

Г

RADIO TEST REPORT

Test Report No. 15573085H-A-R1

Customer	Panasonic Corporation of North America
Description of EUT	Wireless Transmitter
Model Number of EUT	SH-GNW30
FCC ID	ACJ-SH-GNW30
Test Regulation	FCC Part 15 Subpart C
Test Result	Complied
Issue Date	February 3, 2025
Remarks	Bluetooth Low Energy part

Representative Test Engineer	Approved By
Y Mosiya	T. Shimada
Yuta Moriya	Takumi Shimada
Engineer	Engineer
	ACCREDITED
	CERTIFICATE 5107.02
The testing in which "Non-accreditation" is displayed i	s outside the accreditation scopes in UL Japan, Inc.
There is no testing item of "Non-accreditation".	
	e - Form-ULID-003532 (DCS:13-EM-F0429) Issue# 24.0

ANNOUNCEMENT

- This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- The results in this report apply only to the sample tested. (Laboratory was not involved in sampling.)
- This sample tested is in compliance with the limits of the above regulation.
- The test results in this test report are traceable to the national or international standards.
- This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- This test report covers Radio technical requirements. It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)
- All test items in this test report are conducted by UL Japan, Inc. Ise EMC Lab.
- The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan, Inc. has been accredited.
- The information provided by the customer for this report is identified in SECTION 1.
- The laboratory is not responsible for information provided by the customer which can impact the validity of the results.
- For test report(s) referred in this report, the latest version (including any revisions) is always referred.

REVISION HISTORY

Original Test Report No. 15573085H-A

This report is a revised version of 15573085H-A. 15573085H-A is replaced with this report.

Revision	Test Report No.	Date	Page Revised Contents
- (Original)	15573085H-A	January 29, 2025	-
1	15573085H-A-R1	February 3, 2025	Section 2.1 -Modified test date. November 26, 2024 to January 20, 2025 → November 26 to December 13, 2024 Section 2.2 General Specification -Modified rating. DC 5 V → DC 12 V Section 4.1 -Deletion of Simultaneous transmission. APPENDIX 1 Test data [Radiated Spurious Emission] -Deletion of data for Mode: Tx BT LE 1M 2402 MHz + Tx Wireless 2.4 GHz Audio module 2440.35 MHz. [99 % Occupied Bandwidth and 6 dB Bandwidth] -Modified frequency in the table. 2412 → 2402 2437 → 2440 2462 → 2480 APPENDIX 2 Test Instruments -Modified last calibration date for LIMS ID: 141950. 11/20/2023 →11/28/2024

Reference: Abbreviations (Including words undescribed in this report)

A2LA	The American Association for Laboratory Accreditation	IEC	International Electrotechnical Commission
AC	Alternating Current	IEEE	Institute of Electrical and Electronics Engineers
AFH	Adaptive Frequency Hopping	IF	Intermediate Frequency
AM	Amplitude Modulation	ILAC	International Laboratory Accreditation Conference
Amp, AMP	Amplifier	ISED	Innovation, Science and Economic Development Canada
ANSI	American National Standards Institute	ISO	International Organization for Standardization
Ant, ANT	Antenna	JAB	Japan Accreditation Board
AP	Access Point	LAN	Local Area Network
ASK	Amplitude Shift Keying	LIMS	Laboratory Information Management System
Atten., ATT	Attenuator	MCS	Modulation and Coding Scheme
AV	Average	MRA	Mutual Recognition Arrangement
BPSK	Binary Phase-Shift Keying	N/A	Not Applicable
BR	Bluetooth Basic Rate	NIST	National Institute of Standards and Technology
BT	Bluetooth	NS	No signal detect.
BT LE	Bluetooth Low Energy	NSA	Normalized Site Attenuation
BW	BandWidth	NVLAP	National Voluntary Laboratory Accreditation Program
Cal Int	Calibration Interval	OBW	Occupied Band Width
CCK	Complementary Code Keying	OFDM	Orthogonal Frequency Division Multiplexing
Ch., CH	Channel	OFDMA	Orthogonal Frequency Division Multiple Access
CISPR	Comite International Special des Perturbations Radioelectriques	P/M	Power meter
CW	Continuous Wave	PCB	Printed Circuit Board
DBPSK	Differential BPSK	PER	Packet Error Rate
DC	Direct Current	PHY	Physical Layer
D-factor	Distance factor	PK	Peak
DFS	Dynamic Frequency Selection	PN	Pseudo random Noise
DQPSK	Differential QPSK	PP	Preamble Puncturing
DSSS	Direct Sequence Spread Spectrum	PRBS	Pseudo-Random Bit Sequence
EDR	Enhanced Data Rate	PSD	Power Spectral Density
EIRP, e.i.r.p.	Equivalent Isotropically Radiated Power	QAM	Quadrature Amplitude Modulation
EMC	ElectroMagnetic Compatibility	QP	Quasi-Peak
EMI	ElectroMagnetic Interference	QPSK	Quadri-Phase Shift Keying
EN	European Norm	RBW	Resolution Band Width
ERP, e.r.p.	Effective Radiated Power	RDS	Radio Data System
EU	European Union	RE	Radio Equipment
EUT	Equipment Under Test	RF	Radio Frequency
Fac.	Factor	RMS	Root Mean Square
FCC	Federal Communications Commission	RSS	Radio Standards Specifications
FHSS	Frequency Hopping Spread Spectrum	Rx	Receiving
FM	Frequency Modulation	SA, S/A	Spectrum Analyzer
Freq.	Frequency	SG	Signal Generator
FSK	Frequency Shift Keying	SVSWR	Site-Voltage Standing Wave Ratio
GFSK	Gaussian Frequency-Shift Keying	TR	Test Receiver
GNSS	Global Navigation Satellite System	Tx	Transmitting
GPS	Global Positioning System	VBW	Video BandWidth
Hori.	Horizontal	Vert.	Vertical
ICES	Interference-Causing Equipment Standard	WLAN	Wireless LAN

CONTENTS

PAGE

CECTION 4. Outstand Information	r
SECTION 1: Customer Information	
SECTION 2: Equipment Under Test (EUT)	
SECTION 3: Test Specification, Procedures & Results	7
SECTION 4: Operation of EUT during testing	
SECTION 5: Conducted Emission	
SECTION 6: Radiated Spurious Emission	
SECTION 7: Antenna Terminal Conducted Tests	
APPENDIX 1: Test Data	
Conducted Emission	
99 % Occupied Bandwidth and 6 dB Bandwidth	
Maximum Peak Output Power	
Average Output Power	
Radiated Spurious Emission	
Conducted Spurious Emission	
Power Density	40
APPENDIX 2: Test Instruments	
APPENDIX 3: Photographs of Test Setup	44
Conducted Emission	
Radiated Spurious Emission	
Antenna Terminal Conducted Tests	

SECTION 1: Customer Information

Company Name	Panasonic Corporation of North America *
Address	Two Riverfront Plaza, 9th Floor
	Newark New Jersey United States 07 102-5490
Contact Person	Ben Botros

*Remarks:

Panasonic Entertainment & Communication Co., Ltd. is on behalf of the applicant: Panasonic Corporation of North America (Company incorporated abroad).

The information provided by the customer is as follows;

- Customer, Description of EUT, Model Number of EUT, FCC ID on the cover and other relevant pages
- Operating/Test Mode(s) (Mode(s)) on all the relevant pages
- SECTION 1: Customer Information
- SECTION 2: Equipment Under Test (EUT) other than the Receipt Date and Test Date

- SECTION 4: Operation of EUT during testing

SECTION 2: Equipment Under Test (EUT)

2.1 Identification of EUT

Description	Wireless Transmitter
Model Number	SH-GNW30
Serial Number	Refer to SECTION 4.2
Condition	Production prototype
	(Not for Sale: This sample is equivalent to mass-produced items.)
Modification	No Modification by the test lab
Receipt Date	November 25, 2024
Test Date	November 26 to December 13, 2024

2.2 Product Description

General Specification

Rating	DC 12 V
Operating temperature	5 deg. C to 35 deg. C

Radio Specification

This report contains data provided by the customer which can impact the validity of results. UL Japan, Inc. is only responsible for the validity of results after the integration of the data provided by the customer. The data provided by the customer is marked "a)" in the table below.

Bluetooth (Low Energy)

Equipment Type	Transceiver
Frequency of Operation	2402 MHz to 2480 MHz
Type of Modulation	GFSK
Antenna Gain ^{a)}	1.8 dBi

Bluetooth (BR / EDR)

Equipment Type	Transceiver
Frequency of Operation	2402 MHz to 2480 MHz
Type of Modulation	FHSS (GFSK, π/4 DQPSK, 8 DPSK)
Antenna Gain ^{a)}	1.8 dBi

Wireless 2.4 GHz Audio module *1)

Equipment Type	Transceiver
Frequency of Operation	2406.35 MHz to 2476.35 MHz
Type of Modulation	pi/4-shifted DQPSK
Antenna Gain	3.9 dBi

*1) The Wireless 2.4 GHz Audio module (Model number: SWA20) already certified as FCC ID: NKR-SWA20.

SECTION 3: Test Specification, Procedures & Results

3.1 Test Specification

Test Specification	FCC Part 15 Subpart C
	The latest version on the first day of the testing period
Title	FCC 47 CFR Part 15 Radio Frequency Device Subpart C Intentional Radiators
	Section 15.207 Conducted limits
	Section 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz,
	and 5725-5850 MHz

* Also the EUT complies with FCC Part 15 Subpart B.

3.2 Procedures and Results

Item	Test Procedure	Specification	Worst Margin	Results	Remarks
Conducted	FCC: ANSI C63.10-2013	FCC: Section 15.207	11.63 dB,	Complied	-
Emission	6. Standard test methods		0.79645 MHz, L, AV		
	ISED: RSS-Gen 8.8	ISED: RSS-Gen 8.8			
6dB Bandwidth	FCC: KDB 558074 D01	FCC: Section	See data.	Complied	Conducted
	15.247	15.247(a)(2)			
	Meas Guidance v05r02				
	ISED: -	ISED: RSS-247 5.2(a)	-		
Maximum	FCC: KDB 558074 D01	FCC: Section		Complied	Conducted
Peak	15.247	15.247(b)(3)			
Output Power	Meas Guidance v05r02				
	ISED: RSS-Gen 6.12	ISED: RSS-247 5.4(d)			
Power Density	FCC: KDB 558074 D01	FCC: Section 15.247(e)		Complied	Conducted
	15.247				
	Meas Guidance v05r02				
	ISED: -	ISED: RSS-247 5.2(b)			
Spurious	FCC: KDB 558074 D01	FCC: Section15.247(d)	8.1 dB	Complied	Conducted
Emission	15.247		54.3 MHz, QP,		(below 30 MHz)/
Restricted	Meas Guidance v05r02		Vertical		Radiated
Band Edges	ISED: RSS-Gen 6.13	ISED: RSS-247 5.5			(above 30 MHz)
		RSS-Gen 8.9			*1)
		RSS-Gen 8.10			

* In case any questions arise about test procedure, ANSI C63.10: 2013 is also referred.

*1) Radiated test was selected over 30 MHz based on section 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02 8.5 and 8.6.

FCC Part 15.31 (e)

This EUT provides the stable voltage constantly to RF Module regardless of input voltage. Therefore, this EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT. Therefore, the equipment complies with the antenna requirement of Section 15.203.

3.3 Addition to Standard

Item	Test Procedure	Specification	Worst Margin	Results	Remarks
99% Occupied Bandwidth	ISED: RSS-Gen 6.7	ISED: -	N/A	-	Conducted

Other than above, no addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

Measurement uncertainty is not taken into account when stating conformity with a specified requirement. Note: When margins obtained from test results are less than the measurement uncertainty, the test results may exceed the limit.

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k = 2.

Conducted emission

ltem	Frequency range	Unit	Calculated Uncertainty (+/-)
AMN (LISN)	0.15 MHz to 30 MHz	dB	3.3

Measurement distance	Frequency range		Unit	Calculated Uncertainty (+/-)
3 m	9 kHz to 30 MHz		dB	3.3
10 m			dB	3.1
3 m	30 MHz to 200 MHz	Horizontal	dB	5.0
		Vertical	dB	5.0
	200 MHz to 1000 MHz	Horizontal	dB	5.2
		Vertical	dB	6.2
10 m	30 MHz to 200 MHz	Horizontal	dB	5.5
		Vertical	dB	5.4
	200 MHz to 1000 MHz	Horizontal	dB	5.5
		Vertical	dB	5.5
3 m	1 GHz to 6 GHz	<u>.</u>	dB	5.1
	6 GHz to 18 GHz		dB	5.4
1 m	10 GHz to 18 GHz 18 GHz to 26.5 GHz		dB	5.4
			dB	5.3
	26.5 GHz to 40 GHz		dB	4.8
0.5 m	26.5 GHz to 40 GHz		dB	5.0

Radiated emission

Antenna Terminal Conducted

Item	Unit	Calculated
		Uncertainty (+/-)
Antenna terminated conducted emission / Power density / Burst power	dB	3.47
Adjacent channel power (ACP)	dB	2.28
Bandwidth (OBW)	%	0.96
Time readout (time span upto 100 msec)	%	0.11
Time readout (time span upto 1000 msec)	%	0.11
Time readout (time span upto 60 sec)	%	0.02
Power measurement (Power meter < 8 GHz)	dB	1.46
Power measurement (Call box < 6 GHz)	dB	1.69
Frequency readout (Frequency counter)	ppm	0.67
Frequency readout (Spectrum analyzer frequency readout function)	ppm	2.13
Temperature (constant temperature bath)	deg. C	0.69
Humidity (constant temperature bath)	%RH	2.98
Modulation characteristics	%	6.93
Frequency for mobile	ppm	0.08
Contention-based protocol	dB	2.26

3.5 Test Location

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 Japan

Telephone: +81-596-24-8999

A2LA Certificate Number: 5107.02 / FCC Test Firm Registration Number: 884919

ISED Lab Company Number: 2973C / CAB identifier: JP0002

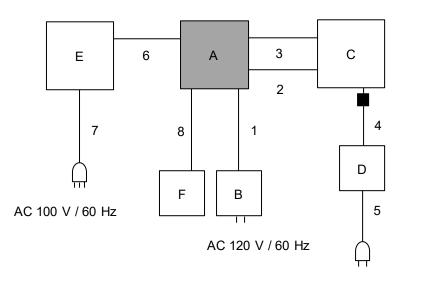
Test site	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms	Maximum measurement distance
No.1 semi-anechoic chamber	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power source room	10 m
No.2 semi-anechoic chamber	7.5 x 5.8 x 5.2	4.0 x 4.0	-	3 m
No.3 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m
No.3 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.4 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m
No.4 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.5 semi-anechoic chamber	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-
No.5 measurement room	6.4 x 6.4 x 3.0	6.4 x 6.4	-	-
No.6 shielded room	4.0 x 4.5 x 2.7	4.0 x 4.5	-	-
No.6 measurement room	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-
No.7 shielded room	4.7 x 7.5 x 2.7	4.7 x 7.5	-	-
No.8 measurement room	3.1 x 5.0 x 2.7	3.1 x 5.0	-	-
No.9 measurement room	8.8 x 4.6 x 2.8	2.4 x 2.4	-	-
No.10 shielded room	3.8 x 2.8 x 2.8	3.8 x 2.8	-	-
No.11 measurement room	4.0 x 3.4 x 2.5	N/A	-	-
No.12 measurement room	2.6 x 3.4 x 2.5	N/A	-	-
Large Chamber	16.9 x 22.1 x 10.17	16.9 x 22.1	-	10 m
Small Chamber	5.3 x 6.69 x 3.59	5.3 x 6.69	-	-

* Size of vertical conducting plane (for Conducted Emission test): 2.0 x 3.0 m for No.1, No.2, No.3, No.4, and No.5 semi-anechoic chambers and No.3 and No.4 shielded rooms.

3.6 Test Data, Test Instruments, and Test Set Up

Refer to APPENDIX.

SECTION 4: Operation of EUT during testing


4.1 Operating Mode(s)

Mode	Remarks*			
Bluetooth Low Energy (BT LE)	Uncoded 1M-PHY (1M), Maximum Packet Size, PRBS9			
Bluetooth Low Energy (BT LE)	Uncoded 2M-PHY (2M), Maximum Packet Size, PRBS9			
*Power of the EUT was set by the	software as follows;			
Power Setting: 6 dBm	6 dBm			
Software: RTLBTAPP Ve	RTLBTAPP Version: 5.2.4.20			
(Date: August 28, 2024, Storage location: Driven by connected PC)				
	rst case. use do not exceed the condition of setting. nge the settings of the output power of the product.			

*The Details of Operating Mode(s)

Test Item	Operating Mode	Tested Frequency			
Conducted Emission,	Tx BT LE 1M *1)	2402 MHz			
Radiated Spurious Emission (Below 1 GHz)					
Radiated Spurious Emission (Above 1 GHz),	Tx BT LE 1M	2402 MHz			
Maximum Peak Output Power,	Tx BT LE 2M	2440 MHz			
Power Density,		2480 MHz			
6dB Bandwidth,					
99% Occupied Bandwidth,					
Conducted Spurious Emission					
*1) Conducted emissions and Spurious emissions for frequencies below 1 GHz were limited to the channel					
that had the highest power during the antenna terminal test, as preliminary testing indicated that changing					
the operating frequency had no significant imp	act on the emissions in those freque	ncy bands.			

4.2 Configuration and Peripherals

AC 100 V / 60 Hz

* Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions. *As a result of comparing AC 120 V and AC 240 V at pre-check, conducted emission test was performed with AC 120 V of the worst voltage as representative.

Description of EUT and Support Equipment

No.	Item	Model number	Serial Number	Manufacturer	Remarks
Α	Wireless Transmitter	SH-GNW30	No.4	Panasonic	EUT
				Entertainment &	
				Communication	
				Co., Ltd.	
В	AC Adapter	SAE0005	23352R	Panasonic	-
С	Laptop	CF-SV7RDAVS	9IKSC48031	Panasonic	-
D	AC Adapter	CF-AA64L2C M1	64L2CM118712770A	Panasonic	-
Е	Monitor	M237WSK	107KCBD2Q445	LG	-
F	Earphones	-	-	-	-

List of Cables Used

No.	Name	Length (m)	Shield		Remarks
			Cable	Connector	
1	DC Cable	1.2	Unshielded	Unshielded	-
2	USB Cable	1.0	Shielded	Shielded	-
3	HDMI Cable	3.0	Shielded	Shielded	-
4	DC Cable	1.8	Unshielded	Unshielded	-
5	AC Cable	0.9	Unshielded	Unshielded	-
6	HDMI Cable	3.0	Shielded	Shielded	-
7	AC Cable	1.8	Unshielded	Unshielded	-
8	Earphone cable	1.1	Unshielded	Unshielded	-

SECTION 5: Conducted Emission

Test Procedure and Conditions

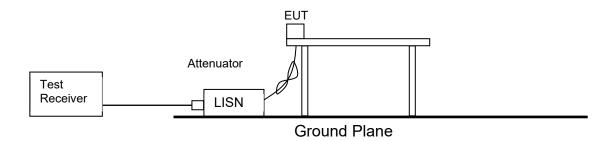
EUT was placed on a urethane platform f nominal size, 1.0 m by 1.5 m, raised 0.8 m above the conducting ground plane.

The rear of tabletop was located 40 cm to the vertical conducting plane. The rear of EUT, including peripherals was aligned and flushed with rear of tabletop. All other surfaces of tabletop were at least 80cm from any other grounded conducting surface. EUT was located 80 cm from a Line Impedance Stabilization Network (LISN) / Artificial mains Network (AMN) and excess AC cable was bundled in center.

For the tests on EUT with other peripherals (as a whole system)

I/O cables that were connected to the peripherals were bundled in center. They were folded back and forth forming a bundle 30 cm to 40 cm long and were hanged at a 40 cm height to the ground plane. All unused 50ohm connectors of the LISN (AMN) were resistivity terminated in 50 ohm when not connected to the measuring equipment.

The AC Mains Terminal Continuous disturbance Voltage has been measured with the EUT in a Semi Anechoic Chamber.


The EUT was connected to a LISN (AMN).

An overview sweep with peak detection has been performed.

Test results are rounded off and limit are rounded down, so some differences might be observed.

Detector	: QP and CISPR AV
Measurement Range	: 0.15 MHz to 30 MHz
Test Data	: APPENDIX
Test Result	: Pass

Figure 1: Test Setup

SECTION 6: Radiated Spurious Emission

Test Procedure

It was measured based on "8.5 and 8.6 of KDB 558074 D01 15.247 Meas Guidance v05r02".

[For below 1 GHz]

EUT was placed on a urethane platform of nominal size, 1.0 m by 1.5 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

[For above 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 0.5 m, raised 1.5 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane. Test antenna was aimed at the EUT for receiving the maximum signal and always kept within the illumination area of the 3 dB beamwidth of the antenna.

The height of the measuring antenna varied between 1 m and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

The measurements were performed for both vertical and horizontal antenna polarization with the Test Receiver, or the Spectrum Analyzer.

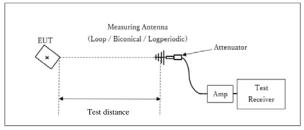
The measurements were made with the following detector function of the test receiver and the Spectrum analyzer (in linear mode).

The test was made with the detector (RBW/VBW) in the following table.

When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

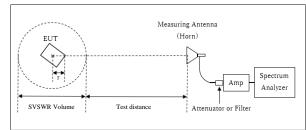
Test Antennas are used as below;

Frequency	30 MHz to 200 MHz	200 MHz to 1 GHz	Above 1 GHz
Antenna Type	Biconical	Logperiodic	Horn


In any 100 kHz bandwidth outside the restricted band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator confirmed 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on a radiated measurement.

20 dBc was applied to the frequency over the limit of FCC 15.209 / Table 4 of RSS-Gen 8.9(ISED) and outside the restricted band of FCC15.205 / Table 6 of RSS-Gen 8.10 (ISED).

Frequency	Below 1 GHz	Above 1 GHz		20 dBc
Instrument Used	Test Receiver	Spectrum Anal	yzer	Spectrum Analyzer
Detector	QP	PK	AV	PK
IF Bandwidth	BW 120 kHz	RBW: 1 MHz	<u>11.12.2.5.1</u>	RBW: 100 kHz
		VBW: 3 MHz	RBW: 1 MHz	VBW: 300 kHz
			VBW: 3 MHz	
			Detector:	
			Power Averaging (RMS)	
			Trace: 100 traces	
			11.12.2.5.2	
			The duty cycle was less	
			than 98% for detected	
			noise, a duty factor was	
			added to the 11.12.2.5.1	
			results.	


Figure 2: Test Setup

Below 1 GHz

× : Center of turn table

1 GHz to 10 GHz

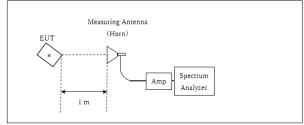
r : Radius of an outer periphery of EUT

× : Center of turn table

Test Distance: 3 m

[1 GHz to 6 GHz]

Distance Factor: $20 \times \log (3.95 \text{ m}^* / 3.0 \text{ m}) = 2.39 \text{dB}$ *(Test Distance + SVSWR Volume /2) - r = 3.95 m


Test Distance: 3 m SVSWR Volume: 2 m (SVSWR Volume has been calibrated based on CISPR 16-1-4.) r: 0.05m

[6 GHz to 10 GHz]

Distance Factor: $20 \times \log (4.95 \text{ m}^* / 3.0 \text{ m}) = 4.35 \text{ dB}$ *(Test Distance + SVSWR Volume /2) - r = 4.95 m

Test Distance: 4.3 m SVSWR Volume: 1.4 m (SVSWR Volume has been calibrated based on CISPR 16-1-4.) r: 0.05 m

10 GHz to 26.5 GHz

× : Center of turn table

The test was made on EUT at the normal use position.

Test results are rounded off and limit are rounded down, so some differences might be observed.

Measurement Range	: 30 MHz to 26.5 GHz
Test Data	: APPENDIX
Test Result	: Pass

Distance Factor: 20 x log (1.0 m / 3.0 m) = -9.54 dB *Test Distance: 1 m

SECTION 7: Antenna Terminal Conducted Tests

Test Procedure

The tests were made with below setting connected to the antenna port.

Test	Span	RBW	VBW	Sweep time	Detector	Trace	Instrument Used
6dB Bandwidth	3 MHz	100 kHz	300 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
99% Occupied Bandwidth *1)	Enough width to display emission skirts	1 to 5 % of OBW	Three times of RBW	Auto	Peak	Max Hold	Spectrum Analyzer
Maximum Peak Output Power	-	-	-	Auto	Peak/ Average *2)	-	Power Meter (Sensor: 50 MHz BW)
Peak Power Density	1.5 times the 6dB Bandwidth	3 kHz	10 kHz	Auto	Peak	Max Hold	Spectrum Analyzer *3)
Conducted	9 kHz to 150 kHz	200 Hz	620 Hz	Auto	Peak	Max Hold	Spectrum Analyzer
Spurious Emission *4) *5)	150 kHz to 30 MHz	10 kHz	30 kHz				

*1) Peak hold was applied as Worst-case measurement.

*2) Reference data

*3) Section 11.10.2 Method PKPSD (peak PSD) of "ANSI C63.10-2013".

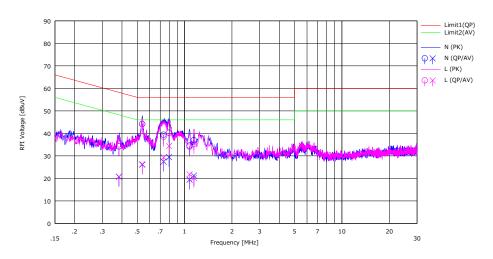
*4) In the frequency range below 30MHz, RBW was narrowed to separate the noise contents.

Then, wide-band noise near the limit was checked separately, however the noise was not detected as shown in the chart.

(9 kHz - 150 kHz: RBW = 200 Hz, 150 kHz - 30 MHz: RBW = 10 kHz)

5) The limits in CFR 47, Part 15, Subpart C, paragraph 15.209(a), are identical to those in RSS-Gen section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377 Ohmes. For example, the measurement at frequency 9 kHz resulted in a level of 45.5 dBuV/m, which is equivalent to 45.5 - 51.5 = -6.0 dBuA/m, which has the same margin, 3 dB, to the corresponding RSS-Gen Table 6 limit as it has to 15.209(a) limit.

Test results are rounded off and limit are rounded down, so some differences might be observed. The equipment and cables were not used for factor 0 dB of the data sheets.


Test Data	: APPENDIX
Test Result	: Pass

APPENDIX 1: Test Data

Conducted Emission

Test place	Ise EMC Lab. No.1 Semi Anechoic Chamber
Date	December 13, 2024
Temperature / Humidity	20 deg. C / 50 % RH
Engineer	Tetsuro Yoshida
Mode	Tx BT LE 1M 2402 MHz

Limit : FCC_Part 15 Subpart C(15.207)

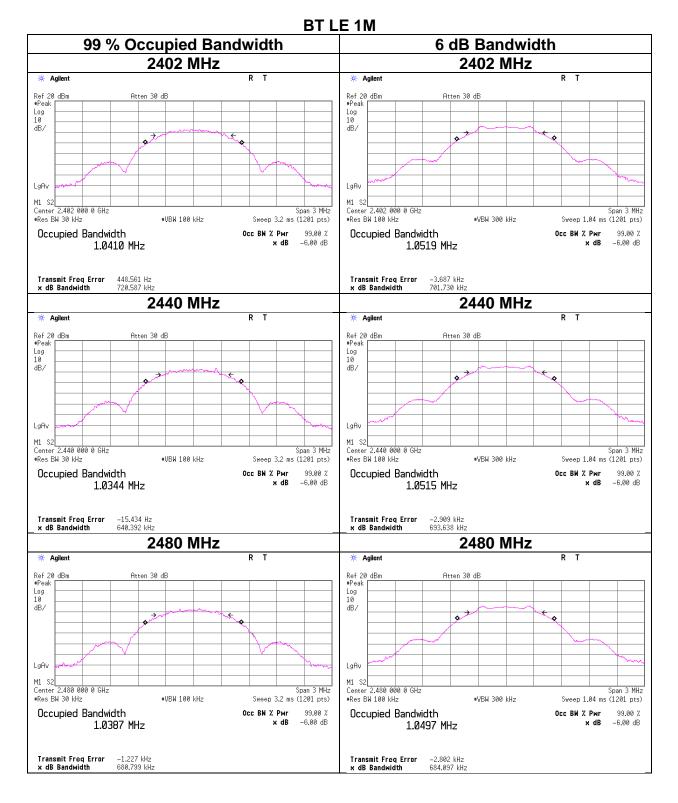
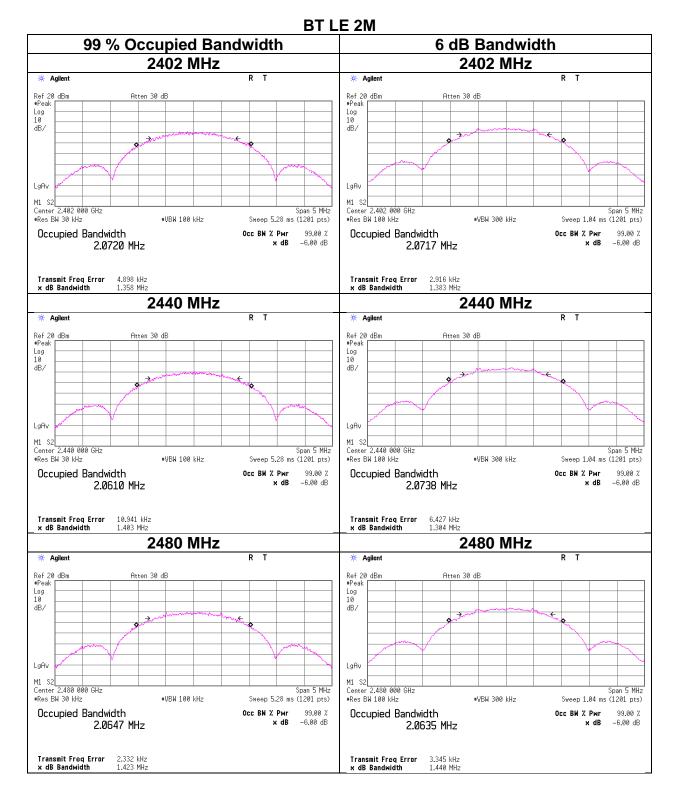

	5 -11-1	Rea	ding	LICN	LOSS	Res	ults	Lir	nit	Mar	gin		
No.	Freq.	(QP)	<av></av>	LISN	LU65	<qp></qp>	<av></av>	(QP)	(AV)	(QP)	(AV)	Phase	Comment
	[MHz]	[dBuV]	[dBuV]	[dB]	[dB]	[dBuV]	[dBuV]	[dBuV]	[dBuV]	[dB]	[dB]		
1	0.38275	21.00	7.60	0.13	13.05	34.18	20.78	58.22	48.22	24.04	27.44	Ν	
2	0.53866	30.90	12.90	0.14	13.08	44.12	26.12	56.00	46.00	11.88	19.88	Ν	
3	0.73594	26.10	14.20	0.15	13.11	39.36	27.46	56.00	46.00	16.64	18.54	N	
4	0.79669	27.00	16.20	0.15	13.12	40.27	29.47	56.00	46.00	15.73	16.53	Ν	
5	1.07524	21.20	6.10	0.16	13.16	34.52	19.42	56.00	46.00	21.48	26.58	N	
6	1.14565	23.60	7.90	0.17	13.17	36.94	21.24	56.00	46.00	19.06	24.76	Ν	
7	0.38254	21.00	7.50	0.13	13.05	34.18	20.68	58.22	48.22	24.04	27.54	L	
8	0.53865	30.90	13.10	0.14	13.08	44.12	26.32	56.00	46.00	11.88	19.68	L	
9	0.73647	25.20	16.10	0.15	13.11	38.46	29.36	56.00	46.00	17.54	16.64	L	
10	0.79645	27.00	21.10	0.15	13.12	40.27	34.37	56.00	46.00	15.73	11.63	L	
11	1.07634	20.70	8.50	0.16	13.16	34.02	21.82	56.00	46.00	21.98	24.18	L	
12	1.14575	21.90	6.90	0.17	13.17	35.24	20.24	56.00	46.00	20.76	25.76	L	

CHART: WITH FACTOR Peak hold data. CALCULATION : RESULT = READING + LISN + LOSS (CABLE + ATT) Except for the above table: adequate margin data below the limits.


99 % Occupied Bandwidth and 6 dB Bandwidth

Test place	Ise EMC Lab. No.8 Measurement Room
Date	December 10, 2024
Temperature / Humidity	23 deg. C / 49 % RH
Engineer	Nachi Konegawa
Mode	Tx BT LE

Mode	Frequency	99% Occupied	6dB Bandwidth	Limit for		
		Bandwidth		6dB Bandwidth		
	[MHz]	[kHz]	[MHz]	[MHz]		
1M	2402	1041.0	0.702	> 0.5000		
	2440	1034.4	0.694	> 0.5000		
	2480	1038.7	0.684	> 0.5000		
2M	2402	2072.0	1.383	> 0.5000		
	2440	2061.0	1.304	> 0.5000		
	2480	2064.7	1.440	> 0.5000		

99 % Occupied Bandwidth and 6 dB Bandwidth

99 % Occupied Bandwidth and 6 dB Bandwidth

Maximum Peak Output Power

Test place Ise EMC Lab. No.3 Measurement Room November 27, 2024 23 deg. C / 58 % RH Date Temperature / Humidity Engineer Yuta Moriya Tx BT LE Mode

Uncoded 1M Conducted Power								e.i.r.p. for RSS-247						
Freq.	Reading	Cable	Atten.	Re	sult	Limit		Margin	Antenna	Result		Limit		Margin
	_	Loss	Loss					-	Gain					-
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]	[dBi]	[dBm]	[mW]	[dBm]	[mW]	[dB]
2402	-4.00	0.35	10.07	6.42	4.39	30.00	1000	23.58	1.80	8.22	6.64	36.02	4000	27.80
2440	-4.28	0.35	10.07	6.14	4.11	30.00	1000	23.86	1.80	7.94	6.22	36.02	4000	28.08
2480	-4.51	0.35	10.07	5.91	3.90	30.00	1000	24.09	1.80	7.71	5.90	36.02	4000	28.31

Uncoded 2M Conducted Power							e.i.r.p. for RSS-247							
Freq.	Reading	Cable	Atten.	Re	sult	Limit		Margin	Antenna	Result		Limit		Margin
	-	Loss	Loss				-	Gain					_	
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]	[dBi]	[dBm]	[mW]	[dBm]	[mW]	[dB]
2402	-4.07	0.35	10.07	6.35	4.32	30.00	1000	23.65	1.80	8.15	6.53	36.02	4000	27.87
2440	-4.33	0.35	10.07	6.09	4.06	30.00	1000	23.91	1.80	7.89	6.15	36.02	4000	28.13
2480	-4.52	0.35	10.07	5.90	3.89	30.00	1000	24.10	1.80	7.70	5.89	36.02	4000	28.32

Sample Calculation: Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss e.i.r.p. Result = Conducted Power Result + Antenna Gain *The equipment and cables were not used for factor 0 dB of the data sheets.

<u>Average Output Power</u> (Reference data for RF Exposure)

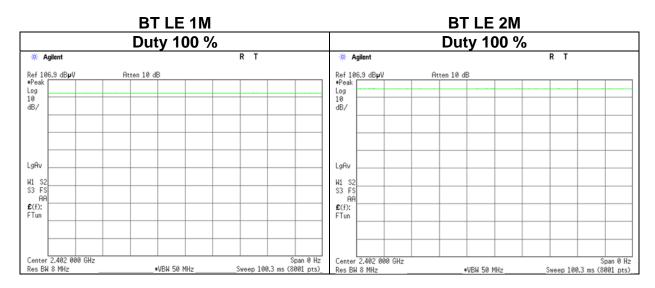
Test place	Ise EMC Lab. No.3 Measurement Room
Date	November 27, 2024
Temperature / Humidity	23 deg. C / 58 % RH
Engineer	Yuta Moriya
Mode	Tx BT LE

Uncoded 1M

Freq.	Reading	Cable	Atten.	Re	sult	Duty	Re	sult
		Loss	Loss	(Time average)		factor	(Burst power average)	
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[dBm] [mW]		[dBm]	[mW]
2402	-4.21	0.35	10.07	6.21	4.18	0.00	6.21	4.18
2440	-4.49	0.35	10.07	5.93	3.92	0.00	5.93	3.92
2480	-4.69	0.35	10.07	5.73	3.74	0.00	5.73	3.74

Uncoded 2M

-								
Freq.	Reading	Cable	Atten.	Re	sult	Duty	Re	sult
		Loss	Loss	(Time a	verage)	factor	(Burst pow	er average)
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dB]	[dBm]	[mW]
2402	-4.29	0.35	10.07	6.13	4.10	0.00	6.13	4.10
2440	-4.54	0.35	10.07	5.88	3.87	0.00	5.88	3.87
2480	-4.74	0.35	10.07	5.68	3.70	0.00	5.68	3.70


Sample Calculation:

Result (Time average) = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss Result (Burst power average) = Time average + Duty factor

*The equipment and cables were not used for factor 0 dB of the data sheets.

Burst rate confirmation

Test placeIse EMC Lab. No.3 Semi Anechoic ChamberDateNovember 26, 2024Temperature / Humidity22 deg. C / 65 % RHEngineerTomoya SoneModeTx

* Since the burst rate is not different between the channels, the data has been obtained on the representative channel.

Radiated Spurious Emission

Test place Ise EMC Lab. Semi Anechoic Chamber No.3 Date November 26, 2024 November 28, 2024 22 deg. C / 65 % RH 23 deg. C / 49 % RH Temperature / Humidity Engineer Tomoya Sone Yuta Moriya (Above 1 GHz) (Below 1 GHz) Mode Tx BT LE 1M 2402 MHz

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP / PK)	(AV)	Factor			Factor	(QP / PK)	(AV)	(QP / PK)	(AV)	(QP / PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	54.3	31.5	-	9.8	7.3	32.2	-	16.4	-	40.0	-	23.6	-	
Hori.	111.1	28.2	-	12.0	8.0	32.1	-	16.1	-	43.5	-	27.4	-	
Hori.	171.9	28.7	-	16.0	8.6	32.1	-	21.2	-	43.5	-	22.3	-	
Hori.	320.9	29.0	-	14.1	9.8	32.0	-	21.0	-	46.0	-	25.0	-	
Hori.	356.6	23.7	-	15.1	10.1	32.0	-	16.9	-	46.0	-	29.1	-	
Hori.	450.2	22.1	-	16.6	10.7	32.0	-	17.3	-	46.0	-	28.7	-	
Hori.	2390.0	44.6	33.9	27.5	5.4	32.2	-	45.3	34.6	73.9	53.9	28.7	19.3	
Hori.	4804.0	43.0	32.0	31.4	7.5	31.2	-	50.7	39.7	73.9	53.9	23.2	14.2	
Hori.	7206.0	41.1	31.6	35.6	10.8	32.0	-	55.4	45.9	73.9	53.9	18.5	8.0	Floor noise
Hori.	9608.0	41.3	32.3	35.6	11.2	32.6	-	55.5	46.4	73.9	53.9	18.4	7.5	Floor noise
Vert.	54.3	47.0	-	9.8	7.3	32.2	-	31.9	-	40.0	-	8.1	-	
Vert.	111.1	28.6	-	12.0	8.0	32.1	-	16.5	-	43.5	-	27.0	-	
Vert.	171.9	25.7	-	16.0	8.6	32.1	-	18.2	-	43.5	-	25.3	-	
Vert.	320.9	28.5	-	14.1	9.8	32.0	-	20.5	-	46.0	-	25.5	-	
Vert.	356.6	25.7	-	15.1	10.1	32.0	-	18.9	-	46.0	-	27.1	-	
Vert.	450.2	23.4	-	16.6	10.7	32.0	-	18.6	-	46.0	-	27.4	-	
Vert.	2390.0	43.2	33.0	27.5	5.4	32.2	-	43.9	33.7	73.9			20.2	
Vert.	4804.0	41.4	30.6	31.4	7.5	31.2	-	49.2	38.4	73.9			15.5	Floor noise
Vert.	7206.0	41.0	31.5	35.6	10.8	32.0	-	55.3	45.8	73.9				Floor noise
Vert.	9608.0	41.2	32.2	35.6	11.2	32.6	-	55.4	46.3	73.9	53.9	18.5	7.6	Floor noise

 voic
 solo.0.1
 41.2
 32.6
 32.6
 11.2
 32.6
 55.4
 46.3
 7

 Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)
 Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

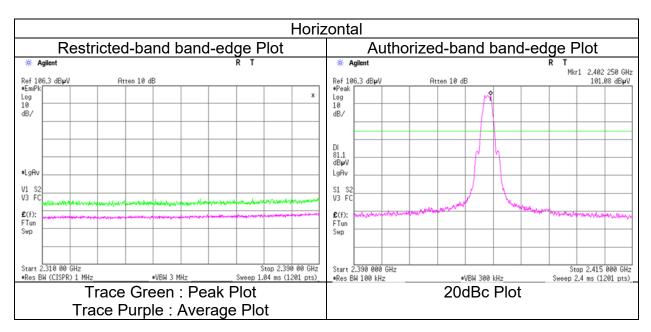
 *Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).
 *QP detector was used up to 1GHz

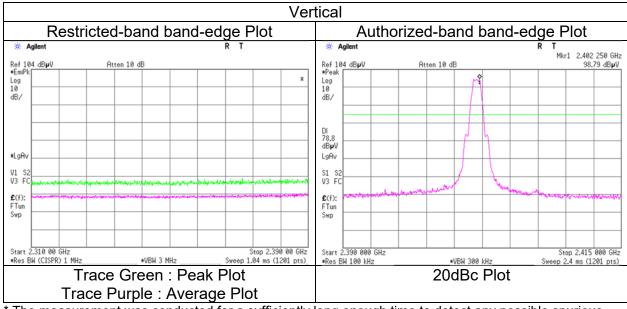
20dBc Data Sheet

Polarity	Frequency	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark
		(PK)	Factor						
[Hori/Vert]	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2402.0	101.1	27.5	5.4	32.2	101.8	-	-	Carrier
Hori.	2400.0	43.8	27.5	5.4	32.2	44.4	81.8	37.3	
Vert.	2402.0	98.8	27.5	5.4	32.2	99.5	-	-	Carrier
Vert.	2400.0	41.6	27.5	5.4	32.2	42.3	79.5	37.2	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier)

Distance factor:


20log (3.95 m / 3.0 m) = 2.39 dB 20log (4.95 m / 3.0 m) = 4.35 dB 1 GHz - 6 GHz 6 GHz - 10 GHz


10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

Radiated Spurious Emission (Reference Plot for band-edge)

Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer Ise EMC Lab. No.3 November 26, 2024 22 deg. C / 65 % RH Tomoya Sone (Above 1 GHz) Tx BT LE 1M 2402 MHz

Mode

* The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge and authorized band edge were shown in tabular data.

Radiated Spurious Emission

Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer

Ise EMC Lab. No.3 November 26, 2024 22 deg. C / 65 % RH Tomoya Sone (Above 1 GHz) Tx BT LE 1M 2440 MHz

Mode

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP / PK)	(AV)	Factor			Factor	(QP / PK)	(AV)	(QP / PK)	(AV)	(QP / PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	4880.0	42.2	32.7	31.4	7.6	31.2	-	50.0	40.5	73.9	53.9	23.9	13.4	
Hori.	7320.0	41.6	32.0	35.6	10.7	32.1	-	55.9	46.3	73.9	53.9	18.0	7.6	Floor noise
Hori.	9760.0	41.4	31.8	35.9	11.3	32.7	-	55.9	46.3	73.9	53.9	18.0	7.6	Floor noise
Vert.	4880.0	40.1	31.6	31.4	7.6	31.2	-	47.9	39.4	73.9	53.9	26.0	14.5	Floor noise
Vert.	7320.0	41.5	31.9	35.6	10.7	32.1	-	55.8	46.2	73.9	53.9	18.1	7.7	Floor noise
Vert.	9760.0	41.3	31.7	35.9	11.3	32.7	-	55.8	46.2	73.9	53.9	18.1	7.7	Floor noise

 Vert
 9760.0
 41.3
 31.7
 35.9
 11.3
 32.7
 55.8
 46.2
 7

 Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)
 Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Dutyfactor
 *Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).
 *QP detector was used up to 1GHz.

Distance factor:	1 GHz - 6 GHz	20log (3.95 m / 3.0 m) = 2.39 dB
	6 GHz - 10 GHz	20log (4.95 m / 3.0 m) = 4.35 dB
	10 GHz - 26.5 GHz	20log (1.0 m / 3.0 m) = -9.5 dB

Radiated Spurious Emission

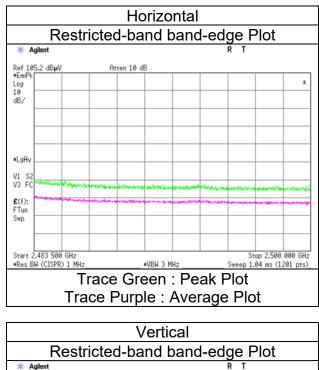
Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer

Ise EMC Lab. No.3 November 26, 2024 22 deg. C / 65 % RH Tomoya Sone (Above 1 GHz) Tx BT LE 1M 2480 MHz

Mode

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP / PK)	(AV)	Factor			Factor	(QP / PK)	(AV)	(QP / PK)	(AV)	(QP / PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	2483.5	48.3	37.2	27.4	5.4	32.2	-	48.9	37.8	73.9	53.9	25.0	16.1	
Hori.	4960.0	42.6	33.5	31.6	7.6	31.1	-	50.7	41.5	73.9	53.9	23.3	12.4	
Hori.	7440.0	41.0	31.9	35.5	10.7	32.1	-	55.1	46.0	73.9	53.9	18.8	7.9	Floor noise
Hori.	9920.0	41.3	31.7	36.1	11.3	32.8	-	55.9	46.4	73.9	53.9	18.0	7.5	Floor noise
Vert.	2483.5	46.4	36.9	27.4	5.4	32.2	-	47.0	37.5	73.9	53.9	26.9	16.4	
Vert.	4960.0	40.1	31.2	31.6	7.6	31.1	-	48.1	39.2	73.9	53.9	25.8	14.7	Floor noise
Vert.	7440.0	40.9	31.8	35.5	10.7	32.1	-	55.0	45.9	73.9	53.9	18.9	8.1	Floor noise
Vert.	9920.0	41.2	31.6	36.1	11.3	32.8	-	55.8	46.3	73.9	53.9	18.1	7.6	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor *Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB). *QP detector was used up to 1GHz.


Distance factor: 1 GHz - 6 GHz 20log (3.95 m / 3.0 m) = 2.39 dB 20log (4.95 m / 3.0 m) = 4.35 dB 6 GHz - 10 GHz 10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

Radiated Spurious Emission (Reference Plot for band-edge)

Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer

Mode

Ise EMC Lab. No.3 November 26, 2024 22 deg. C / 65 % RH Tomoya Sone (Above 1 GHz) Tx BT LE 1M 2480 MHz

* The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge was shown in tabular data.

Radiated Spurious Emission

Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer

Ise EMC Lab. No.3 November 26, 2024 23 deg. C / 59 % RH Yuta Moriya (1 GHz to 6 GHz) Tx BT LE 2M 2402 MHz

No.3 November 26, 2024 22 deg. C / 65 % RH Tomoya Sone (Above 6 GHz)

Mode

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP / PK)	(AV)	Factor			Factor	(QP/PK)	(AV)	(QP / PK)	(AV)	(QP / PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	2390.0	45.3	36.8	27.5	5.4	32.2	-	46.0	37.5	73.9	53.9	27.9	16.4	
Hori.	4804.0	38.5	31.3	31.4	7.5	31.2	-	46.3	39.0	73.9	53.9	27.6	14.9	Floor noise
Hori.	7206.0	41.0	31.5	35.6	10.8	32.0	-	55.3	45.8	73.9	53.9	18.6	8.1	Floor noise
Hori.	9608.0	41.2	32.2	35.6	11.2	32.6	-	55.4	46.3	73.9	53.9	18.5	7.6	Floor noise
Vert.	2390.0	42.9	35.6	27.5	5.4	32.2	-	43.6	36.3	73.9	53.9	30.3	17.6	
Vert.	4804.0	38.2	31.2	31.4	7.5	31.2	-	46.0	39.0	73.9	53.9	28.0	14.9	Floor noise
Vert.	7206.0	40.9	31.4	35.6	10.8	32.0	-	55.2	45.7	73.9	53.9	18.7	8.2	Floor noise
Vert.	9608.0	41.1	32.1	35.6	11.2	32.6	-	55.3	46.2		53.9	18.6	7.7	Floor noise

Result (AV) - Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor *Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB). *OP detector was used up to 1GHz

*QP detector was used up to 1GHz.

20dBc Data Sheet

Polarity	Frequency	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark
		(PK)	Factor						
[Hori/Vert]	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2402.0	100.2	27.5	5.4	32.2	100.9	-	-	Carrier
Hori.	2400.0	67.7	27.5	5.4	32.2	68.4	80.9	12.5	
Vert.	2402.0	96.8	27.5	5.4	32.2	97.5	-	-	Carrier
Vert.	2400.0	64.6	27.5	5.4	32.2	65.2	77.5	12.2	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier)

Distance factor:

1 GHz - 6 GHz 20log (3.95 m / 3.0 m) = 2.39 dB 20log (4.95 m / 3.0 m) = 4.35 dB 6 GHz - 10 GHz

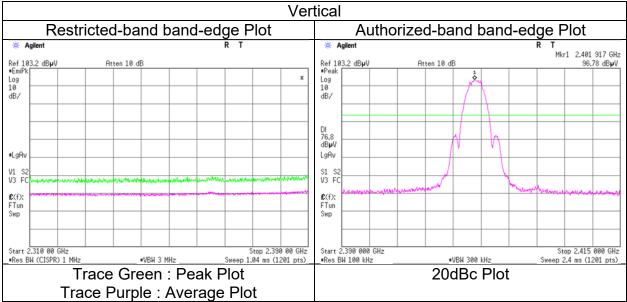
10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

Radiated Spurious Emission (Reference Plot for band-edge)

Ise EMC Lab.

Yuta Moriya (1 GHz to 6 GHz) Tx BT LE 2M 2402 MHz

November 26, 2024


23 deg. C / 59 % RH

No.3

Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer

Mode

Horizontal Restricted-band band-edge Plot Authorized-band band-edge Plot Agile Agilen Mkr1 2.402 021 GHz Ref 106.5 dBµV •EmiPk Atten 10 dB Ref 106.5 dBµV ●Peak Atten 10 dB 100.21 dBµV \$ Log 10 dB/ Log 10 dB/ * DI 80.2 dB**µ**V LgÂv •LgAv V1 S2 V3 FC \$1 \$2 V3 FC £(f): £(f): FTun FTun Swp Swp Stop 2.415 000 GHz Sweep 2.4 ms (1201 pts) Start 2.310 00 GHz Stop 2.390 00 GHz Start 2.390 000 GHz •Res BW (CISPR) 1 MHz Res BW 100 kHz •VBW 3 MHz Sweep 1.04 ms (1201 pts) •VBW 300 kHz Trace Green : Peak Plot 20dBc Plot Trace Purple : Average Plot

* The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge and authorized band edge were shown in tabular data.

Radiated Spurious Emission

Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer

Ise EMC Lab. No.3 November 26, 2024 23 deg. C / 59 % RH Yuta Moriya (1 GHz to 6 GHz) Tx BT LE 2M 2440 MHz

No.3 November 26, 2024 22 deg. C / 65 % RH Tomoya Sone (Above 6 GHz)

Mode

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP / PK)	(AV)	Factor			Factor	(QP / PK)	(AV)	(QP / PK)	(AV)	(QP / PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	4880.0	39.0	31.0	31.4	7.6	31.2	-	46.9	38.8	73.9	53.9	27.0	15.1	Floor noise
Hori.	7320.0	41.5	31.9	35.6	10.7	32.1	-	55.8	46.2	73.9	53.9	18.1	7.7	Floor noise
Hori.	9760.0	41.3	31.7	35.9	11.3	32.7	-	55.8	46.2	73.9	53.9	18.1	7.7	Floor noise
Vert.	4880.0	39.1	30.9	31.4	7.6	31.2	-	46.9	38.7	73.9	53.9	27.0	15.2	Floor noise
Vert.	7320.0	41.4	31.8	35.6	10.7	32.1	-	55.7	46.1	73.9	53.9	18.2	7.8	Floor noise
Vert.	9760.0	41.2	31.6	35.9	11.3	32.7	-	55.7	46.1	73.9	53.9	18.2	7.8	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

Result (AV) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor *Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB). *QP detector was used up to 1GHz.

Distance factor:	1 GHz - 6 GHz	20log (3.95 m / 3.0 m) = 2.39 dB
	6 GHz - 10 GHz	20log (4.95 m / 3.0 m) = 4.35 dB
	10 GHz - 26.5 GHz	20log (1.0 m / 3.0 m) = -9.5 dB

Radiated Spurious Emission

Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer

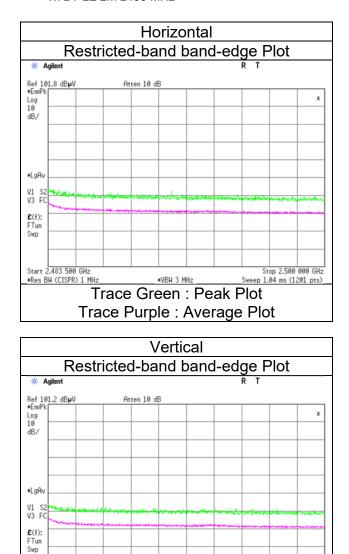
Ise EMC Lab. No.3 November 26, 2024 23 deg. C / 59 % RH Yuta Moriya (1 GHz to 6 GHz) Tx BT LE 2M 2480 MHz

No.3 November 26, 2024 22 deg. C / 65 % RH Tomoya Sone (Above 6 GHz)

Mode

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP / PK)	(AV)	Factor			Factor	(QP / PK)	(AV)	(QP / PK)	(AV)	(QP / PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	2483.5	47.0	39.7	27.4	5.4	32.2	-	47.6	40.3	73.9	53.9	26.3	13.6	
Hori.	4960.0	37.8	30.5	31.6	7.6	31.1	-	45.8	38.5	73.9	53.9	28.1	15.4	Floor noise
Hori.	7440.0	40.9	31.8	35.5	10.7	32.1	-	55.0	45.9	73.9	53.9	18.9	8.1	Floor noise
Hori.	9920.0	41.2	31.6	36.1	11.3	32.8	-	55.8	46.3	73.9	53.9	18.1	7.6	Floor noise
Vert.	2483.5	46.1	39.1	27.4	5.4	32.2	-	46.8	39.7	73.9	53.9	27.1	14.2	
Vert.	4960.0	37.0	30.9	31.6	7.6	31.1	-	45.0	38.9	73.9	53.9	28.9	15.0	Floor noise
Vert.	7440.0	40.8	31.7	35.5	10.7	32.1	-	54.9	45.8	73.9	53.9	19.0	8.1	Floor noise
Vert.	9920.0	41.1	31.5	36.1	11.3	32.8	-	55.7	46.2	73.9	53.9	18.2	7.7	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor *Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB). *QP detector was used up to 1GHz.


20log (3.95 m / 3.0 m) = 2.39 dB Distance factor: 1 GHz - 6 GHz 20log (4.95 m / 3.0 m) = 4.35 dB 6 GHz - 10 GHz 10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

Radiated Spurious Emission (Reference Plot for band-edge)

Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer

Mode

Ise EMC Lab. No.3 November 26, 2024 23 deg. C / 59 % RH Yuta Moriya (1 GHz to 6 GHz) Tx BT LE 2M 2480 MHz

 Start 2.483 500 GHz
 •VBH 3 MHz
 Stop 2.500 000 GHz

 •Res BH (CISPR) 1 MHz
 •VBH 3 MHz
 Sweep 1.04 ms (1201 pts)

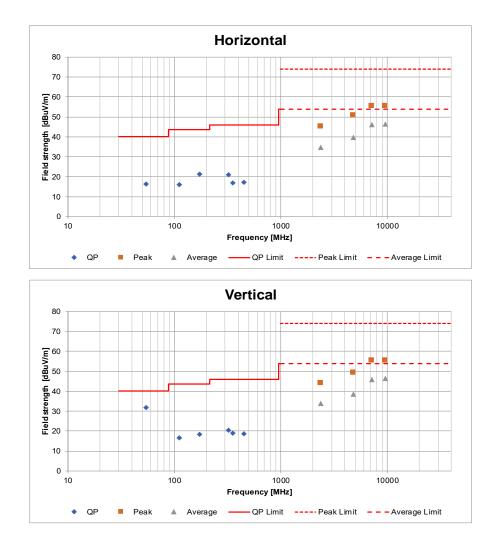
 Trace Green : Peak Plot
 Trace Purple : Average Plot

 urement was conducted for a sufficiently long enough time to detect any point

* The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge was shown in tabular data.

Radiated Spurious Emission (Plot data, Worst case mode for Maximum Peak Output Power)


Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer

Mode

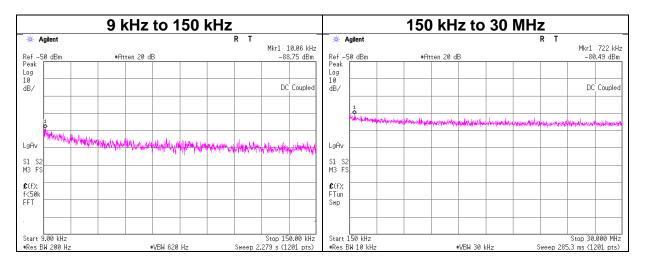
No.3 November 26, 2024 22 deg. C / 65 % RH Tomoya Sone (Above 1 GHz) Tx BT LE 1M 2402 MHz

Ise EMC Lab.

November 28, 2024 23 deg. C / 49 % RH Yuta Moriya (Below 1 GHz)

*These plots data contain sufficient number to show the trend of characteristic features for EUT.

Test place Date Temperature / Humidity Engineer Mode Ise EMC Lab. No.8 Measurement Room December 10, 2024 23 deg. C / 49 % RH Nachi Konegawa Tx BT LE 1M 2402 MHz

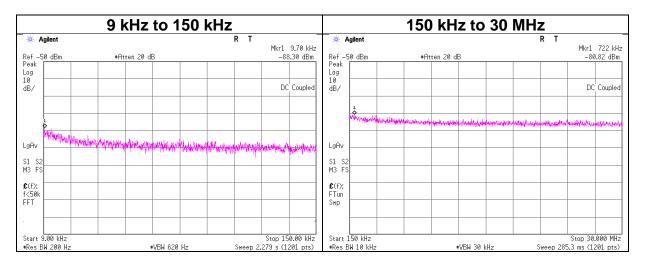

	9 kHz to 150	kHz		150 kHz to 30 M	IHz
🔆 Agilent		R T	🔆 Agilent		RT
Ref -50 dBm	#Atten 20 dB	Mkr1 12.88 kHz 	Ref -50 dBm	#Atten 20 dB	Mkr1 150 kHz 79.35 dBm
Peak Log 10			Peak Log 10		
dB/		DC Coupled	dB/		DC Coupled
1			A Mand March and	an and a state of the	4.gov/1.4.64.feara.1443=6.161.adf
LgAv	monomentalasinationaristation	all a solad the mineral Alexander Line by	LgAv		
S1 S2 M3 FS		Les as that is why with a share of	S1 S2 M3 FS		
£(f):			£(f):		
FFT			Swp		
Start 9.00 kHz		Stop 150.00 kHz	Start 150 kHz		Stop 30.000 MHz
#Res BW 200 Hz	#VBW 620 Hz	Sweep 2.279 s (1201 pts)	#Res BW 10 kHz	₩VBW 30 kHz	Sweep 285.3 ms (1201 pts)

Frequency	Reading	Cable	Attenuator	Antenna	N	EIRP	Distance	Ground	E	Limit	Margin	Remark
		Loss	Loss	Gain*	(Number			bounce	(field strength)			
[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
12.88	-89.6	0.35	9.8	2.0	1	-77.4	300	6.0	-16.1	45.4	61.5	
150.00	-79.4	0.35	9.8	2.0	1	-67.2	300	6.0	-5.9	24.0	29.9	

E [dBuV/m] = EIRP [dBm] - 20 log (Distance [m]) + Ground bounce [dB] + 104.8 [dBuV/m]

EIRP[dBm] = Reading [dBm] + Cable loss [dB] + Attenuator Loss [dB] + Antenna gain [dBi] + 10 * log (N) N: Number of output

Test place Date Temperature / Humidity Engineer Mode Ise EMC Lab. No.8 Measurement Room December 10, 2024 23 deg. C / 49 % RH Nachi Konegawa Tx BT LE 1M 2440 MHz


Frequer	ncy Read	ing	Cable	Attenuator	Antenna	N	EIRP	Distance	Ground	E	Limit	Margin	Remark
			Loss	Loss	Gain*	(Number			bounce	(field strength)			
[kHz]	[dB	n]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
10.	-8	3.8	0.35	9.8	2.0	1	-76.6	300	6.0	-15.3	47.5	62.8	
722.	-8).5	0.35	9.8	2.0	1	-68.3	30	6.0	13.0	30.4	17.4	

E [dBuV/m] = EIRP [dBm] - 20 log (Distance [m]) + Ground bounce [dB] + 104.8 [dBuV/m]

EIRP[dBm] = Reading [dBm] + Cable loss [dB] + Attenuator Loss [dB] + Antenna gain [dBi] + 10 * log (N)

N: Number of output

Test place Date Temperature / Humidity Engineer Mode Ise EMC Lab. No.8 Measurement Room December 10, 2024 23 deg. C / 49 % RH Nachi Konegawa Tx BT LE 1M 2480 MHz

Frequency	Reading	Cable	Attenuator	Antenna	Ν	EIRP	Distance	Ground	E	Limit	Margin	Remark
		Loss	Loss	Gain*	(Number			bounce	(field strength)			
[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
9.70	-88.3	0.35	9.8	2.0	1	-76.1	300	6.0	-14.9	47.8	62.7	
722.00	-80.8	0.35	9.8	2.0	1	-68.6	30	6.0	12.6	30.4	17.8	

E [dBuV/m] = EIRP [dBm] - 20 log (Distance [m]) + Ground bounce [dB] + 104.8 [dBuV/m]

EIRP[dBm] = Reading [dBm] + Cable loss [dB] + Attenuator Loss [dB] + Antenna gain [dBi] + 10 * log (N) N: Number of output

Test place Date Temperature / Humidity Engineer Mode Ise EMC Lab. No.8 Measurement Room December 10, 2024 23 deg. C / 49 % RH Nachi Konegawa Tx BT LE 2M 2402 MHz

	9 kHz to 15	0 kHz		150 kHz to 30 l	MHz
🔆 Agilent		RT	🔆 🔆 Agilent		RT
Ref -50 dBm	#Atten 20 dB	Mkr1 10.29 kHz -88.89 dBm	Ref -50 dBm	#Atten 20 dB	Mkr1 548 kHz –80.98 dBm
Peak Log			Peak Log		
10 dB/		DC Coupled	10 dB/		DC Coupled
			1		
			watter why making and	here the she where the second s	aritedanterrations and here and here and here and the states
LgAv	MANNAMENTAL HAR AL AND	have the former of the provided of the state	LgAv		
S1 S2		adalah dari ada dalah karan seri Kaba Mila adalah dalah dalah	S1 S2		
M3 FS			M3 FS		
£(f): f<50k			£(f): FTun		
FFT			Swp		
Start 9.00 kHz #Res BW 200 Hz	#VBW 620 Hz	Stop 150.00 kHz Sweep 2.279 s (1201 pts)	Start 150 kHz #Res BW 10 kHz	#VBW 30 kHz	Stop 30.000 MHz Sweep 285.3 ms (1201 pts)

Frequency	Reading	Cable	Attenuator	Antenna	Ν	EIRP	Distance	Ground	E	Limit	Margin	Remark
		Loss	Loss	Gain*	(Number			bounce	(field strength)			
[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
10.29	-88.9	0.35	9.8	2.0	1	-76.7	300	6.0	-15.5	47.3	62.8	
548.00	-81.0	0.35	9.8	2.0	1	-68.8	30	6.0	12.5	32.8	20.3	

E [dBuV/m] = EIRP [dBm] - 20 log (Distance [m]) + Ground bounce [dB] + 104.8 [dBuV/m]

EIRP[dBm] = Reading [dBm] + Cable loss [dB] + Attenuator Loss [dB] + Antenna gain [dBi] + 10 * log (N) N: Number of output

Test place Date Temperature / Humidity Engineer Mode Ise EMC Lab. No.8 Measurement Room December 10, 2024 23 deg. C / 49 % RH Nachi Konegawa Tx BT LE 2M 2440 MHz

			9	кНz	to 1	50	kHz							150) kH	z to	30	MH	z		
₩ A	gilent							RΤ		-	₩ A	gilent							RΤ		-
Ref -5			#A	tten 20 c	B					11.82 kHz 8.18 dBm	Ref -5			#A1	:ten 20 d	В					424 kHz 9.22 dBm
Peak Log 10											Peak Log 10										
dB/									DC	Coupled	dB/									DC	Coupled
												\$ •									
	1 \$											mult fill alt also de la	منبورا بإرغراؤهم	tadadadadada	herebrar bered	here when the	en de mais	en under Mader	kana kana kana kana kana kana kana kana	Whentheman	and the second second second
LgAv	and have have	Walten	human	en Marthan	Must mile	millinder	marchel	a mada a	د المالين ال	vilal dependent	LgAv										
S1 S2			<u>'</u>		Page 1		a. In its de	19 1 9 19 19 19 19 19 19 19 19 19 19 19 19 19	and the second	a wa data a si	S1 S2										
M3 FS											M3 FS										
£ (f): f<50k											£(f): FTun										
FFT											Swp										
	00 kHz W 200 Hz	:			#VBW 620	I Hz		Sweep 2	Stop 19 .279 s (1	50.00 kHz 201 pts)		50 kHz W 10 kHz				*VBW 30	kHz		Sweep 28	Stop 30 5.3 ms (1	.000 MHz 201 pts)

Frequency	Reading	Cable	Attenuator	Antenna	Ν	EIRP	Distance	Ground	E	Limit	Margin	Remark
		Loss	Loss	Gain*	(Number			bounce	(field strength)			
[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
11.82	-88.2	0.35	9.8	2.0	1	-76.0	300	6.0	-14.7	46.1	60.8	
424.00	-79.2	0.35	9.8	2.0	1	-67.0	300	6.0	-5.8	15.0	20.8	

E [dBuV/m] = EIRP [dBm] - 20 log (Distance [m]) + Ground bounce [dB] + 104.8 [dBuV/m]

EIRP[dBm] = Reading [dBm] + Cable loss [dB] + Attenuator Loss [dB] + Antenna gain [dBi] + 10 * log (N) N: Number of output

Test place Date Temperature / Humidity Engineer Mode Ise EMC Lab. No.8 Measurement Room December 10, 2024 23 deg. C / 49 % RH Nachi Konegawa Tx BT LE 2M 2480 MHz

	9 kHz to 1	50 kHz				150 k	Hz to	30 MH	lz	
🔆 Agilent		RT		🔆 🔆 Agilen					RΤ	
Ref -50 dBm	#Atten 20 dB	М	kr1 10.76 kHz -88.06 dBm	Ref -50 dE		#Atten 24) dB			Mkr1 896 kHz -80.18 dBm
Peak Log				Peak Log						
10 dB/			DC Coupled	10 dB/						DC Coupled
1				1.00 A	heliterenteriteriteriteriteriteriteriteriteriteri	united in the second of the	Himlemeters/enderligh	Mathanila ir faladash	hilly explored provide	almodiony books in why
LgAv MM	AWHAMMANANANANANANANANANANANANANANANANANAN	Antibelishing where we are the second second	Alt, Jack J. Black	LgAv						
s1 s2	a share a shall had	a. In control of the set to set the Alternation sector set	And a start of the And	S1 S2						
M3 FS				M3 FS						
£(f): f<50k				£ (f): FTun						
FFT				Swp						
Start 9.00 kHz #Res BW 200 Hz	#VBW 620		op 150.00 kHz s (1201 pts)	Start 150 k #Res BW 10			#VBW 30 k		0 005	Stop 30.000 MHz .3 ms (1201 pts)

Frequency	Reading	Cable	Attenuator	Antenna	Ν	EIRP	Distance	Ground	E	Limit	Margin	Remark
		Loss	Loss	Gain*	(Number			bounce	(field strength)			
[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
10.76	-88.1	0.35	9.8	2.0	1	-75.9	300	6.0	-14.6	46.9	61.5	
896.00	-80.2	0.35	9.8	2.0	1	-68.0	30	6.0	13.3	28.5	15.2	

E [dBuV/m] = EIRP [dBm] - 20 log (Distance [m]) + Ground bounce [dB] + 104.8 [dBuV/m]

EIRP[dBm] = Reading [dBm] + Cable loss [dB] + Attenuator Loss [dB] + Antenna gain [dBi] + 10 * log (N) N: Number of output

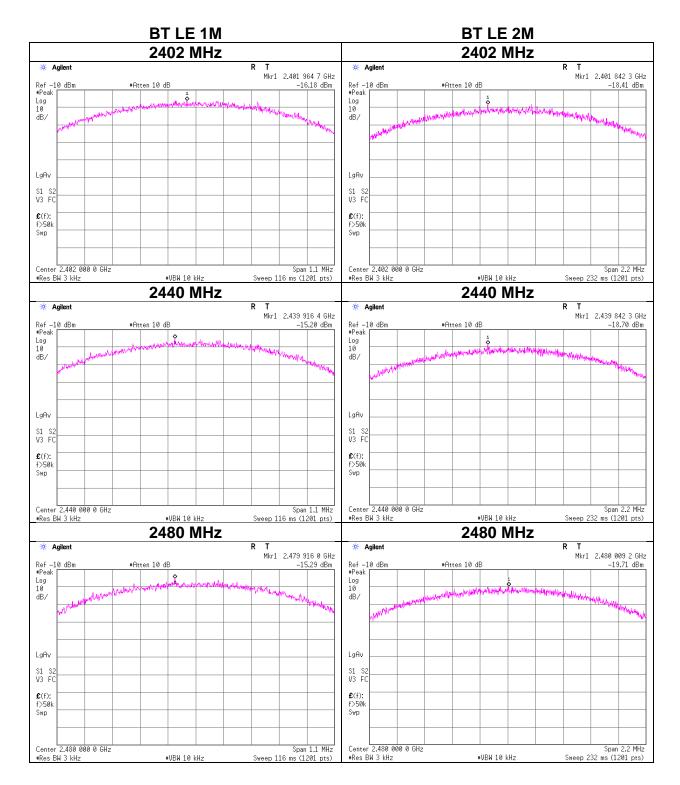
Power Density

Test place Date Temperature / Humidity Engineer Mode Ise EMC Lab. No.8 Measurement Room December 10, 2024 23 deg. C / 49 % RH Nachi Konegawa Tx

BT LE 1M

Freq.	Reading	Cable	Atten.	Result	Limit	Margin
		Loss	Loss			
[MHz]	[dBm / 3 kHz]	[dB]	[dB]	[dBm / 3 kHz]	[dBm / 3 kHz]	[dB]
2402	-16.18	0.35	9.73	-6.10	8.00	14.10
2440	-15.20	0.35	9.73	-5.12	8.00	13.12
2480	-15.29	0.35	9.73	-5.21	8.00	13.21

BT LE 2M


Freq.	Reading	Cable	Atten.	Result	Limit	Margin
		Loss	Loss			
[MHz]	[dBm / 3 kHz]	[dB]	[dB]	[dBm / 3 kHz]	[dBm / 3 kHz]	[dB]
2402	-18.41	0.35	9.73	-8.33	8.00	16.33
2440	-18.70	0.35	9.73	-8.62	8.00	16.62
2480	-19.71	0.35	9.73	-9.63	8.00	17.63

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss

*The equipment and cables were not used for factor 0 dB of the data sheets.

Power Density

APPENDIX 2: Test Instruments

Test Equipment

Test Item	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
AT	141156	Attenuator (10dB)	Weinschel Corp	2	BL1173	11/11/2024	12
AT	141334	Attenuator (10dB)	Suhner	6810.19.A	-	12/02/2024	12
AT	141419	Attenuator	Weinschel Associates	WA56-10	56100305	05/22/2024	12
AT	141805	Power Meter	Anritsu Corporation	ML2495A	6K00003338	08/22/2024	12
AT	141840	Power sensor	Anritsu Corporation	MA2411B	011737	08/22/2024	12
AT	141855	Spectrum Analyzer	Keysight Technologies Inc	E4440A	MY46187750	11/14/2024	12
AT	244711	Thermo-Hygrometer	HIOKI E.E. CORPORATION	LR5001	231202105	01/25/2024	12
CE	141215	Coaxial Cable	Fujikura/Suhner/TSJ	5D-2W/3D-2W/ RG400u/ RFM-E421(SW)	-/ 01068(Switcher)	06/24/2024	12
CE	141290	Attenuator (13dB)	JFW Industries, Inc.	50FP-013H2 N	-	12/10/2024	12
CE	141357	LISN (AMN)	Schwarzbeck Mess-Elektronik OHG	NSLK8127	8127-729	07/09/2024	12
CE	141358	LISN (AMN)	Schwarzbeck Mess-Elektronik OHG	NSLK8127	8127-730	07/09/2024	12
CE	141530	Digital Tester	Fluke Corporation	FLUKE 26-3	78030621	02/01/2024	12
CE	141568	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	2901	01/10/2024	12
CE	141925	Terminator	TME	CT-01	-	11/19/2024	12
CE	141950	EMI Test Receiver	Rohde & Schwarz	ESU26	100412	11/28/2024	12
CE	141998	AC1_Semi Anechoic Chamber (NSA)	TDK	Semi Anechoic Chamber 10m	DA-06881	12/06/2023	24
CE	142226	Measure, Tape, Steel	KOMELON	KMC-36	1_	-	-
CE	178648	EMI measurement	TSJ (Techno Science Japan)	TEPTO-DV	-	-	-
RE	141232	High Pass Filter 3.5-18.0GHz	UL-ISE	HPF SELECTOR	001	09/13/2024	12
RE	141266	Logperiodic Antenna (200-1000MHz)	Schwarzbeck Mess-Elektronik OHG	VUSLP9111B	9111B-191	08/23/2024	12
RE	141323	Coaxial cable	UL-ISE	-	-	09/13/2024	12
RE	141424	Biconical Antenna	Schwarzbeck Mess-Elektronik OHG	VHA9103+ BBA9106	1915	03/15/2024	12
RE	141507	Horn Antenna 1-18GHz	Schwarzbeck Mess-Elektronik OHG	BBHA9120D	258	11/11/2024	12
RE	141513	Horn Antenna 15-40GHz	Schwarzbeck Mess-Elektronik OHG	BBHA9170	BBHA9170306	07/19/2024	12
RE	141532	DIGITAL HITESTER	HIOKI E.E. CORPORATION	3805	051201197	01/31/2024	12
RE	141580	Microwave System Amplifier	Keysight Technologies Inc	83017A	MY39500779	03/08/2024	12
RE	141582	Pre Amplifier	SONOMA INSTRUMENT	310	260834	02/17/2024	12
RE	141884	Spectrum Analyzer	Keysight Technologies Inc	E4448A	MY44020357	05/09/2024	12
RE		Test Receiver	Rohde & Schwarz	ESCI	100767	06/05/2024	12
RE	142008	AC3_Semi Anechoic Chamber (NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	12/11/2023	24
RE	142013	AC3_Semi Anechoic Chamber (SVSWR)	ТDК	Semi Anechoic Chamber 3m	DA-10005	04/12/2023	24
RE	142183	Measure	KOMELON	KMC-36	-	10/21/2024	12
RE	142314	Attenuator	Pasternack Enterprises	PE7390-6	D/C 1504	06/06/2024	12
RE	178648	EMI measurement	TSJ (Techno Science Japan)	TEPTO-DV	-	-	-
RE	244709	Thermo-Hygrometer	HIOKI E.E. CORPORATION	LR5001	231202103	01/25/2024	12
RE	245787	Double Ridge Horn Antenna	Schwarzbeck Mess-Elektronik OHG	BBHA 9120 C	689	03/06/2024	12
RE	246001	Microwave Cable	Huber+Suhner	SF103/11PC35/ 11PC35/1000mm / SF126E/5000mm	800673(1m) / 610204(5m)	03/06/2024	12

*Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month. As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Test item:

AT: Antenna Terminal Conducted test

CE: Conducted Emission

RE: Radiated Emission