## 1800 MHz Dipole Calibration Certificate Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates | Calibration procedure(s) Calibration Calibration Calibration Calibration Calibration certificate documents the tracea The measurements and the uncertainties with calibrations have been conducted in the close Calibration Equipment used (M&TE critical for | | | | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------------------------------|---------------------------------| | Calibration procedure(s) Calibration Calibration Calibration Calibration Calibration Calibration certificate documents the traceat the measurements and the uncertainties with calibrations have been conducted in the close that calibrations have been conducted in the close that calibration Equipment used (M&TE critical for experiment used (M&TE critical for calibration | ICATE | | | | Calibration Calibration Calibration Calibration Calibration certificate documents the tracea The measurements and the uncertainties with color All calibrations have been conducted in the close Calibration Equipment used (M&TE critical for calibr | 2 - SN:2d | 145 | | | This calibration certificate documents the tracea The measurements and the uncertainties with containing the measurements and the conditions are contained to the containing the measurements and the containing the measurements are contained to the measurements and the containing containi | | dure for SAR Validation Sources | s between 0.7-3 GHz | | The measurements and the uncertainties with control of the color th | 2021 | | | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A SN: 10477 SN: 10324 SN: 10324 SN: 10324 SN: 10324 SN: 31098 SN: 7349 SN: 601 SECONDARY SN: 601 SN: GB398 SN: US372 SN: US372 SN: US410 Name | onfidence pro<br>ed laboratory | bability are given on the following pages an | nd are part of the certificate. | | Power sensor NRP-Z91 SN: 10324 Power sensor NRP-Z91 SN: 10324 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 SN: 31098 DAE4 SN: 601 Secondary Standards ID # Power meter E4419B SN: GB398 Power sensor HP 8481A SN: US372 Power sensor HP 8481A SN: MY410 RF generator R&S SMT-06 SN: 10097 Network Analyzer Agilent E8358A Name | | Cal Date (Certificate No.) | Scheduled Calibration | | Power sensor NRP-Z91 SN: 10324 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 SN: 31098 DAE4 SN: 601 Secondary Standards ID # Power meter E4419B SN: GB398 Power sensor HP 8481A SN: US372 Power sensor HP 8481A SN: MY410 RF generator R&S SMT-06 SN: 10097 Network Analyzer Agilent E8358A Name | 8 | 09-Apr-21 (No. 217-03291/03292) | Apr-22 | | Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 SN: 31098 SN: 7349 SN: 601 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A SN: BH938 SN: 31098 SN: 7349 SN: 601 SN: 601 SN: 60398 SN: US372 SN: US372 SN: US372 SN: 10097 SN: 10097 SN: US410 | 4 | 09-Apr-21 (No. 217-03291) | Apr-22 | | Type-N mismatch combination SN: 31098 Reference Probe EX3DV4 SN: 7349 DAE4 SN: 601 Secondary Standards ID # Power meter E4419B SN: GB398 Power sensor HP 8481A SN: US372 Power sensor HP 8481A SN: MY411 RF generator R&S SMT-06 SN: 10097 Network Analyzer Agilent E8358A Ns: US410 Name Name | 5 | 09-Apr-21 (No. 217-03292) | Apr-22 | | Reference Probe EX3DV4 SN: 7349 SN: 601 Secondary Standards ID # Power meter E4419B SN: GB398 SN: US372 SN: WY410 SRF generator R&S SMT-06 SN: 10097 SN: US410 Name | | 09-Apr-21 (No. 217-03343) | Apr-22 | | DAE4 SN: 601 | 2 / 06327 | 09-Apr-21 (No. 217-03344) | Apr-22 | | Secondary Standards ID # Power meter E4419B SN: GB399 Power sensor HP 8481A SN: US372 Power sensor HP 8481A SN: MY410 RF generator R&S SMT-06 SN: 10097 Network Analyzer Agilent E8358A Name | | 28-Dec-20 (No. EX3-7349_Dec20) | Dec-21 | | Power meter E4419B SN: GB398 Power sensor HP 8481A SN: US372 Power sensor HP 8481A SN: MY410 RF generator R&S SMT-06 SN: 10097 Network Analyzer Agilent E8358A Name | | 02-Nov-20 (No. DAE4-601_Nov20) | Nov-21 | | Power sensor HP 8481A SN: US372 Power sensor HP 8481A SN: MY410 RF generator R&S SMT-06 SN: 10097 Network Analyzer Agilent E8358A Name | | Check Date (in house) | Scheduled Check | | Power sensor HP 8481A<br>RF generator R&S SMT-06<br>Network Analyzer Agilent E8358A<br>SN: US410<br>Name | 12475 | 30-Oct-14 (in house check Oct-20) | In house check: Oct-22 | | RF generator R&S SMT-06 SN: 10097<br>Network Analyzer Agilent E8358A SN: US410 | 92783 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | Network Analyzer Agilent E8358A SN: US410 | )92317 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | Name | | 15-Jun-15 (in house check Oct-20) | In house check: Oct-22 | | PARTICIPATION AND ADDRESS OF THE | 80477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-21 | | Calibrated by: Jeffrey Kab | | Function | Signature | | | rman | Laboratory Technician | 1.kt | | No. | | | 0.7 | | Approved by: Katja Poko | ric | Technical Manager | delles | | | | | Issued: July 15, 2021 | Certificate No: D1800V2-2d145\_Jul21 Page 1 of 6 ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the sign The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** c) DASY System Handbook ## Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D1800V2-2d145\_Jul21 Page 2 of 6 ## **Measurement Conditions** DASY system configuration, as far as not given on page 1 | DASY Version | DASY52 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, $dy$ , $dz = 5 mm$ | | | Frequency | 1800 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.4 ± 6 % | 1.39 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | **** | ## SAR result with Head TSL | SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.51 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 38.3 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 4.95 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 19.9 W/kg ± 16.5 % (k=2) | Certificate No: D1800V2-2d145\_Jul21 # Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 47.9 Ω - 2.8 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 28.8 dB | | ## **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.214 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| | | | Certificate No: D1800V2-2d145\_Jul21 Page 4 of 6 ## **DASY5 Validation Report for Head TSL** Date: 12.07.2021 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN:2d145 Communication System: UID 0 - CW; Frequency: 1800 MHz Medium parameters used: f = 1800 MHz; $\sigma = 1.39 \text{ S/m}$ ; $\varepsilon_r = 40.4$ ; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(8.63, 8.63, 8.63) @ 1800 MHz; Calibrated: 28.12.2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 02.11.2020 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 107.9 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 17.7 W/kg SAR(1 g) = 9.51 W/kg; SAR(10 g) = 4.95 W/kg Smallest distance from peaks to all points 3 dB below = 9.5 mm Ratio of SAR at M2 to SAR at M1 = 54.3% Maximum value of SAR (measured) = 14.9 W/kg 0 dB = 14.9 W/kg = 11.73 dBW/kg Certificate No: D1800V2-2d145\_Jul21 Page 5 of 6 ## Impedance Measurement Plot for Head TSL Certificate No: D1800V2-2d145\_Jul21 Page 6 of 6 ## 1900 MHz Dipole Calibration Certificate Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates | CALIBRATION CE | EDTIEICATE | | No: D1900V2-5d101_Jul21 | |----------------------------------------------------------------------|------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | ALIBRATION CI | ENTIFICATE | | | | Dbject | D1900V2 - SN:50 | 1101 | | | Calibration procedure(s) | QA CAL-05.v11<br>Calibration Proce | dure for SAR Validation Source | es between 0.7-3 GHz | | Calibration date: | July 15, 2021 | | | | All calibrations have been conducte Calibration Equipment used (M&TE | | y facility: environment temperature (22 ± 3 | )°C and humidity < 70%. | | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | Power meter NRP | SN: 104778 | 09-Apr-21 (No. 217-03291/03292) | Apr-22 | | Power sensor NRP-Z91 | SN: 103244 | 09-Apr-21 (No. 217-03291) | Apr-22 | | Power sensor NRP-Z91 | SN: 103245 | 09-Apr-21 (No. 217-03292) | Apr-22 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 09-Apr-21 (No. 217-03343) | Apr-22 | | Type-N mismatch combination | SN: 310982 / 06327 | 09-Apr-21 (No. 217-03344) | Apr-22 | | Reference Probe EX3DV4 | SN: 7349 | 28-Dec-20 (No. EX3-7349_Dec20) | Dec-21 | | DAE4 | SN: 601 | 02-Nov-20 (No. DAE4-601_Nov20) | Nov-21 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-20) | In house check: Oct-22 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-21 | | | Name | Function | Signature | | Calibrated by: | Leif Klysner | Laboratory Technician | THE RESIDENCE OF THE PARTY T | | Approved by: | Katja Pokovic | Technical Manager | Sel Her<br>cede | | | | | Issued: July 19, 2021 | Certificate No: D1900V2-5d101\_Jul21 Page 1 of 6 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** c) DASY System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D1900V2-5d101\_Jul21 Page 2 of 6 ## **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1900 MHz ± 1 MHz | | **Head TSL parameters**The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.4 ± 6 % | 1.40 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL | SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 10.0 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 40.1 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.22 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 20.9 W/kg ± 16.5 % (k=2) | Certificate No: D1900V2-5d101\_Jul21 #### Appendix (Additional assessments outside the scope of SCS 0108) ## Antenna Parameters with Head TSL | Impedance, transformed to feed point | $50.9~\Omega$ + $4.8~\mathrm{j}\Omega$ | | |--------------------------------------|----------------------------------------|--| | Return Loss | - 26.2 dB | | ## General Antenna Parameters and Design | Electrical Delay (one direction) | 1.201 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| |-----------------|-------| Certificate No: D1900V2-5d101\_Jul21 #### **DASY5 Validation Report for Head TSL** Date: 15.07.2021 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d101 Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.4 \text{ S/m}$ ; $\varepsilon_r = 40.4$ ; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(8.43, 8.43, 8.43) @ 1900 MHz; Calibrated: 28.12.2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 02.11.2020 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 110.1 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 18.4 W/kg #### SAR(1 g) = 10 W/kg; SAR(10 g) = 5.22 W/kg Smallest distance from peaks to all points 3 dB below = 9.8 mm Ratio of SAR at M2 to SAR at M1 = 54.9% Maximum value of SAR (measured) = 15.5 W/kg 0 dB = 15.5 W/kg = 11.90 dBW/kg Certificate No: D1900V2-5d101\_Jul21 Page 5 of 6 ## Impedance Measurement Plot for Head TSL Certificate No: D1900V2-5d101\_Jul21 Page 6 of 6 ## 2600 MHz Dipole Calibration Certificate Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client CTTL (Auden) Certificate No: D2600V2-1012 Jul21 | ALIBRATION | ERTIFICATE | | | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------| | Object | D2600V2 - SN:10 | 012 | | | Calibration procedure(s) | QA CAL-05.v11<br>Calibration Proce | edure for SAR Validation Sources | s between 0.7-3 GHz | | Calibration date: | July 26, 2021 | | | | he measurements and the uncert | ed in the closed laborator | onal standards, which realize the physical un<br>robability are given on the following pages an<br>ry facility: environment temperature ( $22 \pm 3$ )°( | nd are part of the certificate. | | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | Power meter NRP | SN: 104778 | 09-Apr-21 (No. 217-03291/03292) | Apr-22 | | ower sensor NRP-Z91 | SN: 103244 | 09-Apr-21 (No. 217-03291) | Apr-22 | | ower sensor NRP-Z91 | SN: 103245 | 09-Apr-21 (No. 217-03292) | Apr-22 | | leference 20 dB Attenuator | SN: BH9394 (20k) | 09-Apr-21 (No. 217-03343) | Apr-22 | | ype-N mismatch combination | SN: 310982 / 06327 | 09-Apr-21 (No. 217-03344) | Apr-22 | | | SN: 7349 | 28-Dec-20 (No. EX3-7349_Dec20) | Dec-21 | | The state of s | | | | | Reference Probe EX3DV4 | SN: 601 | 02-Nov-20 (No. DAE4-601_Nov20) | Nov-21 | | Reference Probe EX3DV4<br>DAE4 | SN: 601 | 02-Nov-20 (No. DAE4-601_Nov20) Check Date (in house) | Nov-21 Scheduled Check | | DAE4 Secondary Standards Power meter E4419B | 1 | - | Scheduled Check | | DAE4 Secondary Standards Power meter E4419B | ID# | Check Date (in house) | Scheduled Check<br>In house check: Oct-22 | | DAE4 DAE4 DECONDARY Standards DOWNER MAN TO THE PROPERTY OF TH | ID #<br>SN: GB39512475 | Check Date (in house) 30-Oct-14 (in house check Oct-20) | Scheduled Check In house check: Oct-22 In house check: Oct-22 | | econdary Standards ower meter E4419B ower sensor HP 8481A ower sensor HP 8481A F generator R&S SMT-06 | ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972 | Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) | Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 | | decondary Standards Sower meter E4419B Sower sensor HP 8481A | ID #<br>SN: GB39512475<br>SN: US37292783<br>SN: MY41092317 | Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) | Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 | | Acterence Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A F generator R&S SMT-06 Idetwork Analyzer Agilent E8358A | ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 Name | Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) | | | Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A Calibrated by: | ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 | Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) | Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-21 Signature | | Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A | ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 Name | Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) | Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-21 | Certificate No: D2600V2-1012\_Jul21 Page 1 of 6 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Accreditation No.: SCS 0108 Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissu tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** c) DASY System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D2600V2-1012\_Jul21 Page 2 of 6 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, $dy$ , $dz = 5 mm$ | | | Frequency | 2600 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | - | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.0 | 1.96 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.3 ± 6 % | 2.05 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL | SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 14.7 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 57.1 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.48 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 25.5 W/kg ± 16.5 % (k=2) | Certificate No: D2600V2-1012\_Jul21 Page 3 of 6 ## Appendix (Additional assessments outside the scope of SCS 0108) #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 47.8 Ω - 5.7 jΩ | |--------------------------------------|-----------------| | Return Loss | - 24.1 dB | ## General Antenna Parameters and Design | Electrical Delay (one direction) | 1.153 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| |-----------------|-------| Certificate No: D2600V2-1012\_Jul21 #### **DASY5 Validation Report for Head TSL** Date: 26.07.2021 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1012 Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; $\sigma = 2.05$ S/m; $\varepsilon_r = 37.3$ ; $\rho = 1000$ kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN7349; ConvF(7.84, 7.84, 7.84) @ 2600 MHz; Calibrated: 28.12.2020 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 02.11.2020 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 118.6 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 29.5 W/kg SAR(1 g) = 14.7 W/kg; SAR(10 g) = 6.48 W/kg Smallest distance from peaks to all points 3 dB below = 8.9 mm Ratio of SAR at M2 to SAR at M1 = 49.6% Maximum value of SAR (measured) = 24.4 W/kg 0 dB = 24.4 W/kg = 13.87 dBW/kg Certificate No: D2600V2-1012\_Jul21 Page 5 of 6 ## Impedance Measurement Plot for Head TSL Certificate No: D2600V2-1012\_Jul21 Page 6 of 6 # **ANNEX I** Sensor Triggering Data Summary According to the above description, this device was tested by the manufacturer to determine the SAR sensor triggering distances for the front rear front and bottom edge of the device. The measured power state within $\pm 5$ mm of the triggering points (or until touching the phantom) is included for rear and each applicable edge. To ensure all production units are compliant it is necessary to test SAR at a distance 1mm less than the smallest distance from the device and SAR phantom with the device at maximum output power without power reduction. We tested the power and got the different SAR sensor triggering distances for front, rear, top and bottom edge. But the manufacturer has declared 10mm(front/rear)/15mm(top/bottom) are the most conservative triggering distance for main antenna. So base on the most conservative triggering distance as above, additional SAR measurements were required at 9mm(front/rear)/14mm (top/bottom) for main antenna. ## **Front** Moving device toward the phantom: | The power state | | | | | | | | | | | | | |-------------------------------------------|--------|--------|--------|--------|--------|-----|-----|-----|-----|-----|-----|--| | Distance [mm] 15 14 13 12 11 10 9 8 7 6 5 | | | | | | | | | | | 5 | | | Main antenna | Normal | Normal | Normal | Normal | Normal | Low | Low | Low | Low | Low | Low | | ## Moving device away from the phantom: | The power state | | | | | | | | | | | | |-------------------------------------------|-----|-----|-----|-----|-----|-----|--------|--------|--------|--------|--------| | Distance [mm] 5 6 7 8 9 10 11 12 13 14 15 | | | | | | | | | | | 15 | | Main antenna | Low | Low | Low | Low | Low | Low | Normal | Normal | Normal | Normal | Normal | ## Rear Edge Moving device toward the phantom: | The power state | | | | | | | | | | | | | |-------------------------------------------|--------|--------|--------|--------|--------|-----|-----|-----|-----|-----|-----|--| | Distance [mm] 15 14 13 12 11 10 9 8 7 6 5 | | | | | | | | | | | 5 | | | Main antenna | Normal | Normal | Normal | Normal | Normal | Low | Low | Low | Low | Low | Low | | ## Moving device away from the phantom: | The power state | | | | | | | | | | | | |-------------------------------------------|-----|-----|-----|-----|-----|-----|--------|--------|--------|--------|--------| | Distance [mm] 5 6 7 8 9 10 11 12 13 14 15 | | | | | | | | | | | 15 | | Main antenna | Low | Low | Low | Low | Low | Low | Normal | Normal | Normal | Normal | Normal | #### **Bottom** Moving device toward the phantom: | The power state | | | | | | | | | | | | | |------------------------------------------------|--------|--------|--------|--------|--------|-----|-----|-----|-----|-----|-----|--| | Distance [mm] 20 19 18 17 16 15 14 13 12 11 10 | | | | | | | | | | | | | | Main antenna | Normal | Normal | Normal | Normal | Normal | Low | Low | Low | Low | Low | Low | | ## Moving device away from the phantom: | The power state | | | | | | | | | | | | |------------------------------------------------|-----|-----|-----|-----|-----|-----|--------|--------|--------|--------|--------| | Distance [mm] 10 11 12 13 14 15 16 17 18 19 20 | | | | | | | | | | | 20 | | Main antenna | Low | Low | Low | Low | Low | Low | Normal | Normal | Normal | Normal | Normal | #### Top Moving device toward the phantom: | The power state | | | | | | | | | | | | | |------------------------------------------------|--------|--------|--------|--------|--------|-----|-----|-----|-----|-----|-----|--| | Distance [mm] 20 19 18 17 16 15 14 13 12 11 10 | | | | | | | | | | | | | | Main antenna | Normal | Normal | Normal | Normal | Normal | Low | Low | Low | Low | Low | Low | | ## Moving device away from the phantom: | The power state | | | | | | | | | | | | | |------------------------------------------------|-----|-----|-----|-----|-----|-----|--------|--------|--------|--------|--------|--| | Distance [mm] 10 11 12 13 14 15 16 17 18 19 20 | | | | | | | | | | | 20 | | | Main antenna | Low | Low | Low | Low | Low | Low | Normal | Normal | Normal | Normal | Normal | | The influence of table tilt angles to SAR sensor triggering is determined by positioning each edge that contains a transmitting antenna, perpendicular to the flat phantom, at the smallest sensor triggering test distance by rotating the device around the edge next to the phantom in $\leq 10^{\circ}$ increments until the tablet is $\pm 45^{\circ}$ or more from the vertical position at $0^{\circ}$ . The front evaluation for main antenna The rear evaluation for main antenna The bottom edge evaluation for main antenna The top edge evaluation for main antenna Based on the above evaluation, we come to the conclusion that the sensor triggering is not released and normal maximum output power is not restored within the $\pm 45^{\circ}$ range at the smallest sensor triggering test distance declared by manufacturer. ## **ANNEX J** Accreditation Certificate United States Department of Commerce National Institute of Standards and Technology # Certificate of Accreditation to ISO/IEC 17025:2017 **NVLAP LAB CODE: 600118-0** ## **Telecommunication Technology Labs, CAICT** Beijing China is accredited by the National Voluntary Laboratory Accreditation Program for specific services, listed on the Scope of Accreditation, for: ## **Electromagnetic Compatibility & Telecommunications** This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communique dated January 2009). 2021-09-29 through 2022-09-30 Effective Dates STATES OF BURNEY For the National Voluntary Laboratory Accreditation Program