EX3DV4 - SN:7464 January 26, 2022 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:7464 **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--------------------------|----------|----------|----------|-----------| | Norm $(\mu V/(V/m)^2)^A$ | 0.46 | 0.44 | 0.45 | ± 10.1 % | | DCP (mV) ^B | 100.5 | 101.1 | 99.2 | | Calibration Results for Modulation Response | UID | Communication System Name | | A
dB | B
dBõV | С | D
dB | VR
mV | Max
dev. | Max
Unc ^E
(k=2) | |--------|--|---|---------|-----------|-------|---------|----------|-------------|----------------------------------| | 0 | CW | X | 0.00 | 0.00 | 1.00 | 0.00 | 129.8 | ±2.7 % | ± 4.7 % | | | | Y | 0.00 | 0.00 | 1.00 | | 143.1 | 0.00 | 1-11/1/19 | | | | Z | 0.00 | 0.00 | 1.00 | | 149.5 | | | | 10352- | Pulse Waveform (200Hz, 10%) | X | 20.00 | 93.08 | 21.80 | 10.00 | 60.0 | ± 3.7 % | ± 9.6 % | | AAA | The second secon | Y | 20.00 | 91.15 | 21.40 | | 60.0 | | | | 77 | | Z | 20.00 | 93.95 | 22.82 | | 60.0 | | | | 10353- | Pulse Waveform (200Hz, 20%) | X | 20.00 | 94.89 | 21.67 | 6.99 | 80.0 | ± 2.0 % | ± 9.6 % | | AAA | Market and Committee of the | Y | 20.00 | 91.07 | 20.01 | | 80.0 | | | | | | Z | 20.00 | 94.48 | 22.03 | | 80.0 | | | | 10354- | Pulse Waveform (200Hz, 40%) | X | 20.00 | 100.94 | 23.29 | 3.98 | 95.0 | ± 1.1 % | ± 9.6 % | | AAA | The state of s | Y | 20.00 | 91.64 | 18.69 | | 95.0 | | 0.000 | | | | Z | 20.00 | 98.54 | 22.66 | | 95.0 | | | | 10355- | Pulse Waveform (200Hz, 60%) | X | 20.00 | 111.81 | 26.93 | 2.22 | 120.0 | ± 1.2 % | ± 9.6 % | | AAA | | Y | 20.00 | 91.67 | 17.31 | | 120.0 | | 2 0.0 70 | | | | Z | 20.00 | 106.21 | 24.89 | | 120.0 | | | | 10387- | QPSK Waveform, 1 MHz | X | 1.95 | 67.66 | 16.42 | 1.00 | 150.0 | ±2.3% | ± 9.6 % | | AAA | The second second second second | Y | 1.71 | 65.07 | 14.73 | 7188 | 150.0 | | | | | | Z | 1.98 | 67.42 | 16.43 | | 150.0 | | | | 10388- | QPSK Waveform, 10 MHz | X | 2.73 | 71.10 | 17.33 | 0.00 | 150.0 | ± 0.9 % | ± 9.6 % | | AAA | | Y | 2.26 | 67.69 | 15.37 | | 150.0 | | | | | | Z | 2.79 | 71.26 | 17.38 | | 150.0 | | | | 10396- | 64-QAM Waveform, 100 kHz | X | 3.50 | 72.58 | 19.72 | 3.01 | 150.0 | ±0.7% | ± 9.6 % | | AAA | | Y | 3.46 | 71.32 | 18.87 | | 150.0 | | | | | | Z | 3.75 | 73.23 | 20.03 | | 150.0 | | | | 10399- | 64-QAM Waveform, 40 MHz | X | 3.79 | 68.38 | 16.54 | 0.00 | 150.0 | ± 2.0 % | ± 9.6 % | | AAA | The state of s | Y | 3.52 | 66.93 | 15.61 | 236.50 | 150.0 | | | | | | Z | 3.82 | 68.42 | 16.57 | | 150.0 | 1 | | | 10414- | WLAN CCDF, 64-QAM, 40MHz | X | 4.98 | 65.65 | 15.65 | 0.00 | 150.0 | ± 3.8 % | ± 9.6 % | | AAA | | Y | 4.98 | 65.46 | 15.42 | 3127 | 150.0 | | 20.0 /0 | | | | Z | 5.02 | 65.62 | 15.64 | | 150.0 | | | Note: For details on UID parameters see Appendix The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: EX3-7464_Jan22 [^] The uncertainties of Norm X,Y,Z do not affect the E³-field uncertainty inside TSL (see Pages 5 and 6). B Numerical linearization parameter: uncertainty not required. E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the EX3DV4- SN:7464 January 26, 2022 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:7464 #### **Sensor Model Parameters** | | C1
fF | C2
fF | α
V⁻¹ | T1
ms.V ⁻² | T2
ms.V ⁻¹ | T3
ms | T4
V-2 | T5
V-1 | T6 | |---|----------|----------|----------|--------------------------|--------------------------|----------|-----------|-----------|------| | X | 61.5 | 458.49 | 35.65 | 15.95 | 0.16 | 5.10 | 0.72 | 0.47 | 1.01 | | Υ | 63.7 | 481.59 | 36.30 | 14.98 | 0.81 | 5.06 | 0.73 | 0.58 | 1.01 | | Z | 68.2 | 509.89 | 35.77 | 20.70 | 0.43 | 5.10 | 0.63 | 0.55 | 1.01 | #### Other Probe Parameters | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | -150.6 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 1.4 mm | Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job. EX3DV4-SN:7464 January 26, 2022 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:7464 ### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^c | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 64 | 54.2 | 0.75 | 13.80 | 13.80 | 13.80 | 0.00 | 1.00 | ± 13.3 % | | 150 | 52.3 | 0.76 | 11.94 | 11.94 | 11.94 | 0.00 | 1.00 | ± 13.3 % | | 300 | 45.3 | 0.87 | 11.78 | 11.78 | 11.78 | 0.09 | 1.00 | ± 13.3 % | | 450 | 43.5 | 0.87 | 11.02 | 11.02 | 11.02 | 0.16 | 1.30 | ± 13.3 % | | 750 | 41.9 | 0.89 | 10.26 | 10.26 | 10.26 | 0.56 | 0.81 | ± 12.0 % | | 835 | 41.5 | 0.90 | 9.96 | 9.96 | 9.96 | 0.41 | 0.91 | ± 12.0 % | | 900 | 41.5 | 0.97 | 9.72 | 9.72 | 9.72 | 0.52 | 0.80 | ± 12.0 % | | 1450 | 40.5 | 1.20 | 8.86 | 8.86 | 8.86 | 0.43 | 0.80 | ± 12.0 % | | 1640 | 40.2 | 1.31 | 8.64 | 8.64 | 8.64 | 0.33 | 0.86 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 8.52 | 8.52 | 8.52 | 0.39 | 0.86 | ± 12.0 % | | 1810 | 40.0 | 1.40 | 8.20 | 8.20 | 8.20 | 0.37 | 0.86 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 8.18 | 8.18 | 8.18 | 0.35 | 0.86 | ± 12.0 % | | 2000 | 40.0 | 1.40 | 8.20 | 8.20 | 8.20 | 0.34 | 0.86 | ± 12.0 % | | 2100 | 39.8 | 1.49 | 8.38 | 8.38 | 8.38 | 0.32 | 0.86 | ± 12.0 % | | 2300 | 39.5 | 1.67 | 8.36 | 8.36 | 8.36 | 0.32 | 0.90 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 7.77 | 7.77 | 7.77 | 0.36 | 0.90 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 7.64 | 7.64 | 7.64 | 0.40 | 0.90 | ± 12.0 % | | 3300 | 38.2 | 2.71 | 7.27 | 7.27 | 7.27 | 0.30 | 1.35 | ± 13.1 % | | 3500 | 37.9 | 2.91 | 7.20 | 7.20 | 7.20 | 0.30 | 1.35 | ± 13.1 % | | 3700 | 37.7 | 3.12 | 6.78 | 6.78 | 6.78 | 0.30 | 1.35 | ± 13.1 % | | 3900 | 37.5 | 3.32 | 6.76 | 6.76 | 6.76 | 0.40 | 1.60 | ± 13.1 % | | 4100 | 37.2 | 3.53 | 6.71 | 6.71 | 6.71 | 0.40 | 1.60 | ± 13.1 % | | 4200 | 37.1 | 3.63 | 6.60 | 6.60 | 6.60 | 0.40 | 1.70 | ± 13.1 % | | 4400 | 36.9 | 3.84 | 6.53 | 6.53 | 6.53 | 0.40 | 1.70 | ± 13.1 % | | 4600 | 36.7 | 4.04 | 6.40 | 6.40 | 6.40 | 0.40 | 1.70 | ± 13.1 % | | 4800 | 36.4 | 4.25 | 6.35 | 6.35 | 6.35 | 0.40 | 1.80 | ± 13.1 % | | 4950 | 36.3 | 4.40 | 6.00 | 6.00 | 6.00 | 0.40 | 1.80 | ± 13.1 % | | 5200 | 36.0 | 4.66 | 5.60 | 5.60 | 5.60 | 0.40 | 1.80 | ± 13.1 % | | 5250 | 35.9 | 4.71 | 5.43 | 5.43 | 5.43 | 0.40 | 1.80 | ± 13.1 % | | 5300 | 35.9 | 4.76 | 5.32 | 5.32 | 5.32 | 0.40 | 1.80 | ± 13.1 % | | 5500 | 35.6 | 4.96 | 5.11 | 5.11 | 5.11 | 0.40 | 1.80 | ± 13.1 % | | 5600 | 35.5 | 5.07 | 4.91 | 4.91 | 4.91 | 0.40 | 1.80 | ± 13.1 % | | 5750 | 35.4 | 5.22 | 4.85 | 4.85 | 4.85 | 0.40 | 1.80 | ± 13.1 % | | 5800 | 35.3 | 5.27 | 5.00 | 5.00 | 5.00 | 0.40 | 1.80 | ± 13.1 % | ^c Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13
MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to \pm 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. Certificate No: EX3-7464 Jan22 The savined SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. A lipha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. # Receiving Pattern (Φ), θ=0° # f=600 MHz, TEM # f=1800 MHz, R22 Uncertainty of Axial Isotropy Assessment: ±1.2% (k=2) Certificate No:Z20-60472 Page 6 of 9 # Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz) Uncertainty of Linearity Assessment: ±0.9% (k=2) Certificate No:Z20-60472 Page 7 of 9 # **Conversion Factor Assessment** f=750 MHz,WGLS R9(H_convF) f=1750 MHz,WGLS R22(H_convF) # **Deviation from Isotropy in Liquid** Uncertainty of Spherical Isotropy Assessment: ±3.2% (k=2) Certificate No:Z20-60472 Page 8 of 9 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:7464 ### **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | 30.7 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disable | | Probe Overall Length | 337mm | | Probe Body Diameter | 10mm | | Tip Length | 10mm | | Tip Diameter | 2.5mm | | Probe Tip to Sensor X Calibration Point | 1mm | | Probe Tip to Sensor Y Calibration Point | 1mm | | Probe Tip to Sensor Z Calibration Point | 1mm | | Recommended Measurement Distance from Surface | 1.4mm | Certificate No:Z20-60472 #### **Probe 7600 Calibration Certificate** Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn Client CTTL Certificate No: Z21-60455 ### CALIBRATION CERTIFICATE Object EX3DV4 - SN: 7600 Calibration Procedure(s) FF-Z11-004-02 Calibration Procedures for Dosimetric E-field Probes Calibration date: December 29, 2021 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)℃ and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-----------------------|--------|-------------|--|-----------------------| | Power Meter NRP2 | | 101919 | 15-Jun-21(CTTL, No.J21X04466) | Jun-22 | | Power sensor NRP-Z | 291 | 101547 | 15-Jun-21(CTTL, No.J21X04466) | Jun-22 | | Power sensor NRP-Z | 291 | 101548 | 15-Jun-21(CTTL, No.J21X04466) | Jun-22 | | Reference 10dBAtter | nuator | 18N50W-10dB | 10-Feb-20(CTTL, No.J20X00525) | Feb-22 | | Reference 20dBAtter | nuator | 18N50W-20dB | 10-Feb-20(CTTL, No.J20X00526) | Feb-22 | | Reference Probe EX | 3DV4 | SN 3617 | 27-Jan-21(SPEAG, No.EX3-3617_Jan | 21) Jan-22 | | DAE4 | | SN 1555 | 20-Aug-21(SPEAG, No.DAE4-1555_A | ug21/2) Aug-22 | | Secondary Standards | | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | SignalGenerator MG | 3700A | 6201052605 | 16-Jun-21(CTTL, No.J21X04467) | Jun-22 | | Network Analyzer E507 | 71C | MY46110673 | 14-Jan-21 (CTTL, No.J21X00232) | Jan -22 | | - | Nai | me | Function | Signature | | Calibrated by: | Yu | Zongying | SAR Test Engineer | | | | | | | 1/2 24 | Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: December 31, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z21-60455 Page 1 of 9 Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters Polarization Φ rotation around probe axis Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i θ =0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010. d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics. - Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NQRMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No:Z21-60455 Page 2 of 9 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:7600 # **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |-------------------------|----------|----------|----------|-----------| | $Norm(\mu V/(V/m)^2)^A$ | 0.69 | 0.66 | 0.68 | ±10.0% | | DCP(mV) ^B | 109.3 | 109.7 | 110.7 | | ### **Modulation Calibration Parameters** | UID | Communication
System Name | | A
dB | B
dBõV | С | D
dB | VR
mV | Unc ^E
(<i>k</i> =2) | |-----|------------------------------|---|---------|-----------|-----|---------|----------|------------------------------------| | 0 | CW | X | 0.0 | 0.0 | 1.0 | 0.00 | 212.0 | ±2.1% | | | | Υ | 0.0 | 0.0 | 1.0 | | 204.3 | | | | | Z | 0.0 | 0.0 | 1.0 | | 208.9 | | The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. ^B Numerical linearization parameter: uncertainty not required. Certificate No:Z21-60455 Page 3 of 9 A The uncertainties of Norm X, Y, Z do not affect the E2-field uncertainty inside TSL (see Page 4). ^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. # DASY/EASY - Parameters of Probe: EX3DV4 - SN:7600 # Calibration Parameter Determined in Head Tissue Simulating Media | f [MHz] ^C | Relative
Permittivity ^F | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|-------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 41.9 | 0.89 | 10.74 | 10.74 | 10.74 | 0.16 | 1.27 | ±12.1% | | 900 | 41.5 | 0.97 | 10.27 | 10.27 | 10.27 | 0.15 | 1.43 | ±12.1% | | 1450 | 40.5 | 1.20 | 9.18 | 9.18 | 9.18 |
0.18 | 1.09 | ±12.1% | | 1750 | 40.1 | 1.37 | 8.93 | 8.93 | 8.93 | 0.20 | 0.95 | ±12.1% | | 1900 | 40.0 | 1.40 | 8.54 | 8.54 | 8.54 | 0.25 | 1.06 | ±12.1% | | 2100 | 39.8 | 1.49 | 8.44 | 8.44 | 8.44 | 0.22 | 1.18 | ±12.1% | | 2300 | 39.5 | 1.67 | 8.14 | 8.14 | 8.14 | 0.59 | 0.72 | ±12.1% | | 2450 | 39.2 | 1.80 | 7.82 | 7.82 | 7.82 | 0.47 | 0.82 | ±12.1% | | 2600 | 39.0 | 1.96 | 7.62 | 7.62 | 7.62 | 0.50 | 0.81 | ±12.1% | | 3300 | 38.2 | 2.71 | 7.34 | 7.34 | 7.34 | 0.37 | 1.04 | ±13.3% | | 3500 | 37.9 | 2.91 | 7.05 | 7.05 | 7.05 | 0.39 | 1.00 | ±13.3% | | 3700 | 37.7 | 3.12 | 6.78 | 6.78 | 6.78 | 0.40 | 1.00 | ±13.3% | | 3900 | 37.5 | 3.32 | 6.68 | 6.68 | 6.68 | 0.40 | 1.25 | ±13.3% | | 4100 | 37.2 | 3.53 | 6.71 | 6.71 | 6.71 | 0.40 | 1.15 | ±13.3% | | 4200 | 37.1 | 3.63 | 6.61 | 6.61 | 6.61 | 0.35 | 1.35 | ±13.3% | | 4400 | 36.9 | 3.84 | 6.50 | 6.50 | 6.50 | 0.35 | 1.35 | ±13.3% | | 4600 | 36.7 | 4.04 | 6.40 | 6.40 | 6.40 | 0.40 | 1.30 | ±13.3% | | 4800 | 36.4 | 4.25 | 6.33 | 6.33 | 6.33 | 0.40 | 1.30 | ±13.3% | | 4950 | 36.3 | 4.40 | 6.09 | 6.09 | 6.09 | 0.40 | 1.35 | ±13.3% | | 5250 | 35.9 | 4.71 | 5.59 | 5.59 | 5.59 | 0.40 | 1.47 | ±13.3% | | 5600 | 35.5 | 5.07 | 5.13 | 5.13 | 5.13 | 0.50 | 1.25 | ±13.3% | | 5750 | 35.4 | 5.22 | 5.16 | 5.16 | 5.16 | 0.55 | 1.15 | ±13.3% | ^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. Certificate No:Z21-60455 Page 4 of 9 F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. # Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ±7.4% (k=2) Certificate No:Z21-60455 Page 5 of 9 # Receiving Pattern (Φ), θ=0° # f=600 MHz, TEM # f=1800 MHz, R22 Uncertainty of Axial Isotropy Assessment: ±1.2% (k=2) Certificate No:Z21-60455 Page 6 of 9 # Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz) Certificate No:Z21-60455 Page 7 of 9 # **Conversion Factor Assessment** # f=750 MHz,WGLS R9(H_convF) # f=1750 MHz,WGLS R22(H_convF) # **Deviation from Isotropy in Liquid** Uncertainty of Spherical Isotropy Assessment: ±3.2% (k=2) Certificate No:Z21-60455 Page 8 of 9 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:7600 ### Other Probe Parameters | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | 40.7 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disable | | Probe Overall Length | 337mm | | Probe Body Diameter | 10mm | | Tip Length | 9mm | | Tip Diameter | 2.5mm | | Probe Tip to Sensor X Calibration Point | 1mm | | Probe Tip to Sensor Y Calibration Point | 1mm | | Probe Tip to Sensor Z Calibration Point | 1mm | | Recommended Measurement Distance from Surface | 1.4mm | Certificate No:Z21-60455 Page 9 of 9 # **ANNEX H Dipole Calibration Certificate** ### 750 MHz Dipole Calibration Certificate Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates ient CTTL (Auden) Certificate No: D750V3-1017_Jul22 | | D750V3 - SN:101 | 17 | | |------------------------------------|-----------------------------|---|-------------------------| | Calibration procedure(s) | QA CAL-05.v11 | | | | | Calibration Proce | dure for SAR Validation Sources | between 0.7-3 GHz | | Calibration date: | July 20, 2022 | | Variation of Variations | | | | | | | | | onal standards, which realize the physical unit
obability are given on the following pages and | | | | | | | | All calibrations have been conduct | ed in the closed laborator | y facility: environment temperature (22 ± 3)°C | and humidity < 70%. | | Calibration Equipment used (M&T | E critical for calibration) | | | | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | Power meter NRP | SN: 104778 | 04-Apr-22 (No. 217-03525/03524) | Apr-23 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-22 (No. 217-03524) | Apr-23 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-22 (No. 217-03525) | Apr-23 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 04-Apr-22 (No. 217-03527) | Apr-23 | | Type-N mismatch combination | SN: 310982 / 06327 | 04-Apr-22 (No. 217-03528) | Apr-23 | | Reference Probe EX3DV4 | SN: 7349 | 31-Dec-21 (No. EX3-7349 Dec21) | Dec-22 | | DAE4 | SN: 601 | 02-May-22 (No. DAE4-601_May22) | May-23 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: MY41093315 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-20) | In house check: Oct-22 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-22 | | | Name | Function | Signature | | Calibrated by: | Aidonia Georgiadou | Laboratory Technician | Mze | | | | | | | Approved by: | Sven Kühn | Technical Manager | 1 | Certificate No: D750V3-1017_Jul22 Page 1 of 6 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service sulsse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Zeughausstrasse 43, 8004 Zurich, Switzerland Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** c) DASY System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D750V3-1017_Jul22 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 750 MHz ± 1 MHz | | #### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.9 | 0.89 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.5 ± 6 % | 0.90 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.19 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 8.63 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10
g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.43 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 5.64 W/kg ± 16.5 % (k=2) | Certificate No: D750V3-1017_Jul22 #### Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 53.7 Ω - 0.5 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 29.0 dB | | #### General Antenna Parameters and Design | Flectrical Delay (one direction) | 1.034 ns | |----------------------------------|-----------| | Electrical Delay (one direction) | 1.034 fts | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | CDEAC | |-----------------|-------| | Manufactured by | SPEAG | Certificate No: D750V3-1017_Jul22 #### **DASY5 Validation Report for Head TSL** Date: 20.07.2022 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1017 Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.9 \text{ S/m}$; $\varepsilon_r = 40.5$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(10.11, 10.11, 10.11) @ 750 MHz; Calibrated: 31.12.2021 · Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 02.05.2022 Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) ### Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 59.72 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 3.34 W/kg SAR(1 g) = 2.19 W/kg; SAR(10 g) = 1.43 W/kg Smallest distance from peaks to all points 3 dB below = 24.2 mm Ratio of SAR at M2 to SAR at M1 = 65.3% Maximum value of SAR (measured) = 2.95 W/kg Certificate No: D750V3-1017_Jul22 Page 5 of 6 # Impedance Measurement Plot for Head TSL Certificate No: D750V3-1017_Jul22 Page 6 of 6 ## 900 MHz Dipole Calibration Certificate Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signal The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client CTTL (Auden) Certificate No: D900V2-1d051 Jul22 | Object | D900V2 - SN:1d051 | | | |--|--|---|---| | Calibration procedure(s) | QA CAL-05.v11
Calibration Proce | dure for SAR Validation Sources | between 0.7-3 GHz | | Calibration date: | July 26, 2022 | | | | The measurements and the uncerta | ainties with confidence pr | onal standards, which realize the physical uni
robability are given on the following pages an
y facility: environment temperature $(22 \pm 3)^{\circ}$ C | d are part of the certificate. | | Calibration Equipment used (M&TE | critical for calibration) | Cal Data (Cartificate No.) | Sahadulad Calibratian | | Primary Standards | 10# | Cal Date (Certificate No.) | Scheduled Calibration | | lower motor NDD | CNI: 104770 | 04 Apr 22 (No. 247 02525/02524) | A== 22 | | | SN: 104778 | 04-Apr-22 (No. 217-03525/03524) | Apr-23 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-22 (No. 217-03524) | Apr-23 | | Power sensor NRP-Z91
Power sensor NRP-Z91 | SN: 103244
SN: 103245 | 04-Apr-22 (No. 217-03524)
04-Apr-22 (No. 217-03525) | Apr-23
Apr-23 | | Power sensor NRP-Z91
Power sensor NRP-Z91
Reference 20 dB Attenuator | SN: 103244
SN: 103245
SN: BH9394 (20k) | 04-Apr-22 (No. 217-03524)
04-Apr-22 (No. 217-03525)
04-Apr-22 (No. 217-03527) | Apr-23
Apr-23
Apr-23 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination | SN: 103244
SN: 103245 | 04-Apr-22 (No. 217-03524)
04-Apr-22 (No. 217-03525) | Apr-23
Apr-23 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 | SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327 | 04-Apr-22 (No. 217-03524)
04-Apr-22 (No. 217-03525)
04-Apr-22 (No. 217-03527)
04-Apr-22 (No. 217-03528) | Apr-23
Apr-23
Apr-23
Apr-23 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards | SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601 | 04-Apr-22 (No. 217-03524)
04-Apr-22 (No. 217-03525)
04-Apr-22 (No. 217-03527)
04-Apr-22 (No. 217-03528)
31-Dec-21 (No. EX3-7349_Dec21) | Apr-23
Apr-23
Apr-23
Apr-23
Dec-22 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B | SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601 | 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) | Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 May-23 Scheduled Check | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A | SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601
ID #
SN: GB39512475
SN: US37292783 | 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) | Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 May-23 Scheduled Check In house check: Oct-22 In house check: Oct-22 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A | SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41093315 | 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) | Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 May-23 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A RF generator R&S SMT-06 | SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41093315
SN: 100972 | 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 02-May-22 (No. DAE4-601_May22) Check Date (In house) 30-Oct-14 (In house check Oct-20) 07-Oct-15 (In house check Oct-20) 15-Jun-15 (In house check Oct-20) | Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 May-23 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A RF generator R&S SMT-06 | SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41093315 | 04-Apr-22 (No. 217-03524)
04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) | Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 May-23 Scheduled Check In house check: Oct-22 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A | SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID# SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972 SN: US41080477 Name | 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) | Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 May-23 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 Signature | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A RF generator R&S SMT-06 | SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601
ID#
SN: GB39512475
SN: US37292783
SN: MY41093315
SN: 100972
SN: US41080477 | 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec-21) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) | Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 May-23 Scheduled Check In house check: Oct-22 | Certificate No: D900V2-1d051_Jul22 Page 1 of 6 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Servizio svizzero di taratu S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: c) DASY System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D900V2-1d051 Jul22 Page 2 of 6 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 900 MHz ± 1 MHz | | #### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.97 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.1 ± 6 % | 0.95 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.74 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 11.0 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.75 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 7.05 W/kg ± 16.5 % (k=2) | Certificate No: D900V2-1d051_Jul22 ### Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | $51.4 \Omega + 1.0 J\Omega$ | | |--------------------------------------|-----------------------------|--| | Return Loss | - 35.4 dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.407 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| | | | Certificate No: D900V2-1d051_Jul22 #### **DASY5 Validation Report for Head TSL** Date: 26.07.2022 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN:1d051 Communication System: UID 0 - CW; Frequency: 900 MHz Medium parameters used: f = 900 MHz; $\sigma = 0.95 \text{ S/m}$; $\varepsilon_r = 40.1$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(9.62, 9.62, 9.62) @ 900 MHz; Calibrated: 31.12.2021 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 02.05.2022 Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) #### Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 66.34 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 4.26 W/kg SAR(1 g) = 2.74 W/kg; SAR(10 g) = 1.75 W/kg Smallest distance from peaks to all points 3 dB below = 16.8 mm Ratio of SAR at M2 to SAR at M1 = 64.2% Maximum value of SAR (measured) = 3.74 W/kg 0 dB = 3.74 W/kg = 5.73 dBW/kg Certificate No: D900V2-1d051_Jul22 #### Impedance Measurement Plot for Head TSL Certificate No: D900V2-1d051_Jul22 Page 6 of 6 ## 1750 MHz Dipole Calibration Certificate Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client CTTL (Auden) Certificate No: D1750V2-1003 Jul22 | Object | D1750V2 - SN:10 | 003 | | |---|---|---|--| | Calibration procedure(s) | QA CAL-05.v11
Calibration Proce | dure for SAR Validation Sources
 between 0.7-3 GHz | | Calibration date: | July 18, 2022 | 10 10 10 10 10 10 10 10 10 10 10 10 10 1 | | | The measurements and the uncert | ainties with confidence pred in the closed laborator | onal standards, which realize the physical uni
robability are given on the following pages and
y facility: environment temperature (22 ± 3)°C | d are part of the certificate. | | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | Power meter NRP | SN: 104778 | 04-Apr-22 (No. 217-03525/03524) | Apr-23 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-22 (No. 217-03524) | Apr-23 | | 2000 TO | SN: 103245 | 04-Apr-22 (No. 217-03525) | Apr-23 | | ower sensor NRP-291 | | | A 00 | | | SN: BH9394 (20k) | 04-Apr-22 (No. 217-03527) | Apr-23 | | Reference 20 dB Attenuator | SN: BH9394 (20k)
SN: 310982 / 06327 | 04-Apr-22 (No. 217-03527)
04-Apr-22 (No. 217-03528) | Apr-23
Apr-23 | | Reference 20 dB Attenuator
Type-N mismatch combination | | | | | Reference 20 dB Attenuator
Fype-N mismatch combination
Reference Probe EX3DV4 | SN: 310982 / 06327 | 04-Apr-22 (No. 217-03528) | Apr-23 | | Reference 20 dB Attenuator
Type-N mismatch combination
Reference Probe EX3DV4
DAE4 | SN: 310982 / 06327
SN: 7349 | 04-Apr-22 (No. 217-03528)
31-Dec-21 (No. EX3-7349_Dec21) | Apr-23
Dec-22 | | Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B | SN: 310982 / 06327
SN: 7349
SN: 601
ID #
SN: GB39612475 | 04-Apr-22 (No. 217-03528)
31-Dec-21 (No. EX3-7349_Dec21)
02-May-22 (No. DAE4-601_May22) | Apr-23
Dec-22
May-23
Scheduled Check | | Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A | SN: 310982 / 06327
SN: 7349
SN: 601
ID #
SN: GB39512475
SN: US37292783 | 04-Apr-22 (No. 217-03528)
31-Dec-21 (No. EX3-7349_Dec21)
02-May-22 (No. DAE4-601_May22)
Check Date (in house) | Apr-23 Dec-22 May-23 Scheduled Check In house check: Oct-22 | | Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A | SN: 310982 / 06327
SN: 7349
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41093315 | 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) | Apr-23 Dec-22 May-23 Scheduled Check In house check: Oct-22 In house check: Oct-22 | | Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A RF generator R&S SMT-06 | SN: 310982 / 06327
SN: 7349
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41093315
SN: 100972 | 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) | Apr-23 Dec-22 May-23 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 | | Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A RF generator R&S SMT-06 | SN: 310982 / 06327
SN: 7349
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41093315 | 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) | Apr-23 Dec-22 May-23 Scheduled Check In house check: Oct-22 | | Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A RF generator R&S SMT-06 | SN: 310982 / 06327
SN: 7349
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41093315
SN: 100972 | 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) | Apr-23
Dec-22
May-23 | | Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A | SN: 310982 / 06327
SN: 7349
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41093315
SN: 100972
SN: US41080477 | 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) | Apr-23 Dec-22 May-23 Scheduled Check In house check: Oct-22 | | Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A Calibrated by: | SN: 310982 / 06327
SN: 7349
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41093315
SN: 100972
SN: US41080477
Name | 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) | Apr-23 Dec-22 May-23 Scheduled Check In house check: Oct-22 | Certificate No: D1750V2-1003_Jul22 Page 1 of 6 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Service suisse d etaionnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** c) DASY System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - · SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D1750V2-1003_Jul22 Page 2 of 6 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1750 MHz ± 1 MHz | | ### Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.1 | 1.37 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.5 ± 6 % | 1.35 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.19 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 36.8 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 4.82 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 19.3 W/kg ± 16.5 % (k=2) | Certificate No: D1750V2-1003_Jul22 #### Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 50.7 Ω $- 0.2$ jΩ | |--------------------------------------|-------------------| | Return Loss | - 43.0 dB | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.214 ns | |----------------------------------|----------|
----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| | | | Certificate No: D1750V2-1003_Jul22 Page 4 of 6 #### **DASY5 Validation Report for Head TSL** Date: 18.07.2022 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1003 Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.35 \text{ S/m}$; $\varepsilon_r = 38.5$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN7349; ConvF(8.67, 8.67, 8.67) @ 1750 MHz; Calibrated: 31.12.2021 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 02.05.2022 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) ### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 107.5 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 17.3 W/kg SAR(1 g) = 9.19 W/kg; SAR(10 g) = 4.82 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 53.4% Maximum value of SAR (measured) = 14.3 W/kg 0 dB = 14.3 W/kg = 11.55 dBW/kg Certificate No: D1750V2-1003_Jul22 Page 5 of 6 #### Impedance Measurement Plot for Head TSL Certificate No: D1750V2-1003_Jul22 Page 6 of 6 ## 1900 MHz Dipole Calibration Certificate Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client CTTL (Auden) Certificate No: D1900V2-5d101_Jul22 | Object | D1900V2 - SN:50 | 1101 | | |--|--|--|---| | Calibration procedure(s) | QA CAL-05.v11
Calibration Proce | edure for SAR Validation Sources | between 0.7-3 GHz | | Calibration date: | July 26, 2022 | the state of the party of the state s | | | | | onal standards, which realize the physical uni | | | All calibrations have been conducted | ed in the closed laborator | y facility: environment temperature (22 ± 3)°C | and humidity < 70%. | | Calibration Equipment used (M&TE | E critical for calibration) | | | | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | | | | | | Power meter NRP | SN: 104778 | 04-Apr-22 (No. 217-03525/03524) | Apr-23 | | 71071.00300000 | SN: 104778
SN: 103244 | 04-Apr-22 (No. 217-03525/03524)
04-Apr-22 (No. 217-03524) | Apr-23
Apr-23 | | Power sensor NRP-Z91 | 7.00 2.000000 | | Apr-23 | | Power sensor NRP-Z91
Power sensor NRP-Z91 | SN: 103244 | 04-Apr-22 (No. 217-03524) | | | Power sensor NRP-Z91
Power sensor NRP-Z91
Reference 20 dB Attenuator | SN: 103244
SN: 103245 | 04-Apr-22 (No. 217-03524)
04-Apr-22 (No. 217-03525) | Apr-23
Apr-23 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination | SN: 103244
SN: 103245
SN: BH9394 (20k) | 04-Apr-22 (No. 217-03524)
04-Apr-22 (No. 217-03525)
04-Apr-22 (No. 217-03527) | Apr-23
Apr-23
Apr-23 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 | SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327 | 04-Apr-22 (No. 217-03524)
04-Apr-22 (No. 217-03525)
04-Apr-22 (No. 217-03527)
04-Apr-22 (No. 217-03528) | Apr-23
Apr-23
Apr-23
Apr-23 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 | SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349 | 04-Apr-22 (No. 217-03524)
04-Apr-22 (No. 217-03525)
04-Apr-22 (No. 217-03527)
04-Apr-22 (No. 217-03528)
31-Dec-21 (No. EX3-7349_Dec21) | Apr-23
Apr-23
Apr-23
Apr-23
Dec-22 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards | SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601 | 04-Apr-22 (No. 217-03524)
04-Apr-22 (No. 217-03525)
04-Apr-22 (No. 217-03527)
04-Apr-22 (No. 217-03528)
31-Dec-21 (No. EX3-7349_Dec21)
02-May-22 (No. DAE4-601_May22) | Apr-23
Apr-23
Apr-23
Apr-23
Dec-22
May-23
Scheduled Check | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A | SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601 | 04-Apr-22 (No. 217-03524)
04-Apr-22 (No. 217-03525)
04-Apr-22 (No. 217-03527)
04-Apr-22 (No. 217-03528)
31-Dec-21 (No. EX3-7349_Dec21)
02-May-22 (No. DAE4-601_May22)
Check Date (in house) | Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 May-23 Scheduled Check In house check: Oct-22 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A | SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601 | 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) | Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 May-23 Scheduled Check In house check: Oct-22 In house check: Oct-22 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A RF generator R&S SMT-06 | SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41093315
SN: 100972 | 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in
house check Oct-20) 15-Jun-15 (in house check Oct-20) | Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 May-23 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 | SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41093315 | 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) | Apr-23
Apr-23
Apr-23
Apr-23
Dec-22
May-23 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 | SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41093315
SN: 100972 | 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) | Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 May-23 Scheduled Check In house check: Oct-22 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A Calibrated by: | SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601
ID#
SN: GB39512475
SN: US37292783
SN: MY41093315
SN: 100972
SN: US41080477 | 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec-21) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) | Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 May-23 Scheduled Check In house check: Oct-22 | Certificate No: D1900V2-5d101_Jul22 Page 1 of 6 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** c) DASY System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D1900V2-5d101_Jul22 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1900 MHz ± 1 MHz | | #### **Head TSL parameters** The following parameters and calculations were applied | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.7 ± 6 % | 1.38 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.90 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 39.7 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.18 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 20.7 W/kg ± 16.5 % (k=2) | Certificate No: D1900V2-5d101_Jul22 Page 3 of 6 #### Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 52.1 Ω + 4.3 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 26.5 dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1,202 ns | |----------------------------------|-----------| | Liectrical Delay (one direction) | 1.202 115 | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|--------| | manaratara by | OI ENO | Certificate No: D1900V2-5d101_Jul22 #### **DASY5 Validation Report for Head TSL** Date: 26.07.2022 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d101 Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.38 \text{ S/m}$; $\varepsilon_r = 38.7$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(8.43, 8.43, 8.43) @ 1900 MHz; Calibrated: 31.12.2021 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 02.05.2022 • Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) #### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 109.0 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 18.5 W/kg #### SAR(1 g) = 9.90 W/kg; SAR(10 g) = 5.18 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 54.1% Maximum value of SAR (measured) = 15.5 W/kg 0 dB = 15.5 W/kg = 11.90 dBW/kg Certificate No: D1900V2-5d101_Jul22 #### Impedance Measurement Plot for Head TSL Certificate No: D1900V2-5d101_Jul22 Page 6 of 6 ## 2300 MHz Dipole Calibration Certificate Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client CTTL (Auden) Certificat Certificate No: D2300V2-1018_Jul22 | bject | D2300V2 - SN:10 | 018 | |
--|---|--|--| | Calibration procedure(s) | QA CAL-05.v11
Calibration Proce | edure for SAR Validation Sources | between 0.7-3 GHz | | Calibration date: | July 20, 2022 | | | | | | onal standards, which realize the physical unit
robability are given on the following pages and | And the second of o | | All calibrations have been conducted | ed in the closed laborator | y facility: environment temperature (22 ± 3)°C | and humidity < 70%. | | Calibration Equipment used (M&TE | critical for calibration) | | | | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | Power meter NRP | SN: 104778 | 04-Apr-22 (No. 217-03525/03524) | Apr-23 | | ower sensor NRP-Z91 | SN: 103244 | 04-Apr-22 (No. 217-03524) | Apr-23 | | ower sensor NRP-Z91 | SN: 103245 | 04-Apr-22 (No. 217-03525) | Apr-23 | | eference 20 dB Attenuator | SN: BH9394 (20k) | 04-Apr-22 (No. 217-03527) | Apr-23 | | une N mismatch combination | SN: 310982 / 06327 | 04-Apr-22 (No. 217-03528) | Apr-23 | | ype-in mismatch combination | SN: 7349 | 31-Dec-21 (No. EX3-7349 Dec21) | Dec-22 | | The state of s | 314. 7348 | | | | Type-N mismatch combination
Reference Probe EX3DV4
DAE4 | SN: 601 | 02-May-22 (No. DAE4-601_May22) | May-23 | | Reference Probe EX3DV4
DAE4 | Tarana and an | | | | teference Probe EX3DV4
0AE4
secondary Standards | SN: 601 | 02-May-22 (No. DAE4-601_May22) | May-23 | | Aeference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B | SN: 601 | 02-May-22 (No. DAE4-601_May22) Check Date (in house) | May-23
Scheduled Check | | AEEE Probe EX3DV4 E | SN: 601
ID#
SN: GB39512475 | 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) | May-23 Scheduled Check In house check: Oct-22 | | deference Probe EX3DV4 DAE4 DECONDARY Standards Dower meter E4419B Dower sensor HP 8481A Dower sensor HP 8481A | SN: 601
ID #
SN: GB39512475
SN: US37292783 | O2-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) | May-23 Scheduled Check In house check: Oct-22 In house check: Oct-22 | | Acterence Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 | ID # SN: GB39512475 SN: US37292783 SN: MY41093315 | O2-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) | May-23 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 | | Reference Probe EX3DV4 | ID # SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972 | O2-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) | May-23 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 | | Acference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A | SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41093315
SN: 100972
SN: US41080477 | O2-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) | May-23 Scheduled Check In house check: Oct-22 | | Acference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 | ID # SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972 SN: US41080477 Name | O2-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) | May-23 Scheduled Check In house check: Oct-22 | | Acference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A | ID # SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972 SN: US41080477 Name | O2-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) | May-23 Scheduled Check In house check: Oct-22 | | Acterence Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A Calibrated by: | SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41093315
SN: 100972
SN: US41080477
Name
Aldonia Georgiadou | 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) Function Laboratory Technician | May-23 Scheduled Check In house check: Oct-22 | | Acterence Probe EX3DV4 ACEA ACEA ACEA ACEA ACEA ACEA ACEA ACE | SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41093315
SN: 100972
SN: US41080477
Name
Aldonia Georgiadou | 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) Function Laboratory Technician | May-23 Scheduled Check In house check: Oct-22 | Certificate No: D2300V2-1018 Jul22 Page 1 of 6 Calibration
Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** c) DASY System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - · SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D2300V2-1018_Jul22 Page 2 of 6 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2300 MHz ± 1 MHz | | **Head TSL parameters** The following parameters and colculations were applied | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.5 | 1.67 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.4 ± 6 % | 1.69 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 12.6 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 49.6 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.09 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.2 W/kg ± 16.5 % (k=2) | Certificate No: D2300V2-1018_Jul22 Page 3 of 6 ### Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 48.8 Ω - 2.6 jΩ | |--------------------------------------|-----------------| | Return Loss | - 30.8 dB | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.168 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | The state of s | | |--|-------| | Manufactured by | SPEAG | | Parameter Control of the | | Certificate No: D2300V2-1018_Jul22 Page 4 of 6 #### **DASY5 Validation Report for Head TSL** Date: 20.07.2022 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2300 MHz; Type: D2300V2; Serial: D2300V2 - SN:1018 Communication System: UID 0 - CW; Frequency: 2300 MHz Medium parameters used: f = 2300 MHz; $\sigma = 1.69$ S/m; $\varepsilon_r = 38.4$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(7.98, 7.98, 7.98) @ 2300 MHz; Calibrated: 31.12.2021 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 02.05.2022 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) ### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 116.8 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 23.0 W/kg SAR(1 g) = 12.6 W/kg; SAR(10 g) = 6.09 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 54.9% Maximum value of SAR (measured) = 19.8 W/kg 0 dB = 19.8 W/kg = 12.96 dBW/kg Certificate No: D2300V2-1018_Jul22 Page 5 of 6 #### Impedance Measurement Plot for Head TSL Certificate No: D2300V2-1018_Jul22 Page 6 of 6