15.11 **SAR Calibration Certificate - Dipole 2450MHz** Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland C Accreditation No.: SCS 108 S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service** Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates | ALIBRATION | ERTIFICATE | | | |--|--|--|---| | Object | D2450V2 - SN: 7 | 13 | | | Calibration procedure(s) | QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz | | | | Calibration date: | September 10, 20 | 013 | | | | sted in the closed laborator | robability are given on the following pages arry facility: environment temperature $(22 \pm 3)^n$ | | | rimary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | Power meter EPM-442A | GB37480704 | 01-Nov-12 (No. 217-01640) | | | | | | Oct-13 | | | US37292783 | 01-Nov-12 (No. 217-01640) | Oct-13
Oct-13 | | ower sensor HP 8481A | US37292783
SN: 5058 (20k) | | | | ower sensor HP 8481A
eference 20 dB Attenuator | Control of the Contro | 01-Nov-12 (No. 217-01640) | Oct-13 | | ower sensor HP 8481A
reference 20 dB Attenuator
rype-N mismatch combination | SN: 5058 (20k) | 01-Nov-12 (No. 217-01640)
04-Apr-13 (No. 217-01736) | Oct-13
Apr-14 | | ower sensor HP 8481A
leference 20 dB Attenuator
ype-N mismatch combination
leference Probe ES3DV3 | SN: 5058 (20k)
SN: 5047.3 / 06327 | 01-Nov-12 (No. 217-01640)
04-Apr-13 (No. 217-01736)
04-Apr-13 (No. 217-01739) | Oct-13
Apr-14
Apr-14 | | ower sensor HP 8481A
leference 20 dB Attenuator
ype-N mismatch combination
leference Probe ES3DV3
IAE4 | SN: 5058 (20k)
SN: 5047.3 / 06327
SN: 3205 | 01-Nov-12 (No. 217-01640)
04-Apr-13 (No. 217-01736)
04-Apr-13 (No. 217-01739)
28-Dec-12 (No. ES3-3205_Dec12)
25-Apr-13 (No. DAE4-601_Apr13) | Oct-13
Apr-14
Apr-14
Dec-13 | | rower sensor HP 8481A deference 20 dB Attenuator type-N mismatch combination deference Probe ES3DV3 DAE4 decondary Standards | SN: 5058 (20k)
SN: 5047.3 / 06327
SN: 3205
SN: 601 | 01-Nov-12 (No. 217-01640)
04-Apr-13 (No. 217-01736)
04-Apr-13 (No. 217-01739)
28-Dec-12 (No. ES3-3205_Dec12) | Oct-13
Apr-14
Apr-14
Dec-13
Apr-14 | | rower sensor HP 8481A deference 20 dB Attenuator type-N mismatch combination deference Probe ES3DV3 DAE4 decondary Standards rower sensor HP 8481A | SN: 5058 (20k)
SN: 5047.3 / 06327
SN: 3205
SN: 601 | 01-Nov-12 (No. 217-01640)
04-Apr-13 (No. 217-01736)
04-Apr-13 (No. 217-01739)
28-Dec-12 (No. ES3-3205_Dec12)
25-Apr-13 (No. DAE4-601_Apr13)
Check Date (in house) | Oct-13
Apr-14
Apr-14
Dec-13
Apr-14
Scheduled Check | | rower sensor HP 8481A Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV3 RAE4 Reference Probe ES3DV3 RAE4 Reference Probe ES3DV3 RAE4 Reference Probe ES3DV3 RAE4 REFERENCE RAE5 RAE | SN: 5058 (20k)
SN: 5047.3 / 06327
SN: 3205
SN: 601
ID #
MY41092317 | 01-Nov-12 (No. 217-01640)
04-Apr-13 (No. 217-01736)
04-Apr-13 (No. 217-01739)
28-Dec-12 (No. ES3-3205_Dec12)
25-Apr-13 (No. DAE4-601_Apr13)
Check Date (in house)
18-Oct-02 (in house check Oct-11) | Oct-13 Apr-14 Apr-14 Dec-13 Apr-14 Scheduled Check In house check: Oct-13 | | rower sensor HP 8481A Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV3 RAE4 Reference Probe ES3DV3 RAE4 Reference Probe ES3DV3 RAE4 Reference Probe ES3DV3 RAE4 REFERENCE RAE5 RAE | SN: 5058 (20k)
SN: 5047.3 / 06327
SN: 3205
SN: 601
ID #
MY41092317
100005 | 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) | Oct-13 Apr-14 Apr-14 Dec-13 Apr-14 Scheduled Check In house check: Oct-13 In house check: Oct-13 In house check: Oct-13 | | Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Recondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Retwork Analyzer HP 8753E | SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 | 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-12) | Oct-13 Apr-14 Apr-14 Dec-13 Apr-14 Scheduled Check In house check: Oct-13 In house check: Oct-13 In house check: Oct-13 | | rower sensor HP 8481A Reference 20 dB Attenuator ype-N mismatch combination Reference Probe ES3DV3 VAE4 Recondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Retwork Analyzer HP 8753E | SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name | 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-12) | Oct-13 Apr-14 Apr-14 Dec-13 Apr-14 Scheduled Check In house check: Oct-13 In house check: Oct-13 | Certificate No: D2450V2-713_Sep13 Page 1 of 8 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kallbrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - EC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: d) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D2450V2-713_Sep13 Page 2 of 8 ## **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.7 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.4 ± 6 % | 1.83 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | **** | **** | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.0 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 51.6 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ² (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.05 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.1 W/kg ± 16.5 % (k=2) | ## **Body TSL parameters** | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.7 | 1.95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.2 ± 6 % | 2.00 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | **** | **** | ## SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 12.6 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 49.7 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.89 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 23.4 W/kg ± 16.5 % (k=2) | #### Appendix #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 51.8 Ω + 0.7 jΩ | |--------------------------------------|-----------------| | Return Loss | - 34.4 dB | ## Antenna Parameters with Body TSL | Impedance, transformed to feed point | 48.7 Ω + 2.8 jΩ | |--------------------------------------|-----------------| | Return Loss | - 30.0 dB | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.162 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|---------------| | Manufactured on | July 05, 2002 | #### **DASY5 Validation Report for Head TSL** Date: 10.09.2013 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 713 Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.83 \text{ S/m}$; $\varepsilon_r = 39.4$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(4.52, 4.52, 4.52); Calibrated: 28.12.2012; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 25.04.2013 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.095 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 26.7 W/kg SAR(1 g) = 13 W/kg; SAR(10 g) = 6.05 W/kg Maximum value of SAR (measured) = 17.0 W/kg 0 dB = 17.0 W/kg = 12.30 dBW/kg ## Impedance Measurement Plot for Head TSL ### **DASY5 Validation Report for Body TSL** Date: 10.09.2013 Test Laboratory: SPEAG, Zurich, Switzerland ## DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 713 Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 2$ S/m; $\epsilon_r = 52.2$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(4.42, 4.42, 4.42); Calibrated: 28.12.2012; · Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 25.04.2013 Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) ## Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.095 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 26.1 W/kg SAR(1 g) = 12.6 W/kg; SAR(10 g) = 5.89 W/kgMaximum value of SAR (measured) = 16.7 W/kg 0 dB = 16.7 W/kg = 12.23 dBW/kg # Impedance Measurement Plot for Body TSL # D2450V2 Calibration for Impedance and Return-loss | Tested by | Yoshinori Ishida | |-----------|------------------| |-----------|------------------| ## 1. Test environment | Date | September 18, 2014 | | | |---------------------|--------------------|-------------------|-------| | Ambient Temperature | 24.0 deg.C | Relative humidity | 50%RH | ## 2. Equipment used | Control No. | Instrument | Manufacturer | Model No | Serial No | Test Item | Calibration Date * Interval(month) | |-------------|----------------------------------|----------------------------------|-------------|------------|-----------|------------------------------------| | MNA-01 | Network Analyzer | Agilent/HP | E8358A | US41080381 | SAR | 2014/08/21 * 12 | | MNCK-01 | Type N Calibration
Kit | Agilent | 85032F | MY41495257 | SAR | 2014/08/18 * 12 | | EST-46 | 3.5mm ECONOMY
CALIBRATION KIT | Agilent | 85052D | MY43252869 | SAR | 2014/08/15 * 12 | | MPSAM-03 | SAM Phantom | Schmid&Partner
Engineering AG | QD000P40CD | 1764 | SAR | 2014/06/03 * 12 | | MPF-03 | 2mmOval Flat
Phantom ERI 5.0 | Schmid&Partner
Engineering AG | QDOVA001BB | 1203 | SAR | 2014/06/03 * 12 | | MOS-30 | Thermo-Hygrometer | Custom | CTH-201 | 3001 | SAR | 2014/07/06 * 12 | | MOS-35 | Digital thermometer | HANNA | Checktemp 4 | - | SAR | 2014/07/06 * 12 | | HSL2450 | | | | | | Daily check | | MSL2450 | | | | | | Daily check | | SAR room1 | | | | | | Daily check | ## 3. Test Result | Impeadance, Transformed to feed point | Head | Deviation | Tolerance | Result | |---------------------------------------|--------------|-------------------------|-------------------------|----------| | Calibration (SPEAG) 2013/09/10 | 51.8 Ω+0.7jΩ | - | - | - | | Calibration(ULJ)2014/9/18 | 51.5Ω+0.9jΩ | $-0.3\Omega+0.2j\Omega$ | $+/-5\Omega+/-5j\Omega$ | Complied | | Return loss | Head | Deviation | Tolerance | Result | |--------------------------------|---------|-----------|---------------|----------| | Calibration (SPEAG) 2013/09/10 | -34.4dB | - | - | - | | Calibration(ULJ)2014/9/18 | -35.3dB | -0.9dB | -34.4 *+/-20% | Complied | | Impeadance, Transformed to feed point | Body | Deviation | Tolerance | Result | |---------------------------------------|---------------------------|---------------------------|-------------------------|----------| | Calibration (SPEAG) 2013/09/10 | $48.7\Omega + 2.8j\Omega$ | - | - | - | | Calibration(ULJ)2014/9/18 | 49.6Ω+2.8jΩ | $+0.9\Omega + /-0j\Omega$ | $+/-5\Omega+/-5j\Omega$ | Complied | | Return loss | Body | Deviation | Tolerance | Result | |--------------------------------|---------|-----------|---------------|----------| | Calibration (SPEAG) 2013/09/10 | -30.0dB | - | - | - | | Calibration(ULJ)2014/9/18 | -31.0dB | -1.0dB | -30.0 *+/-20% | Complied | ^{*}Tolerance : According to the KDB450824D02 #### Measurement Plots