

# **GV350CEU User Manual** GSM/GPRS/LTE CAT1/GNSS Tracker

# TRACGV350CEUUM001

Version: 1.00



Driving Smarter IoT

www.queclink.com



| Document Title      | GV350CEU User Manual |  |
|---------------------|----------------------|--|
| Version             | 1.00                 |  |
| Date                | 2022-03-30           |  |
| Status              | Release              |  |
| Document Control ID | TRACGV350CEUUM001    |  |

#### **General Notes**

Queclink offers this information as a service to its customers, to support application and engineering efforts that use the products designed by Queclink. The information provided is based upon requirements specifically provided to Queclink by the customers. Queclink has not undertaken any independent search for additional relevant information, including any information that may be in the customer's possession. Furthermore, system validation of this product designed by Queclink within a larger electronic system remains the responsibility of the customer or the customer's system integrator. All specifications supplied herein are subject to change.

#### Copyright

This document contains proprietary technical information which is the property of Queclink Wireless Solutions Co., Ltd. The copying of this document, distribution to others, and communication of the contents thereof, are forbidden without express authority. Offenders are liable to the payment of damages. All rights reserved in the event of grant of a patent or the registration of a utility model or design. All specifications supplied herein are subject to change without notice at any time.



# Contents

| Contents                                 | 2  |
|------------------------------------------|----|
| Table Index                              | 3  |
| Figure Index                             | 4  |
| 0. Revision History                      | 5  |
| 1. Introduction                          | 6  |
| 1.1. Reference                           | 6  |
| 1.2. Terms and Abbreviations             | 6  |
| 2. Product Overview                      | 7  |
| 2.1. Check Parts List                    | 7  |
| 2.2. Parts List                          | 8  |
| 2.3. Interface Definition                | 9  |
| 2.4. GV350CEU User Cable and Color       | 10 |
| 3. Get Started                           | 11 |
| 3.1. Open the Case                       | 11 |
| 3.2. Close the Case                      | 11 |
| 3.3. Install a SIM Card                  | 12 |
| 3.4. Install the Internal Backup Battery | 13 |
| 3.5. Power Connection                    | 14 |
| 3.6. Power On                            | 14 |
| 3.7. Ignition Detection                  | 15 |
| 3.8. Digital Inputs                      | 16 |
| 3.9. Analog Inputs                       | 17 |
| 3.10. Digital Outputs                    | 18 |
| 3.11. Device Status LED                  | 20 |
| 3.12. Serial Port/UART Interface         | 21 |
| 3.13. 1-WIRE Interface                   | 22 |
| 3.14. Motion Sensor Direction            | 22 |
| 3.15. CAN Installation                   | 23 |
| 3.15.1. CAN Interface                    | 23 |
| 3.15.2. Device Installation              | 24 |
| 3.15.3. CAN-bus Synchronization          | 25 |
| 3.15.4. Firmware Upgrade                 | 25 |



# **Table Index**

| TABLE 1. | GV350CEU PROTOCOL REFERENCE                      | 6    |
|----------|--------------------------------------------------|------|
| TABLE 2. | TERMS AND ABBREVIATIONS                          | 6    |
| TABLE 3. | PARTS LIST                                       | 8    |
| TABLE 4. | DESCRIPTION OF 22 PIN CONNECTIONS                | 9    |
| TABLE 5. | GV350CEU USER CABLE AND COLOR DEFINITION         | . 10 |
| TABLE 6. | ELECTRICAL CHARACTERISTICS OF IGNITION DETECTION | .15  |
| TABLE 7. | ELECTRICAL CHARACTERISTICS OF THE DIGITAL INPUTS | .16  |
| TABLE 8. | ELECTRICAL CHARACTERISTICS OF DIGITAL OUTPUTS    | .18  |
| TABLE 9. | DEFINITION OF DEVICE STATUS AND LED              | . 20 |



# Figure Index

| FIGURE 1.  | APPEARANCE OF GV350CEU                | 7  |
|------------|---------------------------------------|----|
| FIGURE 2.  | THE 22 PIN CONNECTOR ON THE GV350CEU  | 9  |
| FIGURE 3.  | OPEN THE CASE                         | 11 |
| FIGURE 4.  | CLOSE THE CASE                        | 11 |
| FIGURE 5.  | SIM CARD INSTALLATION                 | 12 |
| FIGURE 6.  | BACKUP BATTERY INSTALLATION           | 13 |
| FIGURE 7.  | TYPICAL POWER CONNECTION              | 14 |
| FIGURE 8.  | TYPICAL IGNITION DETECTION            | 15 |
| FIGURE 9.  | TYPICAL DIGITAL INPUT CONNECTION      | 16 |
| FIGURE 10. | TYPICAL ANALOG INPUT CONNECTION       | 17 |
| FIGURE 11. | DIGITAL OUTPUT INTERNAL DRIVE CIRCUIT | 18 |
| FIGURE 12. | TYPICAL CONNECTION WITH RELAY         | 18 |
| FIGURE 13. | TYPICAL CONNECTION WITH LED           | 19 |
| FIGURE 14. | GV350CEU LED ON THE CASE              | 20 |
| FIGURE 15. | TYPICAL CONNECTION WITH RS232 PORT    | 21 |
| FIGURE 16. | 1-WIRE INTERFACE                      | 22 |
| FIGURE 17. | MOTION SENSOR DIRECTION               | 22 |
| FIGURE 18. | CAN INTERFACE                         | 23 |
| FIGURE 19. | CAN1 CONNECTION                       |    |
| FIGURE 20. | CAN2 CONNECTION                       | 24 |
|            |                                       |    |



# 0. Revision History

| Version | Date       | Author     | Description of Change |
|---------|------------|------------|-----------------------|
| 1.00    | 2022-03-30 | Willie Liu | Initial               |



# 1. Introduction

The GV350CEU is a compact GNSS tracker designed for a wide variety of vehicle tracking applications. It has multiple I/O interfaces that can be used for monitoring or controlling external devices. Its built-in GNSS receiver has superior sensitivity and fast time to first fix. Its six-band LTE-FDD in Europe and GSM/GPRS 850/900/1800/1900 MHz allowing the GV350CEU's location to be monitored in real time or periodically tracked by a backend server and mobile devices. Its built-in 3-axis accelerometer allows driving behaviour monitoring, motion detection and extended battery life through sophisticated power management algorithms. It also has built-in CAN Module. System integration is straightforward as complete documentation is provided for the full featured @Track protocol. The @Track protocol supports a wide variety of reports including emergency, geo-fence boundary crossings, driving behaviour, low battery and scheduled GNSS position.

# 1.1. Reference

| SN  | Document Name                          | Remark                                                          |
|-----|----------------------------------------|-----------------------------------------------------------------|
| [1] | GV350CEU @Track Air Interface Protocol | The air protocol interface between GV350CEU and backend server. |

#### Table 1. GV350CEU Protocol Reference

#### **1.2.** Terms and Abbreviations

#### Table 2. Terms and Abbreviations

| Abbreviation | Description    |
|--------------|----------------|
| AIN          | Analog Input   |
| DIN          | Digital Input  |
| DOUT         | Digital Output |
| GND          | Ground         |
| RXD          | Receive Data   |
| TXD          | Transmit Data  |



# 2. Product Overview

# 2.1. Check Parts List

Before starting, check whether all the following items have been included with your GV350CEU. If anything is missing, please contact the supplier.



Figure 1. Appearance of GV350CEU



# 2.2. Parts List

| Table 3.                               | Parts List    |
|----------------------------------------|---------------|
| Name                                   | Picture       |
| GV350CEU Locator                       | 94*58.5*21 mm |
| User Cable                             |               |
| DATA_CABLE_W (Optional)                |               |
|                                        |               |
| Power Protection Cable, Kit (Ontional) |               |
|                                        |               |
| 60                                     | 11            |



# 2.3. Interface Definition

The GV350CEU has a 22 PIN interface connector which contains the connections for power, I/O, RS232, etc. The sequence and definition of the 22-PIN connector are shown in the following figure:





Figure 2. The 22 PIN Connector on the GV350CEU

| Index | Description | Comment                                      |
|-------|-------------|----------------------------------------------|
| 1     | ADC_IN      | Analog input (0-32V)                         |
| 2     | ADIN1       | Analog input (0-16V)                         |
| 2     |             | Digital output, Open drain, 150 mA max, with |
| 3     | 0011        | latch circuit                                |
| 4     | OUT 3       | Digital output                               |
| 5     | OUT 5       | Digital output                               |
| 6     | OUT 4       | Digital output                               |
| 7     | /IN2        | Digital input, negative trigger              |
| 8     | /IN1        | Digital input, negative trigger              |
| 9     | VIN         | External DC power input, 8-32V               |
| 10    | DATA_1W     | Data for one wire                            |
| 11    | VDD_1W      | VDD for one wire                             |
| 12    | ADIN2       | Analog input (0-16V)                         |
| 13    | /IN3        | Digital input, Negative trigger              |
| 14    | TXD         | UART RXD, RS232                              |
| 15    | RXD         | UART TXD, RS232                              |
| 16    | IGN         | Ignition input, positive trigger             |
| 17    | OUT2        | Digital output                               |
| 18    | GND         | Power and digital ground                     |
| 19    | CAN1L       | CAN 1 negative                               |
| 20    | CAN1H       | CAN 1 positive                               |
| 21    | CAN2H       | CAN 2 negative                               |
| 22    | CAN2L       | CAN 2 positive                               |

#### Table 4. Description of 22 PIN Connections



## 2.4. GV350CEU User Cable and Color

| Definition | Color               | PIN<br>No | Cable PIN Col |    | Color        | Definition |
|------------|---------------------|-----------|---------------|----|--------------|------------|
| VDD_1W     | Orange              | 11        |               | 22 | Green/Black  | CAN2L      |
| DATA_1W    | Gray                | 10        |               | 21 | Green/White  | CAN2H      |
| VIN        | Red                 | 9         |               | 20 | Orange/Green | CAN1H      |
| /IN1       | Brown               | 8         |               | 19 | Orange/Brown | CAN1L      |
| /IN2       | Yellow              | 7         |               | 18 | Black        | GND        |
| OUT4       | Navy<br>Blue/White  | 6         |               | 17 | Navy Green   | OUT2       |
| OUT5       | Blue                | 5         |               | 16 | Purple       | IGN        |
| OUT3       | Navy<br>Green/White | 6         |               | 15 | Pink/White   | RXD        |
| OUT1       | Navy Blue           | 3         |               | 14 | Pink         | TXD        |
| ADIN1      | White/Black         | 2         |               | 13 | Yellow/Black | /IN3       |
| ADC_IN     | White               | 1         | A legender of | 12 | White/Brown  | ADIN2      |

Table 5. GV350CEU User Cable and Color Definition



# 3. Get Started

# 3.1. Open the Case



# Figure 3. Open the Case

Use the screwdriver to remove the screws on the four corners to open the device.



# 3.2. Close the Case

Figure 4. Close the Case

Use the screwdriver to tighten the screws on the four corners to complete device assembly.



# 3.3. Install a SIM Card

Open the case and ensure the unit is not powered. Slide the holder right to open the SIM card holder. Insert the SIM card into the holder as shown below with the gold-colored contact area facing down. Take care to align the cut mark. Close the SIM card holder. Close the case.



Figure 5. SIM Card Installation



3.4. Install the Internal Backup Battery



Figure 6. Backup Battery Installation

GV350CEU has an internal backup Li-ion battery.



#### **3.5.** Power Connection

PWR (PIN9)/GND (PIN18) are the power input pins. The input voltage range for this device is from 8V to 32V. The device is designed to be installed in common vehicles that operate on 12V or 24V systems without the need for external transformers. But it is recommended to use Power Protection Cable Kit if it is installed in a truck with 24V battery.





# 3.6. Power On

Please pay attention to the following situations when powering on the device:

1. Backup battery is connected to the device:

- The device can be powered on when the USB cable is connected.
- The device can be powered on when the external power supply is connected.

2. Backup battery is not connected to the device:

- The device cannot be powered on when the USB cable is connected only.
- The device can be powered on when the external power supply is connected only.



# 3.7. Ignition Detection

| Table 6. Electrical Characteristics of Ignition Detection | Table 6. | Electrical | Characteristics | of Ignition | Detectior |
|-----------------------------------------------------------|----------|------------|-----------------|-------------|-----------|
|-----------------------------------------------------------|----------|------------|-----------------|-------------|-----------|

| Logical Status | Electrical Characteristics |
|----------------|----------------------------|
| Active         | 5.0V to 32V                |
| Inactive       | 0V to 3V or open           |



Figure 8. Typical Ignition Detection

IGN (Pin16) is used for ignition detection. It is strongly recommended to connect this pin to ignition key "RUN" position as shown above.

An alternative to connecting to the ignition switch is to find a non-permanent power source that is only available when the vehicle is running, for example, the power source for the FM radio. IGN signal can be configured to start transmitting information to the backend server when ignition is on, and enter the power saving mode when ignition is off.



# 3.8. Digital Inputs

There are three general purpose digital inputs on GV350CEU. They are all negative triggers.

| Logical Status | Electrical Characteristics |  |  |
|----------------|----------------------------|--|--|
| Active         | 0V to 0.6V                 |  |  |
| Inactive       | Open                       |  |  |

| Table 7. | Electrical | Characteristics | of the | Digital | Inputs |
|----------|------------|-----------------|--------|---------|--------|
|----------|------------|-----------------|--------|---------|--------|

The following figure shows the recommended connection of a digital input.



Figure 9. Typical Digital Input Connection



# 3.9. Analog Inputs

There are three analog inputs on GV350CEU, and the analog input voltage ranges are 0-16V and 0-30V. The following figure shows the recommended connection.



Figure 10. Typical Analog Input Connection

## Note:

- 1. For PIN 12 and PIN2, the voltage range is 0-16V.
- 2. For PIN 1, the voltage range is 0-30V.



# 3.10. Digital Outputs

There are three digital outputs on GV350CEU. All three digital outputs are of open drain type and the maximum drain current is 150mA. Each output has the built-in over current PTC resettable fuse.



Figure 11. Digital Output Internal Drive Circuit

| Table 8. | Electrical | <b>Characteristics</b> | of I | Digital | Outputs |
|----------|------------|------------------------|------|---------|---------|
|          |            |                        |      |         |         |

| Logical Status | Electrical Characteristics |
|----------------|----------------------------|
| Enable         | <1.5V @150 mA              |
| Disable        | Open drain                 |



Figure 12. Typical Connection with Relay





Figure 13. Typical Connection with LED

#### Note:

1. OUT1 will latch the output state during reset.

2. Many modern relays come with a flyback diode pre-installed internal to the relay itself. If the relay has this diode, please ensure the relay polarity is properly connected. If this diode is not internal, it should be added externally. A common diode such as a 1N4004 will work in most circumstances.



# 3.11. Device Status LED



Figure 14. GV350CEU LED on the Case

| LED             | Device Status                                                                                                    | LED Status                                   |  |
|-----------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--|
| CAN             | Operating mode, CAN-bus or J1708 active (only one of those)                                                      | Blinks green once every 1s                   |  |
|                 | Operating mode, CAN-bus(es) and J1708 sleep or disabled                                                          | Blinks green once every 4s                   |  |
|                 | Low power mode (sleep)                                                                                           | Off                                          |  |
|                 | CAN-bus codes synchronization                                                                                    | Blinks red quickly<br>(ca.7times per second) |  |
|                 | CAN-bus codes synchronization finished successfully                                                              | Green on (after synchronization)             |  |
|                 | CAN-bus codes synchronization failed (CAN-bus wires are properly connected, but codes have not been recognized). | Red on (after synchronization)               |  |
|                 | CAN-bus codes synchronization failed (no CAN-bus connection or CAN-bus sleep).                                   | Flashes red 0.5s on / green 0.5s on          |  |
|                 | Device startup failed. Return the device to the producer for diagnosis.                                          | Red on (after power-on)                      |  |
| GNSS            | GPS chip is powered off.                                                                                         | OFF                                          |  |
| (Note 2)        | GPS sends no data or data format error occurs.                                                                   | Slow flashing                                |  |
|                 | GPS chip is searching GPS information.                                                                           | Fast flashing                                |  |
|                 | GPS chip has gotten GPS information.                                                                             | ON                                           |  |
| CEL<br>(Note 1) | Device is searching network.                                                                                     | Fast flashing<br>(Note 3)                    |  |
|                 | Device has registered to network.                                                                                | Slow flashing(Note 4)                        |  |

| Table 9  | Definition of | Device | Status | and |     |
|----------|---------------|--------|--------|-----|-----|
| Table 5. | Demition of   | Device | วเลเนร | anu | LED |



|          | SIM card needs pin code to unlock.                | ON            |  |
|----------|---------------------------------------------------|---------------|--|
| PWR      | No external power and internal battery voltage is | 055           |  |
| (Note 2) | lower than 3.5V.                                  | OFF           |  |
|          | No external power and internal battery voltage is | Clow flocking |  |
|          | below 3.65V.                                      | Slow hashing  |  |
|          | The external power supply has been connected      |               |  |
|          | to the device and the internal battery of the     | Fast flashing |  |
|          | device is charging.                               |               |  |
|          | The external power supply has been connected      |               |  |
|          | to the device and the internal battery of the     | ON            |  |
|          | device is fully charged.                          |               |  |

#### Note:

1. CEL LED cannot be configured.

2. GNSS LED and PWR LED can be configured to be turned off after a period time by using the configuration tool.

3. Fast flashing: For CEL LED, it is about 60 Ms ON/780 Ms OFF. For GPS LED and PWR LED, it is about 100 Ms ON/100 Ms OFF.

4. Slow flashing: For CEL LED, it is about 60 Ms ON/1940 Ms OFF. For GPS LED and PWR LED, it is about 600 Ms ON/600 Ms OFF.

## 3.12. Serial Port/UART Interface

There are two lines dedicated to the Serial Port/UART interface (TXD and RXD). TXD/RXD is standard RS232 signal.



Figure 15. Typical Connection with RS232 Port



### 3.13. 1-WIRE Interface

There are two lines dedicated to the 1-WIRE, VDD and Data for one wire.



Figure 16. 1-WIRE Interface

## 3.14. Motion Sensor Direction

GV350CEU has an internal 6-axis gyroscope sensor supporting driving behavior monitoring, crash detection and motion detection. The following shows the directions of the motion sensor:



Figure 17. Motion Sensor Direction

Note:

- 1. The opposite direction of the cable harness is the positive direction of the X-axis.
- 2. The z-axis is in positive direction above the label surface.



3. The positive directions of the three axes are perpendicular to each other, as shown in the figure.

# 3.15. CAN Installation

## 3.15.1. CAN Interface

There are two CAN interfaces, CAN2L/CAN2H, CAN1L/CAN1H. CAN1: J1939 (FMS data) CAN2: J1708





#### 3.15.2. Device Installation

Here are the steps to connect CANH and CANL to CAN-bus in the vehicle. **Step\_1**. Connect CAN1 to CAN-bus in the vehicle.



Figure 19. CAN1 Connection

Physically weld CAN1H and CAN1L to the OBD (CANH pin 6, CANL pin 14) interface of the vehicle. Then turn the ignition on.

#### Note:

Machines are supported in GV350CEU only if they are based on J1939/FMS protocol. Any others will not be supported. All the heavy trucks, cars and buses are supported in the same firmware. Please consult the supplier for a detailed support list.

**Step\_2**. Connect CAN2 to CAN-bus or J1708-bus in the vehicle.





Connect CAN2 to CAN-bus or J1708-bus in the vehicle. Automatic synchronization will detect J1708 as usual.

#### Note:

If necessary, please read the passenger car DTC, and connect CAN2 to OBD (CANH pin 6, CANL pin 14). If CAN1 is connected there, then void connecting CAN2. Not all cars would require connecting CAN2, but for now this is the most generic instruction and it doesn't go wrong even if it would be connected for nothing.

#### TRACGV350CEUUM001

#### Operating Temperature:-30℃ ~ +70℃

#### RF exposure statement

*RF exposure information*: The Maximum Permissible Exposure (MPE) level has been calculated based on a distance of d=20 cm between the device and the human body. To maintain compliance with RF exposure requirement, use product that maintain a 20cm dist

ance between the device and human body.

| GSM900  | 30.01 dBm |
|---------|-----------|
| GSM1800 | 27.63 dBm |
| Band 1  | 24.53 dBm |
| Band 3  | 23.96 dBm |
| Band 7  | 24.59 dBm |
| Band 8  | 22 dBm    |
| Band 20 | 23.57 dBm |
| Band 28 | 21.64 dBm |
| BLE     | 7.25dbm   |

Hereby, Queclink Wireless Solutions Co., Ltd. declares that the radio equipment it is in compliance with Directive 2014/53/EU.

The full text of the EU declaration of conformity is available at the following internet address: http://www.queclink.com/

Federal Communication Commission Interference Statement

This equipment has been tested and found to comply with the limits for a Class B digital device,

pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates,

uses and can radiate radio frequency energy and, if not installed and used in accordance with

the instructions, may cause harmful interference to radio communications. However, there is

no guarantee that interference will not occur in a particular installation. If this equipment does

cause harmful interference to radio or television reception, which can be determined by turning

the equipment off and on, the user is encouraged to try to correct the interference by one of the

following measures:

Reorient or relocate the receiving antenna.

Increase the separation between the equipment and receiver.

-

Connect the equipment into an outlet on a circuit different from that to which the receiver is

connected.

-

Consult the dealer or an experienced radio/TV technician for help.

FCC Caution:

Any changes or modifications not expressly approved by the party responsible for compliance

could void the user's authority to operate this equipment.

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two

conditions:

(1)This device may not cause harmful interference, and

(2)This device must accept any interference received, including interference that may cause

undesired operation.

FCC Radiation Exposure Statement:

This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with minimum distance 20cm

between the radiator & your body. This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.



#### 3.15.3. CAN-bus Synchronization

CAN-bus codes synchronization function allows GV350CEU to detect the vehicle model to which the GV350CEU is connected. Switch vehicle ignition on and send the command **AT+GTRTO**=gv350ceu,22,2,,,,,FFFF\$ after GV350CEU is installed in the vehicle, and then the synchronization will start. During synchronization, the flashing of the can lamp can be observed. For details, please refer to command **AT+GTRTO**-22 and **AT+GTRTO**-2F.

#### 3.15.4. Firmware Upgrade

A file with the firmware / configuration is supplied by the manufacturer. CAN firmware upgrade or CAN configuration upgrade can be set through **AT+GTCFU**. For details, please refer to command **AT+GTCFU**.