

FCC EMI TEST REPORT

FCC ID	:	2AJOTTA-1257
Equipment	:	Smart Phone
Brand Name	:	NOKIA
Model Name	:	TA-1257
Applicant	:	HMD Global Oy Bertel Jungin aukio 9, 02600 Espoo, Finland
Manufacturer	:	HMD Global Oy Bertel Jungin aukio 9, 02600 Espoo, Finland
Standard	:	FCC 47 CFR FCC Part 15 Subpart B Class B

The product was received on Jul. 07, 2020 and testing was started from Jul. 22, 2020 and completed on Jul. 27, 2020. We, SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures given in ANSI C63.4-2014 and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Louis Wu

Approved by: Louis Wu SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)

Table of Contents

His	tory o	f this test report	3
Su	nmary	/ of Test Result	4
1.	Gene	ral Description	5
	1.1. 1.2. 1.3. 1.4.	Product Feature of Equipment Under Test Modification of EUT Test Location Applicable Standards	5 5
2.	Test	Configuration of Equipment Under Test	6
	2.1. 2.2. 2.3. 2.4.	Test Mode Connection Diagram of Test System Support Unit used in test configuration and system EUT Operation Test Setup	7 7
3.	Test	Result	
	3.1. 3.2.	Test of AC Conducted Emission Measurement	1
4.	List o	of Measuring Equipment1	3
5.	Unce	rtainty of Evaluation1	4
Ар	pendix	A. AC Conducted Emission Test Result	

Appendix B. Radiated Emission Test Result

Appendix C. Setup Photographs

History of this test report

Report No.	Version	Description	Issued Date
FC060302	01	Initial issue of report	Sep. 07, 2020

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark	
3.1	15.107	AC Conducted Emission	Pass	Under limit 6.19 dB at 0.159 MHz	
3.2	15.109	Radiated Emission	Pass	Under limit 6.33 dB at 165.800 MHz	

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Reviewed by: Dara Chiu

Report Producer: Celery Wei

1. General Description

1.1. Product Feature of Equipment Under Test

GSM/WCDMA/LTE/5G NR, Bluetooth, Wi-Fi 2.4GHz 802.11b/g/n, Wi-Fi 5GHz 802.11a/n/ac, GNSS, NFC and FM Receiver.

Product Specification subjective to this standard				
Antenna Type	WWAN: PIFA Antenna WLAN: <ant. 1=""> PIFA Antenna <ant. 2=""> PIFA Antenna Bluetooth: PIFA Antenna GPS / Glonass / BDS:PIFA Antenna NFC: Loop Antenna FM Receiver: Using earphone as antenna</ant.></ant.>			

1.2. Modification of EUT

No modifications are made to the EUT during all test items.

1.3. Test Location

Test Site	SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory			
	No.52, Huaya 1st Rd., Guishan Dist.,			
Test Site	Taoyuan City, Taiwan (R.O.C.)			
Location	TEL: +886-3-327-3456			
	FAX: +886-3-328-4978			
Test Site No.	Sporton Site No.			
Test Site No.	CO05-HY			
Test Site	SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory			
	•			
	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist.,			
Test Site	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)			
Test Site Location				
	Taoyuan City, Taiwan (R.O.C.)			
	Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-0868			
	Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855			

FCC designation No.: TW1093 and TW1098

1.4. Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC 47 CFR FCC Part 15 Subpart B Class B
- ANSI C63.4-2014

Remark: All test items were verified and recorded according to the standards and without any deviation during the test.

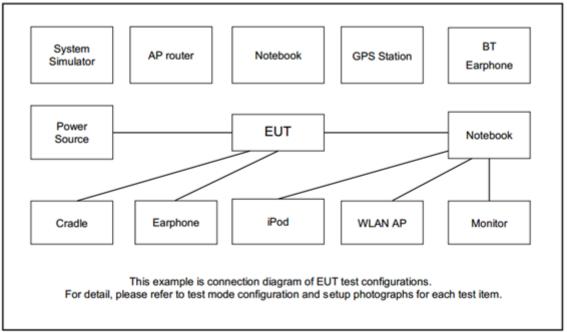
2. Test Configuration of Equipment Under Test

2.1. Test Mode

The EUT has been associated with peripherals pursuant to ANSI C63.4-2014 and configuration operated in a manner tended to maximize its emission characteristics in a typical application.

Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (30MHz to the 5th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower).

Test Items	Function Type
	Mode 1: GSM850 Idle + Bluetooth Idle + WLAN Idle + Earphone + USB Cable (Charging from Adapter) + SD Card + Camera (Front)
AC Conducted	Mode 2: WCDMA Band V Idle + Bluetooth Idle + WLAN Idle + Earphone + USB Cable (Charging from Adapter) + SD Card + Camera (Rear)
Emission	Mode 3: LTE Band 12 Idle + Bluetooth Idle + WLAN Idle + Earphone + USB Cable (Charging from Adapter) + SD Card + MPEG4
	Mode 4: 5G NR n5 Idle + Bluetooth Idle + WLAN Idle + Earphone + USB Cable (Data link with Notebook) + SD Card + FM (98MHz) Rx
	Mode 1: GSM850 Idle + Bluetooth Idle + WLAN Idle + Earphone + USB Cable (Charging from Adapter) + SD Card + Camera (Front)
Radiated	Mode 2: WCDMA Band V Idle + Bluetooth Idle + WLAN Idle + Earphone + USB Cable (Charging from Adapter) + SD Card + Camera (Rear)
Emissions	Mode 3: LTE Band 12 Idle + Bluetooth Idle + WLAN Idle + Earphone + USB Cable (Charging from Adapter) + SD Card + MPEG4
	Mode 4: 5G NR n5 Idle + Bluetooth Idle + WLAN Idle + Earphone + USB Cable (Data link with Notebook) + SD Card + FM (98MHz) Rx


Remark:

1. The worst case of AC is mode 4; only the test data of this mode was reported.

- 2. The worst case of RE is mode 4; only the test data of this mode was reported.
- For radiation emission after pre-scanned the cellular band between 30MHz ~ 960MHz (GSM850/WCDMA Band V/LTE Band 12/5G NR n5); only the worst case for cellular band test data of this mode was reported.
- 4. For 5G NR test combination is EN-DC 2-n5
- 5. Data Link with Notebook means data application transferred mode between EUT and Notebook.

2.2. Connection Diagram of Test System

2.3. Support Unit used in test configuration and system

Item	Equipment	Brand Name	Model Name	FCC ID	Data Cable	Power Cord
1.	System Simulator	R&S	CMU 200	N/A	N/A	Unshielded, 1.8 m
2.	System Simulator	Anritsu	MT8820C	N/A	N/A	Unshielded, 1.8 m
3.	5G Wireless Test Platform	Keysight	MT8000A	N/A	N/A	Unshielded,1.8m
4.	Bluetooth Earphone	Sony Ericsson	MW600	PY7DDA-2029	N/A	N/A
5.	WLAN AP	ASUS	RT-AC66U	MSQ-RTAC66U	N/A	Unshielded, 1.8 m
6.	SD Card	SanDisk	MicroSD HC	FCC DoC	N/A	N/A
7.	Notebook	Dell	Latitude 5480	FCC DoC	N/A	AC I/P: Unshielded, 1.2m DC O/P: Shielded, 1.8m
8.	Notebook	Dell	Latitude 3400	FCC DoC	N/A	AC I/P : Unshielded, 1.2m DC O/P : Shielded, 1.8m
9.	iPod	Apple	A1285	FCC DoC	N/A	N/A

2.4. EUT Operation Test Setup

The EUT was in WCDMA or LTE or 5G NR idle mode during the testing. The EUT was synchronized with the BCCH, and had been continuous receiving mode by setting paging reorganization of the system simulator.

At the same time, the EUT was attached to the Bluetooth earphone or WLAN AP, and the following programs installed in the EUT were programmed during the test:

- 1. Data application is transferred between Laptop and EUT via USB cable.
- 2. Execute "Video player" to play MPEG4 files.
- 3. Turn on camera to capture images.
- 4. Execute "FM (98MHz) Rx" to receive continuously.

3. Test Result

3.1. Test of AC Conducted Emission Measurement

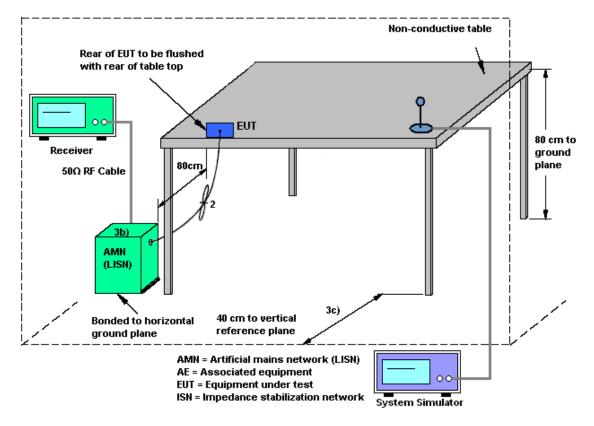
3.1.1. Limits of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of emission	Conducted	limit (dBuV)
(MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

*Decreases with the logarithm of the frequency.

3.1.2. Measuring Instruments


Refer a test equipment and calibration data table in this test report.

3.1.3. Test Procedure

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.1.4. Test Setup

3.1.5. Test Result of AC Conducted Emission

Please refer to Appendix A.

3.2. Test of Radiated Emission Measurement

3.2.1. Limit of Radiated Emission

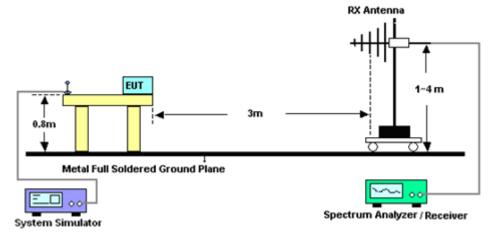
The emissions from an unintentional radiator shall not exceed the field strength levels specified in the following table:

<Class B>

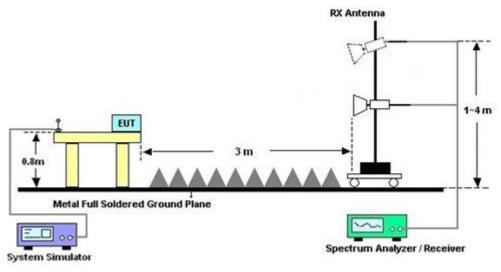
Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.2.2. Measuring Instruments

Refer a test equipment and calibration data table in this test report.


3.2.3. Test Procedures

- 1. The EUT was placed on a turntable with 0.8 meter above ground.
- 2. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3. The table was rotated 360 degrees to determine the position of the highest radiation.
- 4. The antenna is a Bi-Log antenna and its height is adjusted between one to four meters above ground to find the maximum value of the field strength for both horizontal polarization and vertical polarization of the antenna.
- 5. For each suspected emission, the EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading.
- Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode (RBW=120kHz/VBW=300kHz for frequency below 1GHz; RBW=1MHz VBW=3MHz (Peak), RBW=1MHz/VBW=10Hz (Average) for frequency above 1GHz).
- 7. If the emission level of the EUT in peak mode was 3 dB lower than the limit specified, peak values of EUT will be reported. Otherwise, the emission will be repeated by using the quasi-peak method and reported.
- 8. Emission level (dB μ V/m) = 20 log Emission level (μ V/m)
- 9. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level



3.2.4. Test Setup of Radiated Emission

For radiated emissions from 30MHz to 1GHz

For radiated emissions above 1GHz

3.2.5. Test Result of Radiated Emission

Please refer to Appendix B.

4. List of Measuring Equipment

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Amplifier	SONOMA	310N	187311	9kHz~1GHz	Oct. 22, 2019	Jul. 27, 2020	Oct. 21, 2020	Radiation (03CH10-HY)
Bilog Antenna	TESEQ	CBL 6111D & 00800N1D01N -06	35413 & 02	30MHz~1GHz	Feb. 11, 2020	Jul. 27, 2020	Feb. 10, 2021	Radiation (03CH10-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-1325	1GHz~18GHz	Oct. 09, 2019	Jul. 27, 2020	Oct. 08, 2020	Radiation (03CH10-HY)
Preamplifier	Jet-Power	JAP00101800- 30-10P	160118550004	1GHz~18GHz	Mar. 02, 2020	Jul. 27, 2020	Mar. 01, 2021	Radiation (03CH10-HY)
Spectrum Analyzer	Keysight	N9010A	MY54200485	10Hz~44GHz	Feb. 10, 2020	Jul. 27, 2020	Feb. 09, 2021	Radiation (03CH10-HY)
Controller	EMEC	EM 1000	N/A	Control Turn table & Ant Mast	N/A	Jul. 27, 2020	N/A	Radiation (03CH10-HY)
Antenna Mast	EMEC	AM-BS-4500-B	N/A	1~4m	N/A	Jul. 27, 2020	N/A	Radiation (03CH10-HY)
Turn Table	EMEC	TT 2200	N/A	0~360 Degree	N/A	Jul. 27, 2020	N/A	Radiation (03CH10-HY)
Software	Audix	E3 6.2009-8-24	RK-001042	N/A	N/A	Jul. 27, 2020	N/A	Radiation (03CH10-HY)
EMI Test Receiver	Agilent	N9038A(MXE)	MY53290045	20MHz~8.4GHz	Jan. 18, 2020	Jul. 27, 2020	Jan. 17, 2021	Radiation (03CH10-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104 / 102	MY11692/4PE, MY11693/4PE, MY2855/2	30MHz~1GHz	Nov. 07, 2019	Jul. 27, 2020	Nov. 06, 2020	Radiation (03CH10-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104 / 102	MY11692/4PE, MY11693/4PE, MY2855/2	1GHz~18GHz	Nov. 07, 2019	Jul. 27, 2020	Nov. 06, 2020	Radiation (03CH10-HY)
AC Power Source	ChainTek	APC-1000W	N/A	N/A	N/A	Jul. 22, 2020~ Jul. 23, 2020	N/A	Conduction (CO05-HY)
EMI Test Receiver	Rohde & Schwarz	ESR3	102388	9kHz~3.6GHz	Nov. 15, 2019	Jul. 22, 2020~ Jul. 23, 2020	Nov. 14, 2020	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100080	9kHz~30MHz	Nov. 20, 2019	Jul. 22, 2020~ Jul. 23, 2020	Nov. 19, 2020	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100081	9kHz~30MHz	Nov. 15, 2019	Jul. 22, 2020~ Jul. 23, 2020	Nov. 14, 2020	Conduction (CO05-HY)
Software	Rohde & Schwarz	EMC32 V10.30	N/A	N/A	N/A	Jul. 22, 2020~ Jul. 23, 2020	N/A	Conduction (CO05-HY)
LF Cable	HUBER + SUHNER	RG-214/U	LF01	N/A	Jan. 02, 2020	Jul. 22, 2020~ Jul. 23, 2020	Jan. 01, 2021	Conduction (CO05-HY)
Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100851	N/A	Jan. 02, 2020	Jul. 22, 2020~ Jul. 23, 2020	Jan. 01, 2021	Conduction (CO05-HY)

5. Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

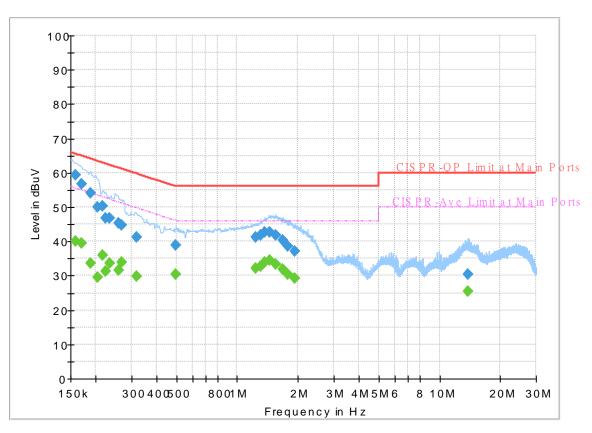
Measuring Uncertainty for a Level of Confidence	2.2
of 95% (U = 2Uc(y))	2.3

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	4.7
of 95% (U = 2Uc(y))	4.7

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	5.1
of 95% (U = 2Uc(y))	5.1



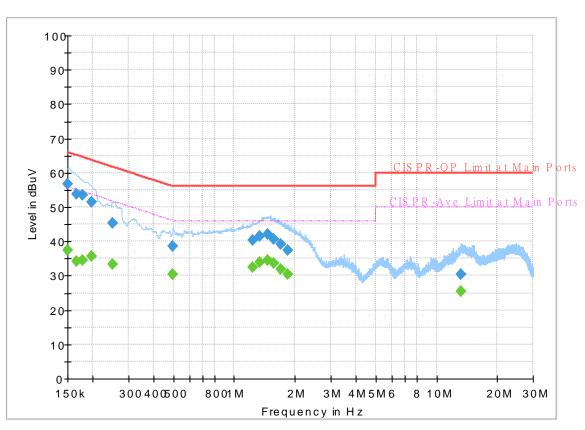
Appendix A. AC Conducted Emission Test Results

Test Engineer :	Temperature :	23~25 ℃
rest Engineer.	Relative Humidity :	42~50%

EUT Information

Report NO : Test Mode : Test Voltage : Phase : 060302 Mode 4 Power From System Line

FullSpectrum


Final_Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	Filter	Corr. (dB)
0.159000	59.33	(ubuv)	65.52	6.19	L1	OFF	19.5
		40.40				OFF	
0.159000		40.19	55.52	15.33	L1		19.5
0.170250	56.67		64.95	8.28	L1	OFF	19.5
0.170250		39.35	54.95	15.60	L1	OFF	19.5
0.187890	54.14		64.13	9.99	L1	OFF	19.5
0.187890		33.48	54.13	20.65	L1	OFF	19.5
0.204000	50.03		63.45	13.42	L1	OFF	19.5
0.204000		29.53	53.45	23.92	L1	OFF	19.5
0.214800	50.29		63.02	12.73	L1	OFF	19.5
0.214800		35.82	53.02	17.20	L1	OFF	19.5
0.224250	46.86		62.66	15.80	L1	OFF	19.5
0.224250		31.29	52.66	21.37	L1	OFF	19.5
0.233250	46.85		62.33	15.48	L1	OFF	19.5
0.233250		33.72	52.33	18.61	L1	OFF	19.5
0.260250	45.32		61.42	16.10	L1	OFF	19.5
0.260250		31.65	51.42	19.77	L1	OFF	19.5
0.269250	44.81		61.14	16.33	L1	OFF	19.5
0.269250		33.90	51.14	17.24	L1	OFF	19.5
0.318570	41.12		59.74	18.62	L1	OFF	19.5
0.318570		29.85	49.74	19.89	L1	OFF	19.5
0.498840	38.87		56.02	17.15	L1	OFF	19.5

0.498840		30.52	46.02	15.50	L1	OFF	19.5
1.230180	41.10		56.00	14.90	L1	OFF	19.6
1.230180		32.06	46.00	13.94	L1	OFF	19.6
1.309380	41.79		56.00	14.21	L1	OFF	19.6
1.309380		32.72	46.00	13.28	L1	OFF	19.6
1.374000	42.65		56.00	13.35	L1	OFF	19.6
1.374000		33.94	46.00	12.06	L1	OFF	19.6
1.441050	42.74		56.00	13.26	L1	OFF	19.6
1.441050		34.41	46.00	11.59	L1	OFF	19.6
1.549500	41.75		56.00	14.25	L1	OFF	19.6
1.549500		33.33	46.00	12.67	L1	OFF	19.6
1.682250	40.26		56.00	15.74	L1	OFF	19.6
1.682250		31.97	46.00	14.03	L1	OFF	19.6
1.784220	38.69		56.00	17.31	L1	OFF	19.6
1.784220		30.34	46.00	15.66	L1	OFF	19.6
1.916250	37.28		56.00	18.72	L1	OFF	19.6
1.916250		29.32	46.00	16.68	L1	OFF	19.6
13.863390	30.45		60.00	29.55	L1	OFF	19.8
13.863390		25.42	50.00	24.58	L1	OFF	19.8

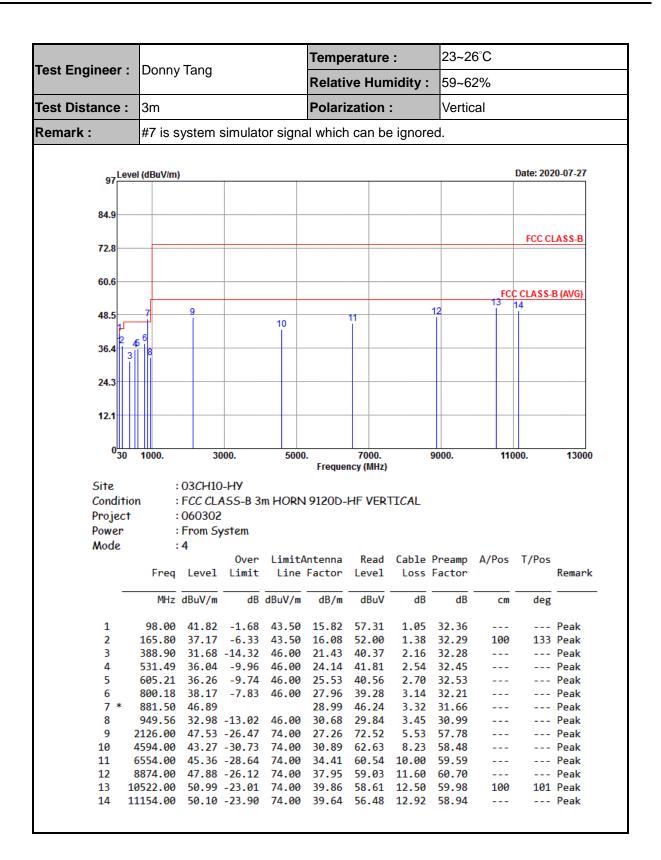
EUT Information

Report NO : Test Mode : Test Voltage : Phase : 060302 Mode 4 Power From System Neutral

Full Spectrum

Final_Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	Filter	Corr. (dB)
0.150000	(abat)	37.48	56.00	18.52	N	OFF	19.5
0.150000	56.68		66.00	9.32	N	OFF	19.5
0.165750		34.09	55.17	21.08	N	OFF	19.5
0.165750	53.76		65.17	11.41	Ν	OFF	19.5
0.178800		34.64	54.54	19.90	Ν	OFF	19.5
0.178800	53.42		64.54	11.12	Ν	OFF	19.5
0.196260		35.81	53.77	17.96	Ν	OFF	19.5
0.196260	51.54		63.77	12.23	Ν	OFF	19.5
0.251250		33.25	51.72	18.47	Ν	OFF	19.5
0.251250	45.40		61.72	16.32	Ν	OFF	19.5
0.498930		30.49	46.02	15.53	Ν	OFF	19.5
0.498930	38.71		56.02	17.31	Ν	OFF	19.5
1.233780		32.48	46.00	13.52	Ν	OFF	19.6
1.233780	40.27		56.00	15.73	Ν	OFF	19.6
1.340250		33.82	46.00	12.18	Ν	OFF	19.6
1.340250	41.65		56.00	14.35	Ν	OFF	19.6
1.459500		34.39	46.00	11.61	Ν	OFF	19.6
1.459500	42.04		56.00	13.96	Ν	OFF	19.6
1.576500		33.65	46.00	12.35	Ν	OFF	19.6
1.576500	40.51		56.00	15.49	Ν	OFF	19.6
1.706370		31.93	46.00	14.07	Ν	OFF	19.6


1.706370	39.10		56.00	16.90	Ν	OFF	19.6
1.837950		30.29	46.00	15.71	Ν	OFF	19.6
1.837950	37.32		56.00	18.68	Ν	OFF	19.6
13.200000		25.30	50.00	24.70	Ν	OFF	19.9
13.200000	30.38		60.00	29.62	Ν	OFF	19.9

Appendix B. Radiated Emission Test Result

Test Engineer :	Donny	Tang			Tempe	erature	:	23~2	6°C		
rest Engineer .	Donny	rang			Relativ	ve Hun	nidity :	59~6	2%		
Test Distance :	3m				Polari	zation	:	Horiz	ontal		
Remark :	#8 is s	ystem :	simulat	or signa	al which	i can be	e ignore	ed.			
Lev	/el (dBuV/m)									Date: 202	20-07-27
97											
84.9											
72.8										FCC C	LASS-B
60.6											
	8							12	FC 13	C CLASS- 14	B (AVG)
48.5		9		10		11		1			
	. 2										
36.4	3 -										
24.2											
24.3											
12.1											
12.1											
12.1 0 ₃₀	1000.	30	000.	5000		7000. ncv (MHz)		9000.	11	000.	13000
030				5000		7000. ncy (MHz)		9000.	11	000.	13000
0 ₃₀ Site	:	03CH10)-HY		Freque	ncy (MHz)			11	000.	13000
0 ₃₀ Site Conditi	: on :	03CH10	-НУ 455-В 3			ncy (MHz)			11	000.	13000
0 ₃₀ Site	: on : · :	03CH10 FCC CL/	-НУ 455-В 3		Freque	ncy (MHz)			11	000.	13000
0 ₃₀ Site Conditi Project	: on : :	03CH10 FCC CL/ 060302	I-HY ASS-B 3 Vstem	m HORN	Freque	ncy (MHz) HF HOR	IZONT	AL			13000
0 ₃₀ Site Conditi Project Power	: on : : :	03CH10 FCC CL/ 060302 From Sy 4	I-HY ASS-B3 ystem Over	m HORN LimitA	Frequer 19120D- Antenna	ncy (MHz) HF HOR Read	ZIZONT Cable	AL Preamp			
0 ₃₀ Site Conditi Project Power	: on : : :	03CH10 FCC CL/ 060302 From Sy 4	I-HY ASS-B3 ystem Over	m HORN LimitA	Freque	ncy (MHz) HF HOR Read	ZIZONT Cable	AL Preamp			13000 Remark
0 ₃₀ Site Conditi Project Power	on : : : : : : : :	03CH10 FCC CL/ 060302 From Sy 4	O-HY ASS-B3 Vstem Over Limit	m HORN LimitA	Frequer 19120D- Antenna	ncy (MHz) HF HOR Read	ZIZONT Cable	AL Preamp		T/Pos	
0 ₃₀ Site Conditi Project Power Mode	on : : : : : : : : : : : : : : : : : : :	03CH10 FCC CL/ 060302 From Sy 4 Level dBuV/m	O-HY ASS-B 3 Vstem Over Limit dB	m HORN LimitA Line dBuV/m	Freques 9120D- Antenna Factor dB/m	Read Level dBuV	Cable Loss	AL Preamp Factor dB	A/Pos cm	T/Pos 	Remark
0 ₃₀ Site Conditi Project Power Mode -	on : : : : : : : : : : : : : : : : : : :	03CH10 FCC CL/ 060302 From Sy 4 Level dBuV/m 42.87	-HY ASS-B 3 //stem Over Limit 	m HORN LimitA Line dBuV/m 43.50	Freques 9120D- Antenna Factor dB/m 15.82	HF HOR Read Level dBuV 58.36	Cable Loss dB 1.05	AL Preamp Factor dB 32.36	A/Pos	T/Pos 	Remark Peak
0 ₃₀ Site Conditi Project Power Mode	on : : : : : : : : : : : : : : : : : : :	03CH10 FCC CL/ 060302 From 5 4 Level dBuV/m 42.87 31.18	-HY ASS-B 3 //stem Over Limit 	m HORN LimitA Line dBuV/m 43.50 43.50	Freques 9120D- Antenna Factor dB/m	Read Level dBuV 58.36 46.11	Cable Loss dB 1.05 1.38	AL Preamp Factor dB 32.36 32.29	A/Pos cm	T/Pos deg	Remark
0 ₃₀ Site Conditi Project Power Mode - 1 2	on : : : : : : : : : : : : : : : : : : :	03CH10 FCC CL/ 060302 From Sy 4 Level dBuV/m 42.87 31.18 34.53	-HY ASS-B 3 //stem Over Limit 	m HORN LimitA Line dBuV/m 43.50 43.50 46.00	Freques 9120D- Antenna Factor dB/m 15.82 15.98	Read Level dBuV 58.36 46.11 41.37	Cable Loss dB 1.05 1.38 2.32	AL Preamp Factor dB 32.36 32.29	A/Pos 	T/Pos 	Remark Peak Peak
0 ₃₀ Site Conditi Project Power Mode 1 2 3	on : : : : : : : : : : : : : : : : : : :	03CH10 FCC CL/ 060302 From Sy 4 Level dBuV/m 42.87 31.18 34.53 35.31	-HY ASS-B 3 //stem Over Limit -0.63 -12.32 -11.47 -10.69	m HORN LimitA Line dBuV/m 43.50 43.50 46.00 46.00	Freques 9120D- Antenna Factor dB/m 15.82 15.98 23.19	Read Level dBuV 58.36 46.11 41.37 37.67	Cable Loss dB 1.05 1.38 2.32 2.97	AL Preamp Factor dB 32.36 32.29 32.35	A/Pos 	T/Pos 	Remark Peak Peak Peak
0 ₃₀ Site Conditi Project Power Mode 1 2 3 4	on : : : : : : : : : : : : : : : : : : :	03CH10 FCC CL/ 060302 From Sy 4 Level dBuV/m 42.87 31.18 34.53 35.31 38.33 37.86	-HY ASS-B 3 //stem Over Limit -0.63 -12.32 -11.47 -10.69 -7.67 -8.14	m HORN LimitA Line dBuV/m 43.50 43.50 46.00 46.00 46.00	Freques 9120D- Antenna Factor dB/m 15.82 15.98 23.19 27.03 28.05 27.96	Read Level dBuV 58.36 46.11 41.37 37.67 39.56 38.97	Cable Loss dB 1.05 1.38 2.32 2.97 3.02 3.14	AL Preamp Factor dB 32.36 32.29 32.35 32.36 32.30 32.21	A/Pos	T/Pos 	Remark Peak Peak Peak Peak
030 Site Conditi Project Power Mode 1 2 3 4 5 6 7	en : : : : : : : : : : : : : : : : : : :	03CH10 FCC CL/ 060302 From 5 4 Level dBuV/m 42.87 31.18 34.53 35.31 38.33 37.86 38.42	-HY ASS-B 3 //stem Over Limit -0.63 -12.32 -11.47 -10.69 -7.67 -8.14	m HORN LimitA Line dBuV/m 43.50 43.50 46.00 46.00 46.00	Freques 9120D- Antenna Factor dB/m 15.82 15.98 23.19 27.03 28.05 27.96 29.00	Read Level dBuV 58.36 46.11 41.37 37.67 39.56 38.97 38.04	Cable Loss dB 1.05 1.38 2.32 2.97 3.02 3.14 3.26	AL Preamp Factor dB 32.36 32.29 32.35 32.36 32.30 32.21 31.88	A/Pos 	T/Pos 	Remark Peak Peak Peak Peak Peak Peak
030 Site Conditi Project Power Mode 1 2 3 4 5 6 7 8 *	on : : : : : : : : : : : : : : : : : : :	03CH10 FCC CL/ 060302 From 5 4 Level dBuV/m 42.87 31.18 34.53 35.31 38.33 37.86 38.42 49.89	-HY ASS-B 3 //stem Over Limit -0.63 -12.32 -11.47 -10.69 -7.67 -8.14 -7.58	m HORN LimitA Line dBuV/m 43.50 43.50 46.00 46.00 46.00 46.00	Freques 9120D- Antenna Factor dB/m 15.82 15.98 23.19 27.03 28.05 27.96 29.00 28.99	Read Level dBuV 58.36 46.11 41.37 37.67 39.56 38.97 38.04 49.24	Cable Loss dB 1.05 1.38 2.32 2.97 3.02 3.14 3.26 3.32	AL Preamp Factor dB 32.36 32.29 32.35 32.36 32.30 32.21 31.88 31.66	A/Pos 	T/Pos deg 158 	Remark Peak Peak Peak Peak Peak Peak Peak Pea
030 Site Conditi Project Power Mode 1 2 3 4 5 6 7 8 8 9	on : : : : : : : : : : : : : : : : : : :	03CH10 FCC CL/ 060302 From 5 4 Level dBuV/m 42.87 31.18 34.53 35.31 38.33 37.86 38.42 49.89 43.99	-HY ASS-B 3 //stem Over Limit -0.63 -12.32 -11.47 -10.69 -7.67 -8.14 -7.58 -30.01	m HORN LimitA Line dBuV/m 43.50 43.50 46.00 46.00 46.00 46.00 74.00	Freques 9120D- Antenna Factor dB/m 15.82 15.98 23.19 27.03 28.05 27.96 29.00 28.99 28.04	Read Level dBuV 58.36 46.11 41.37 37.67 39.56 38.97 38.04 49.24 67.51	Cable Loss dB 1.05 1.38 2.32 2.97 3.02 3.14 3.26 3.32 6.40	AL Preamp Factor dB 32.36 32.29 32.35 32.36 32.30 32.21 31.88 31.66 57.96	A/Pos 	T/Pos deg 158 	Remark Peak Peak Peak Peak Peak Peak Peak Pea
030 Site Conditi Project Power Mode 1 2 3 4 5 6 7 8 * 9 10	en : Freq Freq MHz 98.00 166.77 448.07 718.70 749.74 800.18 849.65 881.50 2784.00 4446.00	03CH10 FCC CL/ 060302 From 5 4 Level dBuV/m 42.87 31.18 34.53 35.31 38.33 37.86 38.42 49.89 43.99 42.97	-HY ASS-B 3 //stem Over Limit -0.63 -12.32 -11.47 -10.69 -7.67 -8.14 -7.58 -30.01 -31.03	m HORN LimitA Line dBuV/m 43.50 43.50 46.00 46.00 46.00 46.00 74.00 74.00	Freques 9120D- Antenna Factor 15.82 15.98 23.19 27.03 28.05 27.96 29.00 28.99 28.04 30.38	Read Level dBuV 58.36 46.11 41.37 37.67 39.56 38.97 38.04 49.24 67.51 63.08	Cable Loss dB 1.05 1.38 2.32 2.97 3.02 3.14 3.26 3.32 6.40 7.99	AL Preamp Factor dB 32.36 32.29 32.35 32.36 32.30 32.21 31.88 31.66 57.96 58.48	A/Pos	T/Pos deg 158 	Remark Peak Peak Peak Peak Peak Peak Peak Pea
030 Site Conditi Project Power Mode 1 2 3 4 5 6 7 8 * 9 10 11	on : : : : : : : : : : : : : : : : : : :	03CH10 FCC CL/ 060302 From 5 4 Level dBuV/m 42.87 31.18 34.53 35.31 38.33 37.86 38.42 49.89 43.99 42.97 45.76	-HY ASS-B 3 //stem Over Limit -0.63 -12.32 -11.47 -10.69 -7.67 -8.14 -7.58 -30.01 -31.03 -28.24	m HORN LimitA Line dBuV/m 43.50 43.50 46.00 46.00 46.00 46.00 74.00 74.00 74.00	Freques 9120D- Antenna Factor 15.82 15.98 23.19 27.03 28.05 27.96 29.00 28.99 28.04 30.38 34.50	Read Level dBuV 58.36 46.11 41.37 37.67 39.56 38.97 38.04 49.24 67.51 63.08 60.83	Cable Loss dB 1.05 1.38 2.32 2.97 3.02 3.14 3.26 3.32 6.40 7.99 10.02	AL Preamp Factor dB 32.36 32.29 32.35 32.36 32.30 32.21 31.88 31.66 57.96 58.48 59.59	A/Pos	T/Pos deg 158 158	Remark Peak Peak Peak Peak Peak Peak Peak Pea
030 Site Conditi Project Power Mode 1 2 3 4 5 6 7 8 * 9 10 11 12	en : : : : : : : : : : : : : : : : : : :	03CH10 FCC CL/ 060302 From 5 4 Level dBuV/m 42.87 31.18 34.53 35.31 38.33 37.86 38.42 49.89 43.99 42.97 45.76 49.78	-HY ASS-B 3 //stem Over Limit -0.63 -12.32 -11.47 -10.69 -7.67 -8.14 -7.58 -30.01 -31.03 -28.24 -24.22	m HORN LimitA Line dBuV/m 43.50 43.50 46.00 46.00 46.00 46.00 74.00 74.00 74.00 74.00 74.00	Freques 9120D- Antenna Factor 15.82 15.98 23.19 27.03 28.05 27.96 29.00 28.99 28.04 30.38 34.50 37.99	Read Level dBuV 58.36 46.11 41.37 37.67 39.56 38.97 38.04 49.24 67.51 63.08 60.83 60.84	Cable Loss dB 1.05 1.38 2.32 2.97 3.02 3.14 3.26 3.32 6.40 7.99 10.02 11.62	AL Preamp Factor dB 32.36 32.29 32.35 32.36 32.30 32.21 31.88 31.66 57.96 58.48 59.59 60.67	A/Pos	T/Pos deg 158 158 -	Remark Peak Peak Peak Peak Peak Peak Peak Pea
030 Site Conditi Project Power Mode 1 2 3 4 5 6 7 8 * 9 10 11 12 13	on : : : : : : : : : : : : : : : : : : :	03CH10 FCC CL/ 060302 From Sy 4 Level dBuV/m 42.87 31.18 34.53 35.31 38.33 35.31 38.33 37.86 38.42 49.89 43.99 42.97 45.76 49.78 50.73	ASS-B 3 ASS-B 3 Astem Over Limit -0.63 -12.32 -11.47 -10.69 -7.67 -8.14 -7.58 -30.01 -31.03 -28.24 -24.22 -23.27	m HORN LimitA Line dBuV/m 43.50 46.00 46.00 46.00 46.00 74.00 74.00 74.00 74.00 74.00 74.00	Freques 9120D- Antenna Factor dB/m 15.82 15.98 23.19 27.03 28.05 27.96 29.00 28.99 28.04 30.38 34.50 37.99 39.91	Read Level dBuV 58.36 46.11 41.37 37.67 39.56 38.97 38.04 49.24 67.51 63.08 60.83 60.84 57.68	Cable Loss dB 1.05 1.38 2.97 3.02 3.14 3.26 3.32 6.40 7.99 10.02 11.62 12.65	AL Preamp Factor dB 32.36 32.29 32.35 32.36 32.30 32.21 31.88 31.66 57.96 58.48 59.59 60.67 59.51	A/Pos	T/Pos deg 158 127	Remark Peak Peak Peak Peak Peak Peak Peak Pea

