

TEST REPORT

Product : Service Module 2.0

Trade mark : TBD

Model/Type reference : Service Module 2.0

Serial Number : N/A

Report Number : EED32Q81519602

FCC ID : 2ATUP-SM-2V0

Date of Issue : Apr. 15, 2025

Test Standards : 47 CFR Part 15 Subpart C

Test result : PASS

Prepared for:

eInfochips Inc

181 Metro Drive Suite 170 San Jose California United States 95110

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Check No.: 2942260924

Report No.: EED32Q81519602

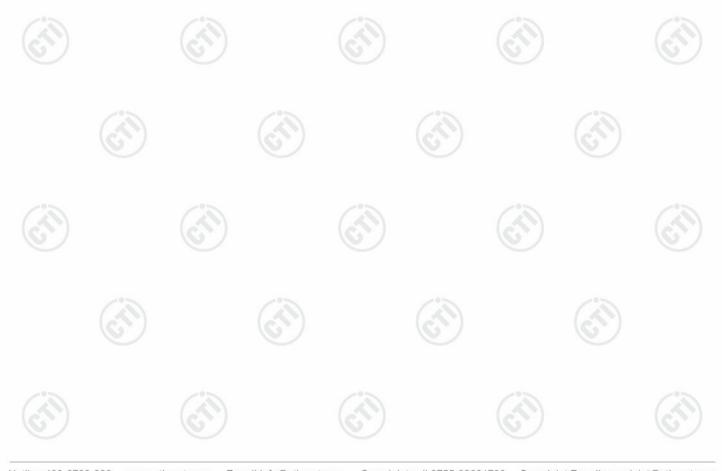
Content

1 CONTENT	 2
2 VERSION	
3 TEST SUMMARY	 4
4 GENERAL INFORMATION	 5
4.1 CLIENT INFORMATION	5 8 8
5 EQUIPMENT LIST	
6 TEST RESULTS AND MEASUREMENT DATA	
6.1 ANTENNA REQUIREMENT	15 18 19 20
7 APPENDIX 2.4G WI-FI	 46
8 PHOTOGRAPHS OF TEST SETUP	
9 PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS	 49

Report No.: EED32Q81519602

2 Version

Version No.	Date	(6)	Description	
00	Apr. 15, 2025		Original	
		12		/3
((20)	(20)	(5)	(0,1)



Report No. : EED32Q81519602 Page 4 of 50

3 Test Summary

Test Item	Test Requirement	Result
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	PASS
DTS Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	PASS
Maximum Conducted Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	PASS
Maximum Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	PASS
Band edge measurements	47 CFR Part 15 Subpart C Section 15.247(d)	PASS
Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	PASS
Radiated Spurious Emission & Restricted bands	47 CFR Part 15 Subpart C Section 15.205/15.209	PASS

Report No. : EED32Q81519602 Page 5 of 50

4 General Information

4.1 Client Information

Applicant:	eInfochips Inc
Address of Applicant:	181 Metro Drive Suite 170 San Jose California United States 95110
Manufacturer:	eInfochips Inc
Address of Manufacturer:	181 Metro Drive Suite 170 San Jose California United States 95110
Factory:	eInfochips Inc
Address of Factory:	11 A/B, Chandra Colony, Behind Cargo Motors, Office, C.G.Road, Ellisbridge

4.2 General Description of EUT

Product Name:	Service Module 2.0
Model No.:	Service Module 2.0
Trade mark:	TBD
Product Type:	☐ Mobile ☐ Portable ☒ Fixed Location
Operation Frequency:	IEEE 802.11b/g/n(HT20): 2412MHz to 2462MHz IEEE 802.11n(HT40): 2422MHz to 2452MHz
Modulation Type:	IEEE for 802.11b: DSSS(CCK,DQPSK,DBPSK) IEEE for 802.11g: OFDM(64QAM, 16QAM, QPSK, BPSK)
	IEEE for 802.11n(HT20 and HT40) : OFDM (64QAM, 16QAM,QPSK,BPSK)
Number of Channel:	IEEE 802.11b/g, IEEE 802.11n HT20: 11 Channels IEEE 802.11n HT40: 7 Channels
Channel Separation:	5MHz
Antenna Type:	Ceramic Antenna
Antenna Gain:	1dBi
Power Supply:	DC 5V
Test Voltage:	DC 5V
Sample Received Date:	Oct. 14, 2024
Sample tested Date:	Oct. 14, 2024 to Dec. 29, 2024

Page 6 of 50 Report No.: EED32Q81519602

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		(6)
Operation	Frequency ea	ch of channe	el (802.11n HT	40)			
Channel Frequency			Channel	Frequenc	cy Char	nnel F	requency
3	2422	MHz	6	2437MH	z 9	120	2452MHz
4	2427	MHz	7	2442MH	Z		
5	2432	MHz	8	2447MH	z		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/g/n (HT20)

Channel	Frequency
The lowest channel	2412MHz
The middle channel	2437MHz
The highest channel	2462MHz

802.11n (HT40)

Channel	Frequency
The lowest channel	2422MHz
The middle channel	2437MHz
The highest channel	2452MHz

Report No.: EED32Q81519602 Page 7 of 50

4.3 Test Configuration

EUT Test Software Setti	ngs:		
Test Software:	Esp32.exe	-0-	
EUT Power Grade:	Default	(41)	(20)
Lice test software to set th	ne lowest frequency the middle frequency	nuency and the highest frequen	cy keen

test software to set the lowest frequency, the middle frequency and the highest frequency keep transmitting of the EUT.

Test Mode:

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate
802.11b	1Mbps
802.11g	6Mbps
802.11n(HT20)	MCS0
802.11n(HT40)	MCS0

According to ANSI C63.10 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11g, MCS0 for 802.11n(HT20) and MCS0 for 802.11n(HT40).

Report No. : EED32Q81519602 Page 8 of 50

4.4 Test Environment

Oper	rating Environment	:					
Radi	Radiated Spurious Emissions:						
Temp	perature:	22~25.0 °C	(21)		(41)		(41)
Humi	idity:	50~55 % RH	(0)		(0)		6
Atmo	spheric Pressure:	1010mbar					
Cond	ducted Emissions:						
Temp	perature:	22~25.0 °C		(2)		(30)	
Humi	idity:	50~55 % RH		(0,)		(0,)	
Atmo	spheric Pressure:	1010mbar					
RF C	onducted:						
Temp	perature:	22~25.0 °C			(3)		
Humi	idity:	50~55 % RH	(6.2)		(6,7,2)		(6,2)
Atmo	spheric Pressure:	1010mbar					

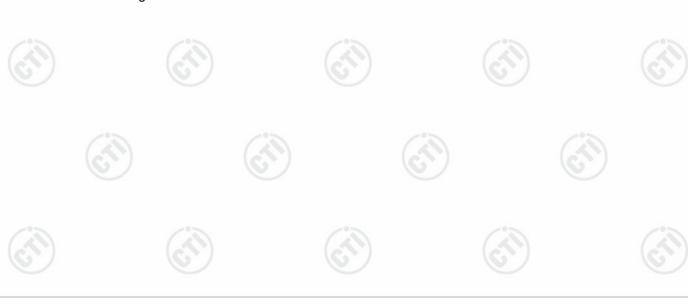
4.5 Description of Support Units

The EUT has been tested with associated equipment below.

1) support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
/	/	/	1	1

4.6 Test Location

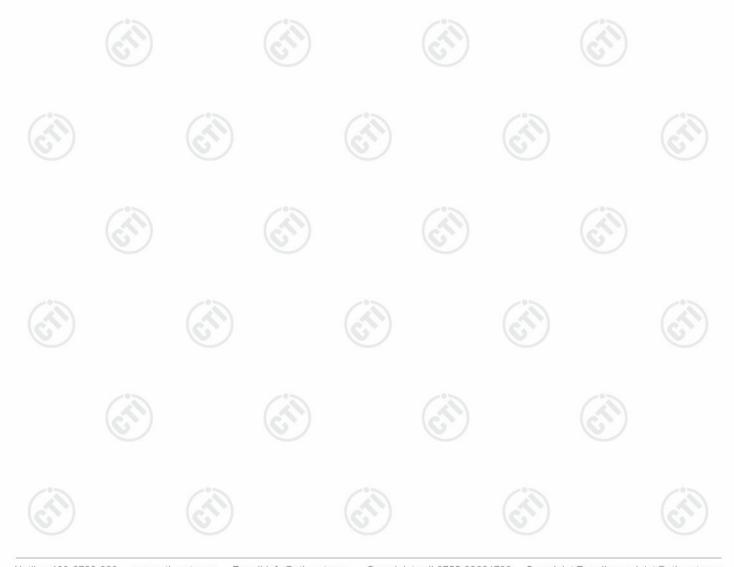

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

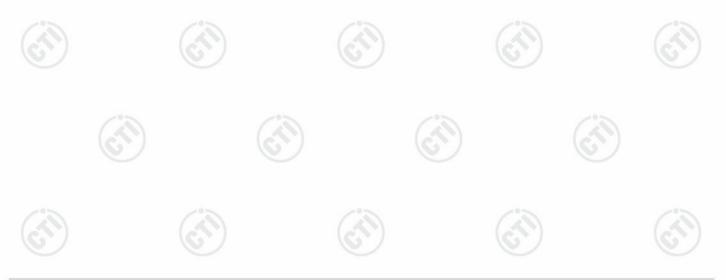
Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164



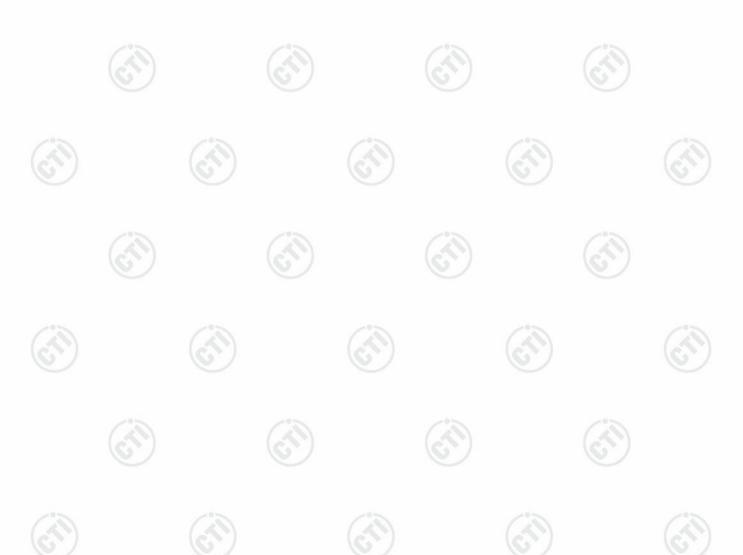
4.7 Measurement Uncertainty (95% confidence levels, k=2)

No.	ltem	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE nower conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-40GHz)
	0	3.3dB (9kHz-30MHz)
2	Dadiated Spurious emission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-18GHz)
(P)		3.4dB (18GHz-40GHz)
	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%



Report No. : EED32Q81519602 Page 10 of 50

5 Equipment List


RF test system							
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Communication test set	R&S	CMW500	107929	06-26-2024	06-25-2025		
Signal Generator	R&S	SMBV100A	1407.6004K02- 262149-CV	09-02-2024	09-01-2025		
Spectrum Analyzer	R&S	FSV40	101200	07-18-2024	07-17-2025		
RF control unit(power unit)	MWRF-test	MW100-RFCB	MW220620CTI-42	06-25-2024	06-24-2025		
High-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	11-12-2023 11-30-2024	12-10-2024 11-29-2025		
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	05-29-2024	05-28-2025		
BT&WI-FI Automatic test software	MWRF-test	MTS 8310	V2.0.0.0	(i)	- 6		
Spectrum Analyzer	R&S	FSV3044	101509	01-17-2024	01-16-2025		

Page 11 of 50 Report No.: EED32Q81519602

Conducted disturbance Test									
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)				
Receiver	R&S	ESCI	100435	04-18-2024	04-17-2025				
Temperature/ Humidity Indicator	Defu	TH128	1	04-25-2024	04-24-2025				
LISN	R&S	ENV216	100098	09-19-2024	09-18-2025				
Barometer	changchun	DYM3	1188	((S)				
Test software	Fara	EZ-EMC	EMC-CON 3A1.1						
Capacitive voltage probe	Schwarzbeck	CVP 9222C	00124	06-18-2024	06-17-2025				
ISN	TESEQ	ISN T800	30297	12/14/2023 12/05/2024	12/13/2024 12/04/2025				

Report No.: EED32Q81519602 Page 12 of 50

3M Semi-anechoic Chamber (2)- Radiated disturbance Test								
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)			
3M Chamber & Accessory Equipment	TDK	SAC-3		05/22/2022	05/21/2025			
Receiver	R&S	ESCI7	100938-	09/07/2024	09/06/2025			
Spectrum Analyzer	R&S	FSV40	101200	07/18/2024	07/17/2025			
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	9163-618	05/22/2022	05/21/2025			
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04/16/2024	04/15/2025			
Microwave Preamplifier	Tonscend	EMC051845SE	980380	12/14/2023 12/05/2024	12/13/2024 12/04/2025			
Horn Antenna	A.H.SYSTEMS	SAS-574	374	07/02/2023	07/01/2026			
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D- 1869	04/16/2024	04/15/2025			
Preamplifier	Agilent	11909A	12-1	03/22/2024	03/21/2025			
Preamplifier	CD	PAP-1840-60	6041.6042	06/19/2024	06/18/2025			
Test software	Fara	EZ-EMC	EMEC- 3A1-Pre					
Cable line	Fulai(7M)	SF106	5219/6A	05/22/2022	05/21/2025			
Cable line	Fulai(6M)	SF106	5220/6A	05/22/2022	05/21/2025			
Cable line	Fulai(3M)	SF106	5216/6A	05/22/2022	05/21/2025			
Cable line	Fulai(3M)	SF106	5217/6A	05/22/2022	05/21/2025			

Report No.: EED32Q81519602 Page 13 of 50

7 7 7 7		3M full-anechoic	: Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Fully Anechoic Chamber	TDK	FAC-3	(01-09-2024	01-08-2027
Receiver	Keysight	N9038A	MY57290136	01-09-2024	01-08-2025
Spectrum Analyzer	Keysight	N9020B	MY57111112	01-29-2024	01-28-2025
Spectrum Analyzer	Keysight	N9030B	MY57140871	01-23-2024	01-22-2025
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2024	04-27-2025
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-16-2024	04-15-2025
Horn Antenna	ETS-LINDGREN	3117	57407	07-03-2024	07-02-2025
Preamplifier	EMCI	EMC001330	980563	03-08-2024	03-07-2025
Preamplifier	Tonscend	TAP-011858	AP21B806112	07-18-2024	07-17-2025
Preamplifier	Tonscend	EMC051845SE	980380	12-14-2023 12-05-2024	12-13-2024 12-04-2025
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-07-2024	04-06-2025
RSE Automatic test software	JS Tonscend	JS36-RSE	V4.0.0.0	(i)	_(3)
Cable line	Times	SFT205-NMSM-2.50M	394812-0001	01-09-2024	01-08-2027
Cable line	Times	SFT205-NMSM-2.50M	394812-0002	01-09-2024	01-08-2027
Cable line	Times	SFT205-NMSM-2.50M	394812-0003	01-09-2024	01-08-2027
Cable line	Times	SFT205-NMSM-2.50M	393495-0001	01-09-2024	01-08-2027
Cable line	Times	EMC104-NMNM-1000	SN160710	01-09-2024	01-08-2027
Cable line	Times	SFT205-NMSM-3.00M	394813-0001	01-09-2024	01-08-2027
Cable line	Times	SFT205-NMNM-1.50M	381964-0001	01-09-2024	01-08-2027
Cable line	Times	SFT205-NMSM-7.00M	394815-0001	01-09-2024	01-08-2027
Cable line	Times	HF160-KMKM-3.00M	393493-0001	01-09-2024	01-08-2027

Report No. : EED32Q81519602 Page 14 of 50

6 Test results and Measurement Data

6.1 Antenna Requirement

Standard requirement:	47 CFR Part 15C Section 15.203 /247(c)
-----------------------	--

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

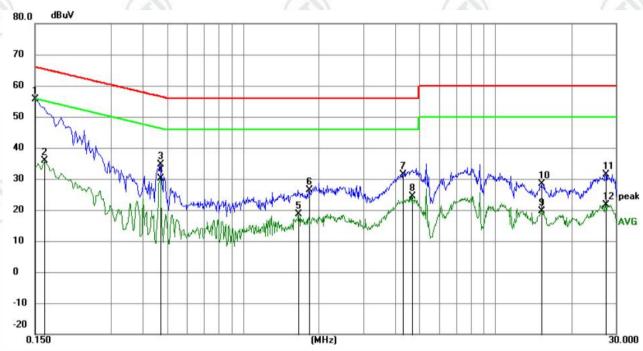
EUT Antenna: Please see Internal photos

The antenna is Ceramic antenna. The best case gain of the antenna is 1dBi.

Report No. : EED32Q81519602 Page 15 of 50

6.2 AC Power Line Conducted Emissions

	1.232.71			(-(-(-)-)-					
	Test Requirement:	47 CFR Part 15C Section 15.2	207						
	Test Method:	ANSI C63.10: 2013							
	Test Frequency Range:	150kHz to 30MHz							
Ž	Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sweep time=auto							
,	Limit:	Frequency range (MHz)	Limit (d	IBuV)					
		Troquency runge (WH2)	Quasi-peak	Average					
		0.15-0.5	66 to 56*	56 to 46*					
		0.5-5	56	46					
		5-30	60	50					
		* Decreases with the logarithn	n of the frequency.						
	Test Setup:	Shielding Room EUT AC Mains LISN1	AE LISN2 AC Mais Ground Reference Plane	Test Receiver					
	Test Procedure:	 The mains terminal disturb room. The EUT was connected Impedance Stabilization N impedance. The power connected to a second LIS plane in the same way a multiple socket outlet strip single LISN provided the ration of the tabletop EUT was plat ground reference plane. A placed on the horizontal gray on the EUT shall be 0.4 m vertical ground reference reference plane. The LISN unit under test and bon mounted on top of the ground the closest points of the Land associated equipment In order to find the maximuland all of the interface call ANSI C63.10: 2013 on contraction. 	to AC power source etwork) which provides cables of all other SN 2, which was bonde as the LISN 1 for the was used to connect reating of the LISN was reced upon a non-metand for floor-standing and the avertical ground reference plane. It is a vertical ground reference plane was bonded of the vertical ground reference plane. The was placed 0.8 m ded to a ground refund reference plane. The LISN 1 and the EUT. As was at least 0.8 m from the mission, the relations must be changed as	through a LISN 1 (Line is a 50Ω/50μH + 5Ω linear units of the EUT were id to the ground reference unit being measured. A multiple power cables to a not exceeded. Ilic table 0.8m above the grangement, the EUT was derence plane. The rear of and reference plane. The to the horizontal ground from the boundary of the ference plane for LISNs his distance was between all other units of the EUT in the LISN 2.					
3	Test Mode:	All modes were tested, only the 802.11b was recorded in the r	ie worse case lowest c	hannel of 1Mbps for					

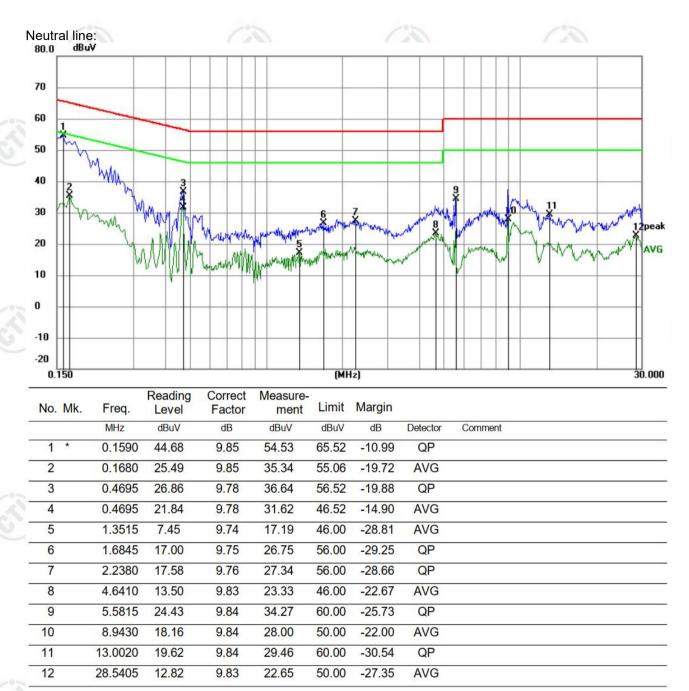


Report No.: EED32Q81519602 Page 16 of 50

Test Results:	Pass	
---------------	------	--

Measurement Data

Live line:

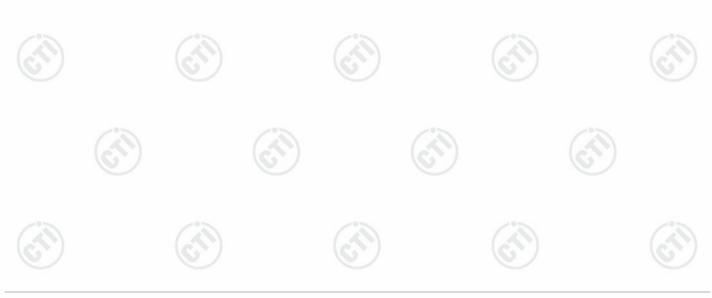

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1500	45.86	9.84	55.70	66.00	-10.30	QP	
2		0.1635	25.97	9.85	35.82	55.28	-19.46	AVG	
3		0.4695	24.91	9.78	34.69	56.52	-21.83	QP	
4		0.4695	20.32	9.78	30.10	46.52	-16.42	AVG	
5		1.6575	8.99	9.75	18.74	46.00	-27.26	AVG	
6		1.8195	16.66	9.75	26.41	56.00	-29.59	QP	
7		4.2990	21.60	9.82	31.42	56.00	-24.58	QP	
8		4.6815	14.56	9.83	24.39	46.00	-21.61	AVG	
9		15.1980	9.75	9.86	19.61	50.00	-30.39	AVG	
10		15.2925	18.56	9.86	28.42	60.00	-31.58	QP	
11		27.3930	21.60	9.86	31.46	60.00	-28.54	QP	
12		27.3930	11.79	9.86	21.65	50.00	-28.35	AVG	

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

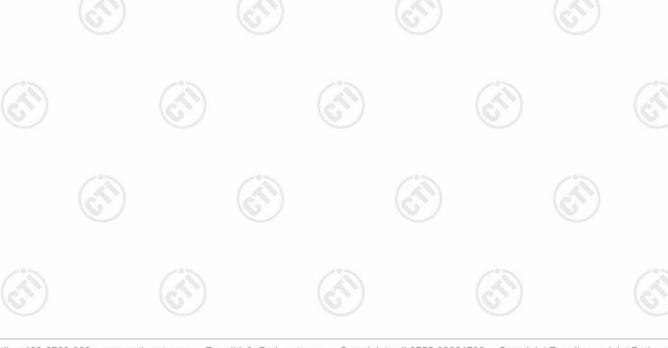
Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.



6.3 Maximum Conducted Output Power

Test Requirement:	47 CFR Part 15C Section 15.247 (b)(3)
Test Method:	ANSI C63.10 2013
Test Setup:	Eil)
	Control Computer Power Power Power Power Table RF test System System Instrument Table
Test Procedure:	1. PKPM1 Peak power meter measurement The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall use a fast-responding diode detector. 2. Method AVGPM-G Average power measurement Method AVGPM-G is a measurement using a gated RF average power meter. Alternatively, measurements may be performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Because the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required.
Limit:	30dBm
Test Mode:	Refer to clause 5.3
Test Results:	Refer to Appendix 2.4G Wi-Fi



Report No. : EED32Q81519602 Page 19 of 50

6.4 DTS Bandwidth

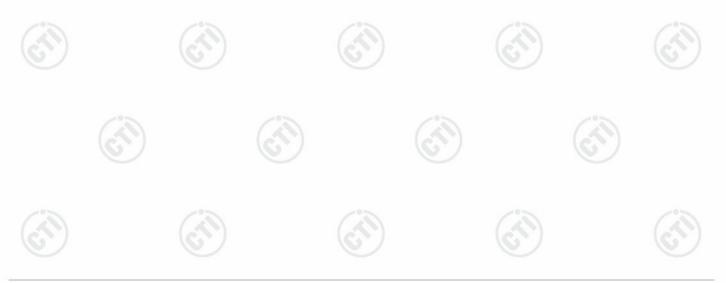
Test Requirement:	47 CFR Part 15C Section 15.247 (a)(2)
Test Method:	ANSI C63.10 2013
Test Setup:	
	Control Computer Power Supply Attenuator Table RF test System System Instrument
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 a) Set RBW = 100 kHz. b) Set the VBW ≥[3 × RBW]. c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.
Limit:	≥ 500 kHz
Test Mode:	Refer to clause 5.3
Test Results:	Refer to Appendix 2.4G Wi-Fi

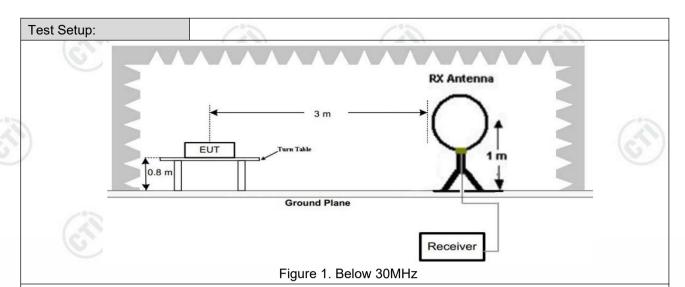
6.5 Maximum Power Spectral Density

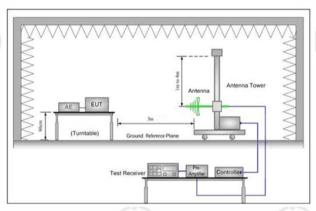
Test Requirement:	47 CFR Part 15C Section 15.247 (e)	<u> </u>						
Test Method:	ANSI C63.10 2013							
Test Setup:		70	(FI)					
	Control Computer Power Supply TEMPERATURE CABRET Table	RF test System Instrument						
	Remark: Offset=Cable loss+ attenuation	on factor.						
Test Procedure:	 a) Set analyzer center frequency to DT b) Set the span to 1.5 times the DTS becomes the RBW to 3 kHz < RBW < 10 d) Set the VBW > [3 × RBW]. e) Detector = peak. f) Sweep time = auto couple. g) Trace mode = max hold. h) Allow trace to fully stabilize. i) Use the peak marker function to determine the RBW. j) If measured value exceeds requiremental than 3 kHz) and repeat. 	andwidth. 00 kHz. ermine the maximi	um amplitude level					
Limit:	≤8.00dBm/3kHz							
Test Mode:	Refer to clause 5.3		/°>					
Test Results:	Refer to Appendix 2.4G Wi-Fi	9						

6.6 Band Edge Measurements and Conducted Spurious Emission

47 CFR Part 15C Section 15.247 (d)
ANSI C63.10 2013
RF test Control Computer Power Poorte Supply Power Supply RF test System Instrument Remark: Offset=Cable loss+ attenuation factor.
a) Set RBW = 100KHz. b) Set VBW = 300KHz. c) Sweep time = auto couple. d) Detector = peak. e) Trace mode = max hold. f) Allow trace to fully stabilize. g) Use peak marker function to determine the peak amplitude level.
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Refer to clause 5.3
Refer to Appendix 2.4G Wi-Fi




6.7 Radiated Spurious Emission & Restricted bands


Test Deguirement	47 CFR Part 15C Secti	on 1	IE 200 and 1E	205	10.	<i>)</i>
Test Requirement:		on i	15.209 and 15	.205		Γ΄
Test Method:	ANSI C63.10 2013					
Test Site:	Measurement Distance	:: 3m	n (Semi-Anech	noic Cham	ber)	- 55
Receiver Setup:	Frequency	9)	Detector	RBW	VBW	Remark
	0.009MHz-0.090MH	0.009MHz-0.090MHz			30kHz	Peak
	0.009MHz-0.090MH	Z	Average	10kHz	30kHz	Average
	0.090MHz-0.110MH	Z	Quasi-peak	10kHz	30kHz	Quasi-peak
	0.110MHz-0.490MH	Z	Peak	10kHz	30kHz	Peak
	0.110MHz-0.490MH	Z	Average	10kHz	30kHz	Average
	0.490MHz -30MHz		Quasi-peak	10kHz	30kHz	Quasi-peak
	30MHz-1GHz		Quasi-peak	100 kH	z 300kHz	Quasi-peak
	A1 401	Peak	1MHz	3MHz	Peak	
	Above 1GHz	Above 1GHz			10kHz	Average
Limit:	Frequency	Field strength (microvolt/meter)		Limit (dBuV/m)	Remark	Measuremen distance (m)
	0.009MHz-0.490MHz	2	400/F(kHz)	-	-/0>	300
	0.490MHz-1.705MHz	24	4000/F(kHz)	-	(A)	30
	1.705MHz-30MHz		30	-		30
	30MHz-88MHz		100	40.0	Quasi-peak	3
	88MHz-216MHz		150	43.5	Quasi-peak	3
	216MHz-960MHz	10	200	46.0	Quasi-peak	3
	960MHz-1GHz	1	500	54.0	Quasi-peak	3
	Above 1GHz		500	54.0	Average	3
	Note: 15.35(b), frequency emissions is limit applicable to the epeak emission level race	20c equip	dB above the oment under t	maximum est. This p	permitted ave	erage emission

Report No. : EED32Q81519602 Page 23 of 50

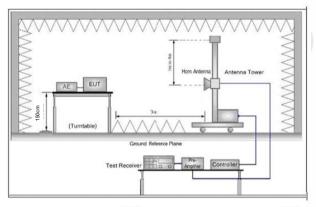


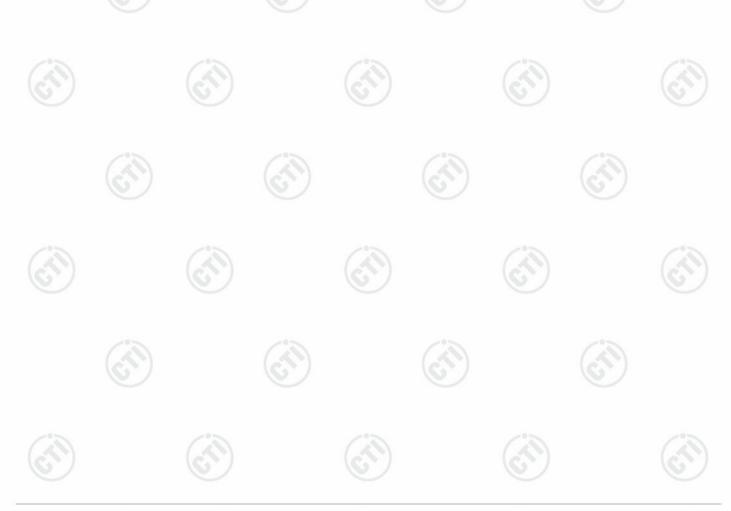
Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

Test Procedure:

- a. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
 - 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

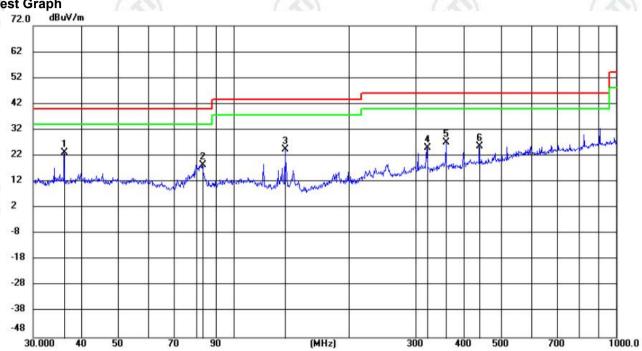
Note: For the radiated emission test above 1GHz:


Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both

Report No. : EED32Q81519602 Page 24 of 50

Test Results:	Pass
Test Mode:	Refer to clause 5.3
	i. Repeat above procedures until all frequencies measured was complete.
	h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	g. Test the EUT in the lowest channel (2402MHz),the middle channel (2440MHz),the Highest channel (2480MHz)
	f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	horizontal and vertical polarizations of the antenna are set to make the measurement.

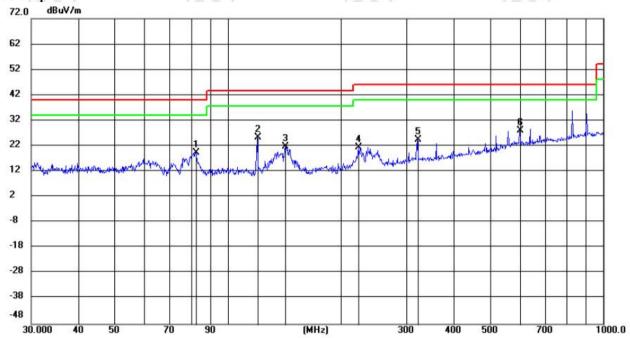

Report No.: EED32Q81519602 Page 25 of 50

Radiated Spurious Emission below 1GHz:

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case lowest channel of 1Mbps for 802.11b was recorded in the report.

Horizontal:

Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
*	36.1905	10.27	13.10	23.37	40.00	-16.63	QP	199	29	
	83.2006	8.62	9.96	18.58	40.00	-21.42	QP	199	185	
1	136.5077	14.96	9.41	24.37	43.50	-19.13	QP	100	17	
	319.9930	8.57	16.53	25.10	46.00	-20.90	QP	100	211	
	360.0056	9.75	17.28	27.03	46.00	-18.97	QP	199	352	
	440.0419	6.92	18.76	25.68	46.00	-20.32	QP	100	242	
	*	MHz * 36.1905 83.2006	Mk. Freq. Level MHz dBuV * 36.1905 10.27 83.2006 8.62 136.5077 14.96 319.9930 8.57 360.0056 9.75	Mk. Freq. Level Factor MHz dBuV dB/m * 36.1905 10.27 13.10 83.2006 8.62 9.96 136.5077 14.96 9.41 319.9930 8.57 16.53 360.0056 9.75 17.28	Mk. Freq. Level Factor ment MHz dBuV dB/m dBuV/m * 36.1905 10.27 13.10 23.37 83.2006 8.62 9.96 18.58 136.5077 14.96 9.41 24.37 319.9930 8.57 16.53 25.10 360.0056 9.75 17.28 27.03	Mk. Freq. Level Factor ment Limit MHz dBuV dBuV dBuV/m dBuV/m dBuV/m dBuV/m dBuV/m dBuV/m dBuV/m dBuV/m 40.00 36.1905 10.27 13.10 23.37 40.00 40.00 136.5077 14.96 9.96 18.58 40.00 43.50 319.9930 8.57 16.53 25.10 46.00 46.00 360.0056 9.75 17.28 27.03 46.00	Mk. Freq. Level Factor ment Limit Margin MHz dBuV dBuV dBuV/m dBuV/m dBuV/m dB * 36.1905 10.27 13.10 23.37 40.00 -16.63 83.2006 8.62 9.96 18.58 40.00 -21.42 136.5077 14.96 9.41 24.37 43.50 -19.13 319.9930 8.57 16.53 25.10 46.00 -20.90 360.0056 9.75 17.28 27.03 46.00 -18.97	Mk. Freq. Level Factor ment Limit Margin MHz dBuV dBuV dBuV/m dBuV/m dBuV/m dB Detector * 36.1905 10.27 13.10 23.37 40.00 -16.63 QP 83.2006 8.62 9.96 18.58 40.00 -21.42 QP 136.5077 14.96 9.41 24.37 43.50 -19.13 QP 319.9930 8.57 16.53 25.10 46.00 -20.90 QP 360.0056 9.75 17.28 27.03 46.00 -18.97 QP	Mk. Freq. Level Factor ment Limit Margin Height * MHz dBuV dBuV dBuV/m dBuV/m dB Detector cm * 36.1905 10.27 13.10 23.37 40.00 -16.63 QP 199 83.2006 8.62 9.96 18.58 40.00 -21.42 QP 199 136.5077 14.96 9.41 24.37 43.50 -19.13 QP 100 319.9930 8.57 16.53 25.10 46.00 -20.90 QP 100 360.0056 9.75 17.28 27.03 46.00 -18.97 QP 199	Mk. Freq. Level Factor ment Limit Margin Height Degree MHz dBuV dB/m dBuV/m dBuV/m dB Detector cm degree * 36.1905 10.27 13.10 23.37 40.00 -16.63 QP 199 29 83.2006 8.62 9.96 18.58 40.00 -21.42 QP 199 185 136.5077 14.96 9.41 24.37 43.50 -19.13 QP 100 17 319.9930 8.57 16.53 25.10 46.00 -20.90 QP 100 211 360.0056 9.75 17.28 27.03 46.00 -18.97 QP 199 352



Vertical:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		82.2146	9.66	9.72	19.38	40.00	-20.62	QP	100	67	
2		119.9818	13.79	11.66	25.45	43.50	-18.05	QP	100	236	
3		142.7492	12.64	9.15	21.79	43.50	-21.71	QP	100	278	
4		223.0284	8.22	13.25	21.47	46.00	-24.53	QP	100	77	
5		319.9931	7.99	16.53	24.52	46.00	-21.48	QP	200	360	
6	*	599.9521	5.72	22.26	27.98	46.00	-18.02	QP	100	3	

Report No.: EED32Q81519602 Page 27 of 50

Radiated Spurious Emission above 1GHz:

Remark: Through Pre-scan, for 20MHz Occupied Bandwidth, 802.11 b mode was the worst case; for 40MHz Occupied Bandwidth, 802.11 n(HT40) mode was the worst case; only the worst case was recorded in the report.

			1200		1 200		200			20 4
	Mode	:		802.11 b Tran	smitting		Channe	el:	2412MH:	Z
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1148.8149	7.69	38.20	45.89	74.00	28.11	PASS	Н	PK
	2	1932.6933	11.87	37.02	48.89	74.00	25.11	PASS	Н	PK
Ī	3	3985.0657	-15.44	59.73	44.29	74.00	29.71	PASS	Н	PK
	4	4824.1216	-12.66	59.52	46.86	74.00	27.14	PASS	Н	PK
7	5	7170.278	-4.47	52.72	48.25	74.00	25.75	PASS	Н	PK
	6	9647.4432	3.26	49.21	52.47	74.00	21.53	PASS	Н	PK
	7	1152.6153	7.65	37.54	45.19	74.00	28.81	PASS	V	PK
	8	1640.6641	8.54	37.33	45.87	74.00	28.13	PASS	V	PK
	9	4824.1216	-12.66	57.45	44.79	74.00	29.21	PASS	V	PK
	10	7236.2824	-4.05	52.13	48.08	74.00	25.92	PASS	V	PK
	11	9647.4432	3.26	46.34	49.60	74.00	24.40	PASS	V	PK
Ī	12	11024.535	6.80	44.66	51.46	74.00	22.54	PASS	V	PK

Mode):	Channe	el:	2437MH	Z				
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1313.6314	7.32	36.94	44.26	74.00	29.74	PASS	Н	PK
2	2094.1094	10.46	40.61	51.07	74.00	22.93	PASS	Н	PK
3	4874.1249	-12.08	57.57	45.49	74.00	28.51	PASS	Н	PK
4	6654.2436	-7.24	55.45	48.21	74.00	25.79	PASS	Н	PK
5	7312.2875	-3.93	49.69	45.76	74.00	28.24	PASS	Н	PK
6	10303.486	5.11	46.85	51.96	74.00	22.04	PASS	Н	PK
7	1298.2298	7.10	36.96	44.06	74.00	29.94	PASS	V	PK
8	1830.8831	10.44	36.93	47.37	74.00	26.63	PASS	V	PK
9	4874.1249	-12.08	57.03	44.95	74.00	29.05	PASS	V	PK
10	7311.2874	-3.93	52.09	48.16	74.00	25.84	PASS	V	PK
11	9747.4498	3.05	45.71	48.76	74.00	25.24	PASS	V	PK
12	11243.549	7.22	43.11	50.33	74.00	23.67	PASS	V	PK

Report No.: EED32Q81519602

	Mode	:		802.11 b Tran	smitting		Channe	el:	2462MH:	Z	
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
3	1	1389.839	8.30	37.92	46.22	74.00	27.78	PASS	Н	PK	
6	2	1944.4944	12.22	35.84	48.06	74.00	25.94	PASS	Н	PK	
	3	5333.1555	-10.65	55.22	44.57	74.00	29.43	PASS	Н	PK	
	4	7179.2786	-4.57	51.46	46.89	74.00	27.11	PASS	Н	PK	
	5	9228.4152	1.19	45.73	46.92	74.00	27.08	PASS	Н	PK	
	6	11241.549	7.17	43.64	50.81	74.00	23.19	PASS	Н	PK	
Ī	7	1405.4405	8.41	36.63	45.04	74.00	28.96	PASS	V	PK	
	8	1991.4992	9.91	40.09	50.00	74.00	24.00	PASS	V	PK	
	9	4924.1283	-13.45	57.52	44.07	74.00	29.93	PASS	V	PK	
	10	7385.2924	-3.83	53.31	49.48	74.00	24.52	PASS	V	PK	
9	11	9847.4565	4.00	46.87	50.87	74.00	23.13	PASS	V	PK	
9	12	11255.550	7.05	43.99	51.04	74.00	22.96	PASS	V	PK	

Mode):		802.11 n(HT4	0) Transmitti	ng	Channe	əl:	2422MH:	2422MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	1314.6315	7.33	36.71	44.04	74.00	29.96	PASS	Н	PK	
2	1941.4941	12.13	37.44	49.57	74.00	24.43	PASS	Н	PK	
3	3324.0216	-16.91	56.54	39.63	74.00	34.37	PASS	Н	PK	
4	3997.0665	-15.72	59.54	43.82	74.00	30.18	PASS	Н	PK	
5	5322.1548	-10.93	52.99	42.06	74.00	31.94	PASS	Н	PK	
6	6660.244	-7.03	54.35	47.32	74.00	26.68	PASS	Н	PK	
7	1266.0266	6.35	38.33	44.68	74.00	29.32	PASS	V	PK	
8	2049.905	10.79	37.91	48.70	74.00	25.30	PASS	V	PK	
9	4709.1139	-11.62	49.75	38.13	74.00	35.87	PASS	V	PK	
10	6890.2594	-4.16	45.80	41.64	74.00	32.36	PASS	V	PK	
11	8293.3529	-1.42	45.13	43.71	74.00	30.29	PASS	V	PK	
12	9602.4402	3.82	42.75	46.57	74.00	27.43	PASS	V	PK	

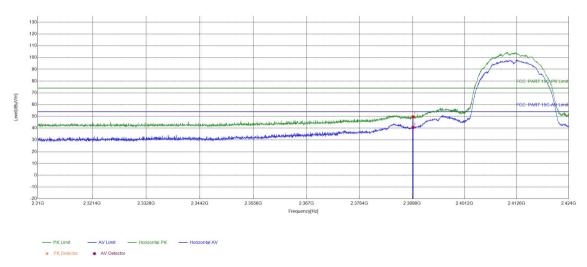
Report No.: EED32Q81519602 Page 29 of 50

	20%		20%		20%	20%			
Mode	:		802.11 n(HT4	0) Transmitti	ing	Channe	el:	2437MH	z
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1423.0423	8.38	37.04	45.42	74.00	28.58	PASS	Н	PK
2	1940.294	12.09	35.59	47.68	74.00	26.32	PASS	Н	PK
3	3996.0664	-15.70	58.51	42.81	74.00	31.19	PASS	Н	PK
4	5327.1551	-10.81	51.93	41.12	74.00	32.88	PASS	Н	PK
5	7084.2723	-4.71	47.10	42.39	74.00	31.61	PASS	Н	PK
6	10605.507	6.72	42.40	49.12	74.00	24.88	PASS	Н	PK
7	1518.6519	8.08	38.44	46.52	74.00	27.48	PASS	V	PK
8	1936.0936	11.96	36.78	48.74	74.00	25.26	PASS	V	PK
9	3950.0633	-14.61	51.96	37.35	74.00	36.65	PASS	V	PK
10	5425.1617	-10.61	48.66	38.05	74.00	35.95	PASS	V	PK
11	6903.2602	-4.00	45.79	41.79	74.00	32.21	PASS	V	PK
12	9110.4074	0.90	44.76	45.66	74.00	28.34	PASS	V	PK

Mode	:		802.11 n(H	IT40) Transmit	ting	Channe	el:	2452MH	Z
NO	Freq. [MHz]	Factor [dB]	r Readin [dBµV	0	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1331.6332	7.55	38.18	45.73	74.00	28.27	PASS	Н	PK
2	1939.0939	12.06	36.11	48.17	74.00	25.83	PASS	Н	PK
3	3997.0665	-15.72	57.99	42.27	74.00	31.73	PASS	Н	PK
4	5323.1549	-10.90	53.47	42.57	74.00	31.43	PASS	Н	PK
5	7339.2893	-3.75	47.14	43.39	74.00	30.61	PASS	Н	PK
6	9306.4204	2.27	46.80	49.07	74.00	24.93	PASS	Н	PK
7	1332.2332	7.56	37.01	44.57	74.00	29.43	PASS	V	PK
8	1995.4996	9.67	39.27	48.94	74.00	25.06	PASS	V	PK
9	3946.0631	-14.64	52.15	37.51	74.00	36.49	PASS	V	PK
10	4904.1269	-11.89	51.37	39.48	74.00	34.52	PASS	V	PK
11	7371.2914	-3.77	48.45	44.68	74.00	29.32	PASS	V	PK
12	9267.4178	1.98	45.99	47.97	74.00	26.03	PASS	V	PK

Remark:

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level =Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

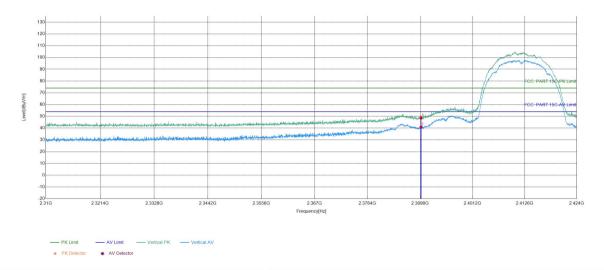


Restricted bands:

Test plot as follows:

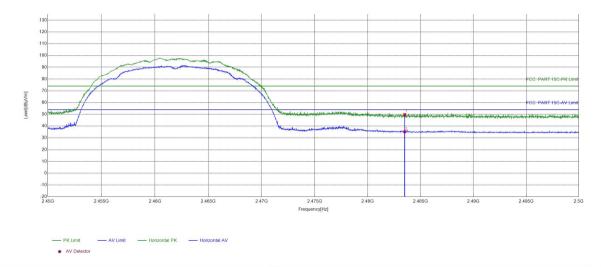
Test_Mode	802.11 b Transmitting	Test_Frequency	2412MHz
Tset_Engineer Aiden.wang		Test_Date	2024\10\18
Remark	,		

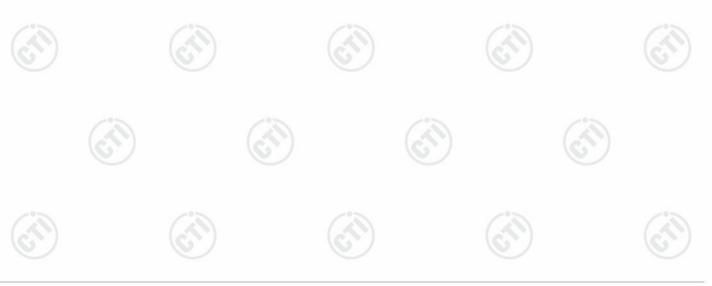
3	Suspecte	d List								
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
Г	1	2390	6.12	43.54	49.66	74.00	24.34	PASS	Horizontal	PK
	2	2390	6.12	34.46	40.58	54.00	13.42	PASS	Horizontal	AV



Report No.: EED32Q81519602 Page 31 of 50

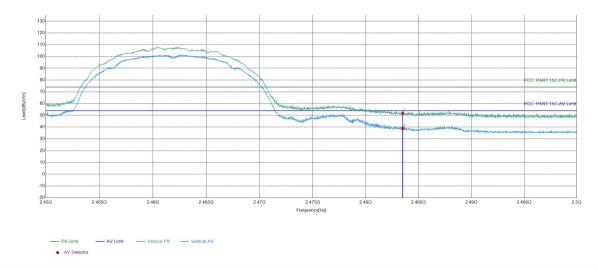
C	102	102	162
Test_Mode	802.11 b Transmitting	Test_Frequency	2412MHz
Tset_Engineer	Aiden.wang	Test_Date	2024\10\18
Remark	1	`	

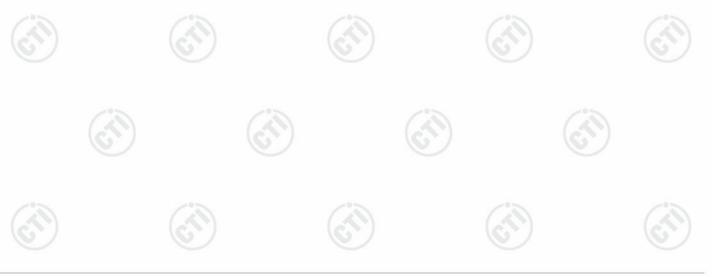

Suspecte	d List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390	6.12	42.43	48.55	74.00	25.45	PASS	Vertical	PK
2	2390	6.12	34.64	40.76	54.00	13.24	PASS	Vertical	AV



Page 32 of 50 Report No.: EED32Q81519602

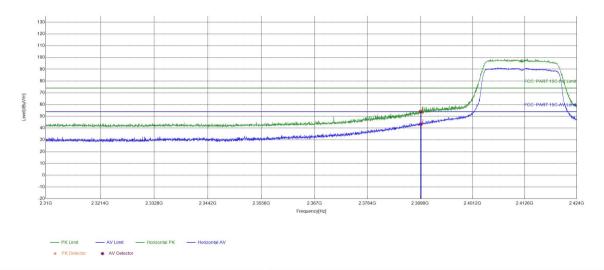
C	102	102	162		
Test_Mode	802.11 b Transmitting	Test_Frequency	2462MHz		
Tset_Engineer	Aiden.wang	Test_Date	2024\10\18		
Remark	1	`			

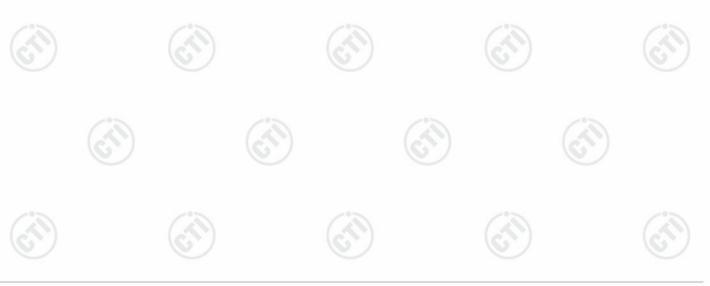

	Suspected List												
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark			
Γ	1	2483.5	11.32	38.50	49.82	74.00	24.18	PASS	Horizontal	PK			
	2	2483.5	11.32	23.86	35.18	54.00	18.82	PASS	Horizontal	AV			



Report No.: EED32Q81519602 Page 33 of 50

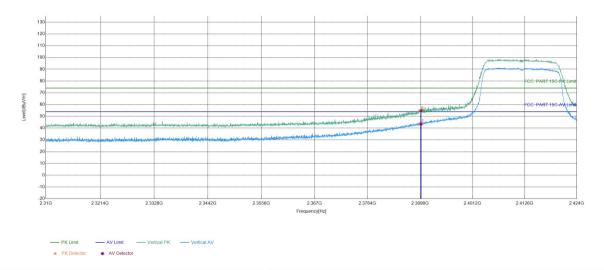
6.71	(0.20)	10.7	16.3		
Test_Mode	802.11 b Transmitting	Test_Frequency	2462MHz		
Tset_Engineer	Aiden.wang	Test_Date	2024\10\18		
Remark	1				

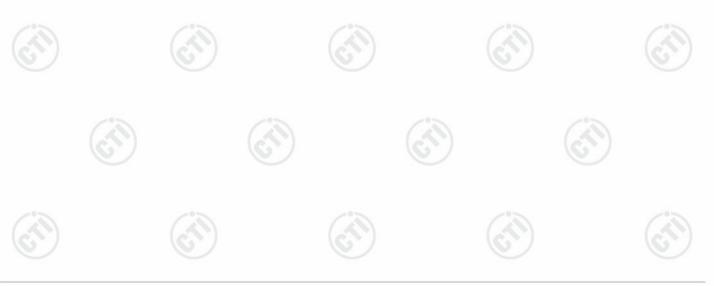

Suspecte	d List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5	11.32	40.66	51.98	74.00	22.02	PASS	Vertical	PK
2	2483.5	11.32	27.46	38.78	54.00	15.22	PASS	Vertical	AV



Report No.: EED32Q81519602 Page 34 of 50

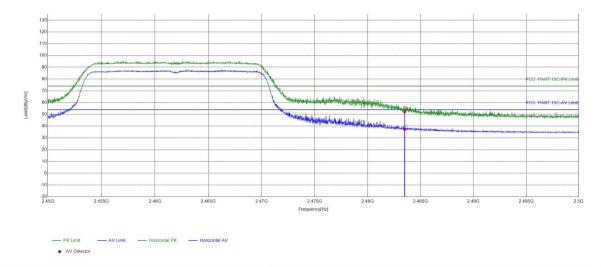
6.57	(C.)	(C.)	100
Test_Mode	802.11 g Transmitting	Test_Frequency	2412MHz
Tset_Engineer	Aiden.wang	Test_Date	2024\10\18
Remark	1		

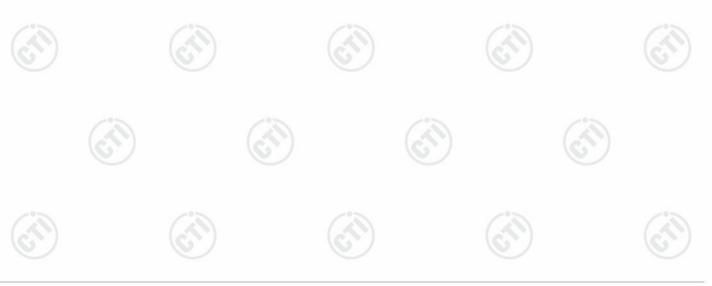

Suspecte	d List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390	6.12	47.67	53.79	74.00	20.21	PASS	Horizontal	PK
2	2390	6.12	37.22	43.34	54.00	10.66	PASS	Horizontal	AV



Report No.: EED32Q81519602 Page 35 of 50

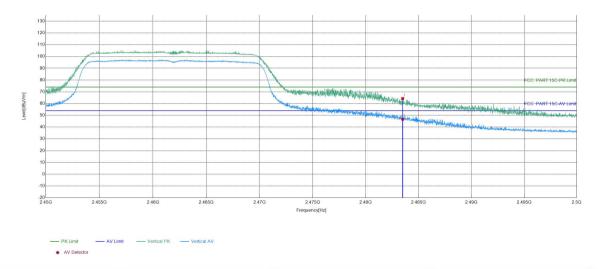
6.57	(C.)	(C.)	100
Test_Mode	802.11 g Transmitting	Test_Frequency	2412MHz
Tset_Engineer	Aiden.wang	Test_Date	2024\10\18
Remark	1		


Suspecte	Suspected List											
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark			
1	2390	6.12	48.66	54.78	74.00	19.22	PASS	Vertical	PK			
2	2390	6.12	37.32	43.44	54.00	10.56	PASS	Vertical	AV			



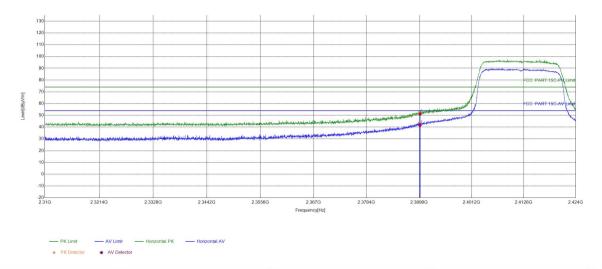
Page 36 of 50 Report No.: EED32Q81519602

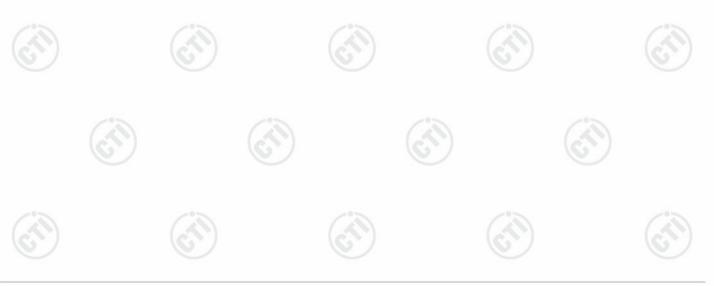
6.0	102	10.	16.3		
Test_Mode	802.11 g Transmitting	Test_Frequency	2462MHz		
Tset_Engineer	Aiden.wang	Test_Date	2024\10\18		
Remark	1				


Suspecte	ed List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5	11.32	41.02	52.34	74.00	21.66	PASS	Horizontal	PK
2	2483.5	11.32	26.11	37.43	54.00	16.57	PASS	Horizontal	AV

Page 37 of 50 Report No.: EED32Q81519602

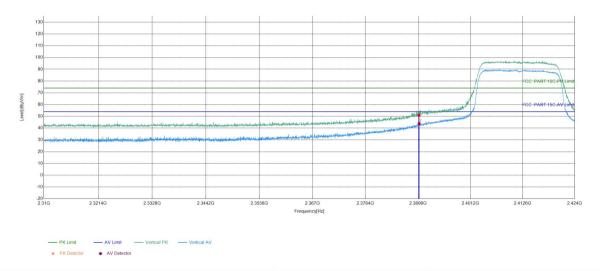
C. J	(C)	(Co	160
Test_Mode	802.11 g Transmitting	Test_Frequency	2462MHz
Tset_Engineer	Aiden.wang	Test_Date	2024\10\18
Remark	1		


Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	2483.5	11.32	53.05	64.37	74.00	9.63	PASS	Vertical	PK	
2	2483.5	11.32	35.36	46.68	54.00	7.32	PASS	Vertical	AV	



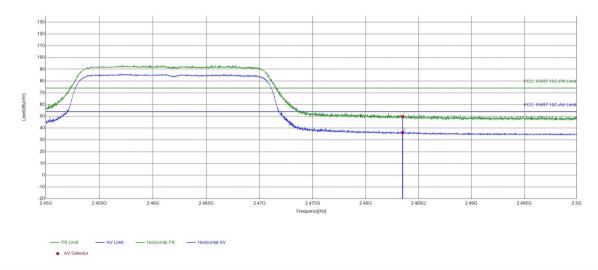
Report No.: EED32Q81519602 Page 38 of 50

6.7	10.70	10.7	162		
Test_Mode	802.11 n(HT20) Transmitting	Test_Frequency	2412MHz 2024\10\18		
Tset_Engineer	Aiden.wang	Test_Date			
Remark	1				


Sus	Suspected List											
N	IO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
•	1	2390	6.12	45.15	51.27	74.00	22.73	PASS	Horizontal	PK		
2	2	2390	6.12	35.69	41.81	54.00	12.19	PASS	Horizontal	AV		

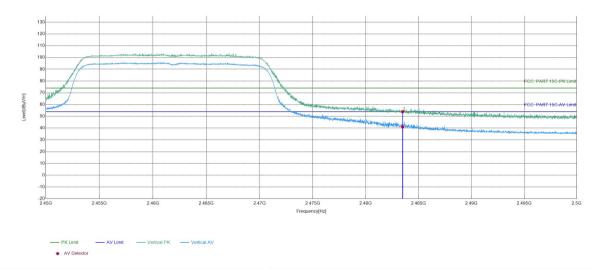
Report No.: EED32Q81519602 Page 39 of 50

6.51	(6.70)	(6.7)	1657
Test_Mode	802.11 n(HT20) Transmitting	Test_Frequency	2412MHz
Tset_Engineer	Aiden.wang	Test_Date	2024\10\18
Remark	1		


Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	2390	6.12	44.85	50.97	74.00	23.03	PASS	Vertical	PK	
2	2390	6.12	37.69	43.81	54.00	10.19	PASS	Vertical	AV	

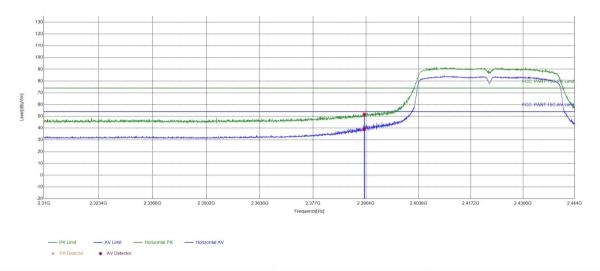
Report No.: EED32Q81519602 Page 40 of 50

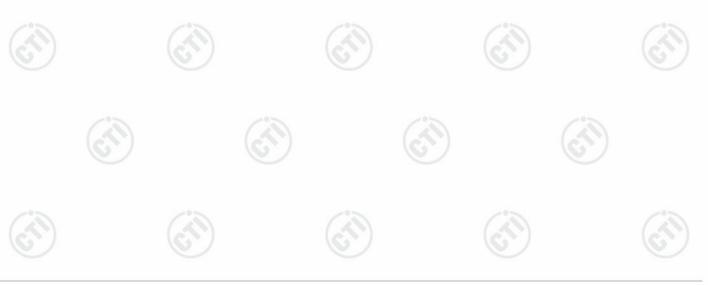
6.7	102	100	16.2		
Test_Mode	802.11 n(HT20) Transmitting	Test_Frequency	2462MHz		
Tset_Engineer	Aiden.wang	Test_Date	2024\10\18		
Remark	1				


Suspecte	d List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5	11.32	38.64	49.96	74.00	24.04	PASS	Horizontal	PK
2	2483.5	11.32	24.96	36.28	54.00	17.72	PASS	Horizontal	AV

Page 41 of 50 Report No.: EED32Q81519602

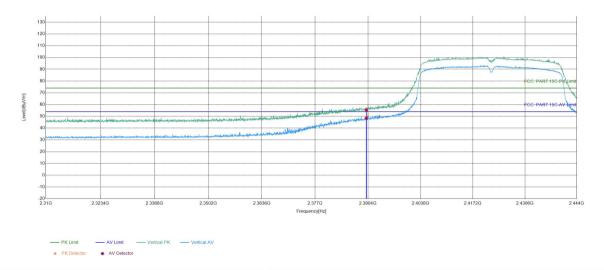
6.51	(6.70)	(C.	1627
Test_Mode	802.11 n(HT20) Transmitting	Test_Frequency	2462MHz
Tset_Engineer	Aiden.wang	Test_Date	2024\10\18
Remark	1		

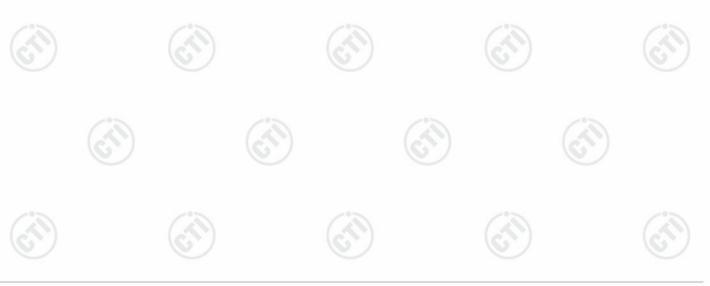

	Suspected List										
1	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
	1	2483.5	11.32	42.71	54.03	74.00	19.97	PASS	Vertical	PK	
	2	2483.5	11.32	29.70	41.02	54.00	12.98	PASS	Vertical	AV	



Page 42 of 50 Report No.: EED32Q81519602

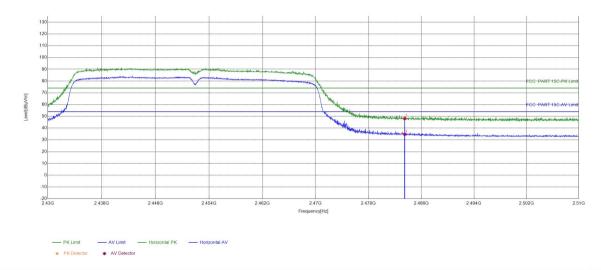
0.71	10.00	16.	16.7
Test_Mode	802.11 n(HT40) Transmitting	Test_Frequency	2422MHz
Tset_Engineer	Aiden.wang	Test_Date	2024\10\18
Remark	1		


Suspecte	Suspected List											
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark			
1	2390	11.29	40.63	51.92	74.00	22.08	PASS	Horizontal	PK			
2	2390	11.29	27.72	39.01	54.00	14.99	PASS	Horizontal	AV			



Report No.: EED32Q81519602 Page 43 of 50

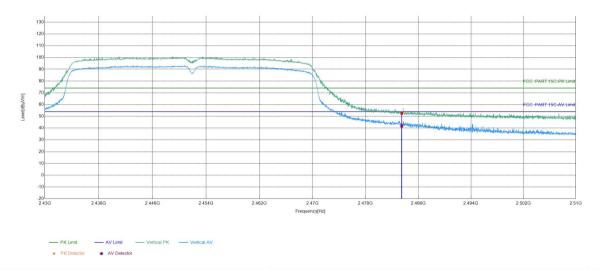
	16.4	16.4	16.4.	
Test_Mode	802.11 n(HT40) Transmitting	Test_Frequency	2422MHz	
Tset_Engineer Aiden.wang		Test_Date	2024\10\18	
Remark	1			


Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	2390	11.29	44.19	55.48	74.00	18.52	PASS	Vertical	PK	
2	2390	11.29	37.13	48.42	54.00	5.58	PASS	Vertical	AV	

Page 44 of 50 Report No.: EED32Q81519602

0.71	10.00	16.	16.7	
Test_Mode	802.11 n(HT40) Transmitting	Test_Frequency	2452MHz	
Tset_Engineer	Aiden.wang	Test_Date	2024\10\18	
Remark	1			

Suspected List									
ОИ	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5	11.45	36.67	48.12	74.00	25.88	PASS	Horizontal	PK
2	2483.5	11.45	23.29	34.74	54.00	19.26	PASS	Horizontal	AV



Report No.: EED32Q81519602 Page 45 of 50

C	(6.5)	(6.4)	16.5	
Test_Mode	802.11 n(HT40) Transmitting	Test_Frequency	2452MHz	
Tset_Engineer	Aiden.wang	Test_Date	2024\10\18	
Remark	1			

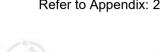
Test Graph

S	Suspected List									
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2483.5	11.45	41.11	52.56	74.00	21.44	PASS	Vertical	PK
	2	2483.5	11.45	30.26	41.71	54.00	12.29	PASS	Vertical	AV

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor



7 Appendix 2.4G Wi-Fi

Refer to Appendix: 2.4G Wi-Fi of EED32Q81519602

Report No. : EED32Q81519602 Page 49 of 50

9 PHOTOGRAPHS OF EUT Constructional Details

Report No.: EED32Q81519602 Page 50 of 50

Statement

- 1. This report is considered invalid without approved signature, special seal and the seal on the perforation;
- 2.The Company Name shown on Report and Address, the sample(s) and sample information was/were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified;
- 3. The result(s) shown in this report refer(s) only to the sample(s) tested;
- 4. Unless otherwise stated, the decision rule for conformity reporting is based on Binary Statement for Simple Acceptance Rule stated in ILAC-G8:09/2019/CNAS-GL015:2022;
- 5. Without written approval of CTI, this report can't be reproduced except in full;

