

# **TEST REPORT**

# No. I17D00247-EMC04

## For

Client: Shanghai Sunmi Technology Co.,Ltd.

**Production: POS System** 

Model Name: W1303

Hardware Version: B3.2

Software Version: SUNMI\_T1mini\_GLOBAL\_000009\_170913

FCC ID: 2AH25W1301

Issued date: 2018-01-11

### Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of ECIT Shanghai.

### **Test Laboratory:**

ECIT Shanghai, East China Institute of Telecommunications

Add: 7F, G Area, No.668, Beijing East Road, Huangpu District, Shanghai, P. R. China

Tel: (+86)-021-63843300, E-Mail: welcome@ecit.org.cn



## Report No.:I17D00247-EMC04



### **Revision Version**

| Report Number   | Revision | Date       | Memo                            |
|-----------------|----------|------------|---------------------------------|
| I17D00247-EMC04 | 00       | 2018-01-11 | Initial creation of test report |

Page Number: 2 of 36 Report Issued Date: Jan.11,2018



## **CONTENTS**

| 1.   | TEST LABORATORY                                         | 5  |
|------|---------------------------------------------------------|----|
| 1.1. | TESTING LOCATION                                        | 5  |
| 1.2. | TESTING ENVIRONMENT                                     | 5  |
| 1.3. | PROJECT DATA                                            | 5  |
| 1.4. | SIGNATURE                                               | 5  |
| 2.   | CLIENT INFORMATION                                      | 6  |
| 2.1. | APPLICANT INFORMATION                                   | 6  |
| 2.2. | MANUFACTURER INFORMATION                                | 6  |
| 3.   | EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE) | 7  |
| 3.1. | ABOUT EUT                                               | 7  |
| 3.2. | INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST     | 7  |
| 3.3. | INTERNAL IDENTIFICATION OF AE USED DURING THE TEST      | 7  |
| 4.   | REFERENCE DOCUMENTS                                     | 8  |
| 4.3. | REFERENCE DOCUMENTS FOR TESTING                         | 8  |
| 5.   | TEST RESULTS                                            | 9  |
| 5.1. | SUMMARY OF TEST RESULTS                                 | 9  |
| 5.2. | STATEMENTS                                              | 9  |
| 6.   | TEST EQUIPMENT UTILIZED                                 | 0  |
| 7.   | SYSTEM CONFIGURATION DURING TEST 1                      | 11 |
| 7.1  | TEST MODE 1                                             | 11 |
| 7.2  | CONNECTION DIAGRAM OF TEST SYSTEM1                      | 11 |
| 8.   | MEASUREMENT RESULTS 1                                   | 2  |
| 8.1  | 20DB BANDWIDTH1                                         | 2  |
| 8.2  | FREQUENCY STABILITY 1                                   | 4  |
| 8.3  | RADIATED EMISSIONS1                                     | 6  |



## Report No.:I17D00247-EMC04

Page Number:

Report Issued Date: Jan.11,2018

4 of 36

| 8.3.1 ELECTRIC FIELD STRENGTH OF FUNDAMENTAL EMISSIONS | 16 |
|--------------------------------------------------------|----|
| 8.3.2 ELECTRIC FIELD RADIATED EMISSIONS (BELOW 30MHZ)  | 18 |
| 8.3.3 ELECTRIC FIELD RADIATED EMISSIONS (ABOVE 30MHZ)  | 20 |
| 8.4 CONDUCTED EMISSIONS                                | 22 |
| ANNEX A TEST CONFIGURATION PHOTOS                      | 24 |
| ANNEX B EUT PHOTOS                                     | 26 |





## 1. Test Laboratory

## 1.1. Testing Location

Company Name: ECIT Shanghai, East China Institute of Telecommunications

Address: 7F, G Area, No. 668, Beijing East Road, Huangpu District, Shanghai,

P. R. China

Postal Code: 200001

Telephone: 86-21-63843300 Fax: 86-21-63843301

FCC registration No: 489729

## 1.2. Testing Environment

Normal Temperature:  $15-35^{\circ}$ C Relative Humidity:  $30-60^{\circ}$ RH

## 1.3. Project data

Project Leader: Zhou Yan
Testing Start Date: 01-08,2018
Testing End Date: 01-09,2018

## 1.4. Signature

原至莫

Qin Yabin

(Prepared this test report)

You Jinjun

(Reviewed this test report)

Zheng Zhongbin
Director of the laboratory
(Approved this test report)





Report No.:I17D00247-EMC04

Page Number:

Report Issued Date: Jan.11,2018

6 of 36

## 2. Client Information

## 2.1. Applicant Information

Company Name: Shanghai Sunmi Technology Co.,Ltd.

Room 605, Block 7, KIC Plaza, No.388 Song Hu Road, Yang Pu Address:

District, Shanghai, China

Telephone: 18721763396

Post: 200433

### 2.2. Manufacturer Information

Company Name: Shanghai Sunmi Technology Co.,Ltd.

Room 605, Block 7,KIC Plaza, No.388 Song Hu Road, Yang Pu Address:

District, Shanghai, China

Telephone: 18721763396

Post: 200433



## 3. Equipment under Test (EUT) and Ancillary Equipment (AE)

## 3.1. About EUT

| EUT Description                   | POS System                 |
|-----------------------------------|----------------------------|
| Model name                        | W1303                      |
| Additional Communication Function | BT4.0;WIFI 802.11b,g,n;NFC |

## 3.2. Internal Identification of EUT used during the test

| EUT ID* | SN or IMEI | HW Version | SW Version                            | Date of receipt |
|---------|------------|------------|---------------------------------------|-----------------|
| N02     | /          | B3.2       | SUNMI_T1mini_GLOBA<br>L_000009_170913 | 2018-01-09      |

<sup>\*</sup>EUT ID: is used to identify the test sample in the lab internally.

## 3.3. Internal Identification of AE used during the test

| AE ID* | Description Model |              | SN |
|--------|-------------------|--------------|----|
| CA04   | Adapter           | EA10681P-240 | /  |
| UA01   | AC Cable          | /            | /  |
| AE1    | Type A Card       | /            | 1  |

<sup>\*</sup>AE ID: is used to identify the test sample in the lab internally.



## 4. Reference Documents

## 4.3. Reference Documents for testing

The following documents listed in this section are referred for testing.

| The following are also as a second and a second are a second as a |                                                         |         |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------|--|--|
| Reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Title                                                   | Version |  |  |
| FCC CFR47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Frequency allocations and radio treaty matters;         | 2017    |  |  |
| Part 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | general rules and regulations                           | 2017    |  |  |
| FCC CFR47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Padia Fraguenay Davisca Intentional Padiatora           | 2017    |  |  |
| Part 15C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Radio Frequency Devices-Intentional Radiators           | 2017    |  |  |
| ANSI C63.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | American National Standard of Procedures for Compliance | 2012    |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Testing of Unlicensed Wireless Devices                  | 2013    |  |  |

Page Number: 8 of 36 Report Issued Date: Jan.11,2018



Report No.:I17D00247-EMC04

### 5. Test Results

## 5.1. Summary of Test Results

| Items | Test List           | Clause in FCC rules               | Verdict |
|-------|---------------------|-----------------------------------|---------|
| 1     | 20 dB bandwidth     | 2.1049                            | Pass    |
| 2     | Frequency Stability | 15.225(e)                         | Pass    |
| 3     | Radiated Emissions  | 15.225 (a) (b) (c) (d) and 15.209 | Pass    |
| 4     | Conducted Emissions | 15.207                            | Pass    |

### 5.2. Statements

The W1303, supporting BT/WLAN/NFC, manufactured by Shanghai Sunmi Technology Co.,Ltd. is a variant product for testing. ECIT only performed test cases which identified with Pass/Fail/Inc result in section 5.1.

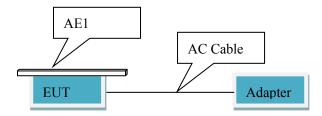
ECIT has verified that the compliance of the tested device specified in section 3 of this test report is successfully evaluated according to the procedure and test methods as defined in type certification requirement listed in section 4 of this test report.



# 6. Test Equipment Utilized

| No. | Name                      | Туре           | Series<br>Number | Producer      | Cal. Date  | Cal.<br>interval |
|-----|---------------------------|----------------|------------------|---------------|------------|------------------|
| 1   | Test Receiver             | ESU40          | 100307           | R&S           | 2017-05-11 | 1 Year           |
| 2   | Trilog Antenna            | VULB9163       | VULB9163-515     | Schwarzbeck   | 2017-02-25 | 3 Year           |
| 3   | Loop Antenna              | AL-130R        | 121083           | COM-POWE<br>R | 2016-11-21 | 3 Year           |
| 4   | EMI Test<br>Software      | EMC32<br>V9.15 | NA               | R&S           | NA         | NA               |
| 5   | Test Receiver             | ESCI           | 101235           | R&S           | 2017-05-11 | 1 Year           |
| 6   | 2-Line<br>V-Network       | ENV216         | 101380           | R&S           | 2017-05-11 | 1 Year           |
| 7   | EMI Test<br>Software      | EMC32<br>V9.12 | NA               | R&S           | NA         | NA               |
| 8   | Vector Signal<br>Analyser | FSQ26          | 101096           | R&S           | 2017-05-11 | 1 Year           |
| 9   | Climate chamber           | SH-641         | 92012011         | ESPEC         | 2017-12-05 | 2 Year           |




## 7. System Configuration during Test

### 7.1 Test Mode

| Test Item           | Function Type                          |
|---------------------|----------------------------------------|
| 20 dB bandwidth     | Mode 1: TX mode <figure 1=""></figure> |
| Frequency Stability | Mode 1: TX mode <figure 1=""></figure> |
| Radiated Emissions  | Mode 1: TX mode <figure 1=""></figure> |
| Conducted Emissions | Mode 1: TX mode <figure 1=""></figure> |

Remark: The NFC function is opened in the setting menu. The EUT will transmit the NFC command continuously during the test, and will read the information from the Type A Card continuously.

## 7.2 Connection Diagram of Test System



<Figure 1> Mode 1

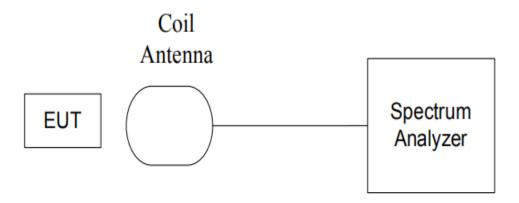


### 8. Measurement Results

#### 8.1 20dB Bandwidth

#### Reference

See Clause 6.9 of ANSI C63.10-2013


#### **Measurement Methods**

The transmitter output signal was picked up by coil antenna to the spectrum analyzer.

The transmitter output signal was picked up by coil antenna connected to the spectrum analyzer.

The bandwidth of the center frequency was measured with 140Hz RBW, 420Hz VBW and 14kHz span.

#### **Test Setup**



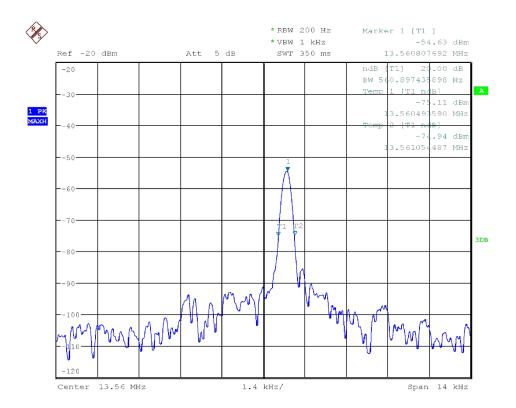
#### **EUT Operating Mode and Test Conditions**

The measurement of EUT is carried out under the transmit state of NFC and without modulation. EUT had been not connected to a travel adapter.

During the measurements, the ambient temperature is in the range of 15~25℃.

#### Limits

The 20dB bandwidth shall be less than 80% of the permitted frequency band. For 13.56MHz NFC, the permitted frequency band is 14kHz, so the limit is 11.2kHz.


#### **Uncertainty Measurement**

The measurement uncertainty is 60.8Hz (k=2)

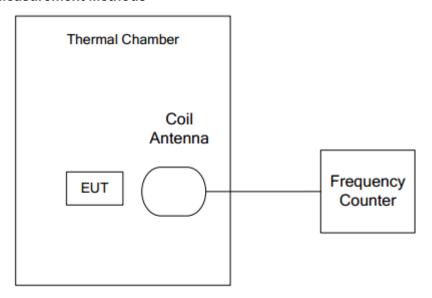


### **Test Results:**

| Carrier frequency | 20dB Bandwidth | Conclusion |
|-------------------|----------------|------------|
| (MHz)             | (Hz)           |            |
| 13.56             | 560.897        | Pass       |
|                   |                |            |



Date: 9.JAN.2018 04:02:19




## 8.2 Frequency Stability

#### Reference

See Clause 6.8 of ANSI C63.10-2013

#### **Measurement Methods**



The transmitter output single was picked up by coil antenna connected to the frequency counter. The center frequency was measured with 30Hz RBW and 1kHz span.

During the test, the EUT was placed in a thermal chamber until thermal balance and lasting appropriate time.

### **EUT Operating Mode and Test Conditions**

The measurement of EUT is carried out under the transmit state of without modulation, EUT1 had been not connected to a travel adapter.

Operation Temperature: Tmin=-20 $^{\circ}$ C, Tnom=25 $^{\circ}$ C, and Tmax=50 $^{\circ}$ C Operation Voltage: Vmin=22.8V, Vmax=25.2V,and Tnom=24V.

#### Limits

The frequency tolerance of the carrier signal shall be maintained within +/- 0.01% of the operating frequency.

#### **Uncertainty Measurement**

The measurement uncertainty U=60.8Hz(k=2).

#### **Test Results**

| Temperature | Voltage | Frequency Error (MHz)                     |              |              |              |
|-------------|---------|-------------------------------------------|--------------|--------------|--------------|
|             |         | Startup 2Min Later 5Min Later 10Min Later |              |              |              |
| Tmin        | Vnom    | 13.560777244                              | 13.560777244 | 13.560777244 | 13.560776245 |
| Tmax        | Vnom    | 13.560748245                              | 13.560754392 | 13.560762255 | 13.560738299 |

East China Institute of Telecommunications TEL: +86 21 63843300FAX:+86 21 63843301 Page Number: 14 of 36 Report Issued Date: Jan.11,2018



Tnom Tnom

Tnom

# EMC Test Report

| Vnom | 13.560753205 | 13.560769321 | 13.560748244 | 13.560724984 |
|------|--------------|--------------|--------------|--------------|
| Vmin | 13.560777244 | 13.560769231 | 13.560769231 | 13.560748257 |
| Vmax | 13.560719277 | 13.560738284 | 13.560744283 | 13.560762211 |

Report No.:I17D00247-EMC04

Page Number:

Report Issued Date: Jan.11,2018

15 of 36

| Temperature | Voltage | Frequency Error (%) |            |            |             |  |  |  |
|-------------|---------|---------------------|------------|------------|-------------|--|--|--|
|             |         | Startup             | 2Min Later | 5Min Later | 10Min Later |  |  |  |
| Tmin        | Vnom    | 0.007               | 0.007      | 0.007      | 0.007       |  |  |  |
| Tmax        | Vnom    | 0.007               | 0.007      | 0.007      | 0.007       |  |  |  |
| Tnom        | Vnom    | 0.007               | 0.007      | 0.007      | 0.007       |  |  |  |
| Tnom        | Vmin    | 0.007               | 0.007      | 0.007      | 0.007       |  |  |  |
| Tnom        | Vmax    | 0.007               | 0.007      | 0.007      | 0.007       |  |  |  |



#### 8.3 Radiated Emissions

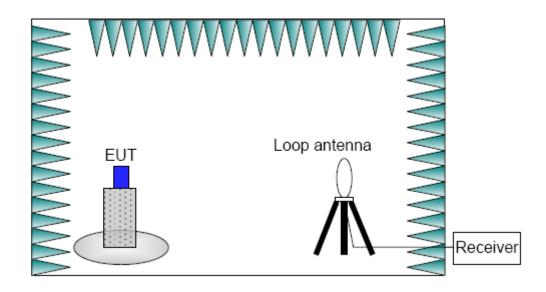
### 8.3.1 Electric Field Strength of Fundamental Emissions

#### Reference

See Clause 6.4 of ANSI C63.10-2013

#### **Method of Measurement**

The test set-up was made in accordance to the general provisions of ANSI C63.10-2013. The transmitter carrier output levels (E-Field) from the EUT are measured in a semi-anechoic chamber. The EUT is placed on a non-conductive stand of 80cm high, and at a measurement distance of 3m from the receiving antenna. The center of the receiving antenna is 1 meter above the ground. The E-field is measured with a shielded loop antenna connected to a measurement receiver. Detected E-field was maximized by rotating the EUT through 360° and adjusting the receiving antenna polarizations. The maximization processes were repeated with the EUT positioned respectively in its three orthogonal axes. The measurements were performed with the peak detector and if required, the quasi-peak detector.


#### The measurement bandwidth:

| Frequency (MHz) | RBW / VBW  |
|-----------------|------------|
| 12.56-14.56     | 10 / 30kHz |

The E-field measured at 3m is calculated as:

E-field (dBuV/m) = Rx (dBuV) + Cable Loss (dB) + AF@3m (dB/m)

### **Test Setup**



#### Limits

Clause 15.225(a) the field strength of any emissions within the band 13.553-13.567 MHz shall not exceed 15,848 microvolts/meter at 30 meters.

Clause 15.225(b) within the bands 13.410-13.553 MHz and 13.567-13.710 MHz, the field strength East China Institute of Telecommunications

Page Number: 16 of 36

TEL: +86 21 63843300FAX:+86 21 63843301

Report Issued Date: Jan.11,2018



of any emissions shall not exceed 334 microvolts/meter at 30 meters.

Clause 15.225(c) within the bands 13.110-13.410 MHz and 13.710-14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters.

| Frequency Range (MHz) | E-field Strength Limit @30m | E-field Strength Limit @3m |  |  |
|-----------------------|-----------------------------|----------------------------|--|--|
|                       | (uV/m)                      | (dBuV/m)                   |  |  |
| 13.560 ± 0.007        | +15,848                     | 124                        |  |  |
| 13.410 to 13.553      | +334                        | 90                         |  |  |
| 13.567 to 13.710      |                             |                            |  |  |
| 13.110 to 13.410      | +106                        | 81                         |  |  |
| 13.710 to 14.010      |                             |                            |  |  |

Note: Where the limits have been defined at one distance, and a signal level measured at another, the limits have been extrapolated using the following formula:

Extrapolation (dB) =  $40log_{10}$  (Measurement Distance / Specification Distance)

### **Measurement Uncertainty**

Measurement uncertainly: (9kHz-30MHz) 5.66dB k=2

#### **Measurement Results**

Measurement results of normal conditions see Figure 1 for different set-ups of EUT. The result displayed take into account applicable antenna factors and cable losses

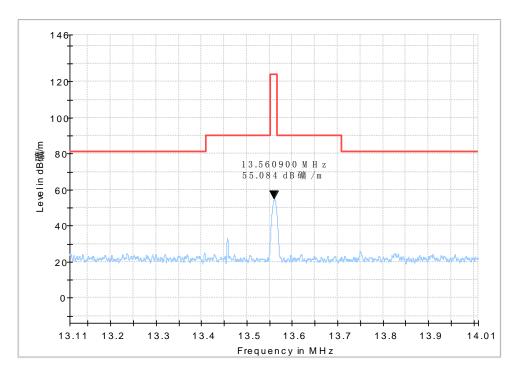



Figure 1 TX mode



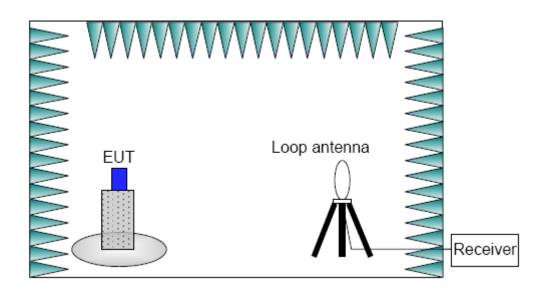
### 8.3.2 Electric Field Radiated Emissions (Below 30MHz)

#### Reference

See Clause 6.4 of ANSI C63.10-2013

#### **Method of Measurement**

The electric field radiated emissions from the EUT are measured in a semi-anechoic chamber. The EUT is placed on a non-conductive stand of 80cm high, and at a measurement distance of 3m from the receiving antenna. The center of the receiving antenna is 1 meter above the ground. The E-field is measured with a shielded loop antenna connected to a measurement receiver. Detected E-field was maximized by rotating the EUT through 360° and adjusting the receiving antenna polarizations. The maximization processes were repeated with the EUT positioned respectively in its three orthogonal axes. The measurements were performed with the peak detector and if required, the quasi-peak detector.


#### The measurement bandwidth:

| Frequency (MHz) | RBW / VBW  |
|-----------------|------------|
| 0.009-30        | 10 / 30kHz |

The E-field measured at 3m is calculated as:

E-field (dBuV/m) = Rx (dBuV) + Cable Loss (dB) + AF@3m (dB/m)

### **Test Setup**





#### Limits

| Frequency Range (MHz) | E-field Strength Limit @30m | E-field Strength Limit @3m |  |
|-----------------------|-----------------------------|----------------------------|--|
|                       | (mV/m)                      | (dBuV/m)                   |  |
| 0.009-0490            | 2400/F (kHz)                | 129-94                     |  |
| 0.490-1.705           | 24000/F (kHz)               | 74-63                      |  |
| 1.705-30              | 30                          | 70                         |  |

Note: Where the limits have been defined at one distance, and a signal level measured at another, the limits have been extrapolated using the following formula:

Extrapolation (dB) =  $40log_{10}$  (Measurement Distance / Specification Distance)

### **Measurement Uncertainty**

Measurement uncertainly: (9kHz-30MHz) 5.66dB k=2

#### **Measurement Results**

Measurement results of normal conditions see Figure 2 for different set-ups of EUT. The result displayed take into account applicable antenna factors and cable losses

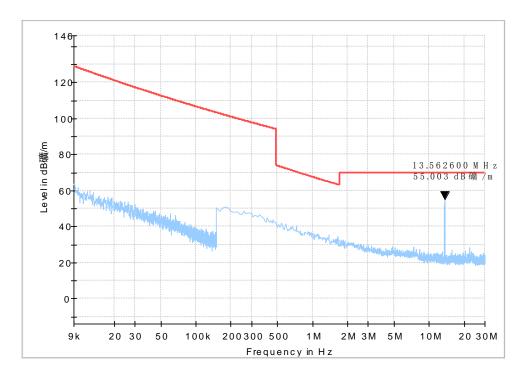


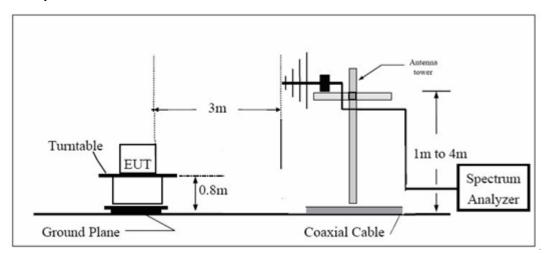

Figure 2 TX mode (9kHz-30MHz)



## 8.3.3 Electric Field Radiated Emissions (Above 30MHz)

#### Reference

See Clause 6.5 of ANSI C63.10-2013


#### **Method of Measurement**

The electric field radiated emissions from the EUT are measured in a semi-anechoic chamber. The EUT is placed on a non-conductive stand of 80cm high, and at a measurement distance of 3m from the receiving antenna. The table was rotated 360 degree and the received antenna mounted on a variable-height antenna tower was varied from 1m to 4m to find the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna were set during the measurement. The data of cable loss and antenna factor has been calibrated in full testing frequency range before the testing. The measurements were performed with the peak detector and if required, the quasi-peak detector.

#### The measurement bandwidth:

| Frequency (MHz) | RBW / VBW        |
|-----------------|------------------|
| 30-1000         | 120 kHz / 300kHz |

### **Test Setup**



#### Limits

| Frequency Range (MHz) | E-field Strength Limit @3m | E-field Strength Limit @3m |  |  |
|-----------------------|----------------------------|----------------------------|--|--|
|                       | (mV/m)                     | (dBuV/m)                   |  |  |
| 30-88                 | 100                        | 40                         |  |  |
| 88-216                | 150                        | 43.5                       |  |  |
| 216-960               | 200                        | 46                         |  |  |
| 960-1000              | 500                        | 54                         |  |  |

#### **Measurement Uncertainty**

Measurement uncertainly: (30MHz-1000MHz) 5.48dB k=2

East China Institute of Telecommunications TEL: +86 21 63843300FAX:+86 21 63843301 Page Number: 20 of 36 Report Issued Date: Jan.11,2018



### **Measurement Results**

Measurement results of normal conditions see Figure 3 for different set-ups of EUT. The result displayed take into account applicable antenna factors and cable losses

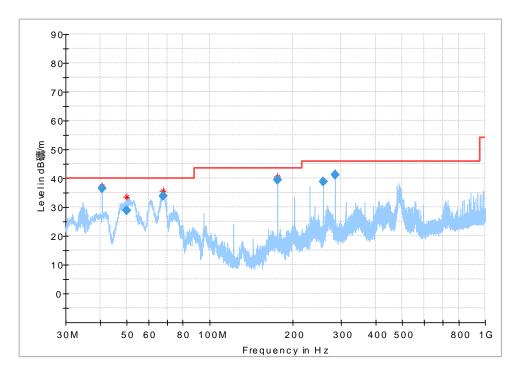



Figure 3 TX mode (30MHz-1000MHz)

| Frequency  | QuasiPeak | Limit  | Margin | Meas.  | Bandwidth | Height | Pol | Azimut | Corr. |
|------------|-----------|--------|--------|--------|-----------|--------|-----|--------|-------|
| (MHz)      | (dBµV/m)  | (dBµV/ | (dB)   | Time   | (kHz)     | (cm)   |     | h      | (dB)  |
|            |           | m)     |        | (ms)   |           |        |     | (deg)  |       |
| 40.682632  | 36.61     | 40.00  | 3.39   | 1000.0 | 120.000   | 100.0  | v   | 37.0   | -20.8 |
| 49.989232  | 28.81     | 40.00  | 11.19  | 1000.0 | 120.000   | 100.0  | v   | 24.0   | -20.0 |
| 67.809693  | 33.74     | 40.00  | 6.26   | 1000.0 | 120.000   | 100.0  | V   | 202.0  | -24.5 |
| 176.286024 | 39.50     | 43.50  | 4.00   | 1000.0 | 120.000   | 181.0  | н   | 28.0   | -26.0 |
| 257.662387 | 38.95     | 46.00  | 7.05   | 1000.0 | 120.000   | 125.0  | н   | 164.0  | -23.1 |
| 284.793589 | 41.11     | 46.00  | 4.89   | 1000.0 | 120.000   | 106.0  | н   | 165.0  | -22.4 |

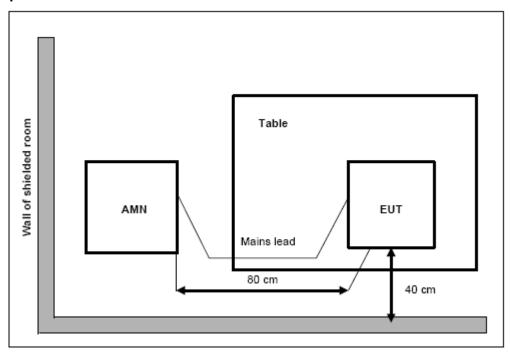


### **8.4 Conducted Emissions**

#### Reference

See Clause 6.2 of ANSI C63.10-2013

#### **Methods of Measurement**


The conducted emissions from the AC port of the EUT are measured in a shielding room. The EUT is connected to a Line Impedance Stabilization Network (LISN). An overview sweep with peak detection was performed. The measurements were performed with a quasi-peak detector and if required, an average detector. Tested in accordance with the procedures of ANSI C63.10-2013 The conducted emission measurements were made with the following detector of the test receiver Quasi-Peak / Average Detector.

### **Test Setup**

The measurement bandwidth and Test Condition

| Frequency (MHz) | RBW   | Sweep Time (s) | Test Voltage |  |
|-----------------|-------|----------------|--------------|--|
| 0.15-30         | 9 kHz | Auto           | 120V/60Hz    |  |

#### **Test Setup**



#### Limits

| Frequency Range (MHz)                          | Conducted Limit (dBuV) |           |  |  |  |
|------------------------------------------------|------------------------|-----------|--|--|--|
|                                                | Quasi-peak             | Average   |  |  |  |
| 0.15-0.5                                       | 66 to 56*              | 56 to 46* |  |  |  |
| 0.5-5                                          | 56                     | 46        |  |  |  |
| 5-30                                           | 60                     | 50        |  |  |  |
| *Decreases with the logarithm of the frequency |                        |           |  |  |  |



### **Measurement Uncertainty**

Measurement uncertainly: (150kHz-30MHz) 3.47dB k=2

#### **Measurement Results**

Note: The measurement result at 13.56MHz is the fundamental emission of NFC signal.

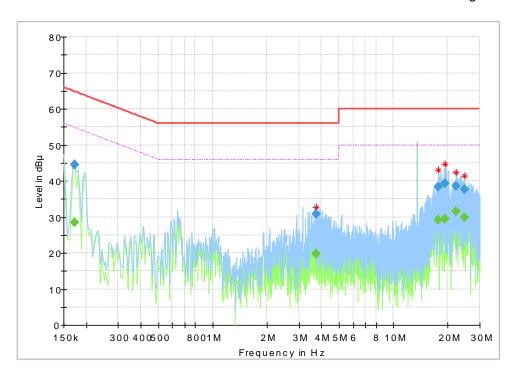
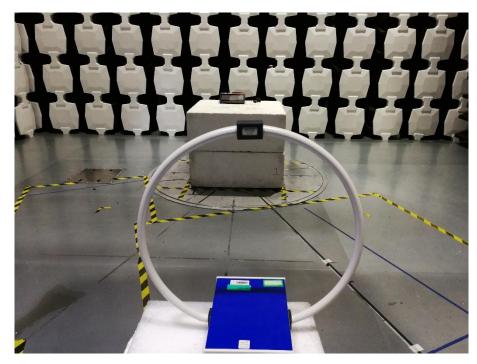
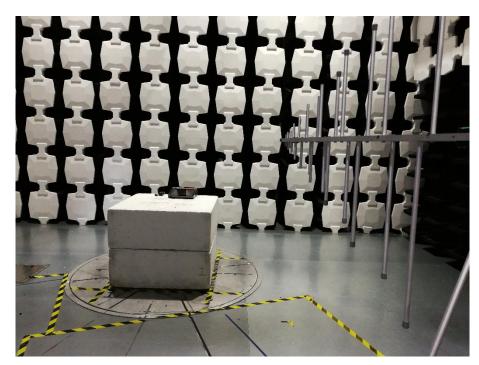



Figure 4 TX mode (150kHz-30MHz)


|           | 3 -                                    |                                                                                                                                                                                                                   | `                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| QuasiPeak | Average                                | Limit                                                                                                                                                                                                             | Margin                                                                                                                                                                                                                                                                                                                                                                                                                  | Meas.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Bandwidth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Filter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Corr.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (dB µ V)  | (dB $\mu$ V)                           | (dB µ V)                                                                                                                                                                                                          | (dB)                                                                                                                                                                                                                                                                                                                                                                                                                    | Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (kHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (dB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|           | 28.51                                  | 54.84                                                                                                                                                                                                             | 26.33                                                                                                                                                                                                                                                                                                                                                                                                                   | 1000.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | L1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 44.57     | -                                      | 64.84                                                                                                                                                                                                             | 20.27                                                                                                                                                                                                                                                                                                                                                                                                                   | 1000.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | L1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|           | 19.81                                  | 46.00                                                                                                                                                                                                             | 26.19                                                                                                                                                                                                                                                                                                                                                                                                                   | 1000.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | L1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 30.87     | ŀ                                      | 56.00                                                                                                                                                                                                             | 25.13                                                                                                                                                                                                                                                                                                                                                                                                                   | 1000.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | L1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|           | 29.21                                  | 50.00                                                                                                                                                                                                             | 20.79                                                                                                                                                                                                                                                                                                                                                                                                                   | 1000.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | L1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 38.43     |                                        | 60.00                                                                                                                                                                                                             | 21.57                                                                                                                                                                                                                                                                                                                                                                                                                   | 1000.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | L1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -         | 29.43                                  | 50.00                                                                                                                                                                                                             | 20.57                                                                                                                                                                                                                                                                                                                                                                                                                   | 1000.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | L1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 39.41     |                                        | 60.00                                                                                                                                                                                                             | 20.59                                                                                                                                                                                                                                                                                                                                                                                                                   | 1000.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | L1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -         | 31.56                                  | 50.00                                                                                                                                                                                                             | 18.44                                                                                                                                                                                                                                                                                                                                                                                                                   | 1000.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | L1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 38.55     |                                        | 60.00                                                                                                                                                                                                             | 21.45                                                                                                                                                                                                                                                                                                                                                                                                                   | 1000.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | L1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|           | 29.86                                  | 50.00                                                                                                                                                                                                             | 20.14                                                                                                                                                                                                                                                                                                                                                                                                                   | 1000.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | L1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 37.53     |                                        | 60.00                                                                                                                                                                                                             | 22.47                                                                                                                                                                                                                                                                                                                                                                                                                   | 1000.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | L1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|           | (dB µ V) 44.57 30.87 38.43 39.41 38.55 | QuasiPeak (dB μ V)         Average (dB μ V)            28.51           44.57            19.81         30.87            29.21           38.43             29.43           39.41            38.55             29.86 | QuasiPeak (dB μ V)         Average (dB μ V)         Limit (dB μ V)            28.51         54.84           44.57          64.84            19.81         46.00           30.87          56.00            29.21         50.00           38.43          60.00            29.43         50.00           39.41          60.00            31.56         50.00           38.55          60.00            29.86         50.00 | QuasiPeak (dB μ V)         Average (dB μ V)         Limit (dB μ V)         Margin (dB)           28.51         54.84         26.33           44.57         64.84         20.27           19.81         46.00         26.19           30.87         56.00         25.13           29.21         50.00         20.79           38.43         60.00         21.57           29.43         50.00         20.57           39.41         60.00         20.59           31.56         50.00         18.44           38.55         60.00         21.45           29.86         50.00         20.14 | QuasiPeak (dB μ V)         Average (dB μ V)         Limit (dB μ V)         Margin (dB)         Meas.           28.51         54.84         26.33         1000.0           44.57         64.84         20.27         1000.0           19.81         46.00         26.19         1000.0           30.87         56.00         25.13         1000.0           29.21         50.00         20.79         1000.0           38.43         60.00         21.57         1000.0           39.41         60.00         20.57         1000.0           39.41         60.00         20.59         1000.0           38.55         60.00         21.45         1000.0           29.86         50.00         20.14         1000.0 | QuasiPeak (dB μ V)         Average (dB μ V)         Limit (dB μ V)         Margin (dB)         Meas. Time (kHz)         Bandwidth (kHz)           28.51         54.84         26.33         1000.0         9.000           44.57         64.84         20.27         1000.0         9.000           19.81         46.00         26.19         1000.0         9.000           30.87         56.00         25.13         1000.0         9.000           29.21         50.00         20.79         1000.0         9.000           38.43         60.00         21.57         1000.0         9.000           39.41         60.00         20.57         1000.0         9.000           31.56         50.00         18.44         1000.0         9.000           38.55         60.00         21.45         1000.0         9.000           29.86         50.00         20.14         1000.0         9.000 | QuasiPeak (dB μ V)         Average (dB μ V)         Limit (dB μ V)         Margin (dB μ V)         Meas. (kHz)         Bandwidth (kHz)         Line (kHz)           28.51         54.84         26.33         1000.0         9.000         L1           44.57         64.84         20.27         1000.0         9.000         L1           19.81         46.00         26.19         1000.0         9.000         L1           30.87         56.00         25.13         1000.0         9.000         L1           29.21         50.00         20.79         1000.0         9.000         L1           38.43         60.00         21.57         1000.0         9.000         L1           29.43         50.00         20.57         1000.0         9.000         L1           39.41         60.00         20.59         1000.0         9.000         L1           31.56         50.00         18.44         1000.0         9.000         L1           38.55         60.00         21.45         1000.0         9.000         L1           29.86         50.00         20.14         1000.0         9.000         L1 | QuasiPeak (dB μ V)         Average (dB μ V)         Limit (dB μ V)         Margin (dB)         Meas. Time (kHz)         Bandwidth (kHz)         Line (kHz)           28.51         54.84         26.33         1000.0         9.000         L1         ON           44.57         64.84         20.27         1000.0         9.000         L1         ON           19.81         46.00         26.19         1000.0         9.000         L1         ON           30.87         56.00         25.13         1000.0         9.000         L1         ON           29.21         50.00         20.79         1000.0         9.000         L1         ON           38.43         60.00         21.57         1000.0         9.000         L1         ON           29.43         50.00         20.57         1000.0         9.000         L1         ON           39.41         60.00         20.59         1000.0         9.000         L1         ON           31.56         50.00         18.44         1000.0         9.000         L1         ON           29.86         50.00         20.14         1000.0         9.000         L1         ON |

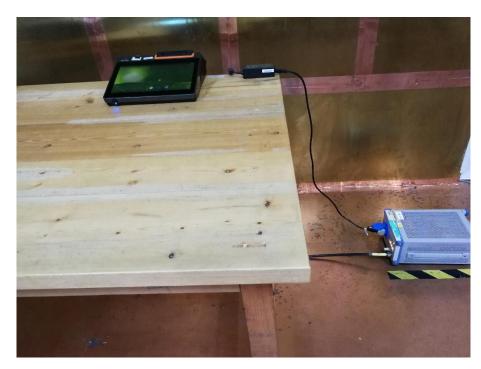
#### Note:


- 1. Emission level(quasi-peak or Average peak)=Raw value by receiver + Corr(Insertion loss+ cable loss)
- 2. The raw value is used to calculate by software which is not shown in the sheet.
- 3. Margin=limit value emission level.
- 4. L1 and N line is all have been tested, the result of them is synthesized in the above data diagram.



# **Annex A Test Configuration Photos**




Picture1: Field Radiated Emissions (Below 30MHz)



Picture2: Field Radiated Emissions (Above 30MHz)

Page Number: 25 of 36 Report Issued Date: Jan.11,2018





**Picture3: Conducted Emissions** 



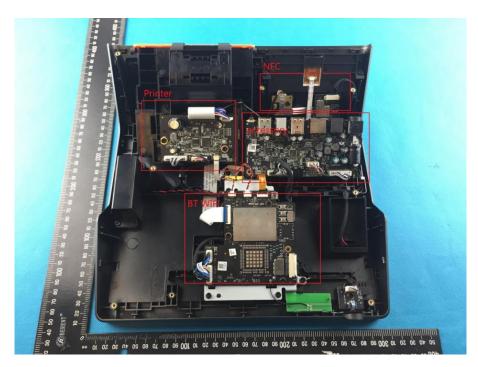
## **Annex B EUT Photos**



Picture1: Front of the EUT





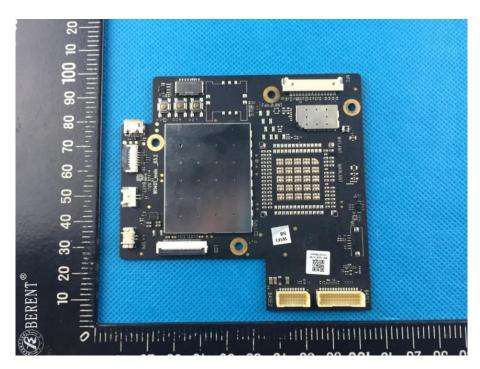



Picture2: Back of the EUT

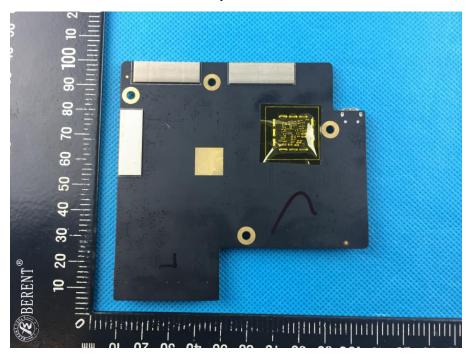


Picture3: Exploded view -1



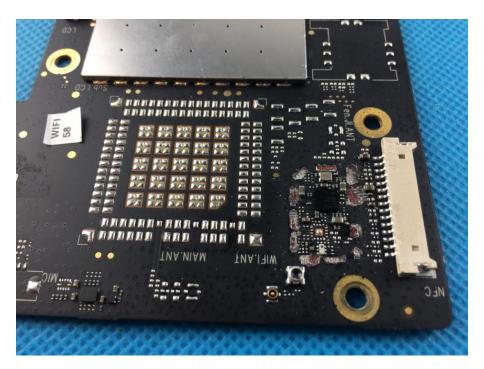



Picture4 : Exploded view -2

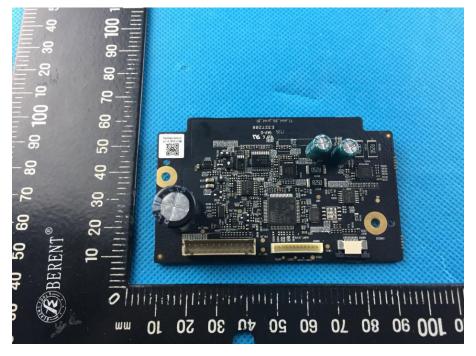



Picture5 : Exploded view -3



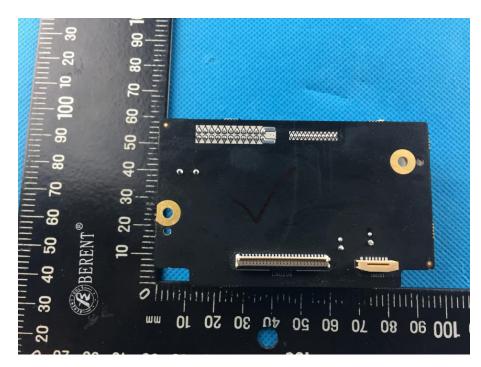



Picture6: Exploded view -4




Picture7: Exploded view -5



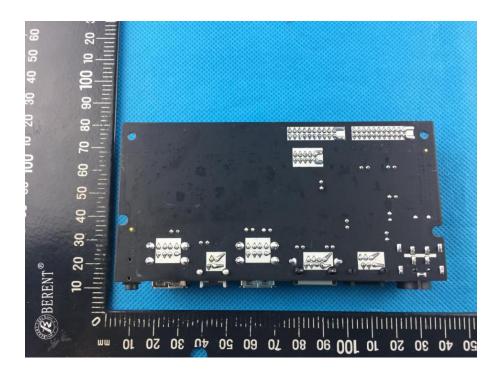



Picture8: Exploded view -6

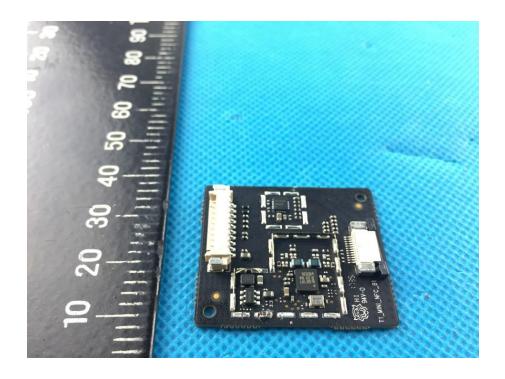


Picture9: Exploded view -7



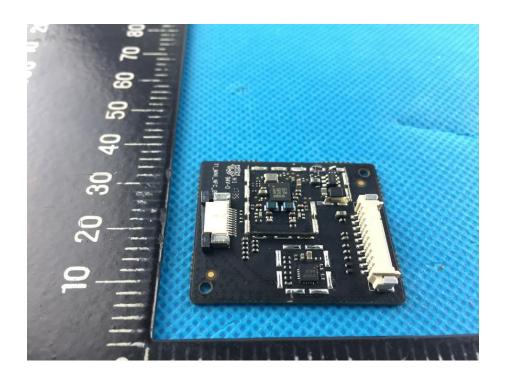



Picture10 : Exploded view -8




Picture11: Exploded view -9



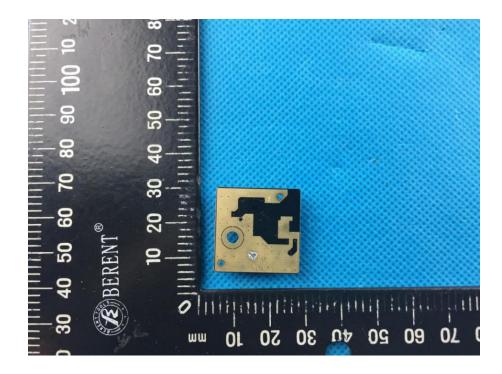



Picture12 : Exploded view -10

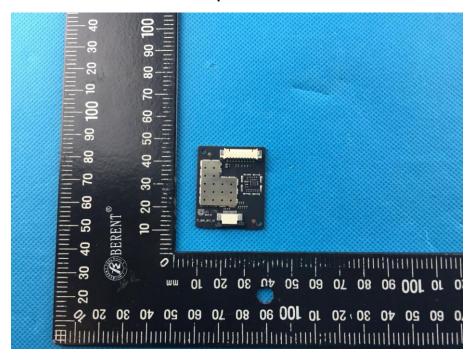


Picture13: Exploded view -11



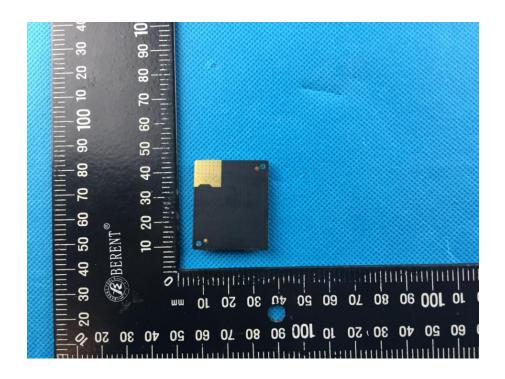



Picture14 : Exploded view -12




Picture15 : Exploded view -13






Picture16: Exploded view -14



Picture17: Exploded view -15





Picture18: Exploded view -16



Picture19: Photo of the Adapter(CA04)





Picture20 : Photo of the AC Cable(UA01)

\*\*\*\*\*\*\*\*END OF REPORT\*\*\*\*\*\*\*