

TEST REPORT

Report No.: 8229EU010707W1

Applicant: QUEST USA CORP

Address: 495 Flatbush Ave, Brooklyn, NY 11225, USA

Product Name: 2 in 1 Wireless Magnetic Charging Station

Model No.: IJ1031-DG (refer to clause 2.4)

Trademark: IJOY

FCC ID: 2AJQ7ELITE

Test Standard(s): 47 CFR Part 15 Subpart C

Date of Receipt: May 07, 2024

Test Date: May 07, 2024 – Aug. 28, 2024

Date of Issue: Aug. 28, 2024

ISSUED BY:

Prepared by:

SHENZHEN EU TESTING LABORATORY LIMIT

Reviewed and Approved by:

Mikey Zhu/ Engineer

Mikey zhu

Sally Zhang/ Manager

Page 2 of 28 Report No.: 8229EU010707W1

Revision Record

Report Version	Issued Date	Description	Status
V0	Aug. 28, 2024	Original	Valid

Page 3 of 28 Report No.: 8229EU010707W1

Table of Contents

1	COV	ER PAGE1		
2	GENE	ERAL INFORMATION	4	
	2.1 2.2 2.3 2.4 2.5	APPLICANT INFORMATION	4 4 4	
3	TEST	SUMMARY	6	
	3.1 3.2 3.3	TEST STANDARD TEST VERDICT TEST LABORATORY	6	
4	TEST	CONFIGURATION	7	
	4.1 4.2 4.3 4.4 4.5 4.6 4.7	TEST ENVIRONMENT TEST EQUIPMENT DESCRIPTION OF SUPPORT UNIT TEST MODE MEASUREMENT UNCERTAINTY DEVIATION FROM STANDARDS ABNORMALITIES FROM STANDARD CONDITION	8 8 8	
5	TEST	TITEMS	9	
	5.1	5.1.1 Test Requirement 5.1.2 Antenna Anti-Replacement Construction 5.1.3 Antenna Gain	g	
	5.2	CONDUCTED EMISSION AT AC POWER LINE	10	
		5.2.1 Test Requirement	10 10	
	5.3	EMISSIONS BANDWIDTH		
		5.3.1 Test Requirement	13 14	
	5.4	RADIATED EMISSION	16	
		5.4.1 Test Requirement 5.4.2 Test Setup Diagram 5.4.3 Test Procedure 5.4.4 Test Data	17 18	
ANNE	EX B	TEST SETUP PHOTOS EXTERNAL PHOTOS	27	
ANNE	:X C	INTERNAL PHOTOS	27	

Page 4 of 28 Report No.: 8229EU010707W1

2 General Information

2.1 Applicant Information

Applicant	QUEST USA CORP
Address	495 Flatbush Ave, Brooklyn, NY 11225, USA

2.2 Manufacturer Information

Manufacturer	Shenzhen Willsoon Electronic Technology Co., Ltd
Address	5/F Block A,No.10 East Area Shangxue Industrial Area,Bantian Town,Longgang District,Shenzhen,Guangdong,China

2.3 Factory Information

Factory	Shenzhen Willsoon Electronic Technology Co., Ltd
Address	5/F Block A,No.10 East Area Shangxue Industrial Area,Bantian Town,Longgang District,Shenzhen,Guangdong,China

2.4 General Description of E.U.T.

Product Name	2 in 1 Wireless Magnetic Charging Station	
Model No. Under Test	IJ1031-DG	
List Model No.	IJPDQ363-DG, IJ10310-DG, IJ10226-FB, IJ10227-FB, IJAST203-FB, IJ10310-DG	
Description of Model	All models are same with electrical parameters and internal circuit structure, but	
Description of Model differentiation	only differ in appearance color and model name.	
	(this information provided by the customer)	
	Input: 5V==3A; 9V==3A	
Rating(s)	Total Output: 15W(Max)	
rading(o)	Wireless output for Phone: 15W(Max)	
	Wireless output for Earbuds: 5W(Max)	
Product Type	☐ Portable	
	☐ Fix Location	
Test Sample No.	-1/1(Normal Sample)	
Hardware Version	N/A	
Software Version	N/A	
Remark	For a more detailed features description, please refer to the manufacturer's	
Neman	specifications or the User's Manual.	

Page 5 of 28 Report No.: 8229EU010707W1

2.5 Technical Information of E.U.T.

Technology Used Wireless Power Transfer (WPT)	
---	--

The requirement for the following technical information of the EUT was tested in this report:

Technology	WPT	
Operating Frequency	110.1-205 kHz	
Modulation Type	FSK	
Antenna Type	Coil Antenna	
Antenna Gain(Peak)	0 dBi	

Page 6 of 28 Report No.: 8229EU010707W1

3 Test Summary

3.1 Test Standard

The tests were performed according to following standards:

No.		Identity	Document Title
1	47 CFR Par	rt 15, Subpart C	Intentional radiators of radio frequency equipment
2	ANSI C63.1	0-2020	American National Standard for Testing Unlicensed Wireless Devices

Remark:

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product maybe which result in lowering the emission/immunity should be checked to ensure compliance has been maintained.

3.2 Test Verdict

No.	Description	FCC Part No.	Verdict	Remark
1	Antenna Requirement	15.203	Pass	
2	Conducted Emission at AC Power Line	15.207	Pass	
3	Emissions Bandwidth	15.215	Pass	
4	Radiated Emissions	15.209 /15.215(b)	Pass	

3.3 Test Laboratory

Test Laboratory	Shenzhen EU Testing Laboratory Limited		
Address	101, Building B1, Fuqiao Fourth Area, Qiaotou Community, Fuhai Subdistrict, Baoan District, Shenzhen, Guangdong, China		
Designation Number	CN1368		
Test Firm Registration Number	952583		

Page 7 of 28 Report No.: 8229EU010707W1

4 Test Configuration

4.1 Test Environment

During the measurement, the normal environmental conditions were within the listed ranges:

Relative Humidity	30% to 60%		
Atmospheric Pressure	86 kPa to 106 kPa		
Temperature	NT (Normal Temperature)	+15°C to +35°C	
Working Voltage of the EUT	NV (Normal Voltage)	AC 120V/60Hz	

4.2 Test Equipment

Conducted Emission a	at AC power line				
Equipment	Manufacturer	Model No	Serial No	Cal Date	Cal Due Date
L.I.S.N. Artificial Mains Network	Rohde & Schwarz	ENV216	EE-004	2024/01/09	2025/01/08
EMI Test Receiver	Rohde & Schwarz	ESCI	EE-005	2024/01/09	2025/01/08
Test Software	Farad	EZ-EMC	EE-014	N.C.R	N.C.R

Radiated Emission and	d RF Test				
Equipment	Manufacturer	Model No	Serial No	Cal Date	Cal Due Date
EMI Test Receiver	ROHDE & SCHWARZ	ESPI	EE-006	2024/01/09	2025/01/08
Bilog Broadband Antenna	SCHWARZBECK	VULB 9163	EE-007	2023/01/14	2026/01/09
Double Ridged Horn Antenna	A-INFOMW	LB-10180-NF	EE-008	2023/01/12	2026/01/09
Pre-amplifier	Agilent	8447D	EE-009	2024/01/09	2025/01/08
Pre-amplifier	Agilent	8449B	EE-010	2024/01/09	2025/01/08
MXA Signal Analyzer	Agilent	N9020A	EE-011	2024/01/09	2025/01/08
MXG RF Vector Signal Generator	Agilent	N5182A	EE-012	2024/01/09	2025/01/08
Test Software	Farad	EZ-EMC	EE-015	N.C.R	N.C.R
MIMO Power Measurement Module	TSTPASS	TSPS 2023R	EE-016	2024/05/16	2025/05/15
RF Test Software	TSTPASS	TS32893 V2.0	EE-017	N.C.R	N.C.R
Wideband Radio Communication Tester	ROHDE & SCHWARZ	CMW500	EE-402	2024/02/15	2025/02/14
Loop Antenna	TESEQ	HLA6121	EE-403	2024/02/15	2025/02/14
MXG RF Analog Signal Generator	Agilent	N5181A	EE-406	2024/02/15	2025/02/14
Constant Temperature Humidity Chamber	Guangxin	GXP-401	ES-002	2024/07/30	2025/07/29

TRF No.: FCC Part 15 Subpart C_WPT (A02)

Page 8 of 28 Report No.: 8229EU010707W1

4.3 Description of Support Unit

No.	Title	Manufacturer	Model No.	Serial No.
1	Wireless Charger	YBZ	1	

4.4 Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was prescanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned bellow was evaluated respectively.

No.	Description	Remark
TM1	Wireless Output (5W for Phone)	
TM2	Wireless Output (7.5W for Phone)	
TM3	Wireless Output (10W for Phone)	
TM4	Wireless Output (15W for Phone)	
TM5	Wireless Output (5W for Earbuds)	
TM6	Wireless Output (10W for Phone + 5W for Earbuds)	
TM7	Standby	
N I . 4 .		

Note:

4.5 Measurement Uncertainty

Test Item	Measurement Uncertainty
Conducted Emission	2.64 dB
Occupied Channel Bandwidth	2.8 %
RF output power, conducted	0.68 dB
Power Spectral Density, conducted	1.37 dB
Unwanted Emissions, conducted	1.84 dB
All emissions, radiated	5.11 dB
Temperature	0.8°C
Humidity	4%

Note: This uncertainty represents as expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

4.6 Deviation from Standards

None.

4.7 Abnormalities from Standard Condition

None.

SHENZHEN EU TESTING LABORATORY LIMITED TRF No.:

TRF No.: FCC Part 15 Subpart C_WPT (A02)

Website: www.eu-test.com

^{1.} All the conditions have been tested. It is found that TM6 is the worst mode, and the data in the report only reflects the worst mode.

Page 9 of 28 Report No.: 8229EU010707W1

5 Test Items

5.1 Antenna requirement

5.1.1 Test Requirement

Test Requirement

According to FCC §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of § 15.211, § 15.213, § 15.217, § 15.219, or § 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

If directional gain of transmitting antennas is greater than 6 dBi, the power shall be reduced by the same level in dB comparing to gain minus 6 dBi. For the fixed point-to-point operation, the power shall be reduced by one dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the FCC rule.

5.1.2 Antenna Anti-Replacement Construction

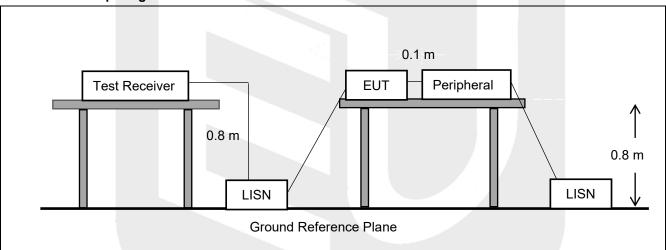
The Antenna Anti-Replacement as following method:

Protected Method	Description
The antenna is embedded in the product.	The EUT has a permanently and irreplaceable inductive loop antenna.

5.1.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi.

TRF No.: FCC Part 15 Subpart C WPT (A02)


Page 10 of 28 Report No.: 8229EU010707W1

5.2 Conducted Emission at AC Power Line

5.2.1 Test Requirement

Test Requirement:	Except as shown in paragraphs (b)and (c)of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 µH/50 ohms line impedance stabilization network (LISN).				
Test Limit	Frequency of emission (MHz) 0.15-0.5 0.5-5 5-30 *Decreases with the logarithm of the	Conducted limit (dBµV) Quasi-peak 66 to 56* 56 60 e frequency.	Average 56 to 46* 46 50		
Test Method	Refer to ANSI C63.10-2020 section conducted emissions from unlicense		for ac power-line		

5.2.2 Test Setup Diagram

5.2.3 Test Procedure

The EUT is put on the plane 0.8 m high above the ground by insulating support and connected to the AC mains through Line Impedance Stability Network (L.I.S.N). This provided a 50ohm coupling impedance for the tested equipment. Both sides of AC line are investigated to find out the maximum conducted emission according to the test standard regulations during conducted emission measurement.

The bandwidth of the field strength meter (R&S Test Receiver ESCI) is set at 9kHz in 150kHz~30MHz.

The maximum conducted interference is searched using Peak (PK), if the emission levels more than the AV and QP limits, and that have narrow margins from the AV and QP limits will be re-measured with AV and QP detectors. Tests for both L phase and N phase lines of the power mains connected to the EUT are performed. Refer to recorded points and plots below.

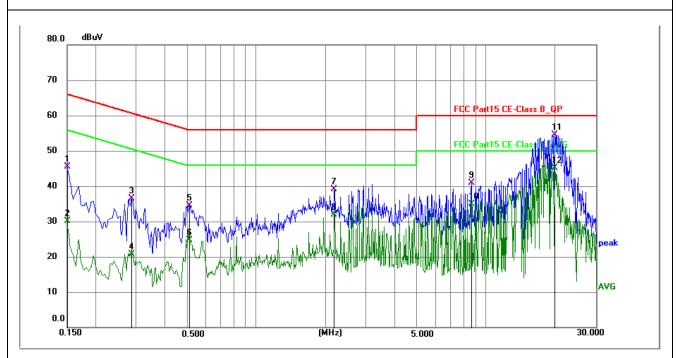
Devices subject to Part 15 must be tested for all available U.S. voltages and frequencies (such as a nominal 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz) for which the device is capable of operation. A device rated for 50/60 Hz operation need not be tested at both frequencies provided the radiated and line conducted emissions are the same at both frequencies.

5.2.4 Test Data

PASS.

Only the worst case data was showed in the report, please to see the following pages.

TRF No.: FCC Part 15 Subpart C WPT (A02)



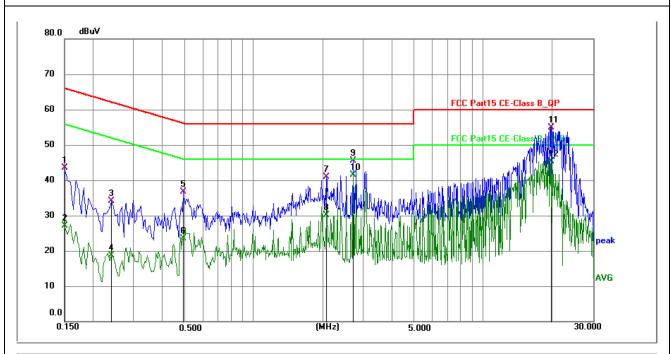
Page 11 of 28 Report No.: 8229EU010707W1

Conducted Emission Test Data

Test Site: Shielded Room #1

Test Mode: TM6
Comments: Live Line

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark
1	0.1500	35.69	9.91	45.60	66.00	-20.40	QP	Р	
2	0.1500	20.16	9.91	30.07	56.00	-25.93	AVG	Р	
3	0.2850	26.54	9.93	36.47	60.67	-24.20	QP	Р	
4	0.2850	10.85	9.93	20.78	50.67	-29.89	AVG	Р	
5	0.5100	24.49	9.97	34.46	56.00	-21.54	QP	Р	
6	0.5100	14.76	9.97	24.73	46.00	-21.27	AVG	Р	
7	2.1929	29.15	9.99	39.14	56.00	-16.86	QP	Р	
8	2.1929	21.92	9.99	31.91	46.00	-14.09	AVG	Р	
9	8.6145	30.88	10.01	40.89	60.00	-19.11	QP	Р	
10	8.6145	24.88	10.01	34.89	50.00	-15.11	AVG	Р	
11	19.8870	44.41	10.12	54.53	60.00	-5.47	QP	Р	
12 *	19.8870	35.00	10.12	45.12	50.00	-4.88	AVG	Р	


Page 12 of 28 Report No.: 8229EU010707W1

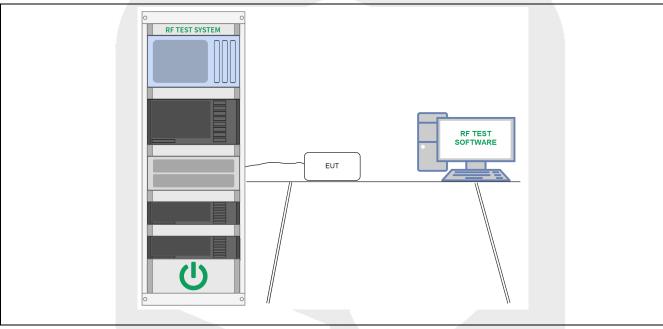
Conducted Emission Test Data

Test Site: Shielded Room #1

Test Mode: TM6

Comments: Neutral Line

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark
1	0.1500	33.53	9.93	43.46	66.00	-22.54	QP	Р	
2	0.1500	17.09	9.93	27.02	56.00	-28.98	AVG	Р	
3	0.2400	24.14	9.95	34.09	62.10	-28.01	QP	Р	
4	0.2400	8.75	9.95	18.70	52.10	-33.40	AVG	Р	
5	0.4920	26.66	10.00	36.66	56.13	-19.47	QP	Р	
6	0.4920	13.55	10.00	23.55	46.13	-22.58	AVG	Р	
7	2.0760	30.83	10.03	40.86	56.00	-15.14	QP	Р	
8	2.0760	20.15	10.03	30.18	46.00	-15.82	AVG	Р	
9	2.7150	35.56	10.02	45.58	56.00	-10.42	QP	Р	
10 *	2.7150	31.56	10.02	41.58	46.00	-4.42	AVG	Р	
11	19.8285	44.87	10.13	55.00	60.00	-5.00	QP	Р	
12	19.8285	35.13	10.13	45.26	50.00	-4.74	AVG	Р	


Page 13 of 28 Report No.: 8229EU010707W1

5.3 Emissions Bandwidth

5.3.1 Test Requirement

Test Requirement	Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.
Test Method	ANSI C63.10-2020, section 6.9.2 Occupied bandwidth—relative measurement procedure

5.3.2 Test Setup Diagram

Page 14 of 28 Report No.: 8229EU010707W1

5.3.3 Test Procedure

- a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the EMI receiver or spectrum analyzer shall be between two times and five times the OBW.
- b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW and video bandwidth (VBW) shall be approximately three times RBW, unless otherwise specified by the applicable requirement.
- c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.
- d) Steps a) through c) might require iteration to adjust within the specified tolerances.
- e) The dynamic range of the instrument at the selected RBW shall be more than 10 dB below the target "-xx dB down" requirement; that is, if the requirement calls for measuring the -20 dB OBW, the instrument noise floor at the selected RBW shall be at least 30 dB below the reference value.
- f) Set detection mode to peak and trace mode to maxhold.
- g) Determine the reference value: Set the EUT to transmit an unmodulated carrier or modulated signal, as applicable. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace (this is the reference value).
- h) Determine the "-xx dB down amplitude" using [(reference value) xx]. Alternatively, this calculation may be made by using the marker-delta function of the instrument.
- i) If the reference value is determined by an unmodulated carrier, then turn the EUT modulation ON, and either clear the existing trace or start a new trace on the spectrum analyzer and allow the new trace to stabilize. Otherwise, the trace from step g) shall be used for step j).
- j) Place two markers, one at the lowest frequency and the other at the highest frequency of the envelope of the spectral display, such that each marker is at or slightly below the "-xx dB down amplitude" determined in step h). If a marker is below this "-xx dB down amplitude" value, then it shall be as close as possible to this value. The occupied bandwidth is the frequency difference between the two markers. Alternatively, set a marker at the lowest frequency of the envelope of the spectral display, such that the marker is at or slightly below the "-xx dB down amplitude" determined in step h). Reset the marker-delta function and move the marker to the other side of the emission until the delta marker amplitude is at the same level as the reference marker amplitude. The marker-delta frequency reading at this point is the specified emission bandwidth.
- k)The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

5.3.4 Test Data

PASS.

Please refer to the following pages.

TRF No.: FCC Part 15 Subpart C WPT (A02)

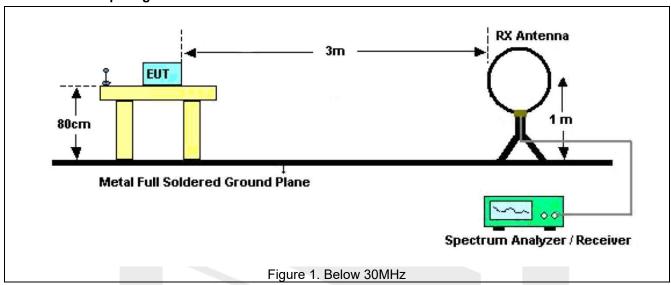
Page 15 of 28 Report No.: 8229EU010707W1

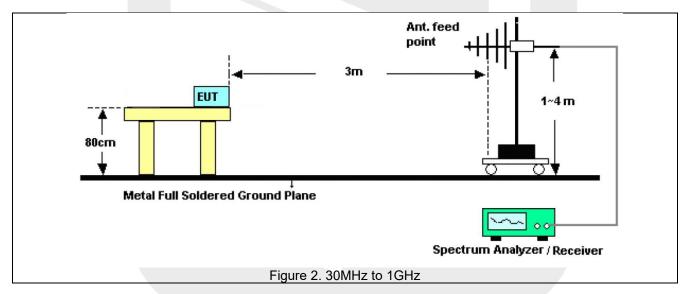
Frequency	20dB bandwidth	99% bandwidth	Result
(KHz)	(KHz)	(KHz)	
134.3	4.830	3.683	Pass

Page 16 of 28 Report No.: 8229EU010707W1

5.4 Radiated Emission

5.4.1 Test Requirement


FCC §15.215; FCC §15.209; FCC §15.215(b): In most unwanted emissions outside of the frequency bands shown in these alternative provisions must be attenuated to the emission limits shown in §15.209. In no case shall the level of the unwanted emissions from an intentional radiator operating under these additional provisions exceed the field strength of fundamental emission. FCC §15.209: According to FCC section 15.209 (a), except as provided elsewhere in this subposite emissions from an intentional radiator shall not exceed the field strength level specified in the following table: Frequency (MHz) Field strength Measurement distance (meters)	the art,							
In most unwanted emissions outside of the frequency bands shown in these alternative provisions must be attenuated to the emission limits shown in §15.209. In no case shall the level of the unwanted emissions from an intentional radiator operating under these additional provisions exceed the field strength of fundamental emission. FCC §15.209: According to FCC section 15.209 (a), except as provided elsewhere in this subposite the emissions from an intentional radiator shall not exceed the field strength level specified in the following table: Frequency (MHz) Field strength (microvolts/meter) 0.009-0.490 0.490-1.705 1.705-30.0 300 0.490-1.705 1.705-30.0 300 30-88 100 ** 3 3 38-216 150 ** 3 3 38-216 150 ** 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	the art,							
alternative provisions must be attenuated to the emission limits shown in §15.209. In no case shall the level of the unwanted emissions from an intentional radiator operating under these additional provisions exceed the field strength of fundamental emission. FCC §15.209: According to FCC section 15.209 (a), except as provided elsewhere in this subpositive emissions from an intentional radiator shall not exceed the field strength level specified in the following table: Frequency (MHz) Field strength (microvolts/meter) 0.009-0.490 0.490-1.705 1.705-30.0 30 1.705-30.0 30-30-88 100 ** 3 ** Except as provided in paragraph (g), fundamental emissions from intentional	the art,							
\$15.209.In no case shall the level of the unwanted emissions from an intentional radiator operating under these additional provisions exceed the field strength of fundamental emission. FCC §15.209: According to FCC section 15.209 (a), except as provided elsewhere in this subpose the emissions from an intentional radiator shall not exceed the field strength level specified in the following table: Frequency (MHz) Field strength (microvolts/meter) 0.009-0.490 2400/F(kHz) 300 0.490-1.705 24000/F(kHz) 30 1.705-30.0 30 30-88 100 ** 88-216 150 ** 216-960 200 ** Above 960 ** Except as provided in paragraph (g), fundamental emissions from intentional	the art,							
radiator operating under these additional provisions exceed the field strength of the fundamental emission. FCC §15.209: According to FCC section 15.209 (a), except as provided elsewhere in this subposition the emissions from an intentional radiator shall not exceed the field strength level specified in the following table: Frequency (MHz) Field strength (microvolts/meter) 0.009-0.490 Pield strength (microvolts/meter) 0.009-0.490 Pield strength (microvolts/meter) 1.705-30.0 Pield strength (microvolts/meter) 300 Pield strength (meters) 300 Pield strength	the art,							
fundamental emission. FCC §15.209: According to FCC section 15.209 (a), except as provided elsewhere in this subpose the emissions from an intentional radiator shall not exceed the field strength level specified in the following table: Frequency (MHz)	oart,							
FCC §15.209: According to FCC section 15.209 (a), except as provided elsewhere in this subpose the emissions from an intentional radiator shall not exceed the field strength level specified in the following table: Frequency (MHz)								
According to FCC section 15.209 (a), except as provided elsewhere in this subpath the emissions from an intentional radiator shall not exceed the field strength level specified in the following table: Frequency (MHz)								
According to FCC section 15.209 (a), except as provided elsewhere in this subpath the emissions from an intentional radiator shall not exceed the field strength level specified in the following table: Frequency (MHz)								
the emissions from an intentional radiator shall not exceed the field strength level specified in the following table: Frequency (MHz)								
the emissions from an intentional radiator shall not exceed the field strength level specified in the following table: Frequency (MHz)								
Specified in the following table: Frequency (MHz)								
Frequency (MHz) Field strength (microvolts/meter) 0.009-0.490 2400/F(kHz) 0.490-1.705 24000/F(kHz) 1.705-30.0 30 30-88 100 ** 88-216 150 ** 216-960 200 ** Above 960 500 ** Except as provided in paragraph (g), fundamental emissions from intentional								
	ĺ							
Test Limit (meters) 0.009-0.490								
Test Limit 0.009-0.490								
Test Limit 0.490-1.705 24000/F(kHz) 30								
Test Limit 1.705-30.0 30 30 30 30 30 30-88 100 ** 3 88-216 150 ** 3 216-960 200 ** 3 Above 960 500 3 ** Except as provided in paragraph (g), fundamental emissions from intentional								
Test Limit 30-88								
88-216 150 ** 3 216-960 200 ** 3 Above 960 500 3 ** Except as provided in paragraph (g), fundamental emissions from intentional								
Test Limit 216-960 200 ** Above 960 500 3 ** Except as provided in paragraph (g), fundamental emissions from intentional								
Above 960 500 3 ** Except as provided in paragraph (g), fundamental emissions from intentional								
** Except as provided in paragraph (g), fundamental emissions from intentional								
	s							
54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation with								
these frequency bands is permitted under other sections of this part, e.g.,								
§§ 15.231 and 15.241.								
NOTE:								
1. Field Strength (dBμV/m) = 20*log[Field Strength (μV/m)].								
2. In the emission tables above, the tighter limit applies at the band edges.								
3. At frequencies below 30 MHz, measurements may be performed at a distant	nco							
·								
closer than that specified in the regulations, when performing measureme								
at a closer distance than specified, the results shall be extrapolated to								
specified distance by either making measurements at a minimum of the specified distance by either making measurements at a minimum of the specified distance by either making measurements at a minimum of the specified distance by either making measurements at a minimum of the specified distance by either making measurements at a minimum of the specified distance by either making measurements at a minimum of the specified distance by either making measurements at a minimum of the specified distance by either making measurements at a minimum of the specified distance by either making measurements at a minimum of the specified distance by either making measurements at a minimum of the specified distance by either making measurements at a minimum of the specified distance by either making measurements at a minimum of the specified distance by either making measurements at a minimum of the specified distance by either making measurements at a minimum of the specified distance by either making measurements at a minimum of the specified distance by either making measurements at a minimum of the specified distance by either making measurements at a minimum of the specified distance by either making measurements at a minimum of the specified distance by either making measurements at a minimum of the specified distance by either making measurements at a minimum of the specified distance by either making measurements at a minimum of the specified distance by either making measurements at a minimum of the specified distance by either making measurements at a minimum of the specified distance by either making measurements at a minimum of the specified distance by either making measurements at a minimum of the specified distance by either making measurements at a minimum of the specified distance by either making measurements at a minimum of the specified distance by either making measurements at a minimum of the specified distance by either making measurements at a minimum of the specified distance by either making measureme								
distances on at least one radial to determine the proper extrapolation factor								
by using the square of an inverse linear distance extrapolation factor	•							
dB/decade). For example, at the frequency 9 kHz, limit @3m = 20*log (240	,							
+ 40log (dlimit/dmeasure) where limit = 300m, dmeasure=3m. limit @3n								
$20*\log (2400/9) + 40\log (300/3) = 128.52 (dB\mu V/m).$	m =							
	m =							
Test Method ANSI C63.10-2020 section 6.4, 6.5	m = 							
Radiated emissions tests	m = 							


TRF No.: FCC Part 15 Subpart C_WPT (A02)

Page 17 of 28 Report No.: 8229EU010707W1

5.4.2 Test Setup Diagram

Page 18 of 28 Report No.: 8229EU010707W1

5.4.3 Test Procedure

The measurement frequency range is from 9 kHz to the 10th harmonic of the fundamental frequency. The Turn Table is actuated to turn from 0° to 360°, and both horizontal and vertical polarizations of the Test Antenna are used to find the maximum radiated power.

The power of the EUT transmitting frequency should be ignored.

All Spurious Emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition was recorded in this test report.

Use the following spectrum analyzer settings:

Span = wide enough to fully capture the emission being measured

For 9kHz to 150kHz, Set the spectrum analyzer as:

RBW = 200Hz, VBW =1kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For 150kHz to 30MHz, Set the spectrum analyzer as:

RBW = 9KHz, VBW =30kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For 30MHz to 1000MHz, Set the spectrum analyzer as:

RBW = 100kHz, VBW =300kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

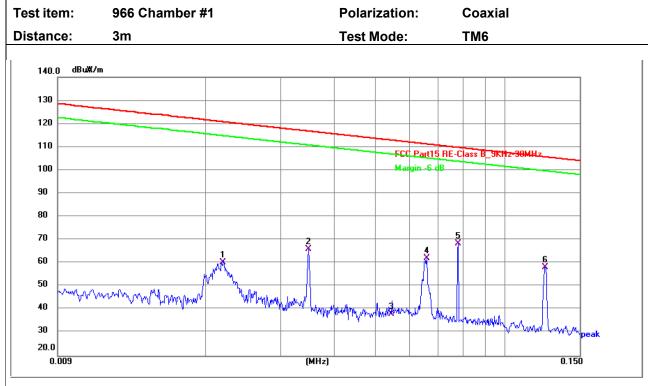
For above 1GHz, Set the spectrum analyzer as:

RBW =1MHz, VBW =1MHz, Detector= Peak, Trace mode= Max hold, Sweep- auto couple.

RBW =1MHz, VBW =10Hz, Detector= Average, Trace mode= Max hold, Sweep- auto couple.

For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported, Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

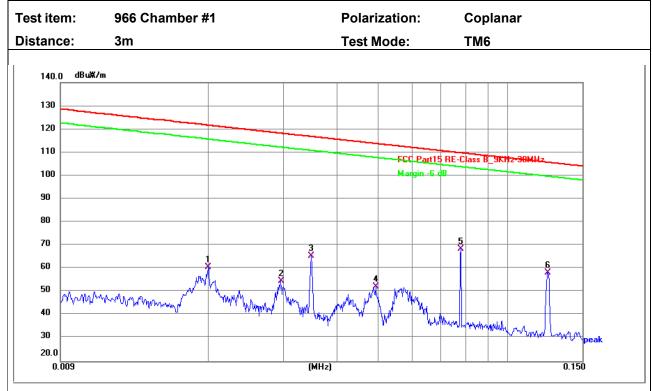
5.4.4 Test Data


PASS.

Please refer to the following pages.

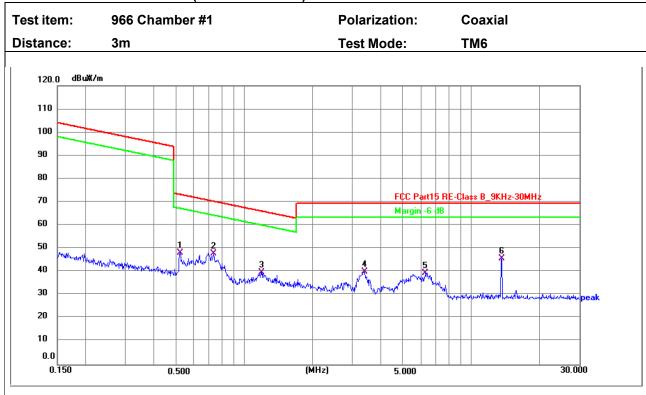
TRF No.: FCC Part 15 Subpart C WPT (A02)

Page 19 of 28 Report No.: 8229EU010707W1


Radiated Emission Test Data (9kHz -150kHz)

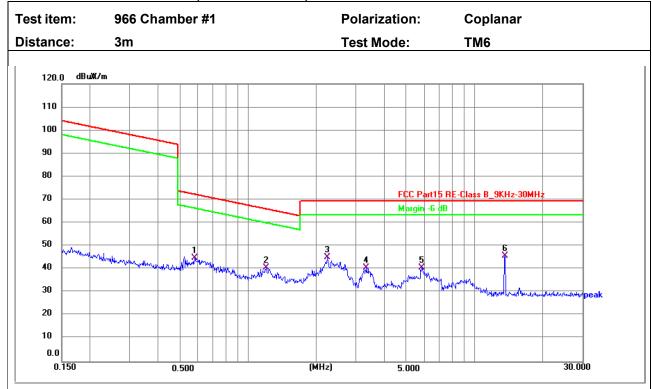
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	l .	Margin (dB)	Detector	P/F	Remark
1	0.0220	40.50	19.74	60.24	120.76	-60.52	QP	ъ	
2	0.0347	46.05	19.85	65.90	116.80	-50.90	QP	Ъ	
3	0.0543	18.18	19.93	38.11	112.91	-74.80	QP	ъ	
4	0.0656	42.07	19.94	62.01	111.27	-49.26	QP	Р	
5 *	0.0777	48.61	19.94	68.55	109.80	-41.25	QP	Р	
6	0.1243	38.40	19.98	58.38	105.71	-47.33	QP	Р	

Page 20 of 28 Report No.: 8229EU010707W1


Radiated Emission Test Data (9kHz -150kHz)

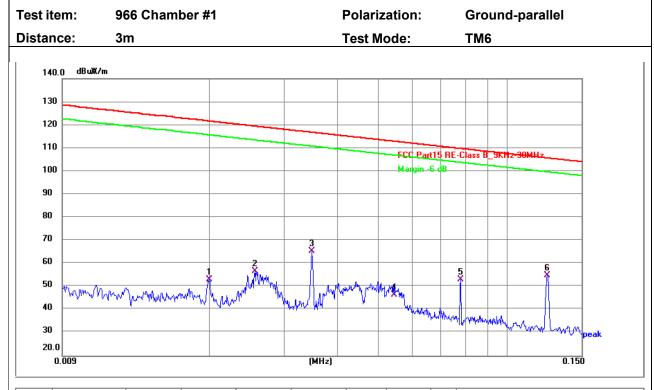
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	0.0200	40.92	19.71	60.63	121.58	-60.95	QP	J	
2	0.0293	34.80	19.83	54.63	118.27	-63.64	QP	J	
3	0.0347	45.71	19.85	65.56	116.80	-51.24	QP	Р	
4	0.0492	32.19	19.93	52.12	113.77	-61.65	QP	Р	
5 *	0.0777	48.61	19.94	68.55	109.80	-41.25	QP	Р	
6	0.1243	38.40	19.98	58.38	105.71	-47.33	QP	Р	

Page 21 of 28 Report No.: 8229EU010707W1


Radiated Emission Test Data (150kHz -30 MHz)

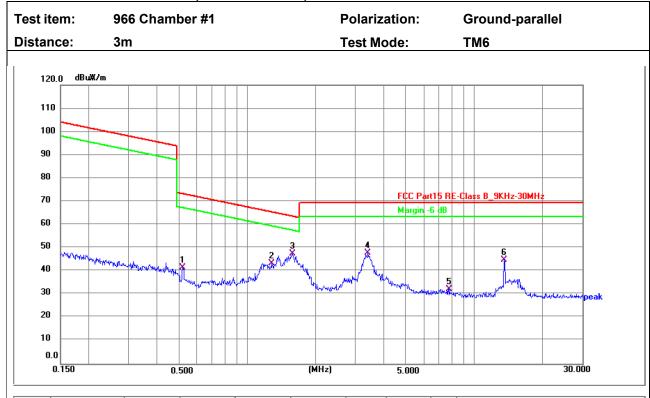
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	0.5210	27.98	20.08	48.06	73.27	-25.21	QP	Р	
2 *	0.7312	27.77	20.10	47.87	70.32	-22.45	QP	Р	
3	1.1906	19.72	20.11	39.83	66.09	-26.26	Q Q	Р	
4	3.3993	19.95	20.08	40.03	69.54	-29.51	P Q	Р	
5	6.2850	19.58	19.97	39.55	69.54	-29.99	QP	Р	
6	13.6228	26.10	19.57	45.67	69.54	-23.87	QP	Р	

Page 22 of 28 Report No.: 8229EU010707W1


Radiated Emission Test Data (150kHz -30 MHz)

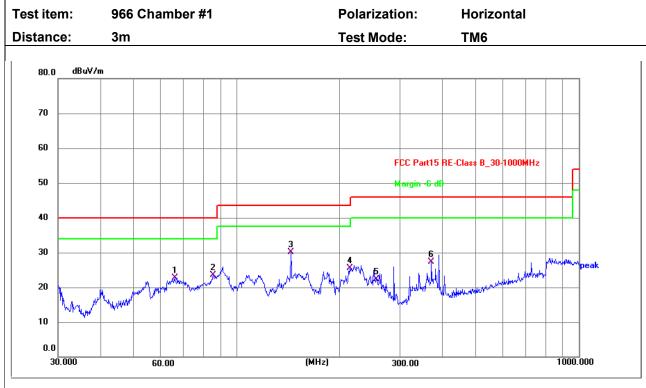
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	0.5792	24.87	20.09	44.96	72.35	-27.39	QP	Р	
2	1.2034	20.48	20.11	40.59	66.00	-25.41	QP	Р	
3	2.2367	25.12	20.09	45.21	69.54	-24.33	QP	Р	
4	3.3281	20.69	20.08	40.77	69.54	-28.77	QP	Л	
5	5.8358	20.55	20.00	40.55	69.54	-28.99	QP	J	
6 *	13.6228	26.10	19.57	45.67	69.54	-23.87	QP	Р	

Page 23 of 28 Report No.: 8229EU010707W1


Radiated Emission Test Data (9kHz -30MHz)

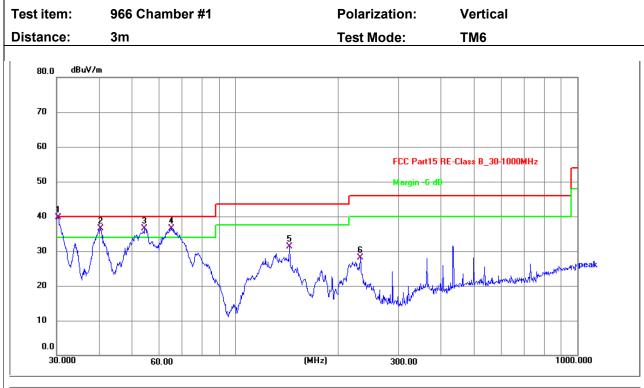
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	0.0200	33.59	19.71	53.30	121.58	-68.28	QP	Р	
2	0.0253	37.10	19.78	56.88	119.54	-62.66	QP	Р	
3	0.0347	45.73	19.85	65.58	116.80	-51.22	QP	Р	
4	0.0543	26.68	19.93	46.61	112.91	-66.30	QP	J	
5	0.0777	33.11	19.94	53.05	109.80	-56.75	QP	Р	
6 *	0.1243	34.90	19.98	54.88	105.71	-50.83	QP	Р	

Page 24 of 28 Report No.: 8229EU010707W1


Radiated Emission Test Data (150kHz -30 MHz)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	0.5181	21.60	20.08	41.68	73.32	-31.64	QP	Р	
2	1.2823	23.27	20.11	43.38	65.44	-22.06	QP	J	
3 *	1.5850	27.48	20.10	47.58	63.60	-16.02	QP	J	
4	3.3993	27.63	20.08	47.71	69.54	-21.83	QP	J	
5	7.7688	12.32	19.85	32.17	69.54	-37.37	QP	J	
6	13.5508	25.28	19.57	44.85	69.54	-24.69	QP	Р	

Page 25 of 28 Report No.: 8229EU010707W1


Radiated Emission Test Data (30-1000MHz)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	65.8031	39.14	-16.40	22.74	40.00	-17.26	QP	Р	
2	85.2980	41.94	-18.48	23.46	40.00	-16.54	QP	Ъ	
3 *	143.8295	48.11	-18.02	30.09	43.50	-13.41	QP	Р	
4	213.7634	39.89	-14.40	25.49	43.50	-18.01	QP	Р	
5	255.6231	35.36	-13.08	22.28	46.00	-23.72	QP	Р	
6	370.7023	37.82	-10.61	27.21	46.00	-18.79	QP	Р	

Page 26 of 28 Report No.: 8229EU010707W1

Radiated Emission Test Data (30-1000MHz)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1 *	30.3173	56.67	-16.97	39.70	40.00	-0.30	QP	Р	
2 !	40.2757	51.69	-15.12	36.57	40.00	-3.43	QP	Р	
3 !	54.2610	50.99	-14.40	36.59	40.00	-3.41	QP	Ч	
4 !	65.1145	52.71	-16.14	36.57	40.00	-3.43	QP	Ъ	
5	143.8295	49.27	-18.02	31.25	43.50	-12.25	QP	Р	
6	231.7179	42.08	-13.93	28.15	46.00	-17.85	QP	Р	

Page 27 of 28 Report No.: 8229EU010707W1

ANNEX A TEST SETUP PHOTOS

Please refer to the document "8229EU010707W-AA.PDF"

ANNEX B EXTERNAL PHOTOS

Please refer to the document "8229EU010707W-AB.PDF"

ANNEX C INTERNAL PHOTOS

Please refer to the document "8229EU010707W-AC.PDF"

TRF No.: FCC Part 15 Subpart C_WPT (A02)

Page 28 of 28 Report No.: 8229EU010707W1

Statement

- 1. The laboratory guarantees the scientificity, accuracy and impartiality of the test, and is responsible for all the information in the report, except the information provided by the customer. The customer is responsible for the impact of the information provided on the validity of the results.
- 2. The report without China inspection body and laboratory Mandatory Approval (CMA) mark has no effect of proving to the society.
- 3. For the report with CNAS mark or A2LA mark, the items marked with "☆" are not within the accredited scope.
- 4. This report is invalid if it is altered, without the signature of the testing and approval personnel, or without the "inspection and testing dedicated stamp" or test report stamp.
- 5. The test data and results are only valid for the tested samples provided by the customer.
- 6. This report shall not be partially reproduced without the written permission of the laboratory.
- 7. Any objection shall be raised to the laboratory within 30 days after receiving the report.

