42 | 0.02 | | Channel Z + Input | 200.67 | -0.59 | -0.29 | | Channel Z - Input | -199.44 | -0.70 | 0.35 | 2. Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Common mode
Input Voltage (mV) | High Range
Average Reading (μV) | Low Range
Average Reading (μV) | |-----------|-----------------------------------|------------------------------------|-----------------------------------| | Channel X | 200 | -10.71 | -12.54 | | | - 200 | 13.42 | 11.85 | | Channel Y | 200 | -10.64 | -11.18 | | | - 200 | 9.84 | 9.39 | | Channel Z | 200 | 3.00 | 3.07 | | | - 200 | -4.27 | -4.36 | # 3. Channel separation DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Input Voltage (mV) | Channel X (μV) | Channel Y (µV) | Channel Z (μV) | |-----------|--------------------|----------------|----------------|----------------| | Channel X | 200 | - | -1.39 | -0.99 | | Channel Y | 200 | 9.81 | | 0.16 | | Channel Z | 200 | 3.98 | 7.68 | * | Certificate No: DAE3-335_Feb22 Page 4 of 5 # 4. AD-Converter Values with inputs shorted DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | High Range (LSB) | Low Range (LSB) | |-----------|------------------|-----------------| | Channel X | 16185 | 16716 | | Channel Y | 16094 | 17413 | | Channel Z | 16104 | 15830 | # 5. Input Offset Measurement DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10MC | | Average (μV) | min. Offset (μV) | max. Offset (μV) | Std. Deviation (µV) | |-----------|--------------|------------------|------------------|---------------------| | Channel X | 0.51 | -0.53 | 1.37 | 0.41 | | Channel Y | 0.77 | -0.48 | 2.55 | 0.65 | | Channel Z | 0.86 | -0.36 | 2.52 | 0.63 | # 6. Input Offset Current Nominal Input circuitry offset current on all channels: <25fA 7. Input Resistance (Typical values for information) | | Zeroing (kOhm) | Measuring (MOhm) | | | |-----------|----------------|------------------|--|--| | Channel X | 200 | 200 | | | | Channel Y | 200 | 200 | | | | Channel Z | 200 | 200 | | | 8. Low Battery Alarm Voltage (Typical values for information) | Typical values | Alarm Level (VDC) | |----------------|-------------------| | Supply (+ Vcc) | +7.9 | | Supply (- Vcc) | -7.6 | 9. Power Consumption (Typical values for information) | Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) | |----------------|-------------------|---------------|-------------------| | Supply (+ Vcc) | +0.01 | +6 | +14 | | Supply (- Vcc) | -0.01 | -8 | -9 | # I M S T # Appendix F - Calibration Certificates for E-Field Probes ## Probe ET3DV6R - SN1579 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client IMST Certificate No: ET3-1579_Feb22 # **CALIBRATION CERTIFICATE** Object ET3DV6R - SN:1579 Calibration procedure(s) QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure for dosimetric E-field probes Calibration date: February 28, 2022 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 09-Apr-21 (No. 217-03291/03292) | Apr-22 | | Power sensor NRP-Z91 | SN: 103244 | 09-Apr-21 (No. 217-03291) | Apr-22 | | Power sensor NRP-Z91 | SN: 103245 | 09-Apr-21 (No. 217-03292) | Apr-22 | | Reference 20 dB Attenuator | SN: CC2552 (20x) | 09-Apr-21 (No. 217-03343) | Apr-22 | | DAE4 | SN: 660 | 13-Oct-21 (No. DAE4-660_Oct21) | Oct-22 | | Reference Probe ES3DV2 | SN: 3013 | 27-Dec-21 (No. ES3-3013_Dec21) | Dec-22 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB41293874 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | Power sensor E4412A | SN: MY41498087 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | Power sensor E4412A | SN: 000110210 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | RF generator HP 8648C | SN: US3642U01700 | 04-Aug-99 (in house check Jun-20) | In house check: Jun-22 | | Network Analyzer E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-22 | Calibrated by: Name Function Signature Laboratory Technician Approved by: Niels Kuster Quality Manager Issued: February 28, 2022 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: ET3-1579_Feb22 Page 1 of 9 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland C Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSI NORMx,y,z ConvF DCP tissue simulating liquid sensitivity in free space sensitivity in TSL / NORMx,y,z diode compression point CF A. B. C. D crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters Polarization @ Polarization 9 φ rotation around probe axis 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., ϑ = 0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020 - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ## Methods Applied and Interpretation of Parameters: - NORMx, y, z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E2-field uncertainty inside TSL (see below ConvF). - $NORM(f)x, y, z = NORMx, y, z * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset. The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: ET3-1579 Feb22 Page 2 of 9 ET3DV6R - SN:1579 February 28, 2022 # DASY/EASY - Parameters of Probe: ET3DV6R - SN:1579 ## **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--|----------|----------|----------|-----------| | Norm (µV/(V/m) ²) ^A | 1.79 | 1.82 | 1.56 | ± 10.1 % | | DCP (mV) ^B | 100.0 | 99.0 | 101.0 | | Calibration Results for Modulation Response | UID | Communication System Name | | A
dB | B
dB√μV | С | D
dB | VR
mV | Max
dev. | Unc ^E
(k=2) | |-----|---------------------------|---|---------|------------|-----|---------|----------|-------------|---------------------------| | 0 | CW | X | 0.0 | 0.0 | 1.0 | 0.00 | 245.6 | ±3.3 % | ± 4.7 % | | | | Y | 0.0 | 0.0 | 1.0 | | 257.5 | | | | | | Z | 0.0 | 0.0 | 1.0 | | 265.5 | | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: ET3-1579_Feb22 Page 3 of 9 A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 5). Numerical linearization parameter: uncertainty not required. Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. February 28, 2022 ET3DV6R- SN:1579 # DASY/EASY - Parameters of Probe: ET3DV6R - SN:1579 ## Other Probe Parameters | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | -105.2 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 10 mm | | Tip Diameter | 6.8 mm | | Probe Tip to Sensor X Calibration Point | 2.7 mm | | Probe Tip to Sensor Y Calibration Point | 2.7 mm | | Probe Tip to Sensor Z Calibration Point | 2.7 mm | | Recommended Measurement Distance from Surface | 4 mm | Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job. Certificate No: ET3-1579_Feb22 Page 4 of 9 ET3DV6R-SN:1579 February 28, 2022 # DASY/EASY - Parameters of Probe: ET3DV6R - SN:1579 # Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 750 | 41.9 | 0.89 | 7.42 | 7.42 | 7.42 | 0.60 | 1.84 | ± 12.0 % | | 900 | 41.5 | 0.97 | 6.93 | 6.93 | 6.93 | 0.52 | 2.04 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 5.56 | 5.56 | 5.56 | 0.80 | 2.00 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 5.46 | 5.46 | 5.46 | 0.79 | 2.05 | ± 12.0 % | ^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. Certificate No: ET3-1579_Feb22 Page 5 of 9 ET3DV6R- SN:1579 February 28, 2022 # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) Certificate No: ET3-1579_Feb22 Page 6 of 9 ET3DV6R- SN:1579 February 28, 2022 # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) Certificate No: ET3-1579_Feb22 Page 7 of 9 ET3DV6R-SN:1579 February 28, 2022 # Dynamic Range f(SAR_{head}) (TEM cell , feval= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) Certificate No: ET3-1579_Feb22 Page 8 of 9 # **Conversion Factor Assessment** # Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz Certificate No: ET3-1579_Feb22 Page 9 of 9 # Appendix G - Calibration Certificates for Dipoles # **Dipole 1900 MHz - SN535** # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client IMST Certificate No: D1900V2-535_Mar21 | CALIBRATION | CERTIFICATE | |--------------------|-------------| | | | Object D1900V2 - SN:535 Calibration procedure(s) QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz Calibration date: March 09, 2021 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 01-Apr-20 (No. 217-03100/03101) | Apr-21 | | Power sensor NRP-Z91 | SN: 103244 | 01-Apr-20 (No. 217-03100) | Apr-21 | | Power sensor NRP-Z91 | SN: 103245 | 01-Apr-20 (No. 217-03101) | Apr-21 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 31-Mar-20 (No. 217-03106) | Apr-21 | | Type-N mismatch combination | SN: 310982 / 06327 | 31-Mar-20 (No. 217-03104) | Apr-21 | | Reference Probe EX3DV4 | SN: 7349 | 28-Dec-20 (No. EX3-7349_Dec20) | Dec-21 | | DAE4 | SN: 601 | 02-Nov-20 (No. DAE4-601_Nov20) | Nov-21 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-20) | In house check: Oct-22 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-21 | | | Name | Function | Signature | | Calibrated by: | Michael Weber | Laboratory Technician | M. Weber | | Approved by: | Katja Pokovic | Technical Manager | el us | | | | | Issued: March 9, 2021 | Certificate No: D1900V2-535_Mar21 Page 1 of 6 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Revision No.: C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: e) DASY4/5 System Handbook # Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - . SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D1900V2-535_Mar21 Page 2 of 6 # **Measurement Conditions** DASY system configuration, as far as not given on page 1 | DASY Version | DASY5 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1900 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 41.1 ± 6 % | 1.39 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | 724327 | 1944 | # SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | | | |---|--------------------|--------------------------|--|--| | SAR measured | 250 mW input power | 9.71 W/kg | | | | SAR for nominal Head TSL parameters | normalized to 1W | 39.2 W/kg ± 17.0 % (k=2) | | | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.08 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 20.5 W/kg ± 16.5 % (k=2) | Certificate No: D1900V2-535_Mar21 Page 3 of 6 # Appendix (Additional assessments outside the scope of SCS 0108) ## Antenna Parameters with Head TSL | Impedance, transformed to feed point | $53.5~\Omega + 6.2~\mathrm{j}\Omega$ | |--------------------------------------|--------------------------------------| | Return Loss | - 23.3 dB | # General Antenna Parameters and Design | Electrical Delay (one direction) 1.186 ns | Electrical Delay (one direction) | 1.186 ns | |---|----------------------------------|----------| |---|----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. # **Additional EUT Data** | Manufactured by SPEAG | Manufactured by | SPEAG | |-----------------------|-----------------|-------| |-----------------------|-----------------|-------| Certificate No: D1900V2-535_Mar21 Page 4 of 6 ## **DASY5 Validation Report for Head TSL** Date: 09.03.2021 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:535 Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.39$ S/m; $\epsilon_r = 41.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) # DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(8.43, 8.43, 8.43) @ 1900 MHz; Calibrated: 28.12.2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 02.11.2020 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) # Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 108.8 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 17.9 W/kg SAR(1 g) = 9.71 W/kg; SAR(10 g) = 5.08 W/kg Smallest distance from peaks to all points 3 dB below = 9.5 mm Ratio of SAR at M2 to SAR at M1 = 54.9% Maximum value of SAR (measured) = 15.0 W/kg 0 dB = 15.0 W/kg = 11.76 dBW/kg Certificate No: D1900V2-535_Mar21 Page 5 of 6 # Impedance Measurement Plot for Head TSL Certificate No: D1900V2-535_Mar21 Page 6 of 6 # Extended Dipole Calibration Verification for the D1900V2, SN: 535 Referring to section 3.2.2 of KDB 865664 D01, the tables below contain the measurement results for the impedance and return loss of the dipole. | Justification of the Extended Calibration | | | | | | | |---|----------------|--------|----------------|--------|-----------|--------| | 1900 HEAD TSL | Calibration | | Verification | | | | | 1900 HEAD 13L | March 09, 2021 | | March 10, 2022 | | | | | Impedance transformed to feed point | Target | | Measured | | Delta | | | | R [Ω] | X [jΩ] | R [Ω] | X [jΩ] | R [Ω] | X [jΩ] | | | 53.5 | 6.2 | 53.0 | 6.22 | -0.5 | 0.0 | | Return Loss | Target [dB] | | Measured [dB] | | Delta [%] | | | IVerail Loss | -23.3 | | -23.5 | | 0.8 | | The impedance is within 5 ohm of prior calibration. The return loss is <-20 dB and within 20% of prior calibration. Therefore the verification result supports extended dipole calibration.