

11. NUMBER OF HOPPING FREQUENCY

11.1. MEASUREMENT PROCEDURE

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

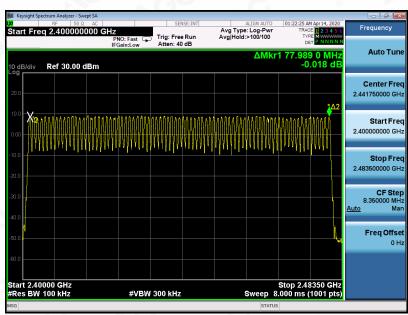
1. Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.

2. RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.

3. VBW \geq RBW. Sweep: Auto. Detector function: Peak. Trace: Max hold.

4. Allow the trace to stabilize.

11.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)


Same as described in section 8.2

11.3. MEASUREMENT EQUIPMENT USED

The same as described in section 6

11.4. LIMITS AND MEASUREMENT RESULT

TOTAL NO. OF	LIMIT (NO. OF CH)	MEASUREMENT (NO. OF CH)	RESULT
HOPPING CHANNEL	>=15	79	PASS

TEST PLOT FOR NO. OF TOTAL CHANNELS

Note: The GFSK modulation is the worst case and recorded in the report.

12. TIME OF OCCUPANCY (DWELL TIME)

12.1. MEASUREMENT PROCEDURE

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

1. Span: Zero span, centered on a hopping channel.

2. RBW shall be \leq channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel.

3. Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel.

4. Detector function: Peak. Trace: Max hold.

5. Use the marker-delta function to determine the transmit time per hop.

6. Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements. Determine the number of hops over the sweep time and calculate the total number of hops in the period specified in the requirements, using the following equation:

(Number of hops in the period specified in the requirements) = (number of hops on spectrum analyzer) \times (period specified in the requirements / analyzer sweep time)

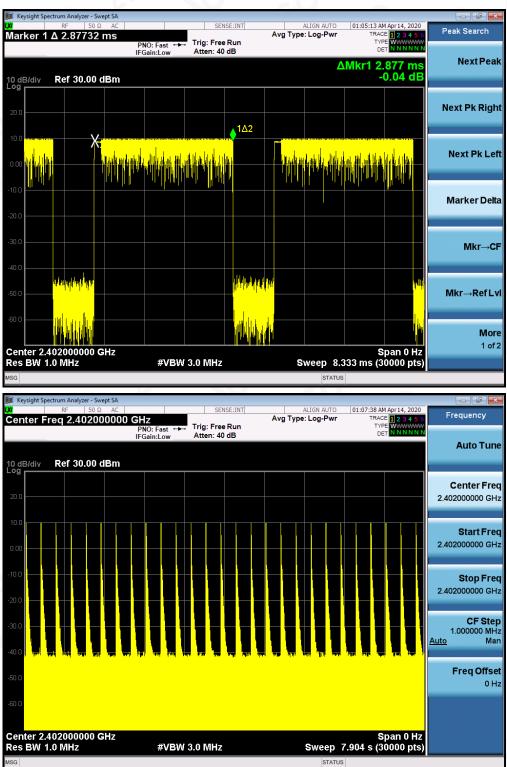
7. The average time of occupancy is calculated from the transmit time per hop multiplied by the number of hops in the period specified in the requirements.

12.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)

Same as described in section 8.2

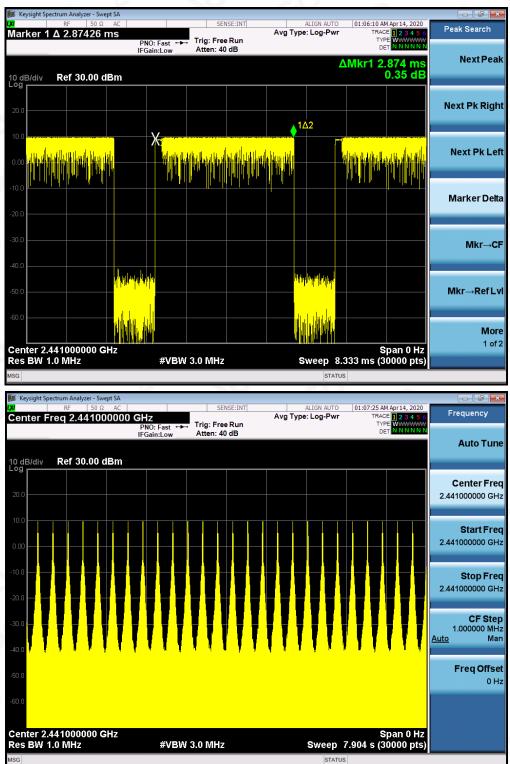
12.3. MEASUREMENT EQUIPMENT USED

The same as described in section 6


12.4. LIMITS AND MEASUREMENT RESULT

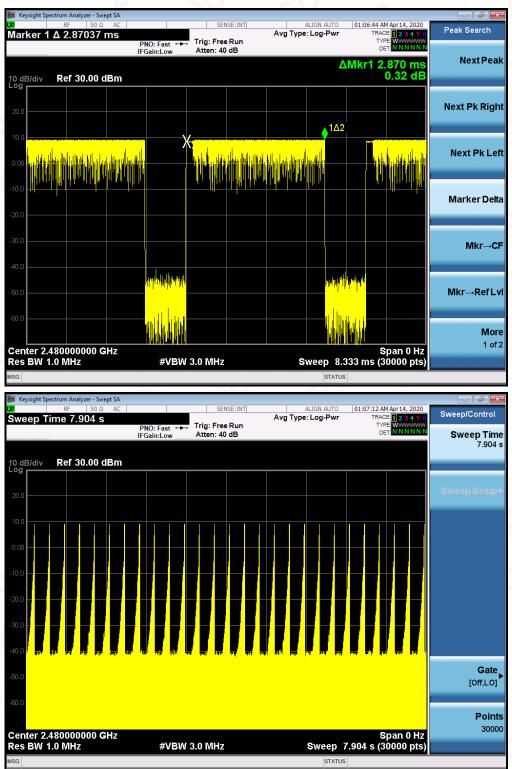
Channel	Time of Pulse for DH5 (ms)	Number of hops in the period specified in the requirements	Sweep Time (ms)	Limit (ms)
Low	2.877	27*4	310.716	400
Middle	2.874	26*4	298.896	400
High	2.870	27*4	309.960	400

Note: The π /4-DQPSK modulation is the worst case and recorded in the report.


TEST PLOT OF LOW CHANNEL

Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Add: 2/F., Building 2, Sanwei Chaxi Industrial Park, Sanwei Community,


TEST PLOT OF MIDDLE CHANNEL

Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Add: 2/F., Building 2, Sanwei Chaxi Industrial Park, Sanwei Community,

TEST PLOT OF HIGH CHANNEL

Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Add: 2/F., Building 2, Sanwei Chaxi Industrial Park, Sanwei Community,

13. FREQUENCY SEPARATION

13.1. MEASUREMENT PROCEDURE

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

1. Span: Wide enough to capture the peaks of two adjacent channels.

2. RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.

3. Video (or average) bandwidth (VBW) \geq RBW.

4. Sweep: Auto. e) Detector function: Peak. f) Trace: Max hold. g) Allow the trace to stabilize.

Use the marker-delta function to determine the separation between the peaks of the adjacent channels.

13.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)

Same as described in section 6.2

13.3. MEASUREMENT EQUIPMENT USED

The same as described in section 6.3

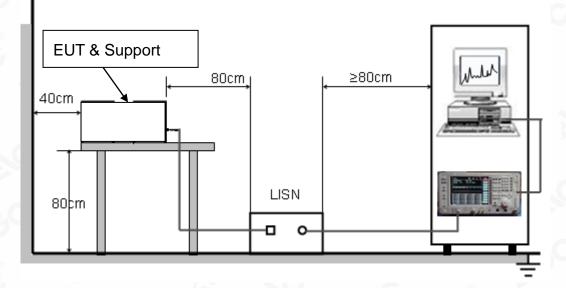
13.4. LIMITS AND MEASUREMENT RESULT

CHANNEL	CHANNEL SEPARATION KHz	LIMIT (KHz)	RESULT
CH01-CH02	1000	>=25 KHz or 2/3 20 dB BW	PASS

TEST PLOT FOR FREQUENCY SEPARATION

Note: The π /4-DQPSK modulation is the worst case and recorded in the report.

14. FCC LINE CONDUCTED EMISSION TEST


14.1. LIMITS OF LINE CONDUCTED EMISSION TEST

F	Maximum RF Line Voltage				
Frequency	Q.P.(dBuV)	Average(dBuV)			
150kHz~500kHz	66-56	56-46			
500kHz~5MHz	56	46			
5MHz~30MHz	60	50			

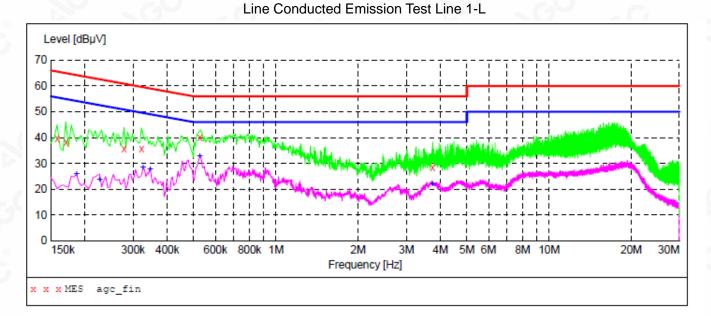
Note: 1. The lower limit shall apply at the transition frequency.

2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

14.2. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST

14.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST

- The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- 2. Support equipment, if needed, was placed as per ANSI C63.10.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4. All support equipments received AC120V/60Hz power from a LISN, if any.
- 5. The EUT received DC charging voltage by adapter which received AC120V/60Hz power by a LISN.
- 6. The test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.
- 9. The test mode(s) were scanned during the preliminary test.


Then, the EUT configuration and cable configuration of the above highest emission level were recorded for reference of final testing.

14.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST

- 1. EUT and support equipment was set up on the test bench as per step 2 of the preliminary test.
- A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. If EUT emission level was less –2dB to the A.V. limit in Peak mode, then the emission signal was re-checked using Q.P and Average detector.
- 3. The test data of the worst case condition(s) was reported on the Summary Data page.

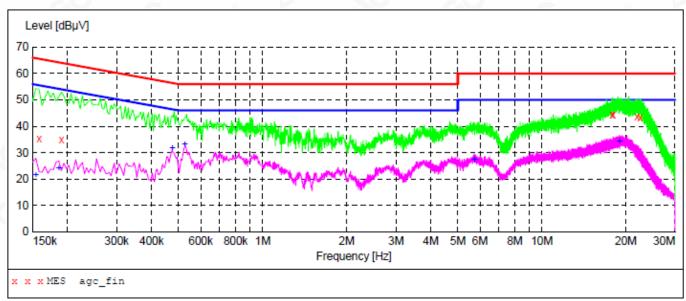
14.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST

MEASUREMENT RESULT: "agc fin"

51						
Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
39.50	11.3	66	26.1	QP	L1	FLO
38.30	11.3	65	26.7	QP	L1	FLO
35.70	11.3	61	25.2	QP	L1	FLO
35.60	11.3	60	24.1	QP	L1	FLO
40.00	11.3	56	16.0	QP	ь1	FLO
28.30	11.4	56	27.7	QP	ь1	FLO
	Level dBµV 39.50 38.30 35.70 35.60 40.00	Level Transd dBµV dB 39.50 11.3 38.30 11.3 35.70 11.3 35.60 11.3 40.00 11.3	Level Transd Limit dBµV dB dBµV 39.50 11.3 66 38.30 11.3 65 35.70 11.3 61 35.60 11.3 60 40.00 11.3 56	Level Transd Limit Margin dBµV dB dBµV dB 39.50 11.3 66 26.1 38.30 11.3 65 26.7 35.70 11.3 61 25.2 35.60 11.3 60 24.1 40.00 11.3 56 16.0	Level Transd Limit Margin Detector dBμV dB dBμV dB dB dB 39.50 11.3 66 26.1 QP 38.30 11.3 65 26.7 QP 35.70 11.3 61 25.2 QP 35.60 11.3 60 24.1 QP 40.00 11.3 56 16.0 QP	Level Transd Limit Margin Detector Line dBμV dB dBμV dB dB L1 39.50 11.3 66 26.1 QP L1 38.30 11.3 65 26.7 QP L1 35.70 11.3 61 25.2 QP L1 35.60 11.3 60 24.1 QP L1 40.00 11.3 56 16.0 QP L1

MEASUREMENT RESULT: "agc_fin2"

2020/4/13	11:51							
Freque	-	evel Tra dBµV		it Ma µV	rgin dB	Detector	Line	PE
0.186	000 2	5.80 :	11.3	54	28.4	AV	L1	FLO
0.226	000 2	3.80 :	11.3	53	28.8	AV	L1	FLO
0.326	000 2	B.30 :	11.3	50	21.3	AV	ь1	FLO
0.346	000 21	7.60 :	11.3	49	21.5	AV	ь1	FLO
0.526	000 3:	2.90 :	11.3	46	13.1	AV	ь1	FLO
3.742	000 2	1.90	11.4	46	24.1	AV	г1	FLO



Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Add: 2/F., Building 2, Sanwei Chaxi Industrial Park, Sanwei Community,

Report No.: AGC09886200301FE03 Page 59 of 72

Line Conducted Emission Test Line 2-N

MEASUREMENT RESULT: "agc fin"

4/13								
-	-	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
.15800	0 :	35.30	11.3	66	30.3	QP	N	FLO
.19000	0 3	34.90	11.3	64	29.1	QP	N	FLO
.83800	0 4	44.20	12.2	60	15.8	QP	N	FLO
.97000	0 4	44.30	12.2	60	15.7	QP	Ν	FLO
.91800	0 4	43.50	12.4	60	16.5	QP	N	FLO
.47800	00 4	43.40	12.4	60	16.6	QP	N	FLO
	equence MH 0.15800 0.19000 7.83800 7.97000 .91800	MHz .158000 .190000 .838000 .970000 .918000	tequency MHz Level dBμV 0.158000 35.30 0.190000 34.90 838000 44.20 970000 44.30 918000 43.50	Level MHz Level MHz Transd dBμV 0.158000 35.30 11.3 0.190000 34.90 11.3 0.838000 44.20 12.2 0.970000 44.30 12.2 0.918000 43.50 12.4	tequency MHzLevel dBμVTransd dBLimit dBμV0.15800035.3011.3660.19000034.9011.3640.83800044.2012.2600.97000044.3012.2600.91800043.5012.460	Level MHzTransd dBµVLimit dBMargin dBµV0.15800035.3011.36630.30.19000034.9011.36429.10.83800044.2012.26015.80.97000044.3012.26015.70.91800043.5012.46016.5	tequency MHz Level dBμV Transd dB Limit dBμV Margin dB Detector dB 0.158000 35.30 11.3 66 30.3 QP 0.158000 34.90 11.3 64 29.1 QP 0.838000 44.20 12.2 60 15.8 QP 0.970000 44.30 12.2 60 15.7 QP 0.918000 43.50 12.4 60 16.5 QP	tequency MHz Level dBµV Transd dB Limit dBµV Margin dB Detector Line 0.158000 35.30 11.3 66 30.3 QP N 0.158000 35.30 11.3 66 30.3 QP N 0.190000 34.90 11.3 64 29.1 QP N 0.838000 44.20 12.2 60 15.8 QP N 0.970000 44.30 12.2 60 15.7 QP N 0.918000 43.50 12.4 60 16.5 QP N

"agc fin2" MEASUREMENT RESULT:

Ľ	2020/4/13 11:45									
	Frequency	Level	Transd	Limit	Margin	Detector	Line	PE		
	MHz	dBµV	dB	dBµV	dB					
		-								
	0.154000	21.60	11.3	56	34.2	AV	N	FLO		
	0.186000	24.00	11.3	54	30.2	AV	N	FLO		
	0.474000	31.50	11.3	46	14.9		N	FLO		
	0.526000	33.00	11.3	46	13.0		N	FLO		
	5.726000	27.40	11.4	50	22.6	AV	N	FLO		
	18.962000	34.10	12.2	50	15.9	AV	N	FLO		

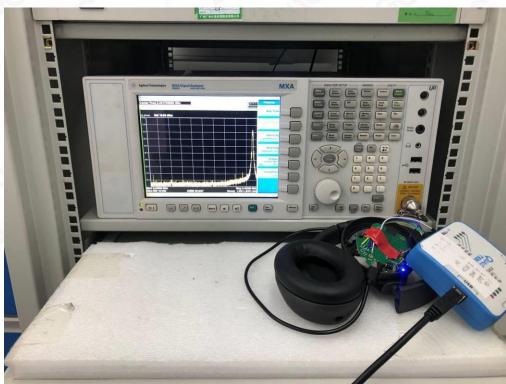
Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Add: 2/F., Building 2, Sanwei Chaxi Industrial Park, Sanwei Community,

Report No.: AGC09886200301FE03 Page 60 of 72

APPENDIX A: PHOTOGRAPHS OF TEST SETUP CONDUCTED EMISSION TEST SETUP

RADIATED EMISSION TEST SETUP BELOW 1GHZ



Report No.: AGC09886200301FE03 Page 61 of 72

RADIATED EMISSION TEST SETUP ABOVE 1GHZ

CONDUCTED TEST SETUP

Report No.: AGC09886200301FE03 Page 62 of 72

APPENDIX B: PHOTOGRAPHS OF EUT

TOTAL VIEW OF EUT

TOP VIEW OF EUT

Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2,Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 2523 4088 E-mail:agc@agc-cert.com Service

Service Hotline:400 089 2118

Report No.: AGC09886200301FE03 Page 63 of 72

BOTTOM VIEW OF EUT

FRONT VIEW OF EUT

Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2,Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86–755 2523 4088 E-mail: agc@agc-cert.com Service Ho

Service Hotline:400 089 2118

Report No.: AGC09886200301FE03 Page 64 of 72

BACK VIEW OF EUT

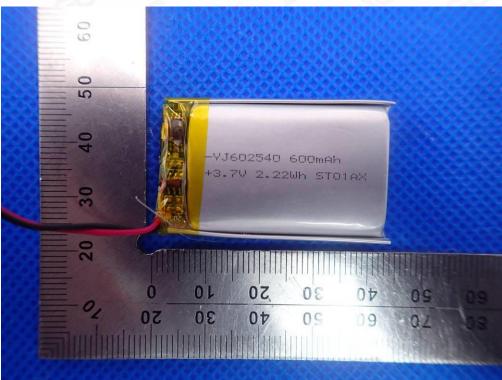
LEFT VIEW OF EUT

Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2,Sanwei Chaxi Industrial Park, Sanwei Community,

Report No.: AGC09886200301FE03 Page 65 of 72

RIGHT VIEW OF EUT

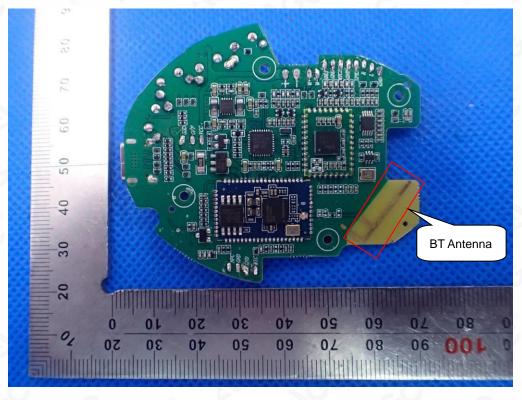
OPEN VIEW OF EUT-1



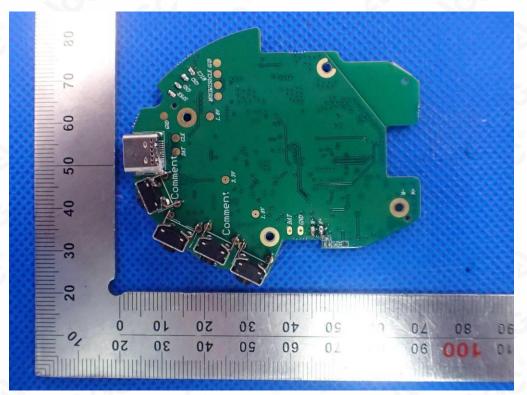
Report No.: AGC09886200301FE03 Page 66 of 72

OPEN VIEW OF EUT-2

INTERNAL VIEW OF EUT-1

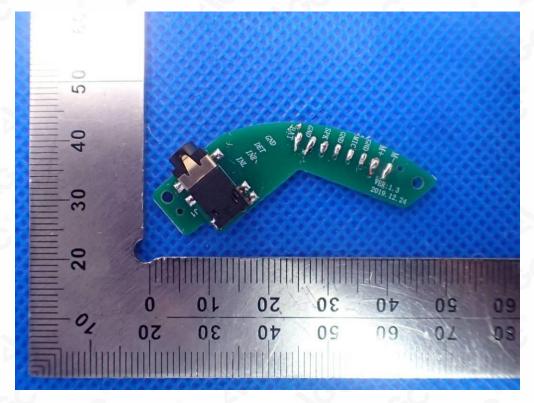


Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2,Sanwei Chaxi Industrial Park, Sanwei Community,

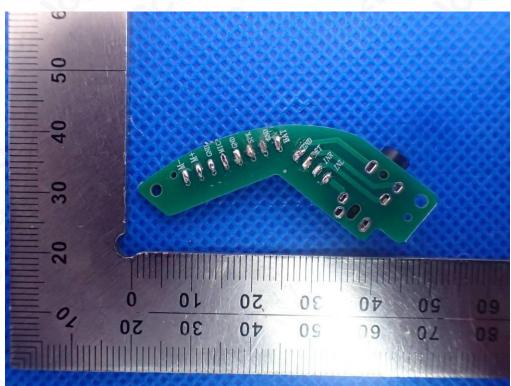


Report No.: AGC09886200301FE03 Page 67 of 72

INTERNAL VIEW OF EUT-3

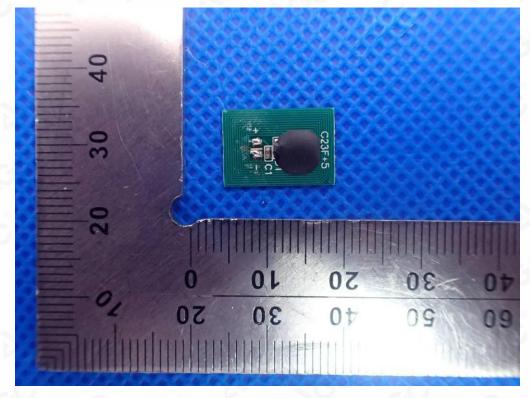

Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2, Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 2523 4088 E-mail:agc@agc-cert.com Service

Service Hotline: 400 089 2118

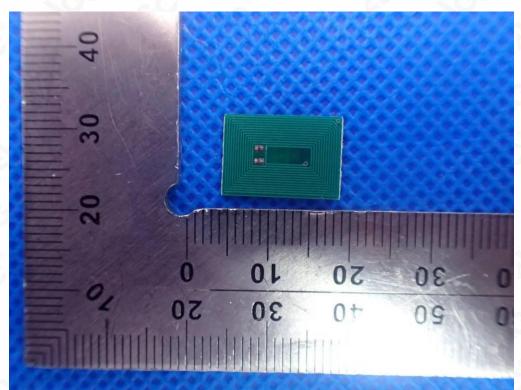


Report No.: AGC09886200301FE03 Page 68 of 72

INTERNAL VIEW OF EUT-5


Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2,Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 2523 4088 E-mail:agc@agc-cert.com Service

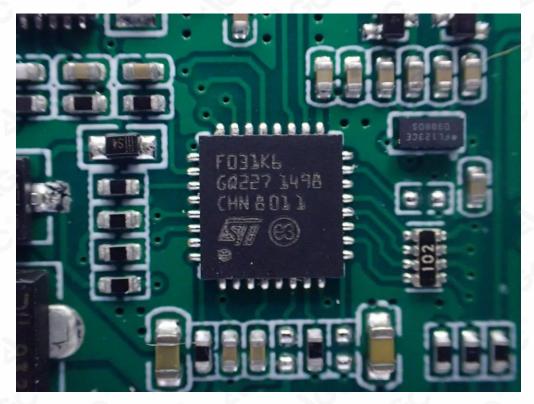
Service Hotline:400 089 2118



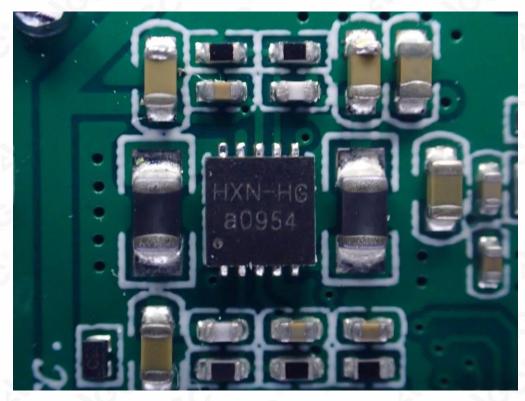
Report No.: AGC09886200301FE03 Page 69 of 72

INTERNAL VIEW OF EUT-6

INTERNAL VIEW OF EUT-7


Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2,Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 2523 4088 E-mail:agc@agc-cert.com Service H

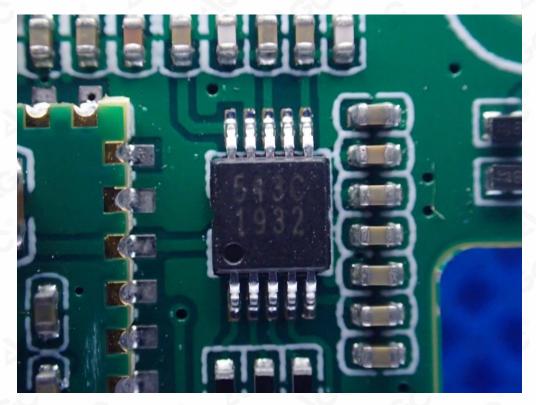
Service Hotline: 400 089 2118



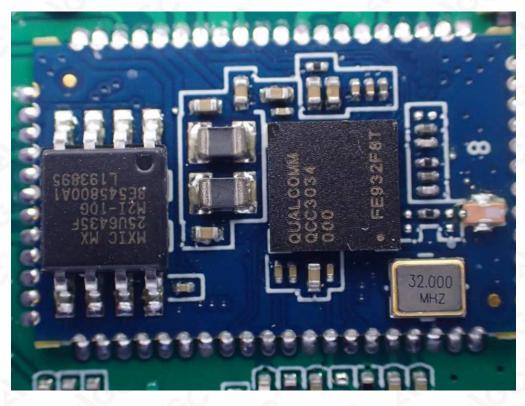
Report No.: AGC09886200301FE03 Page 70 of 72

INTERNAL VIEW OF EUT-8

INTERNAL VIEW OF EUT-9


Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2, Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 2523 4088 E-mail:agc@agc-cert.com Service

Service Hotline:400 089 2118



Report No.: AGC09886200301FE03 Page 71 of 72

INTERNAL VIEW OF EUT-10

INTERNAL VIEW OF EUT-11

Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2, Sanwei Chaxi Industrial Park, Sanwei Community,

Report No.: AGC09886200301FE03 Page 72 of 72

INTERNAL VIEW OF EUT-12

----END OF REPORT----

