Shenzhen GUOREN Certification Technology Service Co., Ltd.

101#, Building K & Building T, The Second Industrial Zone, Jiazitang Community, Fenghuang Street, Guangming District, Shenzhen, China

FCC PAR	T 15 SUBPART C TEST R FCC PART 15.247	EPORT	
Report Reference No: FCC ID:			
Compiled by (position+printed name+signature):		Jry Mey	
Supervised by (position+printed name+signature):	Project Engineer Kelley Zhang	[Lelley than]	
Approved by (position+printed name+signature):	Manager Sam Wang	Son. Wang	
Date of issue:	Nov. 19, 2024		
Testing Laboratory Name	Shenzhen GUOREN Certification T	echnology Service Co., Ltd.	
Address:	101#, Building K & Building T, The S Community, Fenghuang Street, Guar		
Applicant's name			
Address:	Fenghuang Mountain industrial functional area, Tongqin Town, WuyiCounty, Jinhua City,China		
Test specification:			
Standard:	FCC Part 15.247		
Ohanahan OHODEN Cantification Te	salama la mus Camuia a Carill All missla	4	

Shenzhen GUOREN Certification Technology Service Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen GUOREN Certification Technology Service Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen GUOREN Certification Technology Service Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

TEST REPORT

Equipment under Test : Music Boxing Machine

Model /Type : MBT-11

Listed Models : /

Applicant : Jinhua Gordon Sports Co., Ltd.

Address : Fenghuang Mountain industrial functional area, Tongqin Town,

WuyiCounty, Jinhua City, China

Manufacturer : Jinhua Gordon Sports Co., Ltd.

Address : Fenghuang Mountain industrial functional area, Tongqin Town,

WuyiCounty, Jinhua City, China

Test Result: PASS

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

1 TEST STANDARDS	4
2 SUMMARY	5
2.1 General Remarks	5
2.2 Product Description	
2.3 Equipment Under Test	
2.4 EUT configuration	
2.5 Short description of the Equipment under Test (EUT)	
2.6 EUT operation mode	
2.7 Block Diagram of Test Setup	6
2.8 Related Submittal(s) / Grant (s)	
2.9 Modifications	
	_
3 TEST ENVIRONMENT	7
3.1 Address of the test laboratory	7
3.2 Test Facility	
3.3 Environmental conditions	
3.4 Summary of measurement results	8
3.5 Statement of the measurement uncertainty	
3.6 Equipments Used during the Test	9
4 TEST CONDITIONS AND RESULTS	10
44.40 Barras Oscalastad Endadas	40
4.1 AC Power Conducted Emission4.2 Radiated Emission	
4.3 Maximum Peak Output Power	
4.4 20dB Bandwidth	
4.5 Frequency Separation	
4.6 Number of hopping frequency	
4.7 Time of Occupancy (Dwell Time)	
4.8 Out-of-band Emissions	32
4.9 Pseudorandom Frequency Hopping Sequence	
4.10 Antenna Requirement	42
5 TEST SETUP PHOTOS OF THE EUT	43
6 PHOTOS OF THE EUT	11

Report No.: GRCTR241102007-01 Page 4 of 53

1 TEST STANDARDS

The tests were performed according to following standards:

<u>FCC Rules Part 15.247</u>: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. <u>ANSI C63.10-2020</u>: American National Standard for Testing Unlicensed Wireless Devices

Report No.: GRCTR241102007-01 Page 5 of 53

2 SUMMARY

2.1 General Remarks

Date of receipt of test sample	:	Nov. 04, 2024
Testing commenced on	:	Nov. 04, 2024
Testing concluded on	:	Nov. 19, 2024

2.2 Product Description

Product Name:	Music Boxing Machine				
Model/Type reference:	MBT-11(The product has four colors.)				
Listed Models:	1				
Power supply:	5.0V ===1.0A(charged by Power Adapter)or 3.7V===1200mAh(By Li-ion rechargeable battery)				
Testing sample ID:	GRCTR241102007-1# (Engineer sample), GRCTR241102007-2# (Normal sample)				
Bluetooth					
Supported Type:	Bluetooth BR/EDR				
Modulation:	GFSK, π/4DQPSK, 8DPSK				
Operation frequency:	2402MHz~2480MHz				
Channel number:	79				
Channel separation:	1MHz				
Antenna type:	PCB antenna				
Antenna gain*(Supplied by the customer):	-0.58 dBi				
Remark:*When the inform	Remark:*When the information provided by the customer was used to calculate test results, if the information				

provided by the customer is not accurate, shenzhen GUOREN Certification Technology Service Co., Ltd. does not assume any responsibility.

2.3 Equipment Under Test

Power supply system utilised

Power supply voltage	:	0	230V / 50 Hz	0	120V / 60Hz
		0	12 V DC	0	24 V DC
		•	Other (specified in blank bel	ow	

5.0V ===1.0A(charged by Power Adapter))

2.4 EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

supplied by the manufacturer

O - supplied by the lab

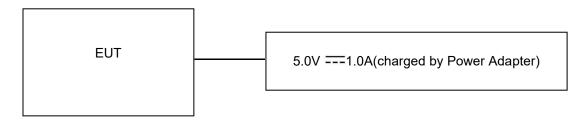
0	Adapter	M/N:	JYR9-05
		Manufacturer:	Jiyin

Report No.: GRCTR241102007-01 Page 6 of 53

2.5 Short description of the Equipment under Test (EUT)

This is a Music Boxing Machine.

For more details, refer to the user's manual of the EUT.


2.6 EUT operation mode

The Applicant provides communication tools software (SecureCRT) to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing. There are 79 channels provided to the EUT and Channel 00/39/78 were selected to test.

Operation Frequency:

Channel	Frequency (MHz)
00	2402
01	2403
:	:
38	2440
39	2441
40	2442
i i	:
77	2479
78	2480

2.7 Block Diagram of Test Setup

2.8 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for the device filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.9 Modifications

No modifications were implemented to meet testing criteria.

Report No.: GRCTR241102007-01 Page 7 of 53

3 TEST ENVIRONMENT

3.1 Address of the test laboratory

Shenzhen GUOREN Certification Technology Service Co., Ltd.

101#, Building K & Building T, The Second Industrial Zone, Jiazitang Community, Fenghuang Street, Guangming District, Shenzhen, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 920798 Designation Number: CN1304

Shenzhen GUOREN Certification Technology Service Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6202.01

Shenzhen GUOREN Certification Technology Service Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

ISED#: 27264 CAB identifier: CN0115

Shenzhen GUOREN Certification Technology Service Co., Ltd. has been listed by Innovation, Science and Economic Development Canada to perform electromagnetic emission measurement.

CNAS-Lab Code: L15631

Shenzhen GUOREN Certification Technology Service Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories for the Competence of Testing and Calibration Laboratories.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Normal Temperature	15-35 ℃
Relative Humidity	30-60 %
Air Pressure	950-1050mbar

Report No.: GRCTR241102007-01 Page 8 of 53

3.4 Summary of measurement results

Test Specification clause	Test case	Test Mode	Test Channel		orded eport	Test result
§15.247(a)(1)	Carrier Frequency separation	GFSK П/4DQPSK 8DPSK	✓ Lowest✓ Middle✓ Highest	GFSK П/4DQPSK 8DPSK	⊠ Middle	Compliant
§15.247(a)(1)	Number of Hopping channels	GFSK П/4DQPSK 8DPSK	⊠ Full	GFSK	⊠ Full	Compliant
§15.247(a)(1)	Time of Occupancy (dwell time)	GFSK П/4DQPSK 8DPSK		GFSK П/4DQPSK 8DPSK	⊠ Middle	Compliant
§15.247(a)(1)	Spectrumbandwidth of aFHSS system20dB bandwidth	GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	GFSK П/4DQPSK 8DPSK		Compliant
§15.247(b)(1)	Maximum output peak power	GFSK П/4DQPSK 8DPSK	✓ Lowest✓ Middle✓ Highest	GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	Compliant
§15.247(d)	Band edge compliance conducted	GFSK П/4DQPSK 8DPSK	✓ Lowest✓ Highest	GFSK П/4DQPSK 8DPSK	✓ Lowest✓ Highest	Compliant
§15.205	Band edge compliance radiated	GFSK П/4DQPSK 8DPSK		GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Highest	Compliant
§15.247(d)	TX spurious emissions conducted	GFSK П/4DQPSK 8DPSK		GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	Compliant
§15.247(d)	TX spurious emissions radiated	GFSK П/4DQPSK 8DPSK		GFSK	☑ Lowest☑ Middle☑ Highest	Compliant
§15.209(a)	TX spurious Emissions radiated Below 1GHz	GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	GFSK	⊠ Middle	Compliant
§15.107(a) §15.207	Conducted Emissions 9KHz-30 MHz	GFSK П/4DQPSK 8DPSK		GFSK	⊠ Middle	Compliant

Remark:

- 1. The measurement uncertainty is not included in the test result.
- 2. We tested all test mode and recorded worst case in report.
- 3. N/A means "not applicable".

3.5 Statement of the measurement uncertainty

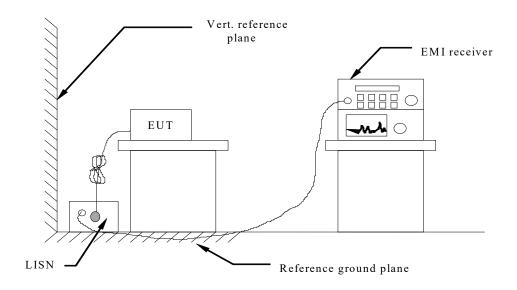
The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen GUOREN Certification Technology Service Co., Ltd.quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen GUOREN Certification Technology Service Co., Ltd.:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.06 dB	(1)
Radiated Emission	1~18GHz	5.14 dB	(1)
Radiated Emission	18-40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)
Max output power	30MHz~18GHz	0.54 dB	(1)
Spectrum bandwidth	/	1.2%	(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.6 Equipments Used during the Test


Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date
LISN	R&S	ENV216	GRCTEE009	2024/09/19	2025/09/18
LISN	R&S	ENV216	GRCTEE010	2024/09/19	2025/09/18
EMI Test Receiver	R&S	ESPI	GRCTEE017	2024/09/19	2025/09/18
EMI Test Receiver	R&S	ESCI	GRCTEE008	2024/09/19	2025/09/18
Spectrum Analyzer	Agilent	N9020A	GRCTEE002	2024/09/19	2025/09/18
Spectrum Analyzer	R&S	FSP	GRCTEE003	2024/09/20	2025/09/19
Vector Signal generator	Agilent	N5181A	GRCTEE007	2024/09/19	2025/09/18
Analog Signal Generator	R&S	SML03	GRCTEE006	2024/09/19	2025/09/18
Climate Chamber	QIYA	LCD-9530	GRCTES016	2024/09/19	2025/09/18
Ultra-Broadband Antenna	Schwarzbeck	VULB9163	GRCTEE018	2023/09/28	2026/09/27
Horn Antenna	Schwarzbeck	BBHA 9120D	GRCTEE019	2023/09/28	2026/09/27
Loop Antenna	Zhinan	ZN30900C	GRCTEE020	2023/10/15	2026/10/14
Horn Antenna	Beijing Hangwei Dayang	OBH100400	GRCTEE049	2023/09/28	2026/09/27
Amplifier	Schwarzbeck	BBV 9745	GRCTEE021	2024/09/19	2025/09/18
Amplifier	Taiwan chengyi	EMC051845B	GRCTEE022	2024/09/19	2025/09/18
Temperature/Humi dity Meter	Huaguan	HG-308	GRCTES037	2024/09/19	2025/09/18
Directional coupler	NARDA	4226-10	GRCTEE004	2024/09/19	2025/09/18
High-Pass Filter	XingBo	XBLBQ-GTA18	GRCTEE053	2024/09/19	2025/09/18
High-Pass Filter	XingBo	XBLBQ-GTA27	GRCTEE054	2024/09/19	2025/09/18
Automated filter bank	Tonscend	JS0806-F	GRCTEE055	2024/09/19	2025/09/18
Power Sensor	Agilent	U2021XA	GRCTEE070	2024/09/19	2025/09/18
Cable	Times	Cable-CE	GRCTEE086	2024/09/19	2025/09/18
Cable	Times	Cable-RE-1	GRCTEE087	2024/09/19	2025/09/18
Cable	Times	Cable-RE-2	GRCTEE088	2024/09/19	2025/09/18
EMI Test Software	ROHDE & SCHWARZ	ESK1-V1.71	GRCTEE060	N/A	N/A
EMI Test Software	Fera	EZ-EMC	GRCTEE061	N/A	N/A

Report No.: GRCTR241102007-01 Page 10 of 53

4 TEST CONDITIONS AND RESULTS

4.1 AC Power Conducted Emission

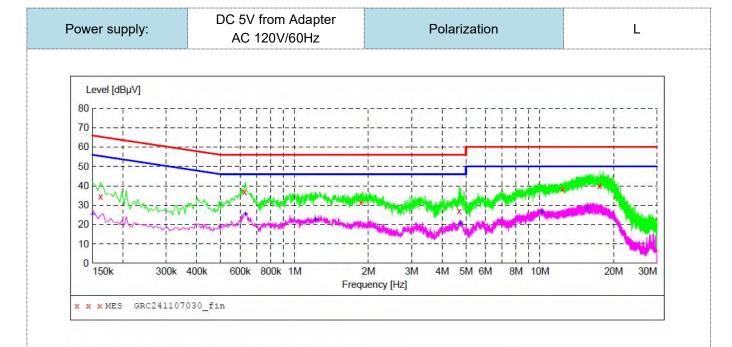
TEST CONFIGURATION

TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2020.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2020
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2020
- 4 The EUT received power from variable frequency power supply, the AC 120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:


Fraguency range (MHz)	Limit (dBuV)			
Frequency range (MHz)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		
* Decreases with the logarithm of the freque	ncy.			

TEST RESULTS

Remark:

1. All modes of GFSK, ⊓/4 DQPSK and 8DPSK were test at Low, Middle, and High channel; only the worst result of GFSK Middle Channel was reported as below:

2. Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:

MEASUREMENT RESULT: "GRC241107030_fin"


11/7/2024 3:	:35PM						
Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
MHz	dΒμV	dB	dBµV	dB			
0.162000	34.40	9.5	65	31.0	QP	L1	GND
0.626000	36.90	9.6	56	19.1	QP	L1	GND
1.866000	31.30	10.0	56	24.7	QP	L1	GND
4.686000	27.10	9.9	56	28.9	QP	L1	GND
12.394000	38.40	10.0	60	21.6	QP	L1	GND
17.510000	40.00	10.1	60	20.0	QP	L1	GND

MEASUREMENT RESULT: "GRC241107030 fin2"

11/7/2024 3:	35PM						
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.150000	25.40	9.6	56	30.6	AV	L1	GND
0.630000	25.30	9.6	46	20.7	AV	L1	GND
1.218000	22.60	10.0	46	23.4	AV	L1	GND
4.726000	20.40	9.9	46	25.6	AV	L1	GND
10.170000	26.50	10.0	50	23.5	AV	L1	GND
15.590000	28.30	10.1	50	21.7	AV	L1	GND

Note:1).Level (dB μ V)= Reading (dB μ V)+ Transducer (dB)

- 2). Transducer (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). Margin(dB) = Limit (dB μ V) Level (dB μ V)

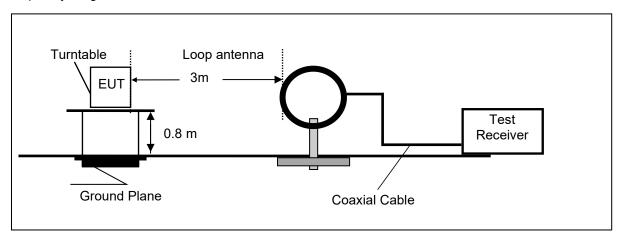
MEASUREMENT RESULT: "GRC241107029_fin"

11/7/2024 3:3	1PM						
Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
MHz	dΒμV	dB	dBµV	dB			
0.170000	32.30	9.5	65	32.7	QP	N	GND
0.602000	34.00	9.6	56	22.0	QP	N	GND
0.938000	30.00	9.8	56	26.0	QP	N	GND
4.706000	27.70	9.9	56	28.3	QP	N	GND
10.206000	31.90	10.0	6.0	28.1	QP	N	GND
15.546000	32.90	10.1	60	27.1	QP	N	GND

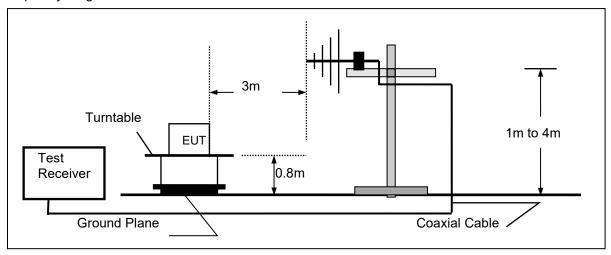
MEASUREMENT RESULT: "GRC241107029 fin2"

11/7/2024 3:3	1PM						
Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
MHz	dBµV	dB	dBµV	dB			
0.398000	20.00	9.8	48	27.9	AV	N	GND
0.634000	24.30	9.6	46	21.7	AV	N	GND
1.210000	21.30	10.0	46	24.7	AV	N	GND
4.694000	18.30	9.9	46	27.7	AV	N	GND
10.054000	24.20	10.0	50	25.8	AV	N	GND
15 986000	23 60	10 1	5.0	26 4	ΔV	N	GND

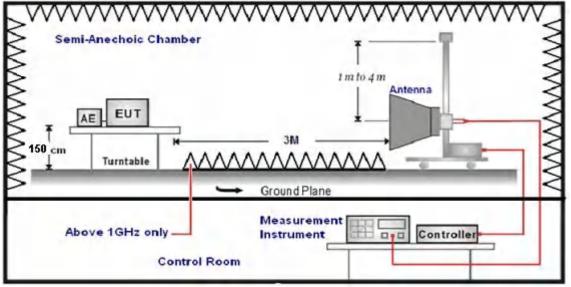
Note:1).Level (dB μ V)= Reading (dB μ V)+ Transducer (dB)


- 2). Transducer (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). Margin(dB) = Limit (dB μ V) Level (dB μ V)

Report No.: GRCTR241102007-01 Page 13 of 53


4.2 Radiated Emission

TEST CONFIGURATION


Frequency range 9 KHz - 30MHz

Frequency range 30MHz - 1000MHz

Frequency range above 1GHz-25GHz

Report No.: GRCTR241102007-01 Page 14 of 53

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz –1GHz, the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
- And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. Radiated emission test frequency band from 9KHz to 25GHz.
- 6. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Ultra-Broadband Antenna	3
1GHz-18GHz	Double Ridged Horn Antenna	3
18GHz-25GHz	Horn Anternna	1

7. Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector	
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP	
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP	
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP	
	Peak Value: RBW=1MHz/VBW=3MHz,		
1GHz-40GHz	Sweep time=Auto	Peak	
IGHZ-40GHZ	Average Value: RBW=1MHz/VBW=10Hz,	Peak	
	Sweep time=Auto		

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

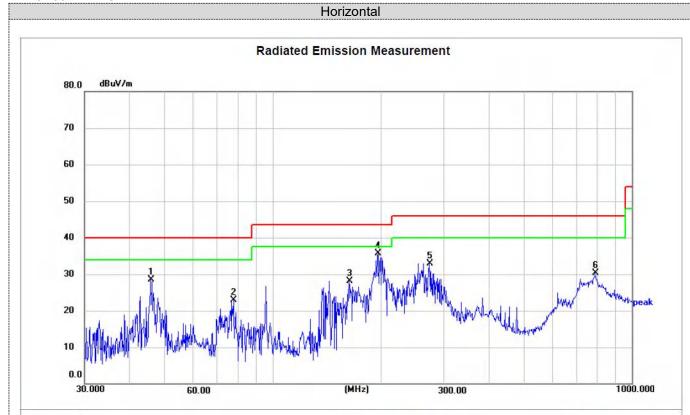
Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500


Report No.: GRCTR241102007-01 Page 15 of 53

TEST RESULTS

Remark:

- 1. This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X position.
- 2. We measured Radiated Emission at GFSK, π /4 DQPSK and 8DPSK mode from 9 KHz to 25GHz and recorded worst case at GFSK DH5 mode.
- 3. For below 1GHz testing recorded worst at GFSK DH5 High channel.
- 4. Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.

For 30MHz-1GHz

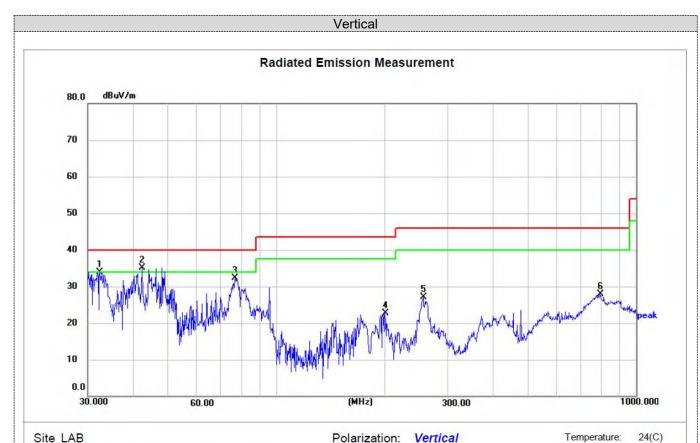
Site LAB Limit: FCC Part15 RE-Class B_30-1000MHz

EUT: Music Boxing Machine

M/N: MBT-11

Mode: GFSK DH5 CH 78

Note: N/A


Polarization: Horizontal Temperature: 24(C)
Power: AC120V/60Hz Humidity: 51 %

Distance: 3m

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	45.8553	45.97	-17.54	28.43	40.00	-11.57	peak	100	359	Р	
2	77.8654	45.22	-22.33	22.89	40.00	-17.11	peak	100	182	Р	
3	163.1818	49.90	-21.70	28.20	43.50	-15.30	peak	100	147	Р	
4 *	196.5098	55.08	-19.29	35.79	43.50	-7.71	peak	100	295	Р	
5	273.2341	50.67	-17.69	32.98	46.00	-13.02	peak	100	304	Р	
6	790.6188	39.99	-9.76	30.23	46.00	-15.77	peak	100	138	Р	

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Level (dB μ V/m) Limit (dB μ V/m)

Site LAB Limit: FCC Part15 RE-Class B_30-1000MHz

EUT: Music Boxing Machine

M/N: MBT-11

Mode: GFSK DH5 CH 78

Note: N/A

Polarization: Vertical	Temperature:	24(0
Power: AC120V/60Hz	Humidity:	51 9

Distance: 3m

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	32.4059	53.70	-19.76	33.94	40.00	-6.06	peak	100	84	Р	
2 *	42.4508	52.79	-17.72	35.07	40.00	-4.93	peak	100	350	Р	
3	76.7808	54.41	-22.17	32.24	40.00	-7.76	peak	100	77	Р	
4	200.6881	41.80	-19.00	22.80	43.50	-20.70	peak	100	218	Р	
5	256.5211	45.27	-18.12	27.15	46.00	-18.85	peak	100	298	Р	
6	793.3960	37.60	-9.74	27.86	46.00	-18.14	peak	100	16	Р	

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Level (dB μ V/m) Limit (dB μ V/m)

For 1GHz to 25GHz

Note: GFSK , π/4 DQPSK and 8DPSK all have been tested, only worse case GFSK is reported.

GFSK (above 1GHz)

Freque	ncy(MHz)):	24	02	Pola	arity:	HORIZONTAL		\L
Frequency (MHz)		ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4804.00	54.10	PK	74	19.90	75.26	28.42	5.14	54.72	-21.16
4804.00	42.09	AV	54	11.91	63.25	28.42	5.14	54.72	-21.16
7206.00	46.74	PK	74	27.26	61.16	34.15	6.46	55.03	-14.42
7206.00	37.43	AV	54	16.57	51.85	34.15	6.46	55.03	-14.42

Frequency(MHz):		24	02	Pola	rity:		VERTICAL		
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4804.00	53.59	PK	74	20.41	74.75	28.42	5.14	54.72	-21.16
4804.00	41.49	AV	54	12.51	62.65	28.42	5.14	54.72	-21.16
7206.00	48.27	PK	74	25.73	62.69	34.15	6.46	55.03	-14.42
7206.00	37.40	AV	54	16.60	51.82	34.15	6.46	55.03	-14.42

Frequency(MHz):		24	41	Pola	arity:	Н	ORIZONTA	\L	
Frequency (MHz)	Emis Lev (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4882.00	54.98	PK	74	19.02	75.22	28.76	5.34	54.34	-20.24
4882.00	43.02	ΑV	54	10.98	63.26	28.76	5.34	54.34	-20.24
7323.00	48.77	PK	74	25.23	62.40	34.41	6.83	54.87	-13.63
7323.00	38.73	AV	54	15.27	52.36	34.41	6.83	54.87	-13.63

Frequency(MHz):		24	41	Pola	arity:		VERTICAL		
Frequency (MHz)		ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4882.00	54.14	PK	74	19.86	74.38	28.76	5.34	54.34	-20.24
4882.00	43.42	AV	54	10.58	63.66	28.76	5.34	54.34	-20.24
7323.00	49.36	PK	74	24.64	62.99	34.41	6.83	54.87	-13.63
7323.00	38.29	AV	54	15.71	51.92	34.41	6.83	54.87	-13.63

Frequency(MHz):		24	80	Pola	arity:	Н	ORIZONTA	۱L	
Frequency (MHz)		sion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	55.51	PK	74	18.49	75.04	29.52	5.63	54.68	-19.53
4960.00	42.74	AV	54	11.26	63.33	29.52	5.63	54.68	-19.53
7440.00	48.57	PK	74	25.43	61.77	34.49	7.23	54.92	-13.2
7440.00	38.73	PK	54	15.27	51.93	34.49	7.23	54.92	-13.2

Frequency(MHz):		24	80	Pola	arity:		VERTICAL		
Frequency (MHz)		ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	55.00	PK	74	19.00	74.53	29.52	5.63	54.68	-19.53
4960.00	41.32	AV	54	12.68	64.37	29.52	5.63	54.68	-19.53
7440.00	50.49	PK	74	23.51	63.69	34.49	7.23	54.92	-13.2
7440.00	38.95	PK	54	15.05	52.15	34.49	7.23	54.92	-13.2

REMARKS:

Report No.: GRCTR241102007-01 Page 18 of 53

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.

Results of Band Edges Test (Radiated)

Note: GFSK, π/4 DQPSK and 8DPSK all have been tested, only worse case GFSK is reported.

GFSK

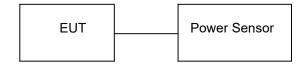
Freque	ncy(MHz)	:	24	02	Pola	arity:	Н	IORIZONTA	AL
Frequency (MHz)	Emis Le (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	56.50	PK	74	17.50	81.22	25.72	4.32	54.76	-24.72
2390.00	41.21	AV	54	12.79	65.93	25.72	4.32	54.76	-24.72
2400.00	58.14	PK	74	15.86	82.40	25.73	4.33	54.75	-24.26
2400.00	41.36	AV	54	12.64	65.62	25.73	4.33	54.75	-24.26
Freque	ncy(MHz)	:	24	02	Pola	arity:		VERTICAL	
Frequency (MHz)	Emis Le (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	58.02	PK	74	15.98	82.74	25.72	4.32	54.76	-24.72
2390.00	42.14	AV	54	11.86	66.86	25.72	4.32	54.76	-24.72
2400.00	56.75	PK	74	17.25	81.01	25.73	4.33	54.75	-24.26
2400.00	41.25	AV	54	12.75	65.51	25.73	4.33	54.75	-24.26
Freque	ncy(MHz)	:	24	80	Pola	arity:	Н	IORIZONTA	\L
Frequency (MHz)	Emis Le [,] (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	57.37	PK	74	16.63	81.94	25.78	4.48	54.83	-24.57
2483.50	40.81	AV	54	13.19	65.38	25.78	4.48	54.83	-24.57
Freque	ncy(MHz)	:	24	80	Pola	arity:		VERTICAL	
Frequency (MHz)	Emis Le		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	57.44	PK	74	16.56	82.01	25.78	4.48	54.83	-24.57
2483.50	39.63	AV	54	14.37	64.20	25.78	4.48	54.83	-24.57

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.

Report No.: GRCTR241102007-01 Page 19 of 53

4.3 Maximum Peak Output Power


<u>Limit</u>

The Maximum Peak Output Power Measurement is 125mW (20.97).

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power sensor.

Test Configuration

Test Results

Туре	Channel	Output power (dBm)	Limit (dBm)	Result
	00	-3.45		
GFSK	39	-2.33	20.97	Pass
	78	-2.56		
	00	-2.70		
π/4DQPSK	39	-1.65	20.97	Pass
	78	-1.91		
	00	-2.23		
8DPSK	39	-1.28	20.97	Pass
	78	-1.50		

Note: 1.The test results including the cable lose.

Report No.: GRCTR241102007-01 Page 20 of 53

4.4 20dB Bandwidth

Limit

For frequency hopping systems operating in the 2400MHz-2483.5MHz no limit for 20dB bandwidth.

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 30 KHz RBW and 100 KHz VBW.

The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.


Test Configuration


Test Results

Modulation	Channel	20dB bandwidth (MHz)	Result
	00	1.044	
GFSK	39	1.050	
	78	1.068	
	00	1.329	
π/4DQPSK	39	1.338	Pass
	78	1.347	
	00	1.314	
8DPSK	39	1.302	
	78	1.302	

Test plot as follows:

Report No.: GRCTR241102007-01 Page 24 of 53

4.5 Frequency Separation

LIMIT

According to 15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25KHz or the 2/3*20dB bandwidth of the hopping channel, whichever is greater.

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. CH39 and CH40 was measured by spectrum analyzer with 300 KHz RBW and 300 KHz VBW.

TEST CONFIGURATION

TEST RESULTS

Modulation	Channel	Channel Separation (MHz)	Limit	Result	
CESK	CH39	1.138	0.712MHz	Pass	
GFSK	CH40	1.130	U.7 12IVITZ		
-/ADODSK	CH39	1 006	0.000MU-	Doos	
π/4DQPSK	CH40	1.026	0.898MHz	Pass	
ODDON	CH39	1.040	0.976MU-	D	
8DPSK	CH40	1.040	0.876MHz	Pass	

Note:

We have tested all mode at high, middle and low channel, and recorded worst case at middle.

Test plot as follows:

π/4DQPSK

Report No.: GRCTR241102007-01 Page 26 of 53

4.6 Number of hopping frequency

<u>Limit</u>

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. Set spectrum analyzer start 2400MHz to 2483.5MHz with 100 KHz RBW and 300 KHz VBW.

Test Configuration

Test Results

Modulation	Number of Hopping Channel	Limit	Result	
GFSK	79			
π/4DQPSK	79	≥15	Pass	
8DPSK	79			

Test plot as follows:

Report No.: GRCTR241102007-01 Page 28 of 53

4.7 Time of Occupancy (Dwell Time)

Limit

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

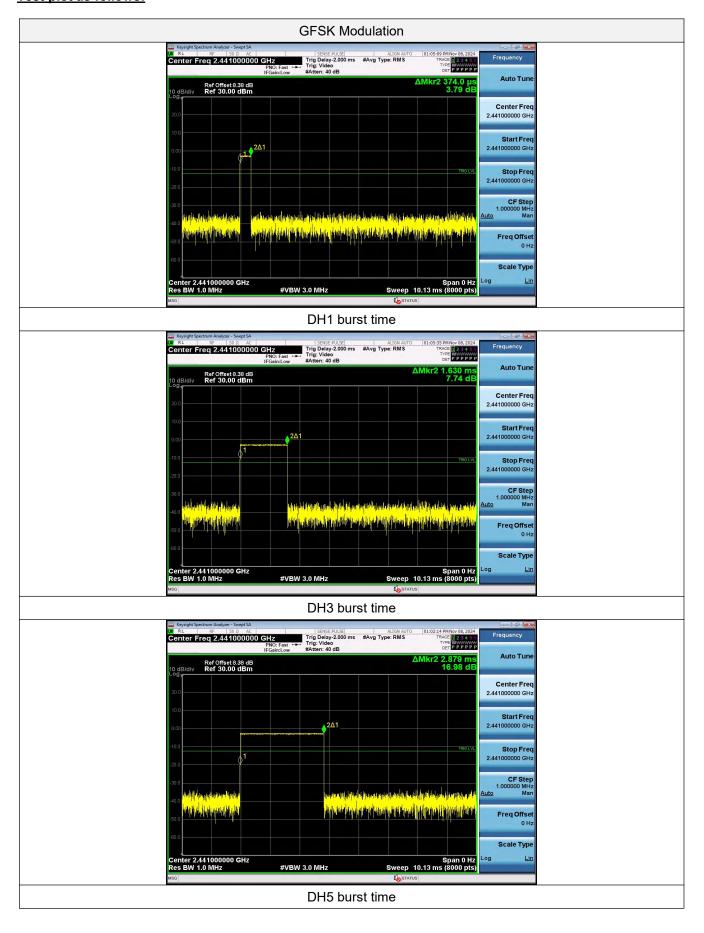
Test Procedure

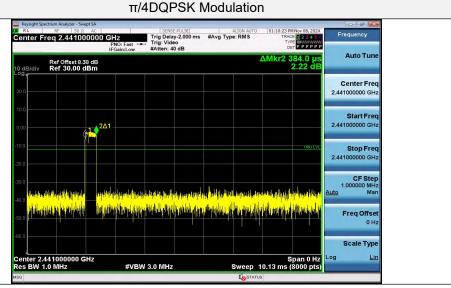
The transmitter output was connected to the spectrum analyzer through an attenuator. Set center frequency of spectrum analyzer=operating frequency with 1MHz RBW and 1MHz VBW, Span 0Hz.

Test Configuration

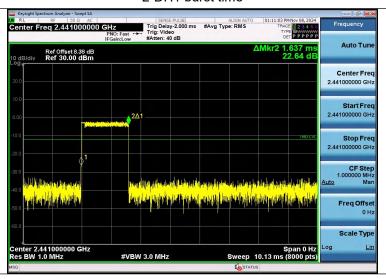
Test Results

Modulation	Packet	Burst time (ms)	Dwell time (s)	Limit (s)	Result		
	DH1	0.374	0.120				
GFSK	DH3	1.630	0.261	0.40	Pass		
	DH5	2.879	0.307				
	2-DH1	0.384	0.123				
π/4DQPSK	2-DH3	1.637	0.262	0.40	Pass		
	2-DH5	2.884	0.308				
	3-DH1	0.385	0.123				
8DPSK	3-DH3	1.635	0.262	0.40	Pass		
	3-DH5	2.885	0.308				

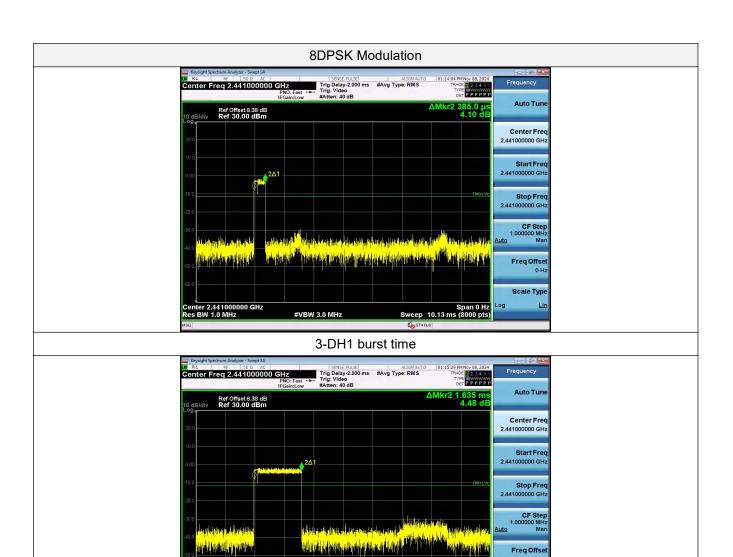

Note:We have tested all mode at high, middle and low channel, and recorded worst case at middle channel.


Dwell time=Pulse time (ms) × (1600 ÷ 2 ÷ 79) ×31.6 Second for DH1, 2-DH1, 3-DH1

Dwell time=Pulse time (ms) × $(1600 \div 4 \div 79)$ ×31.6 Second for DH3, 2-DH3, 3-DH3


Dwell time=Pulse time (ms) × $(1600 \div 6 \div 79)$ ×31.6 Second for DH5, 2-DH5, 3-DH5

Test plot as follows:


2-DH1 burst time

2-DH3 burst time

2-DH5 burst time

#VBW 3.0 MHz

Span 0 Hz Sweep 10.13 ms (8000 pts) Scale Type

3-DH5 burst time

Report No.: GRCTR241102007-01 Page 32 of 53

4.8 Out-of-band Emissions

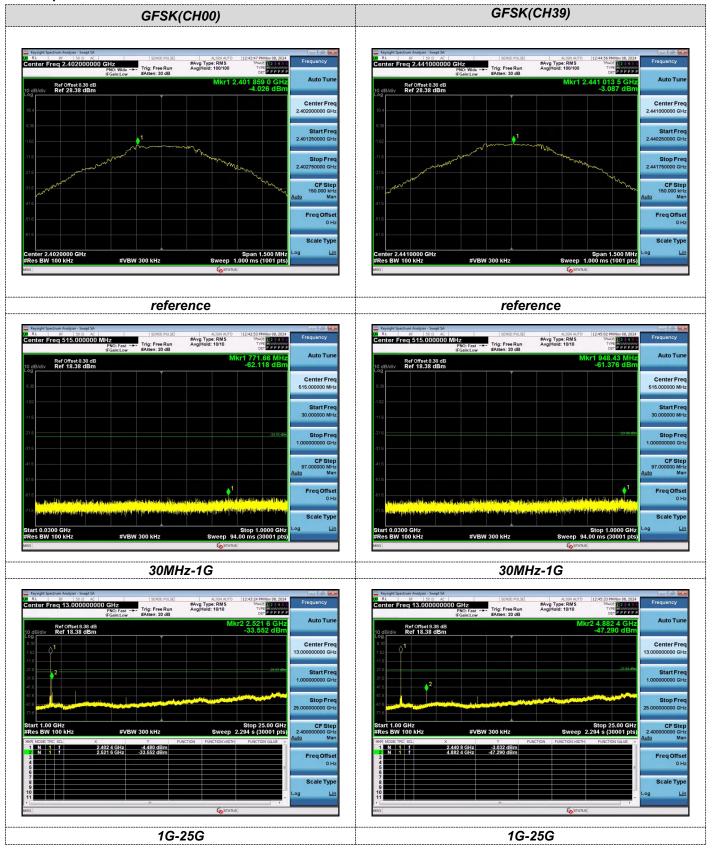
Limit

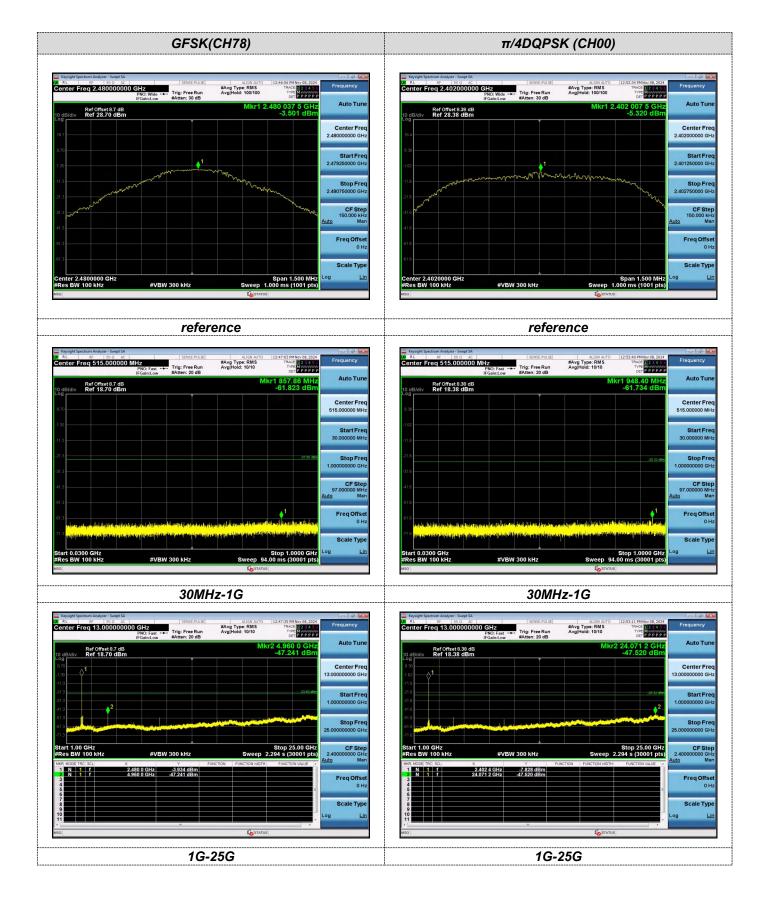
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF con-ducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

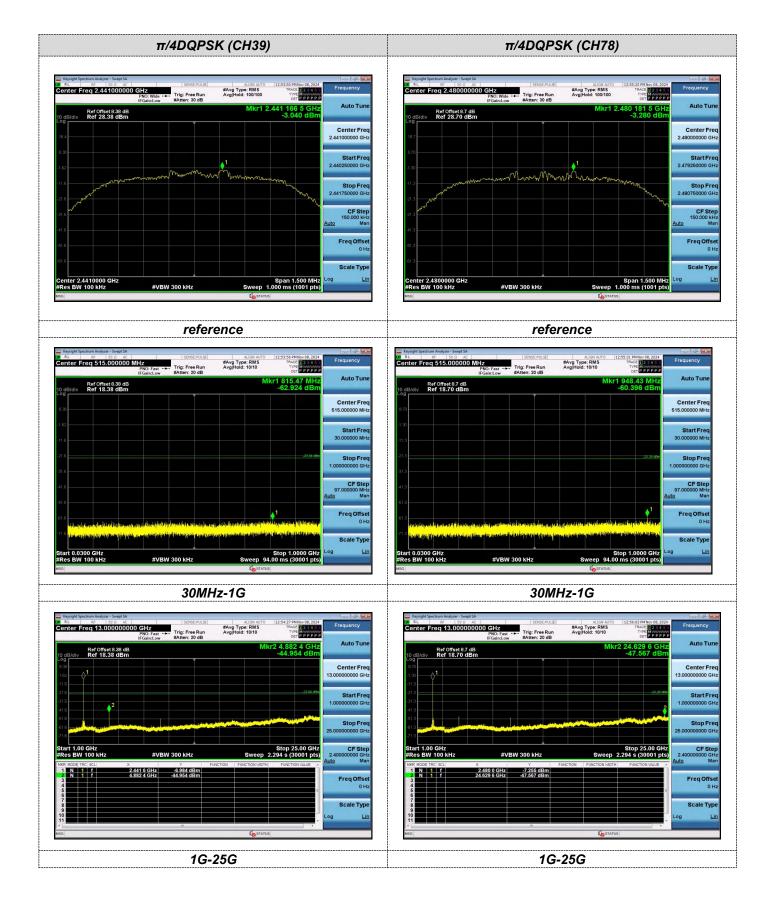
Test Procedure

Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector, and max hold. Measurements utilizing these setting are made of the in-band reference level, bandedge and out-of-band emissions.

Test Configuration




Test Results


Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage measurement data

We measured all conditions (DH1, DH3, DH5) and recorded worst case at DH5.

Test plot as follows:

