Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Samsung Gumi (Dymstec) Certificate No: ES3-3017_Sep04 | CALIBRATION CERTIFICATE | | | | | | | |---|-----------------------------------|---|------------------------|--|--|--| | Object | ES3DV2 - SN:30 | 17 | | | | | | Calibration procedure(s) | QA CAL-01.v5
Calibration proce | dure for dosimetric E-field probes | | | | | | Calibration date: | September 24, 2 | 004 | | | | | | Condition of the calibrated item | In Tolerance | | | | | | | This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. | | | | | | | | Calibration Equipment used (M&T | E critical for calibration) | | | | | | | Primary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | | | | | Power meter E4419B | GB41293874 | 5-May-04 (METAS, No. 251-00388) | May-05 | | | | | Power sensor E4412A | MY41495277 | 5-May-04 (METAS, No. 251-00388) | May-05 | | | | | Reference 3 dB Attenuator | SN: S5054 (3c) | 3-Apr-03 (METAS, No. 251-00403) | Aug-05 | | | | | Reference 20 dB Attenuator | SN: S5086 (20b) | 3-May-04 (METAS, No. 251-00389) | May-05 | | | | | Reference 30 dB Attenuator | SN: S5129 (30b) | 3-Apr-03 (METAS, No. 251-00404) | Aug-05 | | | | | Reference Probe ES3DV2 | SN:3013 | 8-Jan-04 (SPEAG, No. ES3-3013_Jan04) | Jan-05 | | | | | DAE4 | SN: 617 | 26-May-04 (SPEAG, No. DAE4-617_May04) | May-05 | | | | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | | | | Power sensor HP 8481A | MY41092180 | 18-Sep-02 (SPEAG, in house check Oct-03) | In house check: Oct 05 | | | | | RF generator HP 8648C | US3642U01700 | 4-Aug-99 (SPEAG, in house check Dec-03) | In house check: Dec-05 | | | | | Network Analyzer HP 8753E | US37390585 | 18-Oct-01 (SPEAG, in house check Nov-03) | In house check: Nov 04 | | | | | Calibrated by: | Name
Nico Vettarii | Function
Laboratory Technician | Signature
DNOW | | | | | Approved by: | Katja Pokovic | Technical Manager | Z4 | | | | | Issued: September 24, 2004 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. | | | | | | | Certificate No: ES3-3017_Sep04 Page 1 of 9 ## **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurlch, Switzerland S Schweizerlscher Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108 #### Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConF sensitivity in TSL / NORMx,y,z DCP diode compression point Polarization φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis #### Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001 ### **Methods Applied and Interpretation of Parameters:** - NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY 4.3 B17 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. # Probe ES3DV2 SN:3017 Manufactured: December 5, 2002 Last calibrated: August 25, 2003 Recalibrated: September 24, 2004 Calibrated for DASY Systems (Note: non-compatible with DASY2 system!) Certificate No: ES3-3017_Sep04 Page 3 of 9 # DASY - Parameters of Probe: ES3DV2 SN:3017 | Sensitivity in Fre | Diode C | ompression ^f | 3 | | | |--------------------|--------------------|--------------------------------|-------|--------------|--| | NormX | 1.61 ± 9.9% | $\mu V/(V/m)^2$ | DCP X | 94 mV | | | NormY | 1.76 ± 9.9% | μ V /(V/m) ² | DCP Y | 94 mV | | | NormZ | 1.67 ± 9.9% | μV/(V/m) ² | DCP Z | 94 mV | | Sensitivity in Tissue Simulating Liquid (Conversion Factors) Piease see Page 8. ## **Boundary Effect** | TSL 900 MHz Typical SAR gradient: 5 % per | 3L | 900 MHz | Typical SAR gradlent: 5 % per | |---|----|---------|-------------------------------| |---|----|---------|-------------------------------| | Sensor Center to | 3.7 mm | 4.7 mm | | |-----------------------|------------------------------|--------|-----| | SAR _{be} [%] | Without Correction Algorithm | 4.6 | 2.1 | | SAR _{be} [%] | With Correction Algorithm | 0.4 | 0.2 | TSL 1810 MHz Typical SAR gradient: 10 % per mm | Sensor Center to Phantom Surface Distance | | | 4.7 mm | |---|------------------------------|-----|--------| | SAR _{be} [%] | Without Correction Algorithm | 6.7 | 4.3 | | SAR _{be} [%] | With Correction Algorithm | 1.1 | 0.0 | ## Sensor Offset Probe Tip to Sensor Center 2.1 mm The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8). ^B Numerical linearization parameter: uncertainty not required. # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) Receiving Pattern (ϕ), ϑ = 0° Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) # Dynamic Range f(SAR_{head}) (Waveguide R22, f = 1800 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) # **Conversion Factor Assessment** | f [MHz] | Validity [MHz] ^c | TSL | Permittivity | Conductivity | Alpha | Depth | ConvF Uncertainty | |---------|-----------------------------|------|--------------|--------------|-------|-------|--------------------| | 900 | ± 50 / ± 100 | Head | 41.5 ± 5% | 0.97 ± 5% | 0.90 | 1.06 | 6.33 ± 11.0% (k=2) | | 1810 | ± 50 / ± 100 | Head | 40.0 ± 5% | 1.40 ± 5% | 0.43 | 1.74 | 5.11 ± 11.0% (k=2) | | 1950 | ± 50 / ± 100 | Head | 40.0 ± 5% | 1.40 ± 5% | 0.39 | 1.92 | 4.81 ± 11.0% (k=2) | 835 | ± 50 / ± 100 | Body | 55.2 ± 5% | 0.97 ± 5% | 0.85 | 1.14 | 6.28 ± 11.0% (k=2) | | 1900 | ± 50 / ± 100 | Body | 53.3 ± 5% | 1.52 ± 5% | 0.33 | 2.66 | 4.46 ± 11.0% (k=2) | ^c The validity of ± 100 MHz only applies for DASY 4.3 B17 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. # **Deviation from Isotropy in HSL** Error (ϕ, ϑ) , f = 900 MHz Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)