Guidant Inc.

Zoom Latitude Programming System Model 3120

August 6, 2004

Report No. GDMN0006.1 Revision 01

Report Prepared By:

www.nwemc.com 1-888-EMI-CERT Test Report

22975 NW Evergreen Parkway Suite 400 Hillsboro, Oregon 97124

Certificate of Test

Issue Date: August 6, 2004 Guidant Inc.

Zoom Latitude Programming System, Model 3120

	Emissions		
Specification	Test Method	Pass	Fail
FCC 15.249:2003	ANSI C63.4:2001 Fundamental Field Strength		
FCC 15.249:2003	ANSI C63.4:2001 Radiated Spurious Emissions		
FCC 15.207:2003	ANSI C63.4:2001 Conducted Emissions		

Modifications made to the product See the Modifications section of this report

Approved By:
Lorald Markon
Don Facteau, IS Manager

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested, the specific description is noted in each of the individual sections of the test report supporting this certificate of test.

Revision History

Revision	Description	Date	Page Number
Number	Description	Date	rage Number

01	Add "Report Rev. 01" to Cover Page	8/25/04	Cover Page
01	Added Model Number to Equipment Description on Conducted Emissions Test Description Page	8/25/04	To be updated in final report revision.
01	Added Model Number to Equipment Description on Radiated Emissions Test Description Page	8/25/04	To be updated in final report revision.
01	Replaced Conducted Emissions Test Data	8/25/04	To be updated in final report revision.
01	Updated Modifications Page to Reflect Conducted Emissions Test Data	8/25/04	To be updated in final report revision.
01	Changed Date on Product Description Page	8/25/04	To be updated in final report revision.
01	Added Model Number to Equipment Description on FE Test Description Page	8/25/04	To be updated in final report revision.
01	Added Model Number to Equipment Description on Conducted Emissions Test Description Page	8/25/04	To be updated in final report revision.
01	Added Model Number to Equipment Description on SR Test Description Page	8/25/04	To be updated in final report revision.

FCC: Accredited by NVLAP for performance of FCC radio, digital, and ISM device testing. Our Open Area Test Sites, certification chambers, and conducted measurement facilities, have been fully described in reports filed with the FCC and accepted by the FCC in letters maintained in our files. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by the FCC as a Telecommunications Certification Body (TCB). This allows Northwest EMC to certify transmitters to FCC specifications in accordance with 47 CFR 2.960 and 2.962.

NVLAP: Northwest EMC, Inc. is recognized under the United States Department of Commerce, National Institute of Standards and Technology, National Voluntary Laboratory Accreditation Program for satisfactory compliance with the requirements of ISO/IEC 17025 for Testing Laboratories. The NVLAP accreditation encompasses Electromagnetic Compatibility Testing in accordance with the European Union EMC Directive 89/336/EEC, ANSI C63.4, MIL-STD 461E, DO-160D and SAE J1113. Additionally, Northwest EMC is accredited by NVLAP to perform radio testing in accordance with the European Union R&TTE Directive 1999/5/EEC, the requirements of FCC, and the RSS radio standards for Industry Canada. Accreditation has been granted to Northwest EMC, Inc. under Certificate Numbers: 200629-0, 200630-0, and 200676-0.

Industry Canada: Accredited by NVLAP for performance of Industry Canada RSS and ICES testing. Our Open Area Test Sites and certification chambers comply with RSS 212, Issue 1 (Provisional) and have been filed with Industry Canada and accepted. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by NIST and recognized by Industry Canada as a Certification Body (CB) per the APEC Mutual Recognition Arrangement (MRA). This allows Northwest EMC to certify transmitters to Industry Canada technical requirements.

CAB: Designated by NIST and validated by the European Commission as a Conformity Assessment Body (CAB) to conduct tests and approve products to the EMC directive and transmitters to the R&TTE directive, as described in the U.S. - EU **Mutual Recognition Agreement**

TÜV Product Service: Included in TUV Product Service Group's Listing of Recognized Laboratories. It qualifies in connection with the TUV Certification after Recognition of Agent's Testing Program for the product categories and/or standards shown in TUV's current Listing of CARAT Laboratories available from TUV. A certificate was issued to represent that this laboratory continues to meet TUV's CARAT Program requirements. Certificate No. USA0401C

TÜV Rheinland: Authorized to carryout EMC tests by order and under supervision of TÜV Rheinland. This authorization is based on "Conditions for EMC-Subcontractors" of November 1992.

NEMKO: Assessed and accredited by NEMKO (Norwegian testing and certification body) for European emissions and immunity testing. As a result of NEMKO's laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification (Authorization No. ELA 119).

Technology International: Assessed in accordance with ISO Guide 25 defining the general international requirements for the competence of calibration and testing laboratories and with ITI assessment criteria LACO196. Based upon that assessment Interference Technology International, Ltd., has granted approval for specifications implementing the EU Directive on EMC (89/336/EEC and amendments). The scope of the approval was provided on a Schedule of Assessment supplied with the certificate and is available upon request.

Australia/New Zealand: The National Association of Testing Authorities (NATA), Australia has been appointed by the ACA as an accreditation body to accredit test laboratories and competent bodies for EMC standards. Accredited test reports or assessments by competent bodies must carry the NATA logo. Test reports made by an overseas laboratory that has been accredited for the relevant standards by an overseas accreditation body that has a Mutual Recognition Agreement (MRA) with NATA are also accepted as technical grounds for product conformity. The report should be endorsed with the respective logo of the accreditation body. (NVLAP)

VCCI: Accepted as an Associate Member to the VCCI, Acceptance No. 564. Conducted and radiated measurement facilities have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. (Registration Nos. - Evergreen: C-1071 and R-1025, Trails End: C-1877 and R-1760, Sultan: R-871, C-1784 and R-1761)

BSMI: Northwest EMC has been designated by NIST and validated by C-Taipei (BSMI) as a CAB to conduct tests as described in the APEC Mutual Recognition Agreement. License No.SL2-IN-E-1017.

GOST: Northwest EMC, Inc. has been assessed and accredited by the Russian Certification bodies Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC, to perform EMC and Hygienic testing for Information Technology Products. As a result of their laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification

SCOPE

Explanation of Northwest EMC Performance Criteria

Revision 03/24/03

How important is it to understand performance criteria?

It is the responsibility of the test laboratory to observe the results of the tests that are performed and to accurately report those results. As the responsible party (manufacturer, importer, etc) it is your responsibility to take those results, compare them against the specifications and standards, then, if appropriate make a declaration of conformity. As the responsible party it makes sense that you are fully aware of the requirements, how your device performs when tested to those requirements, and what information is being used to declare conformity.

To better assist you in making those conformity decisions, Northwest EMC has adopted a very simple, yet very clear performance assessment procedure. The following criteria is used when performing immunity or susceptibility tests:

Performance Criteria 1:

- □ The EUT exhibited no change in performance when operating as specified by the manufacturer. In this case no changes were observed during the test.
- In most cases this would be equivalent to Performance Criteria A. When operating the equipment in the modes or configurations specified by the responsible party, monitoring the parameters specified, no changes were observed. Basically nothing happened.

Performance Criteria 2:

- □ The EUT exhibited a change in performance when operating as specified by the manufacturer. In this case the equipment recovered without any operator intervention. The data sheets will detail the exact phenomena observed.
- In most cases this would be equivalent to Performance Criteria B. When operating the equipment in the modes or configurations specified by the responsible party, monitoring the parameters specified, changes were observed. The EUT was able to recover from those changes without any operator intervention.

Performance Criteria 3:

- □ The EUT exhibited a change in performance when operating as specified by the manufacturer. In this case the equipment required some operator intervention in order to recover. This intervention may be in the form of reducing the test levels, changing parameters, or even resetting the system. The data sheets will detail the exact phenomena observed.
- In most cases this would be equivalent to Performance Criteria C. When operating the equipment in the modes or configurations specified by the responsible party, monitoring the parameters specified, changes were observed. The EUT required some sort of operator intervention to recover. There was no permanent damage and the EUT appeared to function normally after completion test.

Performance Criteria 4:

- ☐ The EUT exhibited a change in performance when operating as specified by the manufacturer. In this case the equipment was damaged and would not recover. The data sheets will detail the exact phenomena observed.
- In most cases there is no specific criterion to compare this to, it typically ends the test. When operating the equipment in the modes or configurations specified by the responsible party, monitoring the parameters specified, changes were observed. There was no recovery; the equipment would no longer function as intended.

Each of the standards and specifications has unique performance criteria. In order to make an accurate assessment, one must compare the test results provided with the specific performance criteria. To ensure that a responsible party is compliant with the specifications, one must read and understand those specifications. Provided below is a sample performance criteria, taken from EN 50082-1.

EN 50082-1 Performance Criteria

Performance Criteria A: The apparatus shall continue to operate as intended. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation and what the user may reasonably expect from the apparatus if used as intended.

Performance Criteria B: The apparatus shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. The performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is allowed. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation and what the user may reasonably expect from the apparatus if used as intended.

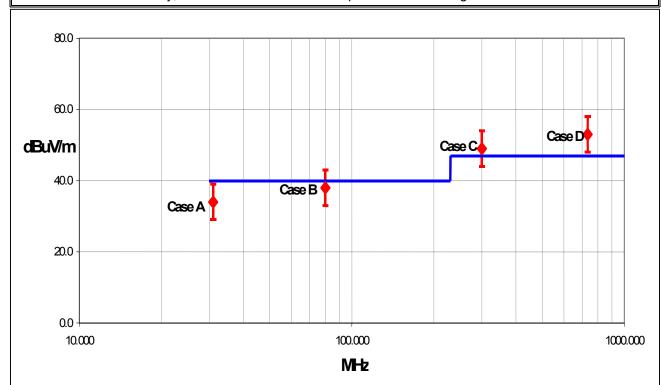
Performance Criteria C: Temporary loss of function is allowed, provided the function is self-recoverable or can be restored by the operation of controls.

How should a device perform in order for a declaration of conformity to be made?

As already stated, it is the responsible party that must interpret and understand the results in such a way that a declaration of conformity is made. Having said that, we are often asked to render our opinion as to how a device should perform. Our recommendation simply follows the standards, as can be referenced below. Most of the standards and specifications offer the same performance criterion shown below as their requirements.

Test	Performance Criteria typically specified by the Standard	Equivalent Northwest EMC Performance Criteria
ESD	Performance Criteria B	Performance Criteria 1 or 2
Radiated RF	Performance Criteria A	Performance Criteria 1
EFT/Burst	Performance Criteria B	Performance Criteria 1 or 2
Surge	Performance Criteria B	Performance Criteria 1 or 2
Conducted RF	Performance Criteria A	Performance Criteria 1
Magnetic Field	Performance Criteria A	Performance Criteria 1
Voltage Dips and Variations	Performance Criteria B & C	Performance Criteria 1, 2, or 3

What is measurement uncertainty?


When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. The following statement of measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" value. In the case of transient tests (ESD, EFT, Surge, Voltage Dips and Interruptions), the test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements.

The following documents were the basis for determining the uncertainty levels of our measurements:

- "ISO Guide to the Expression of Uncertainty in Measurements", October 1993
- "NIS81: The Treatment of Uncertainty in EMC Measurements", May 1994
- "IEC CISPR 16-3 A1 f1 Ed.1: Radio-interference measurements and statistical techniques", December 2000

How might measurement uncertainty be applied to test results?

If the diamond marks the measured value for the test and the vertical bars bracket the range of + and – measurement uncertainty, then test results can be interpreted from the diagram below.

Test Result Scenarios:

Case A: Product complies.

Case B: Product conditionally complies. It is not possible to say with 95% confidence that the product complies.

Case C: Product conditionally does not comply. It is not possible to say with 95% confidence that the product does not comply.

Case D: Product does not comply.

Revision 04/29/02

Radiated Emissions ≤ 1 GHz		Value (dB)				
	Probability	Bico	nical	Log Pe	eriodic	D	ipole
	Distribution	Ante	enna	Ante	enna	An	tenna
Test Distance		3m	10m	3m	10m	3m	10m
Combined standard	normal	+ 1.86	+ 1.82	+ 2.23	+ 1.29	+ 1.31	+ 1.25
uncertainty u _c (y)		- 1.88	- 1.87	- 1.41	- 1.26	- 1.27	- 1.25
Expanded uncertainty <i>U</i>	normal (k=2)	+ 3.72	+ 3.64	+ 4.46	+ 2.59	+ 2.61	+ 2.49
(level of confidence ≈ 95%)		- 3.77	- 3.73	-2.81	- 2.52	- 2.55	- 2.49

Radiated Emissions > 1 GHz	Value (dB)		
	Probability Distribution	Without High Pass Filter	With High Pass Filter
Combined standard uncertainty $u_c(y)$	normal	+ 1.29 - 1.25	+ 1.38 - 1.35
Expanded uncertainty <i>U</i> (level of confidence ≈ 95%)	normal (k=2)	+ 2.57 - 2.51	+ 2.76 2.70

Conducted Emissions		
	Probability	Value
	Distribution	(+/- dB)
Combined standard uncertainty <i>uc(y)</i>	normal	1.48
Expanded uncertainty U (level of confidence ≈ 95 %)	normal (k = 2)	2.97

Radiated Immunity		
	Probability	Value
	Distribution	(+/- dB)
Combined standard uncertainty uc(y)	normal	1.05
Expanded uncertainty <i>U</i> (level of confidence ≈ 95 %)	normal (k = 2)	2.11

Conducted Immunity		
	Probability	Value
	Distribution	(+/- dB)
Combined standard uncertainty <i>uc(y)</i>	normal	1.05
Expanded uncertainty <i>U</i>	normal (k = 2)	2.10
(level of confidence ≈ 95 %)	Hormai (K – 2)	2.10

Legend

 $u_c(y)$ = square root of the sum of squares of the individual standard uncertainties

 $\it U$ = combined standard uncertainty multiplied by the coverage factor: $\it k$. This defines an interval about the measured result that will encompass the true value with a confidence level of approximately 95%. If a higher level of confidence is required, then $\it k$ =3 (CL of 99.7%) can be used. Please note that with a coverage factor of one, uc(y) yields a confidence level of only 68%.

Facilities

California

Orange County Facility

41 Tesla Ave. Irvine, CA 92618 (888) 364-2378 FAX (503) 844-3826

Oregon

Evergreen Facility

22975 NW Evergreen Pkwy., Suite 400 Hillsboro, OR 97124 (503) 844-4066 FAX (503) 844-3826

Oregon

Trails End Facility

30475 NE Trails End Lane Newberg, OR 97132 (503) 844-4066 FAX (503) 537-0735

Washington

Sultan Facility

14128 339th Ave. SE Sultan, WA 98294 (888) 364-2378 FAX (360) 793-2536

Product Description

Revision 10/3/03

Party Requesting the Test	
Company Name:	Guidant Inc.
Address:	4100 Hamline Avenue North
City, State, Zip:	Saint Paul, MN 55112-5798
Test Requested By:	Yogi Shah
Model:	Zoom Latitude Programming System Model 3120
First Date of Test:	7-01-04
Last Date of Test:	8-24-04
Receipt Date of Samples:	7-01-04
Equipment Design Stage:	Production
Equipment Condition:	No visual damage.

Information Provided by the Party Requesting the Test

Clocks/Oscillators:	40MHz, 33.3MHz, 100MHz, 66.6MHz, 4.1MHz, 41.667MHz, 6MHz, 32.768kHz, 14.318MHz, 16.67MHz, 24MHz, 25MHz, 48MHz, 16MHz, 10MHz, 210.38MHz, 833.52MHz, 13MHz
I/O Ports:	Parallel, USB, VGA, PCMCIA, ECG, Analog Output, Patient Simulator, Telemetry Wand

Functional Description of the EUT (Equipment Under Test):

The ZOOM® LATITUDE™ Programming System, which includes the Model 3120 Programmer/Recorder/Monitor (PRM), is a portable cardiac rhythm management system designed to be used with certain models of Guidant implantable pulse generators. It is a composite system operating under 15.209 using the telemetry wand and 15.249 with the single provided antenna. The Model 3120 PRM is designed to be used only with the Model 6577 Sterilizable Telemetry Wand. The Model 3120 is provided with only one available antenna, it is a RP-SMA to meet the unique antenna requirements of 47 CFR 15.203.

Client Justification for EUT Selection:

The product is a representative production sample.

Client Justification for Test Selection:

Tests required to meet the FCC requirements for approval.

Revision 4/28/03

	Equipment modifications											
Item	Test	Date	Modification	Note	Disposition of EUT							
1	Radiated Spurious Emissions	07/01/2004	No EMI suppression devices were added or modified during this test.	Same configuration as in previous test.	EUT remained at Northwest EMC.							
2	Radiated Fundamental Emissions	07/02/2004	No EMI suppression devices were added or modified during this test.	Same configuration as in previous test.	EUT remained at Northwest EMC.							
3	Conducted Emissions	07/15/2004	No EMI suppression devices were added or modified during this test.	Same configuration as delivered.	EUT remained at Northwest EMC.							
4	Conducted Emissions	08/24/2004	Modifications made by Guidant to improve conducted emissions	Modified from previous configuration.	EUT remained at Northwest EMC.							

Radiated Emissions

Revision 10/1/03

Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. All of the EUT parameters listed below were investigated. This includes, but may not be limited to, CPU speeds, video resolution settings, operational modes, and input voltages.

Operating Modes Investigated:
902-928 Radio Operating Low Channel
902-928 Radio Operating Mid Channel
902-928 Radio Operating High Channel

Operating Modes Investigated:

Typical

Data Rates Investigated:

Maximum

Output Power Setting(s) Investigated:

Maximum

Power Input Settings Investigated:

120 VAC, 60 Hz

Worst Case Input Power Setting used for Final Test:

120 VAC, 60 Hz (designated by client or system limitations)

Frequency Range Investigated									
Start Frequency	30 MHz	Stop Frequency	10 GHz						

Software\Firmware Applied During Test											
Operating system	QNX/Red Hat Linux	Version	Unknown								
Exercise software	2845 Application	Version	4.3								
Description											
The system was tested using standard operating production software to exercise the functions of the											

The system was tested using standard operating production software to exercise the functions of the device during the testing.

EUT and Peripherals in Test Setup Boundary												
Description	Manufacturer	Model/Part Number	Serial Number									
Zoom Latitude Programming System	Guidant	NGP 3120	050336									
USB Keyboard	Logitech	Y-BF37	None									
USB Flash Hard Drive	PenDriveUSA	Pen Drive Plus 2.0	None									

Radiated Emissions

Revision 10/1/03

Cables											
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2						
AC Power	Yes	1.8	No	NGP	AC Mains						
Parallel	Yes	1.6	No	NGP	Unterminated						
Video	No	8.0	Yes	NGP	Unterminated						
Patient cables	Yes	3.0	No	NGP	Unterminated						
USB	No	1.8	No	NGP	keyboard						
PA = Cable is	PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.										

Measurement Equipment					
Description	Manufacturer	Model	Identifier	Last Cal	Interval
Quasi-Peak Adapter	Hewlett-Packard	85650A	AQD	02/10/2004	13 mo
Spectrum Analyzer	Hewlett-Packard	8568B	AAI	02/10/2004	13 mo
Pre-Amplifier	Miteq	AM-1551	AOX	05/07/2004	13 mo
Antenna, Biconilog	EMCO	3142	AXK	05/21/2003	24 mo
Spectrum Analyzer	Hewlett Packard	8593E	AAP	03/22/2004	13 mo
Receiver	Schaffner	SCR 3101	ARC	04/28/2003	24 mo
Pre-Amplifier	Miteq	AMF-4D	APP	06/07/2004	13 mo
Antenna, Horn	EMCO	3115	AHE	10/13/2003	24 mo

Test Description

Requirement: Per 47 CFR 15.249, the field strength of any emissions outside the band of 902 – 928 MHz shall comply with the limits as defined in 47 CFR 15.209.

Configuration: The only antenna to be used with the EUT was tested. The EUT was transmitting at its high, mid and low channels. While scanning, emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height and polarization (per ANSI C63.4:1992).

Measurement Bandwidt	Measurement Bandwidths												
Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)										
0.01 – 0.15	1.0	0.2	0.2										
0.15 – 30.0	10.0	9.0	9.0										
30.0 - 1000	100.0	120.0	120.0										
Above 1000	1000.0	N/A	1000.0										
Measurements were i	nade using the bandwidths	and detectors specified. No	video filter was used.										

NORTHWEST **RADIATED EMISSIONS DATA SHEET EMC** EUT: Zoom Latitude Programming System Model 3120 Work Order: GDMN0006 Serial Number: 050336 Date: 07/01/04 Customer: Guidant Inc Temperature: 73 Attendees: Holli Pheil, Yogi Shah Humidity: 45% Cust. Ref. No. Barometric Pressure 30.01 Power: 120V/60Hz Tested by: Jeremiah Darden Job Site: OC10 SPECIFICATIONS Specification: FCC 15.249 Year: 2003 Method: ANSI C63.4 Year: 2001 SAMPLE CALCULATIONS Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation COMMENTS Set up with three PG's **EUT OPERATING MODES** Standard Operating Mode, Low Band 902.5 **DEVIATIONS FROM TEST STANDARD** No deviations RESULTS Run# Pass Other Jun Da Tested By: 0.08 70.0 60.0 50.0 \$ dBuV/m \$ 40.0 30.0 • 20.0 10.0 0.0 1000.000 10000.000 MHz External Distance Compared to Amplitude Height Distance Spec. Limit Frea Factor Azimuth Attenuation Polarity Detector Adjustment Adjusted Spec. (dBuV) (dB) (meters) (meters) (dB) (dB) dBuV/m dBuV/m (dB) (MHz) (degrees) 2707.090 45.3 -0.1 233.0 3.0 0.0 V-Horn 0.0 45.2 54.0 -8.8 2707.090 44.1 -0.1 295.0 2.3 0.0 H-Horn 0.0 44.0 54.0 -10.0 61.9 74.0 2707.090 62.0 -0.1 233.0 1.2 3.0 0.0 V-Horn PΚ 0.0 -12.1 3609.500 36.9 3.0 36.0 1.2 3.0 0.0 V-Horn ΑV 0.0 39.9 54.0 -14.1 2707.090 59.7 -0.1 295.0 3.0 0.0 H-Horn PK 0.0 59.6 74.0 -14.4 2.3 327.0 3609.500 3.0 0.0 H-Horn ΑV 37.1 -16.9 34.1 3.0 3.0 0.0 54.0 PK 1804.660 58.8 -3.582.0 2.0 3.0 0.0 V-Horn 0.0 55.3 74.0 -18.72133.260 35.9 -1.9 181.0 1.2 3.0 0.0 V-Horn ΑV 0.0 34.0 54.0 -20.0 1624.920 38.2 -4.5 119.0 1.3 3.0 0.0 H-Horn ΑV 0.0 33.7 54.0 -20.3 2133.260 34.9 -1.9 105.0 1.3 3.0 0.0 H-Horn ΑV 0.0 33.0 54.0 -21.0 1804.660 36.4 -3.5 166.0 1.3 3.0 0.0 H-Horn ΑV 0.0 32.9 54.0 -21.1 1624.920 36.3 -4.5 164.0 1.2 3.0 0.0 V-Horn 31.8 ΑV 0.0 54.0 -22.2 1499,600 36.2 -5.2 125.0 1.2 3.0 0.0 V-Horn ΑV 0.0 31.0 54.0 -23.0 1560 160 35.5 172 0 1.2 3.0 0.0 V-Horn ΑV 30.6 54.0 -23 4 -49 0.0 3609.500 45.9 3.0 36.0 1.2 3.0 0.0 V-Horn PK 0.0 48.9 74.0 -25.11804.660 52.2 -3.5 166.0 1.3 3.0 0.0 H-Horn PΚ 0.0 48.7 74.0 -25.3 1624.920 52.5 -4.5 164.0 1.2 3.0 0.0 V-Horn PK 0.0 48.0 74.0 -26.0

1499.600

3609.500

1804.660

1560.160

32.9

44.6

31.0

32.2

-5.2

3.0

-3.5

-4.9

156.0

327.0

82.0

135.0

1.3

3.0

2.0

1.9

3.0

3.0

3.0

3.0

0.0

0.0

0.0

0.0

H-Horn

H-Horn

V-Horn

H-Horn

PΚ

ΑV

ΑV

0.0

0.0

0.0

0.0

27.7

47.6

27.5

27.3

54.0

74.0

54.0

54.0

-26.3

-26.4

-26.5

-26.7

						External			Distance			Compared to
Freq	Amplitude	Factor	Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.
(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)			(dB)	dBuV/m	dBuV/m	(dB)
1560.16	0 49.9	-4.9	172.0	1.2	3.0	0.0	V-Horn	PK	0.0	45.0	74.0	-29.0
2133.26	0 46.3	-1.9	105.0	1.3	3.0	0.0	H-Horn	PK	0.0	44.4	74.0	-29.6
1624.92	0 48.0	-4.5	119.0	1.3	3.0	0.0	H-Horn	PK	0.0	43.5	74.0	-30.5
2133.26	0 43.7	-1.9	181.0	1.2	3.0	0.0	V-Horn	PK	0.0	41.8	74.0	-32.2
1560.16	0 45.9	-4.9	135.0	1.9	3.0	0.0	H-Horn	PK	0.0	41.0	74.0	-33.0
1499.60	0 45.9	-5.2	125.0	1.2	3.0	0.0	V-Horn	PK	0.0	40.7	74.0	-33.3
1499.60	0 43.7	-5.2	156.0	1.3	3.0	0.0	H-Horn	PK	0.0	38.5	74.0	-35.5

NORTHWEST **RADIATED EMISSIONS DATA SHEET EMC** EUT: Zoom Latitude Programming System Model 3120 Work Order: GDMN0006 Serial Number: 050336 Date: 07/01/04 Customer: Guidant Inc Temperature: 73 Attendees: Holli Pheil, Yogi Shah Humidity: 45% Cust. Ref. No. Barometric Pressure 30.01 Power: 120V/60Hz Tested by: Jeremiah Darden Job Site: OC10 SPECIFICATIONS Specification: FCC 15.249 Year: 2003 Method: ANSI C63.4 Year: 2001 SAMPLE CALCULATIONS Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation COMMENTS Set up with three PG's **EUT OPERATING MODES** Standard Operating Mode Mid band 914 DEVIATIONS FROM TEST STANDARD No deviations RESULTS Run# Pass Other Juny Da Tested By: 0.08 70.0 60.0 50.0 \$ dBuV/m 40.0 • • À 30.0 20.0 10.0 0.0 1000.000 10000.000 MHz External Distance Compared to Amplitude Height Distance Spec. Limit Frea Factor Azimuth Attenuation Polarity Detector Adjustment Adjusted Spec. (dBuV) (dB) (meters) (meters) (dB) (dB) dBuV/m dBuV/m (dB) (MHz) (degrees) 1827.970 51.1 -3.3 80.0 2.4 3.0 0.0 V-Horn 0.0 47.8 54.0 -6.2 1599.750 48.0 -4.6 175.0 0.0 V-Horn ΑV 0.0 43.4 54.0 -10.6 1600.000 48.0 -4.6 180.0 1.2 3.0 0.0 V-Horn ΑV 0.0 43.4 54.0 -10.6 2742.070 61.0 0.1 93.0 1.5 3.0 0.0 V-Horn PΚ 0.0 61.1 74.0 -12.9 1600.000 42.9 -4.6 207.0 3.0 0.0 H-Horn ΑV 1.3 0.0 38.3 54.0 -15.7 -3.3 1827.970 41.3 166.0 3.0 0.0 H-Horn 38.0 -16.0 1.3 ΑV 0.0 54.0 1599.750 42.5 -4.6 193.0 1.3 3.0 0.0 H-Horn ΑV 0.0 37.9 54.0 -16.1 2742.070 36.5 0.1 210.0 3.8 3.0 0.0 H-Horn ΑV 0.0 36.6 54.0 -17.4 1933.340 38.3 -2.7 143.0 1.2 3.0 0.0 V-Horn ΑV 0.0 35.6 54.0 -18.4 1933.340 38.0 -2.7 184.0 1.3 3.0 0.0 H-Horn ΑV 0.0 35.3 54.0 -18.7 1827.970 58.5 -3.3 80.0 2.4 3.0 0.0 V-Horn 0.0 55.2 74.0 -18.8 2133.300 35.7 -1.9 176.0 1.2 0.0 V-Horn 33.8 -20.2 3.0 ΑV 0.0 54.0 2742.070 53.7 0.1 210.0 3.8 3.0 0.0 H-Horn PΚ 0.0 53.8 74.0 -20.2 2742 070 33.2 0.1 1.5 3.0 0.0 V-Horn 33.3 -20.7 93.0 ΑV 0.0 54 0 1666,474 37 2 -4.3144.0 1.3 3.0 0.0 H-Horn ΑV 0.0 32.9 54.0 -21.1 1666.474 36.6 -4.3 180.0 1.2 3.0 0.0 V-Horn ΑV 0.0 32.3 54.0 -21.7 2133.300 32.4 -1.9 197.0 1.3 3.0 0.0 H-Horn ΑV 0.0 30.5 54.0 -23.5

1599.750

1600.000

1600.000

1599.750

53.8

52.8

52.6

51.3

-4.6

-4.6

-4.6

-4.6

175.0

207.0

180.0

193.0

1.3

1.3

1.2

1.3

3.0

3.0

3.0

3.0

0.0

0.0

0.0

0.0

V-Horn

H-Horn

V-Horn

H-Horn

PΚ

PK

PK

0.0

0.0

0.0

0.0

49.2

48.2

48.0

46.7

74.0

74.0

74.0

74.0

-24.8

-25.8

-26.0

-27.3

_						External			Distance			Compared to
Freq	Amplitude	Factor	Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.
(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)			(dB)	dBuV/m	dBuV/m	(dB)
1827.970	49.9	-3.3	166.0	1.3	3.0	0.0	H-Horn	PK	0.0	46.6	74.0	-27.4
1666.474	46.8	-4.3	144.0	1.3	3.0	0.0	H-Horn	PK	0.0	42.5	74.0	-31.5
1933.340	44.7	-2.7	143.0	1.2	3.0	0.0	V-Horn	PK	0.0	42.0	74.0	-32.0
1933.340	44.4	-2.7	184.0	1.3	3.0	0.0	H-Horn	PK	0.0	41.7	74.0	-32.3
2133.300	43.4	-1.9	176.0	1.2	3.0	0.0	V-Horn	PK	0.0	41.5	74.0	-32.5
2133.300	42.7	-1.9	197.0	1.3	3.0	0.0	H-Horn	PK	0.0	40.8	74.0	-33.2
1666.474	44.9	-4.3	180.0	1.2	3.0	0.0	V-Horn	PK	0.0	40.6	74.0	-33.4

NORTHWEST **RADIATED EMISSIONS DATA SHEET EMC** EUT: Zoom Latitude Programming System Model 3120 Work Order: GDMN0006 Serial Number: 050336 Date: 07/01/04 Customer: Guidant Inc Temperature: 73 Attendees: Holli Pheil, Yogi Shah Humidity: 45% Cust. Ref. No. Barometric Pressure 30.01 Power: 120V/60Hz Tested by: Jeremiah Darden Job Site: OC10 SPECIFICATIONS Specification: FCC 15.249 Year: 2003 Method: ANSI C63.4 Year: 2001 SAMPLE CALCULATIONS Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation COMMENTS Set up with three PG's **EUT OPERATING MODES** Standard Operating Mode High band 927.5 **DEVIATIONS FROM TEST STANDARD** No deviations RESULTS Run# Pass Other Jun Da Tested By: 0.08 70.0 60.0 • 50.0 dBuV/m \$ 40.0 30.0 20.0 10.0 0.0 1000.000 10000.000 MHz External Distance Compared to Amplitude Height Distance Spec. Limit Frea Factor Azimuth Attenuation Polarity Detector Adjustment Adjusted (dBuV) (dB) (meters) (dB) (dB) dBuV/m dBuV/m (dB) (MHz) (degrees) (meters) 2782.620 43.8 0.2 88.0 1.2 3.0 0.0 V-Horn ΑV 0.0 44.0 54.0 -10.0 1599.800 48.1 -4.6 179.0 0.0 V-Horn ΑV 0.0 43.5 54.0 -10.5 54.0 1599.760 46.0 -4.6 172.0 1.2 3.0 0.0 V-Horn ΑV 0.0 41.4 -12.6 1599.760 45.0 -4.6 134.0 1.3 3.0 0.0 H-Horn ΑV 0.0 40.4 54.0 -13.6 1866.540 42.1 -3.1 3.0 0.0 V-Horn ΑV 0.0 39.0 -15.0 151.0 1.1 54.0 2782.620 57.7 0.2 88.0 3.0 0.0 V-Horn PK 57.9 74.0 -16.1 1.2 0.0 1599.800 41.8 -4.6 191.0 1.3 3.0 0.0 H-Horn ΑV 0.0 37 2 54.0 -16.82533.110 35.9 -0.9 200.0 1.3 3.0 0.0 H-Horn ΑV 0.0 35.0 54.0 -19.0 1666.674 38.4 -4.3 167.0 1.2 3.0 0.0 V-Horn ΑV 0.0 34.1 54.0 -19.9 2133.420 35.9 -1.9 180.0 1.2 3.0 0.0 V-Horn ΑV 0.0 34.0 54.0 -20.0 1533.306 37.4 -5.1 187.0 1.3 3.0 0.0 H-Horn ΑV 0.0 32.3 54.0 -21.7 2782.620 51.9 0.2 122.0 2.3 3.0 0.0 H-Horn PΚ 52.1 0.0 74.0 -21.9 2133,420 33.9 -1.9 102.0 1.3 3.0 0.0 H-Horn ΑV 0.0 32.0 54.0 -22.0 3733 340 28.6 3.3 196.0 1.2 3.0 0.0 V-Horn ΑV 319 54 0 -22 1 0.0 1533.306 36.5 -5.1 189.0 1.2 3.0 0.0 V-Horn ΑV 0.0 31.4 54.0 -22.61866.540 34.3 -3.1 136.0 1.7 3.0 0.0 H-Horn ΑV 0.0 31.2 54.0 -22.8 1559.940 35.9 -4.9 169.0 1.2 3.0 0.0 V-Horn ΑV 0.0 31.0 54.0 -23.0

2782.620

3733.340

1666.674

2533.110

30.8

26.8

32.6

28.8

0.2

3.3

-4.3

-0.9

122.0

95.0

109.0

124.0

2.3

1.3

1.3

1.2

3.0

3.0

3.0

3.0

0.0

0.0

0.0

0.0

H-Horn

H-Horn

H-Horn

V-Horn

ΑV

ΑV

ΑV

0.0

0.0

0.0

0.0

31.0

30.1

28.3

27.9

54.0

54.0

54.0

54.0

-23.0

-23.9

-25.7

-26.1

Freq	Amplitude	Factor	Azimuth	Height	Distance	External Attenuation	Polarity	Detector	Distance Adjustment	Adjusted	Spec. Limit	Compared to Spec.
(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)	Polarity	Detector	(dB)	dBuV/m	dBuV/m	(dB)
1599.80	, ,	-4.6		1.3	3.0	0.0	H-Horn	PK	0.0	47.5	74.0	
1599.80		-4.6	179.0	1.2	3.0	0.0	V-Horn	PK	0.0	47.3	74.0	
1599.76		-4.6	172.0	1.2	3.0	0.0	V-Horn	PK	0.0	47.2	74.0	
1559.94	0 31.4	-4.9	229.0	1.3	3.0	0.0	H-Horn	AV	0.0	26.5	54.0	-27.5
1599.76	0 50.3	-4.6	134.0	1.3	3.0	0.0	H-Horn	PK	0.0	45.7	74.0	-28.3
1559.94	0 50.4	-4.9	169.0	1.2	3.0	0.0	V-Horn	PK	0.0	45.5	74.0	-28.5
1866.54	0 47.2	-3.1	151.0	1.1	3.0	0.0	V-Horn	PK	0.0	44.1	74.0	-29.9
1866.54	0 46.8	-3.1	136.0	1.7	3.0	0.0	H-Horn	PK	0.0	43.7	74.0	-30.3
3733.34	0 40.1	3.3	196.0	1.2	3.0	0.0	V-Horn	PK	0.0	43.4	74.0	-30.6
1666.67	4 47.6	-4.3	167.0	1.2	3.0	0.0	V-Horn	PK	0.0	43.3	74.0	-30.7
2133.42	0 44.8	-1.9	180.0	1.2	3.0	0.0	V-Horn	PK	0.0	42.9	74.0	-31.1
2133.42	0 44.3	-1.9	102.0	1.3	3.0	0.0	H-Horn	PK	0.0	42.4	74.0	-31.6
3733.34	0 39.1	3.3	95.0	1.3	3.0	0.0	H-Horn	PK	0.0	42.4	74.0	-31.6
2533.11	0 43.1	-0.9	200.0	1.3	3.0	0.0	H-Horn	PK	0.0	42.2	74.0	-31.8
1666.67	4 46.0	-4.3	109.0	1.3	3.0	0.0	H-Horn	PK	0.0	41.7	74.0	-32.3
1533.30	6 46.5	-5.1	189.0	1.2	3.0	0.0	V-Horn	PK	0.0	41.4	74.0	-32.6
1559.94	0 45.8	-4.9	229.0	1.3	3.0	0.0	H-Horn	PK	0.0	40.9	74.0	-33.1
2533.11		-0.9	124.0	1.2	3.0	0.0	V-Horn	PK	0.0	40.6	74.0	
1533.30		-5.1	187.0	1.3	3.0	0.0	H-Horn	PK	0.0	39.9	74.0	

NORTH	HWEST		DA	DLAE	CED	- MTC	CIO	IC B	ATA	СПЕ			REV
E۱	IC		KA	DIA	TED E		201	42 D	AIA	SHE	15		df4.13 05/06/2004
		Zoom Latit	ude Progra	amming Sy	stem Mode	I 3120				V	Vork Order:	GDMN000	
	al Number:										Date:	07/01/04	
		Guidant In								Te	mperature:		
	Attendees: t. Ref. No.:	Holli Pheil,	Yogi Shah	1						Parametr	Humidity: ic Pressure		
		Jeremiah [arden				Power:	120V/60H	7	barometr	Job Site:		
	ECIFICATI						1 011011	1200/00/1			000 01101		
Spe		FCC 15.249										2003	
OAMBLE		ANSI C63.4									Year:	2001	
	CALCULA		= Mossured I	ovol + Antonn	a Factor + Cab	lo Easter Ar	nalifior Cain + F	Dietopee Adiu	etmont Factor	+ External Atte	ouation		
		_					ation Factor + E	-		· Laternal Atte	iluation		
COMMEN													
Set up with	three PG's												
EUT OPE	RATING N	MODES											
Standard O	perating Mod	de Low band 9	02.5										
No deviation		I TEST STA	NDARD										
RESULTS												Run#	
Pass													6
Other										~			
(eval 10db a	tten. 1-2Ghz)								Jung.	2)			
									0/				
										Teste	d By:		
80.0 T													\neg
70.0 -													
70.0													
60.0 -													
l †			*										-
50.0	•		• •										
	•	•	**										
40.0			• •										
40.0	• (•	•										
	•	•	•										
30.0			•										
20.0													
10.0 -													
10.0													
0.0													_
1000	.000											100	000.000
_							External			Distance			Compared to
	eq Hz)	Amplitude (dBuV)	Factor (dB)	Azimuth (degrees)	Height (meters)	Distance (meters)	Attenuation (dB)	Polarity	Detector	Adjustment (dB)	Adjusted dBuV/m	Spec. Limit dBuV/m	Spec. (dB)
L (IVI)	1600.021	40.7	-4.6	218.0	1.3	3.0		H-Horn	AV	0.0	46.1		-7.9
	1600.021	36.4	-4.6	200.0	1.2	3.0		V-Horn	AV	0.0	41.8		-12.2
	1666.624	35.0	-4.3	113.0	1.3	3.0	10.0	H-Horn	AV	0.0	40.7		-13.3
	1066.535	36.1	-7.0	189.0	2.4	3.0		V-Horn	AV	0.0	39.1		-14.9
	1666.624 1199.829	33.0 34.9	-4.3 -6.5	187.0 125.0	1.2 1.3	3.0 3.0		V-Horn H-Horn	AV AV	0.0 0.0	38.7 38.4		-15.3 -15.6
	1199.829	34.9	-6.5 -6.5	231.0	1.3	3.0		V-Horn	AV	0.0	35.4 35.6		
	1560.330	29.7	-4.9	166.0	1.2	3.0		V-Horn	AV	0.0	34.8		-10.4
	1600.021	47.5	-4.6	218.0	1.3	3.0	10.0	H-Horn	PK	0.0	52.9	74.0	-21.1
	1066.535	29.6	-7.0	98.0	1.3	3.0		H-Horn	AV	0.0	32.6		
	1600.021 1560.330	46.7 25.6	-4.6 -4.9	200.0 228.0	1.2 1.3	3.0 3.0		V-Horn H-Horn	PK AV	0.0 0.0	52.1 30.7		
	1066.535	25.6 47.5	-4.9 -7.0	189.0	2.4	3.0		V-Horn	PK	0.0	50.7 50.5		-23.5 -23.5

50.0

49.5

48.8

47.9

46.5

46.4

45.7

0.0

0.0

0.0

0.0

0.0

0.0

0.0

PK

PK

PΚ

PΚ

PK

PΚ

PK

10.0

10.0

10.0

10.0

10.0

10.0

10.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

H-Horn

V-Horn

V-Horn

V-Horn

H-Horn

H-Horn

H-Horn

-24.0 -24.5

-25.2

-26.1

-27.5

-27.6

-28.3

74.0

74.0

74.0

74.0

74.0

74.0

74.0

-4.3 -4.3

-4.9

-6.5

-7.0

-6.5

-4.9

44.3

43.8

43.7

44.4

43.5

42.9

40.6

113.0

187.0

166.0

231.0

98.0

125.0

228.0

1.3

1.2

1.2

1.2

1.3

1.3

1.3

1666.624

1666.624 1560.330

1199.829

1066.535

1199.829

1560.330

NORTHWEST EMC		RA	DIA	ΓED E	EMIS	1012	NS D	ATA	SHE	ΕT		REV df4.13 05/06/2004
	T: Zoom Latit	tude Progr	amming Sy	ystem Mode	el 3120				V		GDMN000	3
Serial Number	r: 050336 r: Guidant In	•							To	Date:	07/01/04	
	s: Holli Pheil		1						16	Humidity:		
Cust. Ref. No).:								Barometr	ic Pressure		
	y: Jeremiah [Darden				Power:	120V/60Hz	4		Job Site:	OC10	
TEST SPECIFICA	1: FCC 15.24	9								Voar:	2003	
	1: ANSI C63.4									Year:		
SAMPLE CALCUL												
Radiated Emission									+ External Atte	nuation		
Conducted Emissions COMMENTS	s. Adjusted Leve	i = Measureu	Lever + Trans	ducer Factor +	Cable Attenua	ation Factor + E	xternal Attent	iatoi				
Set up with three PG's	3											
EUT OPERATING												
Standard Operating M	ode Mid band 9	14										
DEVIATIONS FRO	M TEST STA	NDARD										
No deviations.	/III 1201 017	(IVD) III D										
RESULTS											Run#	
Pass												5
Other												
(eval 10db atten. 1-2Gh	ız)							Jens.	Da-			
								0				
									Teste	ed Bv		
80.0												¬
												\perp
70.0												
70.0												
60.0 -												
50.0												
00.0		***										
•		•										
40.0	_	•										
	•											
30.0	*	• •										
20.0												
10.0												
0.0												
1000.000											100	000.000
	 			 		External		1	Distance			Compared to
Freq	Amplitude	Factor	Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.
(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)	1/1/		(dB)	dBuV/m	dBuV/m	(dB)
1599.97 1599.97		-4.6 -4.6	174.0 133.0		3.0 3.0		V-Horn H-Horn	AV AV	0.0 0.0	44.5 40.9	54.0 54.0	-9.5 -13.1
1199.94		-4.6 -6.5	219.0		3.0		H-Horn	AV	0.0	37.6	54.0	-16.4
1199.94	2 33.5	-6.5	213.0	1.2	3.0	10.0	V-Horn	AV	0.0	37.0	54.0	-17.0

Freq	Amplitude	Factor	Azimuth	Height	Distance	External Attenuation	Polarity	Detector	Distance Adjustment	Adjusted	Spec. Limit	Compared to Spec.
(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)	•		(dB)	dBuV/m	dBuV/m	(dB)
1599.971	39.1	-4.6	174.0	1.2	3.0	10.0	V-Horn	AV	0.0	44.5	54.0	-9.5
1599.971	35.5	-4.6	133.0	1.3	3.0	10.0	H-Horn	AV	0.0	40.9	54.0	-13.1
1199.942	34.1	-6.5	219.0	1.3	3.0	10.0	H-Horn	AV	0.0	37.6	54.0	-16.4
1199.942	33.5	-6.5	213.0	1.2	3.0	10.0	V-Horn	AV	0.0	37.0	54.0	-17.0
1667.000	30.1	-4.3	129.0	1.3	3.0	10.0	H-Horn	AV	0.0	35.8	54.0	-18.2
1560.120	29.3	-4.9	173.0	1.2	3.0	10.0	V-Horn	AV	0.0	34.4	54.0	-19.6
1667.000	28.3	-4.3	159.0	1.2	3.0	10.0	V-Horn	AV	0.0	34.0	54.0	-20.0
1295.962	28.3	-5.9	317.0	1.2	3.0	10.0	V-Horn	AV	0.0	32.4	54.0	-21.6
1560.120	27.2	-4.9	224.0	1.3	3.0	10.0	H-Horn	AV	0.0	32.3	54.0	-21.7
1066.635	28.6	-7.0	180.0	1.2	3.0	10.0	V-Horn	AV	0.0	31.6	54.0	-22.4
1066.635	28.3	-7.0	120.0	1.3	3.0	10.0	H-Horn	AV	0.0	31.3	54.0	-22.7
1295.962	27.2	-5.9	132.0	2.5	3.0	10.0	H-Horn	AV	0.0	31.3	54.0	-22.7
1599.971	44.3	-4.6	174.0	1.2	3.0	10.0	V-Horn	PK	0.0	49.7	74.0	-24.3
1599.971	43.4	-4.6	133.0	1.3	3.0		H-Horn	PK	0.0	48.8	74.0	
1560.120	43.3	-4.9	173.0	1.2	3.0		V-Horn	PK	0.0	48.4	74.0	
1295.962		-5.9	317.0	1.2	3.0		V-Horn	PK	0.0	47.5	74.0	
1295.962		-5.9	132.0	2.5	3.0		H-Horn	PK	0.0	46.7	74.0	
1199.942		-6.5	219.0	1.3	3.0	10.0	H-Horn	PK	0.0	46.4	74.0	
1560.120	41.3	-4.9	224.0	1.3	3.0		H-Horn	PK	0.0	46.4	74.0	
1667.000	40.6	-4.3	129.0	1.3	3.0		H-Horn	PK	0.0	46.3	74.0	
1199.942	42.7	-6.5	213.0	1.2	3.0	10.0	V-Horn	PK	0.0	46.2	74.0	-27.8

						External			Distance			Compared to
Freq	Amplitude	Factor	Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.
(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)			(dB)	dBuV/m	dBuV/m	(dB)
1667.000	40.4	-4.3	159.0	1.2	3.0	10.0	V-Horn	PK	0.0	46.1	74.0	-27.9
1066.635	41.1	-7.0	180.0	1.2	3.0	10.0	V-Horn	PK	0.0	44.1	74.0	-29.9
1066.635	40.8	-7.0	120.0	1.3	3.0	10.0	H-Horn	PK	0.0	43.8	74.0	-30.2

NORTHWEST **RADIATED EMISSIONS DATA SHEET EMC** EUT: Zoom Latitude Programming System Model 3120 Work Order: GDMN0006 Serial Number: 050336 Date: 07/01/04 Customer: Guidant Inc Temperature: 73 Attendees: Holli Pheil, Yogi Shah Humidity: 45% Cust. Ref. No. Barometric Pressure 30.01 Tested by: Jeremiah Darden Power: 120V/60Hz Job Site: OC10 SPECIFICATIONS Specification: FCC 15.249 Year: 2003 Method: ANSI C63.4 Year: 2001 SAMPLE CALCULATIONS Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation COMMENTS Set up with three PG's **EUT OPERATING MODES** Standard Operating Mode High band 927.5 **DEVIATIONS FROM TEST STANDARD** No deviations RESULTS Run# Pass Other Jun Da (eval 10db atten, 1-2Ghz) Tested By: 0.08 70.0 60.0 50.0 dBuV/m 40.0 ** 30.0 20.0 10.0 0.0 1000.000 10000.000 MHz External Distance Compared to Amplitude Height Distance Spec. Limit Frea Factor Azimuth Attenuation Polarity Detector Adjustment Adjusted Spec. (dBuV) (dB) (degrees) (meters) (meters) (dB) (dB) dBuV/m dBuV/m (dB) (MHz) 1600.021 38.7 -4.6 176.0 3.0 10.0 V-Horn 0.0 44.1 54.0 -9.9 1600.021 36.0 -4.6 138.0 10.0 H-Horn 0.0 41.4 54.0 -12.6 1199.917 35.9 -6.5 147.0 1.3 3.0 10.0 H-Horn ΑV 0.0 39.4 54.0 -14.6 1199.917 34.9 -6.5 215.0 1.2 3.0 10.0 V-Horn ΑV 0.0 38.4 54.0 -15.6 1560.017 29.0 -4.9 175.0 3.0 10.0 V-Horn ΑV 0.0 34.1 54.0 -19.9 1.2 -4.4 33.8 -20.2 1625.000 28.2 253.0 1.7 3.0 10.0 H-Horn ΑV 0.0 54.0 1625.000 27.7 -4.4 152.0 1.8 3.0 10.0 V-Horn ΑV 0.0 33.3 54.0 -20.71560.017 26.8 -4.9 146.0 1.3 3.0 10.0 H-Horn ΑV 0.0 31.9 54.0 -22.1 1625.000 45.5 -4.4 152.0 1.8 3.0 10.0 V-Horn PK 0.0 51.1 74.0 -22.9 1600.021 44.5 -4.6 176.0 1.2 3.0 10.0 V-Horn PΚ 0.0 49.9 74.0 -24.1 1600.021 43.2 -4.6 138.0 1.3 3.0 10.0 H-Horn PK 0.0 48.6 74.0 -25.4 1560.017 175.0 1.2 3.0 10.0 V-Horn PK 0.0 48.2 74.0 -25.8 43.1 -4.9 1625.000 41.7 -4.4 253.0 1.7 3.0 10.0 H-Horn PΚ 0.0 47.3 74.0 -26.7 -6.5

1199 917

1199.917

1560.017

43 1

43.1

41.0

147 0

215.0

146.0

-6.5

-4.9

3.0

3.0

3.0

1.3

1.2

1.3

10.0

10.0

10.0

H-Horn

V-Horn

H-Horn

PK

PK

PΚ

46.6

46.6

46.1

0.0

0.0

0.0

74.0

74.0

74.0

-27.4

-27.4

-27.9

RADIATED EMISSIONS DATA SHEET EMC EUT: Zoom Latitude Programming System Model 3120 Work Order: GDMN0006 Serial Number: 050336 Date: 07/02/04 Customer: Guidant Inc Temperature: 73 Attendees: Holli Pheil, Yogi Shah Humidity: 45% Cust. Ref. No.: Barometric Pressure 30.01 Tested by: Jeremiah Darden Power: 120V/60Hz Job Site: OC10 SPECIFICATIONS Specification: FCC 15.249 Year: 2003 Method: ANSI C63.4 Year: 2001 SAMPLE CALCULATIONS Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation COMMENTS Set up with three PG's **EUT OPERATING MODES** Standard Operating Mode Low band 902.5 MHz **DEVIATIONS FROM TEST STANDARD** No deviations RESULTS Pass Other Jun Da Tested By: 0.08 70.0 60.0 50.0 dBuV/m 40.0 30.0 • 20.0 10.0 0.0 100.000 1000.000 MHz External Distance Compared to Amplitude Factor Azimuth Height Distance Spec, Limit Freq Attenuation Polarity Detector Adjustment Adjusted Spec. (dBuV) (dB) (degrees) (meters) (meters) (dB) (dB) dBuV/m dBuV/m (dB) (MHz) V-Bilog 902.000 6.0 31.4 175.0 1.2 3.0 0.0 QP 0.0 37.4 46.0 -8.6 902.000 5.3 31.4 168.0 1.0 3.0 0.0 H-Bilog QΡ 0.0 36.7 46.0 -9.3 833.520 -6.5 30.4 281.0 3.6 3.0 0.0 V-Bilog QP 0.0 23.9 46.0 -22.1 928.000 -8.4 31.5 V-Bilog QΡ 46.0 -22.9 57.0 2.5 3.0 0.0 0.0 23.1 927.500 -8.5 31.5 360.0 1.0 3.0 0.0 H-Bilog QΡ 0.0 23.0 46.0 -23.0 927.500 -8.6 237.0 V-Bilog QΡ -23.1 3.0 0.0 22.9 46.0 31.5 1.2 0.0 0.0 H-Bilog 928.000 QP 46.0 -8.6 31.5 331.0 1.0 3.0 0.0 22.9 -23.1

833.520

-9.1

30.4

59.0

3.3

3.0

0.0

H-Bilog

QP

0.0

21.3

46.0

-24.7

	RTHWEST MC		RA	DIA	ED E	EMIS	1012	NS D	ATA	SHE	ET		df4 05/06/2
	EU	T: Zoom Lati	tude Progr	amming Sy	stem Mode	el 3120				V		GDMN0006	
Se		er: 050336 er: Guidant In	•							То	Date:	07/02/04	
		s: Holli Pheil		h						16	Humidity:		
С	ust. Ref. No							1001//0011		Barometr	ic Pressure		
ī S	Tested b	y: Jeremiah I	Darden				Power:	120V/60Hz	Z		Job Site:	OC10	
	pecificatio	n: FCC 15.24									Year:	2003	
DI		d: ANSI C63.	4								Year:	2001	
	E CALCU ated Emission	ns: Field Strength	= Measured L	_evel + Antenn	a Factor + Cab	le Factor - An	nplifier Gain + [Distance Adju	stment Factor	+ External Atter	nuation		
		ns: Adjusted Leve	el = Measured	Level + Transo	lucer Factor +	Cable Attenua	ation Factor + E	xternal Atteni	uator				
	ENTS th three PG'	s											
OF	PERATING	MODES											
		Mode Mid band 9	14 MHz										
	IONS FRO	OM TEST STA	INDARD										
	TS											Run#	
												7	
r										213196			
									Just.	D			
									0/				
									•	Teste	d By:		
	80.0												_
	70.0												⅃
	70.0												
	00.0												
	60.0												
													┥
	50.0												
abuv/m	\perp												
3	40.0												_
2													
	30.0												
												•	
	20.0											• •	
	10.0												
	10.0												
	0.0 +	0			1		1			I		40	—
	100.00	U										10	00.000
							MHz						
					I		External			Distance			Compare
	Freq	Amplitude	Factor	Azimuth	Height	Distance (motors)	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec
(MHz) 833.52	(dBuV) 20 -3.2	(dB) 30.4	(degrees) 278.0	(meters) 1.9	(meters)	(dB)	V-Bilog	QP	(dB)	dBuV/m 27.2	dBuV/m 46.0	(dB) -1
	902.4		31.4	60.0	1.2	3.0	0.0	V-Bilog	QP	0.0	22.7	46.0	-2
	00=												
	902.4 833.52		31.4 30.4	2.0 71.0	1.0 3.8	3.0 3.0		H-Bilog H-Bilog	QP QP	0.0 0.0	22.5 21.5		-2 -2

NORTHWEST EMC		RA	DIAT	ED E	EMIS	1012	NS D	ATA	SHE	ET		RE df4. 05/06/20
	: Zoom Latit	ude Progra	amming Sy	stem Mode	l 3120				٧	Vork Order:	GDMN0006	
Serial Number											07/02/04	
	: Guidant In								Те	mperature: Humidity:		
Cust. Ref. No		Togi Silai	!						Barometri	ic Pressure		
	: Jeremiah [Darden				Power:	120V/60Hz	Z		Job Site:		
ST SPECIFICAT	_											
	FCC 15.249									Year:		
MPLE CALCUL	: ANSI C63.4	•								Year:	2001	
Radiated Emissions		= Measured L	evel + Antenna	a Factor + Cab	e Factor - An	nplifier Gain + [Distance Adju	stment Factor	+ External Atter	nuation		
conducted Emissions	s: Adjusted Leve	l = Measured l	_evel + Transd	lucer Factor + (Cable Attenua	ation Factor + E	xternal Atteni	uator				
MMENTS up with three PG's												
ар аоот о о												
T OPERATING ndard Operating M		927 5 MHz										
ndard Operating in	oue mgm band s	727.3 WII IZ										
VIATIONS FRO	M TEST STA	NDARD										
deviations.												
SULTS ss											Run #	
SS											9	
ier												
								Jens -	Da			
								0/				
									Teste	d Bv:		
										u 2y.		
30.0												_
												r
70.0												+
60.0												
00.0												
												+
50.0												
_				_								
40.0												
30.0												
											•	
20.0											•	-
10.0												
10.0												
0.0												_
100.000											100	00.000
				I		External			Distance			Compared
Freq	Amplitude	Factor	Azimuth	Height (motors)	Distance (motors)	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.
(MHz) 928.00	(dBuV) 0 -1.4	(dB) 31.5	(degrees) 55.0	(meters)	(meters)	(dB)	V-Bilog	QP	(dB)	dBuV/m 30.1	dBuV/m 46.0	(dB) -1
833.52		30.4	68.0	1.2	3.0			QP QP	0.0	28.3	46.0	-17
928.00	0 -7.9	31.5	104.0	3.7	3.0		H-Bilog	QP	0.0	23.6	46.0	-22
902.41	7 -8.5	31.4	30.0	3.7	3.0	0.0	V-Bilog	QP	0.0	22.9	46.0	-23
000 44	7 -8.6	31.4	357.0	1.7	3.0	0.0	H-Bilog	QP	0.0	22.8	46.0	-23
902.41° 833.52°		30.4	67.0	1.0	3.0			QP	0.0	21.5	46.0	-2

Radiated Emissions

Revision 10/1/03

Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. All of the EUT parameters listed below were investigated. This includes, but may not be limited to, CPU speeds, video resolution settings, operational modes, and input voltages.

Operating Modes Investigated:
902-928 Radio Operating Low Channel
902-928 Radio Operating Mid Channel
902-928 Radio Operating High Channel

Operating Modes Investigated:

Typical

Data Rates Investigated:

Maximum

Output Power Setting(s) Investigated:

Maximum

Power Input Settings Investigated:

120 VAC, 60 Hz

Worst Case Input Power Setting used for Final Test:

120 VAC, 60 Hz (designated by client or system limitations)

Frequency Range Investigated								
Start Frequency	902 MHz	Stop Frequency	928 MHz					

Software\Firmware Applied During Test								
Operating system	QNX/Red Hat Linux	Version	Unknown					
Exercise software	2845 Application	Version	4.3					
Description								
The system was tested	The system was tested using standard operating production software to exercise the functions of the							

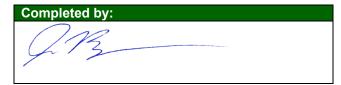
The system was tested using standard operating production software to exercise the functions of the device during the testing.

EUT and Peripherals in Test Setup Boundary									
Description	Manufacturer	Model/Part Number	Serial Number						
Zoom Latitude Programming System	Guidant	NGP 3120	050336						
USB Keyboard	Logitech	Y-BF37	None						
USB Flash Hard Drive	PenDriveUSA	Pen Drive Plus 2.0	None						

Radiated Emissions

Revision 10/1/03

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
AC Power	Yes	1.8	No	NGP	AC Mains
Parallel	Yes	1.6	No	NGP	Unterminated
Video	No	8.0	Yes	NGP	Unterminated
Patient cables	Yes	3.0	No	NGP	Unterminated
USB	No	1.8	No	NGP	keyboard
PA = Cable is	permanently a	ttached to the device.	Shielding and	d/or presence of ferrite m	ay be unknown.


Measurement Equipment					
Description	Manufacturer	Model	Identifier	Last Cal	Interval
Quasi-Peak Adapter	Hewlett-Packard	85650A	AQD	02/10/2004	13 mo
Spectrum Analyzer	Hewlett-Packard	8568B	AAI	02/10/2004	13 mo
Pre-Amplifier	Miteq	AM-1551	AOX	05/07/2004	13 mo
Antenna, Biconilog	EMCO	3142	AXK	05/21/2003	24 mo
Spectrum Analyzer	Hewlett Packard	8593E	AAP	03/22/2004	13 mo
Receiver	Schaffner	SCR 3101	ARC	04/28/2003	24 mo
Pre-Amplifier	Miteq	AMF-4D	APP	06/07/2004	13 mo
Antenna, Horn	EMCO	3115	AHE	10/13/2003	24 mo

Test Description

Requirement: Per 47 CFR 15.249, The field strength of emissions from intentional radiators operated within the specified frequency bands shall comply with the with the limits as defined in 47 CFR 15.249(a). The Field strength limits are specified at a distance of 3 meters.

Configuration: The only antenna to be used with the EUT was tested. The EUT was transmitting at its high, mid and low channels. While scanning, emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height and polarization (per ANSI C63.4:1992).

Measurement Bandwidt	hs						
Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)				
0.01 – 0.15	1.0	0.2	0.2				
0.15 – 30.0	10.0	9.0	9.0				
30.0 - 1000	100.0	120.0	120.0				
Above 1000	1000.0	N/A	1000.0				
Measurements were made using the bandwidths and detectors specified. No video filter was used.							

	RTHWEST MC					R	Δ[ΟI	A٦	ΪE	D	E	EN	115	3	SI	10	15	3	D	ΑT	Ά	S	Н	Ε	E	Γ			G	REV df4.13 05/06/2004
				3120																					W		Order:				
Se	rial Numl																										Date:	_	2/04		
	Custon																										ature:		,		
٥.	Attende		Holli	Pheil	, Yo	gı Sı	nan																				nidity: ssure				
CI	ust. Ref. I Tested		Jerei	miah I	Darr	len										Pr	ower:	120	VΔC	/60	Hz		Do	ITOIII	etric		Site:				
TEST S	PECIFIC			man	Juic	1011										- 1	JWEI.	120	770	700	112					301	onte.	00			
	pecificat			15.24	9(a)																						Year:	200	3		
				C63.																							Year:	200	1		
	E CALC																														
	ted Emissi																					ector +	Exte	rnal A	ttenu	uation	ı				
COMME	ted Emissi	ions:	Adjust	ed Leve	el = M	leasur	ed Le	evel +	Irans	ducer	Facto	r + C	able.	Attenu	uatio	n Fac	ctor + E	xtern	al Att	enua	ator										
	Operating	Mod	е																												
FUT OP	PERATIN	IG M	ODE	s																											
	Operating				02.5	MHz																									
DEVIAT No deviat	IONS FF	ROM	TES	T STA	ND.	ARD																									
RESUL ¹	TS																											Rur	1 #		
Pass																														7	
Other																					Jens	1	Tie								
																				_				Tes	sted	By:				_	
	100.0 _T						_								_								_		_						1
																	Tested By:														
	90.0	-																										44		\perp	
		•																													
	80.0																														
	00.0	П																													
	70.0																														ſ
	70.0																														
E	60.0																														
dBuV/m																												+	+		+
Ž	50.0	+																	T									+++		\top	
뜅	1																														
_	40.0																											+++			-
	30.0																											+++		+	
	20.0												+		+													++		+	
	10.0					+	-	\Box				\Box	-		+	\vdash		+	-	+			-	\vdash	-	\vdash		++	\perp	4	
	0.0						\perp																		_			Ш	\perp		1
	900.	በበበ	c	10.00	nn	Q?	20.00	າດ	QЗ	0.00	n	Q/I	0.00	າດ	a	50.0	າດດ	Q.	0.0	nn	97	0.000)	98	0.00	າດ	gar	0.000	ი -	1በበሶ	0.000
	300.	550	٥	. 10.00	,0	32	.0.00		90	5.50	•	∪ 1	5.00					30	.0.0	50	31	5.000	,	30	J.U(, ,	330	,.000	•	.000	
																MH	IZ														
							-			1		-			T	Exte	rnal			-1		1	Dis	tance	, 1					Co	mpared to
1	Freq			litude	F	actor		Azir	nuth	Н	eight			ance	1		uation	Po	olarity	,	Detec	tor		istmei			sted		ec. Limi	it	Spec.
	MHz)		(dE	luV)		(dB)			rees)	(m	eters)		(me	ters)		(dl								dB)		dBu	V/m		BuV/m		(dB)
	902.			60.2		31			201.0			.2		3.0			0.0		Bilog		QF				.0		91.6		94.		-2.4
	902.	417		55.4		31	.4		171.0		1	.1		3.0	0		0.0	H-	Bilog	g	QF)		0	.0		86.8		94.	.0	-7.2

	RTHWEST MC				F	RA	DI	A٦	EC	E	ΞM	IIS	S	10	N	SE),	ΑΤΑ	S	HE	Ε	T			RE\ df4.13 05/06/2004
	El	UT: I	NGP :	3120																1	Work	Order:	GDM	N0006	3
Se	rial Numb	_																					07/02	2/04	
	Custom																			To		rature:			
0	Attende	_	Holli	Pheil,	Yog	i Sha	h												В			midity:			
C	ust. Ref. N Tested		loron	niah Γ	arde	'n								Dower	12	20VAC/	6NI	Hz	В	aromet		b Site:			
TEST S	PECIFIC			nan L	arue	711								rowei	. 12	OVACA	001	IZ.			30	D Site.	0010		
	pecificati			15.249)(a)																	Year:	2003		
				C63.4																		Year:	2001		
	E CALC																								
																		ment Factor	+ Exte	ernal Atte	enuatio	n			
	cted Emissio	ons: A	Adjuste	d Level	= Me	asured	Level +	Transo	lucer Fac	tor + (Cable A	Attenua	ation F	-actor +	Exte	ernal Atte	nua	tor							
COMME	Operating	Mode																							
Stanuaru	Operating	WIOUE	•																						
EUT OF	PERATIN	G M	ODES	3																					
Standard	Operating	Mode	Mid b	and 91	4 MH	z																			
	TIONS FR	OM	TES1	STA	NDA	.RD																			
No deviat																									
RESUL	TS																						Run		
Pass																									7
Other															_										
Othici																		0 /	5						
																	,	Jens -	0,00						
																	_			Test	ed By	:			
	100.0 _T														_		_								
	90.0																								
	30.0	1			•																				
	00.0	1			•																				
	80.0																								
		1																							
	70.0																								
		1																							
	60.0	╀													_		_								
Ξ		1																							
≥	50.0																								
dBuV/m	00.0	_																							
₽	40.0																								
	40.0																								
	30.0														_										
	20.0	-			-	\vdash				+	+				+		-		\vdash		+		+	+	\vdash
	10.0									+	\perp	-			_		_				\perp			$+\!\!-\!\!\!-\!\!\!\!-$	
	1																								
	0.0																								Ш
	900.0	 	0	10.00	n	920.		02/	0.000	0	40.00	n	050	0.000		960.00	 _	970.00	 nn	980.		000	0.000	10	000 000
	900.0	JUU	9	10.00	U	920.	UUU	930	J.UUU	94	+0.00	U				ยบ.บบ	U	970.00	JU	ყ გე.	UUU	990	0.000	10	000.000
													M	Hz											
														_											
				-			1	1					· -				_			-4	1				0
1	Freq		Ampli	tude	Fa	ctor	Azii	nuth	Heigh	nt	Dista	ance		kternal enuation		Polarity		Detector		stance ustment	Adi	usted	Spec	. Limit	Compared to Spec.
	MHz)		(dBı			IB)		rees)	(meter		(met			(dB)		. oranty		20100101		(dB)		uV/m		ıV/m	(dB)
	914.0	000		55.2	,-	31.5		177.0	,	1.2	,	3.0		0.0	, (V-Bilog		QP		0.0		86.7		94.0	-7.3
	914.0			50.4		31.5		171.0		1.0		3.0		0.0		H-Bilog		QP		0.0		81.9		94.0	-12.

	THWEST MC			F	RA	\D		1	Œ	D	E	ΞN	AIS	38	31	10	NS),	AT.	A	S	H	Ę	E	$T_{_}$					05/	F df4 06/2/
		Zoom	Latit	ude F	rog	ramı	ming	g Sy	ster	n Mo	ode	l 312	20											W	ork (Orde	r: C	GDM	INO(006	001	10012
Ser	ial Number																										_	07/02	2/04	,		
	Customer																							Ten		atur						
0		ndees: Holli Pheil, Yogi Shah																Humidity: 45%														
Cu	st. Ref. No.		iah F	ardo											D	ower:	120\	1001	ENL	Barometric Pressure 30.01 OHz Job Site: OC10												
T SI	PECIFICAT		Idii L	arue	11										Р	ower:	1200	AG	6UF	12					JO	0 510	9: C	JC II	,			
	ecification		5 249)(a)																						Yea	r: 2	2003	_			
	Method																				1							2001				
	CALCUL							4	- 5		0-1-1				G (0-:	N-4	A .I				E.d.	I A		4							
	ted Emissions ted Emissions		-											-				-	-		tor +	Exter	паі А	ttent	Jatioi	1						
	NTS	. Aujustec	Level	- IVICE	Surec	J LEVE	1 1	ansc	lucei	acic	, ,	Jabie	Allen	Jatioi	III a	ICIOI I L	ALCITIO	ii Alle	iluat	Oi												
dard (Operating Mo	de																														
	ERATING																															
lard (Operating Mo	de High I	pand 9	27.5 M	lHz																											
	010.			N. P. A.																							_		_			
IAT eviati	ONS FROI	W TEST	STA	NDA	RD.																											
ULT																											I	Run	#			
S																											7	(uii	nr.	9		
-																														Ť		
er																											_		_			
																				Jens	1	Dr.		_		-	-					
																			0													
																			_													
																							Tes	sted	Ву							
	100.0	J0.0 T																														
					+			4																								
	90.0		+		+	++	+	_	+	+	+	+	++	+	\vdash		+		\vdash		++		+	+	\vdash		\vdash	+	+	\vdash	+	
								1																								
	80.0							1				_																			4	
								П																								
	70.0							П																							T.	
	70.0																															
								П																								
_	60.0				_			+																				-			1	
٤								П																+			_	_	-		+	
3	50.0				+			+				+						-						+			\vdash	_	+		+	
dBuV/m	+-							۲				+						-														
O	40.0		\perp		+	-	+	_	++	-		+	-	+	\vdash		++	-	\vdash		\vdash	_	1	+	\vdash	_	\vdash	+	+	\vdash	-	
	30.0				\perp																										1	
	33.3																															
	20.0																															
	20.0																				П				П		П		П			
	10.0				+		+					+			\vdash						+			+	\vdash		+	+	+	+	1	
	0.0		+			\perp			\perp			+			\dashv			+			\vdash			+			Щ		Ш		4	
	900.000) 91	0.00	0	920	.000)	930	0.00	0	94	10.0	00	9!	50.0	000	96	0.00	00	970	.00	0	980	0.00	00	9	90.	.000	,	100	0.0	000
						•		'			-		-						-					- '	-	,						
														ı	MH	ΊZ																
											T				Exte	ernal			Т		ı	Dis	tance	T			\top			C	Com	pare
F	req	Amplit		Fac			zimu			leight			tance		tten	uation	Pol	arity		Detect	or	Adju	stmer			usted		Spec		nit	S	Врес.
		(dD.:	(dBuV)		(dB)		(degrees)		(meters))	(meters)		Attenuation (dB)		i Glatity			Detector		Adjustment (dB)			dBuV/m			dBu		((dB)		
	//Hz) 927.500		55.8	(ui				5.0	_ `		.2				_	0.0		Bilog		QP									94			-

Conducted Emissions

Revision 10/1/03

Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. All of the EUT parameters listed below were investigated. This includes, but may not be limited to, CPU speeds, video resolution settings, operational modes, and input voltages.

Operating Modes Investigated:
902-928 Radio Operating Low Channel
902-928 Radio Operating Mid Channel
902-928 Radio Operating High Channel

Power Input Settings Investigated:

120 VAC, 60 Hz

Software\Firmware Applied During Test					
Operating system	QNX/Red Hat Linux	Version	Unknown		
Exercise software	2845 Application	Version	4.3		
Description					
The system was tested using standard operating production software to exercise the functions of the					

The system was tested using standard operating production software to exercise the functions of the device during the testing.

EUT and Peripherals in Test Setup Boundary					
Description	Manufacturer	Model/Part Number	Serial Number		
USB Keyboard	Logitech	Y-BF37	None		
USB Flash Hard Drive	PenDriveUSA	Pen Drive Plus 2.0	None		
Zoom Latitude	Guidant	3120	050342		
PCMCIA Card	3Com	10/100 Lan	6UK18F1DCE		
Telemetry Wand	Guidant	6577	None		

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
AC Power	Yes	1.8	No	Zoom Latitude	AC Mains
Parallel	Yes	1.6	No	Zoom Latitude	Unterminated
Video	No	8.0	Yes	Zoom Latitude	Unterminated
USB	No	1.8	No	Zoom Latitude	Keyboard
ECG	Yes	4.0	No	Zoom Latitude	Unterminated
Slave Stimulator	Yes	3.0	No	Zoom Latitude	Unterminated
Telemetry	Yes	3.0	No	Zoom Latitude	Telemetry Wand
Analog Output	No	2.0	No	Zoom Latitude	Unterminated
Telecom	No	1.8	No	PCMCIA Card	Unterminated
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.					

Conducted Emissions

Revision 10/1/03

Measurement Equipment						
Description	Manufacturer	Model	Identifier	Last Cal	Interval	
LISN	Solar	9252-50-24-BNC	LIA	12/16/2003	13 mo	
LISN	Solar	9252-50-R-24-BNC	LIQ	12/17/2003	13 mo	
Spectrum Analyzer	Hewlett Packard	8593E	AAP	03/22/2004	13 mo	
Receiver	Schaffner	SCR 3101	ARC	04/28/2003	24 mo	

Test Description

Using the mode of operation and configuration noted within this report, conducted emissions tests were performed. The frequency range investigated (scanned), is also noted in this report. Conducted power line measurements are made, unless otherwise specified, over the frequency range from 150 kHz to 30 MHz to determine the line-to-ground radio-noise voltage that is conducted from the EUT power-input terminals that are directly (or indirectly via separate transformer or power supplies) connected to a public power network. Equipment is tested with power cords that are normally used or that have electrical or shielding characteristics that are the same as those cords normally used. Typically those measurements are made using a LISN (Line Impedance Stabilization Network), the 50 Ω measuring port is terminated by a 50 Ω EMI meter or a 50 Ω resistive load. All 50 Ω measuring ports of the LISN are terminated by 50 Ω .

Measurement Bandwidths				
Frequency Range	Peak Data	Quasi-Peak Data	Average Data	
(MHz)	(kHz)	(kHz)	(kHz)	
0.01 – 0.15	1.0	0.2	0.2	
0.15 - 30.0	10.0	9.0	9.0	
30.0 - 1000	100.0	120.0	120.0	
Above 1000	1000.0	N/A	1000.0	
Measurements were made using the bandwidths and detectors specified. No video filter was used.				

Completed by:

CONDUCTED EMISSIONS DATA SHEET EMC 08/10/200 EUT: Zoom Latitude Programming System, Model 3120 Work Order: GDMN0018 Serial Number: 050342 Date: 08/25/04 Customer: Guidant Imc. Temperature: 75 Attendees: none Humidity: 45% Cust. Ref. No.: Barometric Pressure 30.05 Power: 120VAC/60Hz Tested by: Jonathan Peng Job Site: OC10 SPECIFICATIONS Specification: FCC 15.107 Class B Year: 2003 Method: ANSI C63.4 Year: 2001 SAMPLE CALCULATIONS Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation Typical Operation, Conducted Emissions modifications installed - Digital emissions excluded **EUT OPERATING MODES** US Radio - Low Band - Xmit Mode **DEVIATIONS FROM TEST STANDARD** No deviations RESULTS 19 Pass L1 Other Tested By: 80.0 70.0 60.0 50.0 WWWW 40.0 30.0 20.0 10.0 0.0 1.000 0.100 10.000 100.000 MHz External Compared to Frea Amplitude Transducer Cable Adjusted Spec. Limit Attenuation Detector Spec. (blank equal peak [PK] from scan) (dBuV) (dB) (dB) (dB) dBuV dBuV (dB) (MHz) 2.792 21 4 0.0 0.5 20.0 ΑV 41 9 46.0 -4.1 4.725 20.5 0.0 0.7 20.0 ΑV 41.2 46.0 -4.8 4.747 25.3 0.0 20.0 46.0 46.0 0.0 2.796 25.1 0.0 0.5 20.0 45.6 46.0 -0.4 2.596 24.6 0.0 0.5 20.0 45.1 46.0 -0.9 1.295 0.0 20.0 46.0 24.5 0.4 44.9 -1.1 0.7 4 547 24 1 0.0 20.0 44 8 46.0 -12 46.0 1.070 24.4 0.0 0.3 20.0 44.7 -1.3 4.972 23.0 0.0 0.7 20.0 43.7 46.0 -2.3 3.246 22.7 20.0 43.2 46.0 -2.8 3.021 22.5 0.5 20.0 43.0 46.0 -3.0 0.0 3.671 22.4 0.0 0.6 20.0 43.0 46.0 -3.0 0.0 20.0 46.8 50.0 -3.2 5.197 26.1 0.7 42.8 1.520 0.0 0.4 20.0 46.0 -3.2 22.4 46.0 0.6 42.5 4.322 21.9 0.0 20.0 -3.5 6.073 25.7 0.0 0.7 20.0 46.4 50.0 -3.6 5.822 25.6 0.0 0.7 20.0 46.3 50.0 -3.7 5.622 25.2 0.0 0.7 20.0 45.9 50.0 -4.1 9.274 24.8 0.0 0.9 20.0 45.7 50.0 -4.3

CONDUCTED EMISSIONS DATA SHEET EMC 08/10/200 EUT: Zoom Latitude Programming System, Model 3120 Work Order: GDMN0018 Serial Number: 050342 Date: 08/25/04 Customer: Guidant Imc. Temperature: 75 Attendees: none Humidity: 45% Cust. Ref. No.: Barometric Pressure 30.05 Power: 120VAC/60Hz Tested by: Jonathan Peng Job Site: OC10 SPECIFICATIONS Specification: FCC 15.107 Class B Year: 2003 Method: ANSI C63.4 Year: 2001 SAMPLE CALCULATIONS Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation Typical Operation, Conducted Emissions modifications installed - Digital emissions excluded **EUT OPERATING MODES** US Radio - Low Band - Xmit Mode **DEVIATIONS FROM TEST STANDARD** No deviations RESULTS L2 28 Pass Other Tested By: 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0.0 1.000 0.100 10.000 100.000 MHz External Compared to Frea Amplitude Transducer Cable Adjusted Spec. Limit Attenuation Detector Spec. (blank equal peak [PK] from scan) (dB) (dBuV) (dB) (dB) (dB) dBuV dBuV (MHz) 1.287 23.2 0.0 0.4 20.0 ΑV 43.6 46.0 -24 4.731 19.7 0.0 0.7 20.0 ΑV 40.4 46.0 -5.6 1.070 0.0 20.0 45.2 46.0 -0.8 2.796 24.2 0.0 0.5 20.0 44.7 46.0 -1.3 3.246 24.1 0.0 0.5 20.0 44.6 46.0 -1.4 3.021 0.0 20.0 46.0 23.6 0.5 44.1 -1.9 -2.1 6 273 27 1 0.0 0.8 20.0 47 9 50.0 46.0 4.322 23.2 0.0 0.6 20.0 43.8 -2.2 4.547 23.0 0.0 0.7 20.0 43.7 46.0 -2.3 5.622 26.6 0.7 20.0 47.3 50.0 -2.7 4.972 20.0 43.1 46.0 22.4 0.0 0.7 -2.9 -3.3 1.495 22.3 0.0 0.4 20.0 42.7 46.0 4.097 0.0 0.6 20.0 46.0 22.0 42.6 -3.4 6.048 0.0 0.7 20.0 46.4 50.0 -3.6 25.7 0.647 46.0 22.1 0.0 0.2 20.0 42.3 -3.7 2.596 21.7 0.0 0.5 20.0 42.2 46.0 -3.8 9.000 25.1 0.0 0.9 20.0 46.0 50.0 -4.0 5.822 25.2 0.0 0.7 20.0 45.9 50.0 -4.1

9.030

24.8

0.0

0.9

20.0

45.7

50.0

CONDUCTED EMISSIONS DATA SHEET EMC 08/10/200 EUT: Zoom Latitude Programming System, Model 3120 Work Order: GDMN0018 Serial Number: 050342 Date: 08/25/04 Customer: Guidant Imc. Temperature: 75 Attendees: none Humidity: 45% Cust. Ref. No.: Barometric Pressure 30.05 Power: 120VAC/60Hz Tested by: Jonathan Peng Job Site: OC10 SPECIFICATIONS Specification: FCC 15.107 Class B Year: 2003 Method: ANSI C63.4 Year: 2001 SAMPLE CALCULATIONS Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation Typical Operation, Conducted Emissions modifications installed - Digital emissions excluded **EUT OPERATING MODES** US Radio - Low Band - Receive Mode **DEVIATIONS FROM TEST STANDARD** No deviations RESULTS 18 Pass L1 Other Tested By: 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0.0 0.100 1.000 10.000 100.000 MHz External Compared to Frea Amplitude Transducer Cable Adjusted Spec. Limit Attenuation Detector Spec. (blank equal peak [PK] from scan) (dB) (dBuV) (dB) (dB) (dB) dBuV dBuV (MHz) 2.794 21.7 0.0 0.5 20.0 ΑV 42 2 46.0 -3.8 4.727 20.6 0.0 0.7 20.0 ΑV 41.3 46.0 -4.7 2.821 25.1 0.0 20.0 45.6 46.0 -0.4 4.747 24.9 0.0 0.7 20.0 45.6 46.0 -0.4 2.596 24.6 0.0 0.5 20.0 45.1 46.0 -0.9 1.295 0.0 20.0 46.0 0.4 44.8 -1.2 24.4 0.3 46.0 1 070 24 1 0.0 20.0 44 4 -16 4.547 23.7 0.0 0.7 20.0 44.4 46.0 -1.6 4.322 23.1 0.0 0.6 20.0 43.7 46.0 -2.3 6.048 26.6 0.7 20.0 47.3 50.0 -2.7 4.972 20.0 42.7 46.0 -3.3 22.0 0.0 0.7 -3.4 3.021 22.1 0.0 0.5 20.0 42.6 46.0 3.246 0.0 20.0 42.5 46.0 -3.5 22.0 0.5 5.847 0.0 0.7 20.0 46.4 50.0 -3.6 25.7 46.0 3.671 21.6 0.0 0.6 20.0 42.2 -3.8 1.520 21.5 0.0 0.4 20.0 41.9 46.0 -4.1 5.597 24.7 0.0 0.7 20.0 45.4 50.0 -4.6 9.299 24.4 0.0 0.9 20.0 45.3 50.0 -4.7

5.197

24.5

0.0

0.7

20.0

45.2

50.0

CONDUCTED EMISSIONS DATA SHEET EMC 08/10/200 EUT: Zoom Latitude Programming System, Model 3120 Work Order: GDMN0018 Serial Number: 050342 Date: 08/25/04 Customer: Guidant Imc. Temperature: 75 Attendees: none Humidity: 45% Cust. Ref. No.: Barometric Pressure 30.05 Power: 120VAC/60Hz Job Site: OC10 Tested by: Jonathan Peng SPECIFICATIONS Specification: FCC 15.107 Class B Year: 2003 Method: ANSI C63.4 Year: 2001 SAMPLE CALCULATIONS Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation Typical Operation, Conducted Emissions modifications installed - Digital emissions excluded **EUT OPERATING MODES** US Radio - Low Band - Receive Mode **DEVIATIONS FROM TEST STANDARD** No deviations RESULTS 29 Pass L2 Other Tested By: 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0.0 0.100 1.000 10.000 100.000 MHz External Compared to Frea Amplitude Transducer Cable Adjusted Spec. Limit Attenuation Detector Spec. (blank equal peak [PK] from scan) (dB) (dBuV) (dB) (dB) (dB) dBuV dBuV (MHz) 1.289 23.2 0.0 0.4 20.0 ΑV 43.6 46.0 -2.4 4.727 19.9 0.0 0.7 20.0 ΑV 40.6 46.0 -5.4 1.070 0.0 20.0 45.1 46.0 -0.9 3.246 24.3 0.0 0.5 20.0 44.8 46.0 -1.2 5.622 27.7 0.0 0.7 20.0 48.4 50.0 -1.6 2.796 0.0 20.0 46.0 -2.3 23.2 0.5 43.7 46.0 -2.4 3 021 23 1 0.0 0.5 20.0 43 6 4.547 226 0.0 0.7 20.0 43.3 46.0 -2.7 4.322 22.6 0.0 0.6 20.0 43.2 46.0 -2.8 4.097 22.6 0.6 20.0 43.2 46.0 -2.8 6.273 0.8 20.0 47.1 50.0 -2.9 26.3 0.0 -3.1 0.647 22.7 0.0 0.2 20.0 42.9 46.0 4.972 0.0 0.7 20.0 42.8 46.0 -3.2 22.1 46.0 1.520 22.3 0.0 0.4 20.0 42.7 -3.3 46.0 0.5 -3.6 2.596 21.9 0.0 20.0 42.4 9.000 25.1 0.0 0.9 20.0 46.0 50.0 -4.0 6.048 25.1 0.0 0.7 20.0 45.8 50.0 -4.2 9.074 24.9 0.0 0.9 20.0 45.8 50.0 -4.2

3.446

21.2

0.0

0.5

20.0

41.7

46.0

CONDUCTED EMISSIONS DATA SHEET EMC 08/10/2004 EUT: Zoom Latitude Programming System, Model 3120 Work Order: GDMN0018 Serial Number: 050342 Date: 08/25/04 Customer: Guidant Imc. Temperature: 75 Attendees: none Humidity: 45% Cust. Ref. No.: Barometric Pressure 30.05 Power: 120VAC/60Hz Tested by: Jonathan Peng Job Site: OC10 SPECIFICATIONS Specification: FCC 15.107 Class B Year: 2003 Method: ANSI C63.4 Year: 2001 SAMPLE CALCULATIONS Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation Typical Operation, Conducted Emissions modifications installed - Digital emissions excluded **EUT OPERATING MODES** US Radio - Mid Band - Xmit Mode **DEVIATIONS FROM TEST STANDARD** No deviations RESULTS 20 Pass L1 Other Tested By: 80.0 70.0 60.0 50.0 40.0 my wy www [30.0 20.0 10.0 0.0 0.100 1.000 10.000 100.000 MHz External Compared to Frea Amplitude Transducer Cable Adjusted Spec. Limit Attenuation Detector Spec. (blank equal peak [PK] from scan) (dB) (dBuV) (dB) (dB) (dB) dBuV dBuV (MHz) 2 793 21.9 0.0 0.5 20.0 ΑV 42 4 46.0 -3.6 4.747 24.7 0.0 0.7 20.0 45.4 46.0 -0.6 4.547 24.3 0.0 20.0 45.0 46.0 -1.0 1.070 24.6 0.0 0.3 20.0 44.9 46.0 -1.1 1.295 24.3 0.0 20.0 44.7 46.0 -1.3 0.4 2.596 0.0 0.5 20.0 46.0 23.8 44.3 -1.7 -2.3 4 322 23 1 0.0 0.6 20.0 43 7 46.0 6.048 26.6 0.0 0.7 20.0 47.3 50.0 -2.7 5.197 26.5 0.0 0.7 20.0 47.2 50.0 -2.8 3.046 22.7 20.0 43.2 46.0 -2.8 3.671 22.6 0.6 20.0 43.2 46.0 -2.8 0.0 4.972 22.4 0.0 0.7 20.0 43.1 46.0 -2.9 3.246 0.0 20.0 46.0 -3.0 22.5 0.5 43.0 22.5 0.4 42.9 46.0 1.520 0.0 20.0 -3.1 50.0 0.9 -3.4 9.000 25.7 0.0 20.0 46.6 9.030 25.1 0.0 0.9 20.0 46.0 50.0 -4.0 5.847 25.2 0.0 0.7 20.0 45.9 50.0 -4.1 3.446 0.0 0.5 20.0 41.7 46.0 -4.3 5.622 24.9 0.0 0.7 20.0 45.6 50.0

CONDUCTED EMISSIONS DATA SHEET EMC 08/10/200 EUT: Zoom Latitude Programming System, Model 3120 Work Order: GDMN0018 Serial Number: 050342 Date: 08/25/04 Customer: Guidant Imc. Temperature: 75 Attendees: none Humidity: 45% Cust. Ref. No.: Barometric Pressure 30.05 Power: 120VAC/60Hz Tested by: Jonathan Peng Job Site: OC10 SPECIFICATIONS Specification: FCC 15.107 Class B Year: 2003 Method: ANSI C63.4 Year: 2001 SAMPLE CALCULATIONS Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation Typical Operation, Conducted Emissions modifications installed - Digital emissions excluded **EUT OPERATING MODES** US Radio - Mid Band - Xmit Mode **DEVIATIONS FROM TEST STANDARD** No deviations RESULTS 27 Pass L2 Other Tested By: 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0.0 0.100 1.000 10.000 100.000 MHz External Compared to Frea Amplitude Transducer Cable Adjusted Spec. Limit Attenuation Detector Spec. (blank equal peak [PK] from scan) (dBuV) (dB) (dB) (dB) dBuV dBuV (dB) (MHz) 1.288 23.2 0.0 0.4 20.0 ΑV 43.6 46.0 -2.4 4.727 19.6 0.0 0.7 20.0 ΑV 40.3 46.0 -5.7 1.070 25.1 0.0 20.0 45.4 46.0 -0.6 3.246 24.7 0.0 0.5 20.0 45.2 46.0 -0.8 2.796 24.2 0.0 0.5 20.0 44.7 46.0 -1.3 5.622 0.0 20.0 50.0 -2.4 26.9 0.7 47.6 46.0 -24 4 547 229 0.0 0.7 20.0 43 6 6.273 26.6 0.0 0.8 20.0 47.4 50.0 -2.6 3.021 22.8 0.0 0.5 20.0 43.3 46.0 -2.7 2.596 22.7 0.5 20.0 43.2 46.0 -2.8 0.643 22.8 0.2 20.0 43.0 46.0 -3.0 0.0 -3.1 4.097 22.3 0.0 0.6 20.0 42.9 46.0 4.972 0.0 20.0 42.9 46.0 -3.1 22.2 0.7 0.0 0.6 20.0 42.7 46.0 -3.3 4.322 22.1 46.0 1.495 22.2 0.0 0.4 20.0 42.6 -3.4 9.099 25.5 0.0 0.9 20.0 46.4 50.0 -3.6 6.048 25.4 0.0 0.7 20.0 46.1 50.0 -3.9 5.822 25.1 0.0 0.7 20.0 45.8 50.0 -4.2

0.0

0.7

20.0

45.5

50.0

-4.5

5.197

CONDUCTED EMISSIONS DATA SHEET EMC 08/10/200 EUT: Zoom Latitude Programming System, Model 3120 Work Order: GDMN0018 Serial Number: 050342 Date: 08/25/04 Customer: Guidant Imc. Temperature: 75 Attendees: none Humidity: 45% Cust. Ref. No.: Barometric Pressure 30.05 Power: 120VAC/60Hz Tested by: Jonathan Peng Job Site: OC10 SPECIFICATIONS Specification: FCC 15.107 Class B Year: 2003 Method: ANSI C63.4 Year: 2001 SAMPLE CALCULATIONS Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation Typical Operation, Conducted Emissions modifications installed - Digital emissions excluded **EUT OPERATING MODES** US Radio - Mid Band - Receive Mode **DEVIATIONS FROM TEST STANDARD** No deviations RESULTS 21 Pass L1 Other Tested By: 80.0 70.0 60.0 50.0 WWW\\\\ 40.0 30.0 20.0 10.0 0.0 0.100 1.000 10.000 100.000 MHz External Compared to Frea Amplitude Cable Adjusted Spec. Limit Transducer Attenuation Detector Spec. (blank equal peak [PK] from scan) (dB) (dBuV) (dB) (dB) (dB) dBuV dBuV (MHz) 4.727 20.7 0.0 0.7 20.0 ΑV 41 4 46.0 -4.6 4.747 25.2 0.0 0.7 20.0 45.9 46.0 -0.1 2.796 24.4 0.0 20.0 46.0 -1.1 1.070 24.5 0.0 0.3 20.0 44.8 46.0 -1.2 4.547 24.0 0.0 0.7 20.0 44.7 46.0 -1.3 1.295 0.0 20.0 46.0 24.0 0.4 44.4 -1.6 -2.0 0.5 46.0 2 596 23.5 0.0 20.0 44 0 46.0 3.671 23.2 0.0 0.6 20.0 43.8 -2.2 6.048 26.3 0.0 0.7 20.0 47.0 50.0 -3.0 3.021 22.2 0.5 20.0 42.7 46.0 -3.3 4.972 0.7 20.0 42.7 46.0 -3.3 22.0 0.0 3.246 22.1 0.0 0.5 20.0 42.6 46.0 -3.4 0.0 20.0 46.4 50.0 -3.6 5.197 25.7 0.7 4.322 21.5 0.0 0.6 20.0 42.1 46.0 -3.9 50.0 9.074 25.2 0.0 0.9 20.0 46.1 -3.9 3.471 21.5 0.0 0.5 20.0 42.0 46.0 -4.0 5.847 25.2 0.0 0.7 20.0 45.9 50.0 -4.1 5.622 25.0 0.0 0.7 20.0 45.7 50.0 -4.3 1.520 21.1 0.0 0.4 20.0 41.5 46.0 -4.5

CONDUCTED EMISSIONS DATA SHEET EMC 08/10/200 EUT: Zoom Latitude Programming System, Model 3120 Work Order: GDMN0018 Serial Number: 050342 Date: 08/25/04 Customer: Guidant Imc. Temperature: 75 Attendees: none Humidity: 45% Cust. Ref. No.: Barometric Pressure 30.05 Power: 120VAC/60Hz Tested by: Jonathan Peng Job Site: OC10 SPECIFICATIONS Specification: FCC 15.107 Class B Year: 2003 Method: ANSI C63.4 Year: 2001 SAMPLE CALCULATIONS Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation Typical Operation, Conducted Emissions modifications installed - Digital emissions excluded **EUT OPERATING MODES** US Radio - Mid Band - Receive Mode **DEVIATIONS FROM TEST STANDARD** No deviations RESULTS 26 Pass L2 Other Tested By: 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0.0 1.000 0.100 10.000 100.000 MHz External Compared to Frea Amplitude Transducer Cable Adjusted Spec. Limit Attenuation Detector Spec. (blank equal peak [PK] from scan) (dB) (dBuV) (dB) (dB) (dB) dBuV dBuV (MHz) 1.289 23.2 0.0 0.4 20.0 ΑV 43.6 46.0 -2.4 4.730 19.6 0.0 0.7 20.0 ΑV 40.3 46.0 -5.7 4.747 25.0 0.0 20.0 45.7 46.0 -0.3 1.070 24.8 0.0 0.3 20.0 45.1 46.0 -0.9 2.796 24.3 0.0 0.5 20.0 44.8 46.0 -1.2 3.246 0.0 0.5 20.0 46.0 44.6 -1.4 24.1 -2.1 3 021 23 4 0.0 0.5 20.0 43 9 46.0 46.0 4.322 23.0 0.0 0.6 20.0 43.6 -2.4 4.547 22.7 0.0 0.7 20.0 43.4 46.0 -2.6 0.645 23.0 0.2 20.0 43.2 46.0 -2.8 4.097 22.4 0.6 20.0 43.0 46.0 -3.0 0.0 1.520 22.2 0.0 0.4 20.0 42.6 46.0 -3.4 6.273 0.0 0.8 20.0 50.0 -3.7 25.5 46.3 21.5 0.0 0.7 20.0 42.2 46.0 -3.8 4.972 46.0 2.596 21.5 0.0 0.5 20.0 42.0 -4.0 6.048 25.2 0.0 0.7 20.0 45.9 50.0 -4.1 5.622 25.1 0.0 0.7 20.0 45.8 50.0 -4.2 5.822 24.6 0.0 0.7 20.0 45.3 50.0 -4.7

5.397

24.3

0.0

0.7

20.0

45.0

50.0

-5.0

CONDUCTED EMISSIONS DATA SHEET EMC 08/10/2004 EUT: Zoom Latitude Programming System, Model 3120 Work Order: GDMN0018 Serial Number: 050342 Date: 08/25/04 Customer: Guidant Imc. Temperature: 75 Attendees: none Humidity: 45% Cust. Ref. No.: Barometric Pressure 30.05 Power: 120VAC/60Hz Tested by: Jonathan Peng Job Site: OC10 SPECIFICATIONS Specification: FCC 15.107 Class B Year: 2003 Method: ANSI C63.4 Year: 2001 SAMPLE CALCULATIONS Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation Typical Operation, Conducted Emissions modifications installed - Digital emissions excluded **EUT OPERATING MODES** US Radio - High Band - Xmit Mode **DEVIATIONS FROM TEST STANDARD** No deviations RESULTS 23 Pass L1 Other Tested By: 80 70 60 50 dBuV 40 30 20 10 0 0.1 1 10 100 MHz External Compared to Amplitude Cable Adjusted Spec. Limit Frea Transducer Attenuation Detector Spec. (dB) (dBuV) (dB) (dB) (dB) blank equal peak [PK] from scan) dBuV dBuV (MHz) 0.431 32 6 0.0 0.2 20.0 52.8 47 2 5.6 0.866 30.6 0.0 0.3 20.0 50.9 46.0 4.9 2.796 25.5 0.0 20.0 46.0 0.0 4.747 25.2 0.0 0.7 20.0 45.9 46.0 -0.1 1.295 25.0 0.0 20.0 45.4 46.0 -0.6 0.4 0.0 0.7 20.0 46.0 4.522 24.7 45.4 -0.6 2 596 24 4 0.0 0.5 20.0 44 9 46.0 -1 1 46.0 1.070 23.9 0.0 0.3 20.0 44.2 -1.8 4.322 23.2 0.0 0.6 20.0 43.8 46.0 -2.2 5.172 0.7 20.0 47.3 50.0 -2.7 6.048 0.7 20.0 47.2 50.0 26.5 0.0 -2.8 3.021 22.5 0.0 0.5 20.0 43.0 46.0 -3.0 4.972 0.0 20.0 46.0 -3.0 22.3 0.7 43.0 3.671 0.0 0.6 20.0 42.7 46.0 -3.3 22.1 25.9 50.0 -3.4 5.822 0.0 0.7 20.0 46.6 3.246 22.1 0.0 0.5 20.0 42.6 46.0 -3.4 9.030 25.6 0.0 0.9 20.0 46.5 50.0 -3.5 9.000 25.5 0.0 0.9 20.0 46.4 50.0 -3.6 1.520 21.8 0.0 0.4 20.0 42.2 46.0 -3.8

CONDUCTED EMISSIONS DATA SHEET EMC 08/10/200 EUT: Zoom Latitude Programming System, Model 3120 Work Order: GDMN0018 Serial Number: 050342 Date: 08/25/04 Customer: Guidant Imc. Temperature: 75 Attendees: none Humidity: 45% Cust. Ref. No.: Barometric Pressure 30.05 Power: 120VAC/60Hz Tested by: Jonathan Peng Job Site: OC10 SPECIFICATIONS Specification: FCC 15.107 Class B Year: 2003 Method: ANSI C63.4 Year: 2001 SAMPLE CALCULATIONS Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation Typical Operation, Conducted Emissions modifications installed - Digital emissions excluded **EUT OPERATING MODES** US Radio - High Band - Xmit Mode **DEVIATIONS FROM TEST STANDARD** No deviations RESULTS 24 Pass L2 Other Tested By: 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0.0 1.000 0.100 10.000 100.000 MHz External Compared to Frea Amplitude Transducer Cable Adjusted Spec. Limit Attenuation Detector Spec. (blank equal peak [PK] from scan) (dBuV) (dB) (dB) (dB) dBuV dBuV (dB) (MHz) 1.289 23.2 0.0 0.4 20.0 ΑV 43.6 46.0 -24 4.729 19.7 0.0 0.7 20.0 ΑV 40.4 46.0 -5.6 1.095 0.0 20.0 44.7 46.0 -1.3 3.246 23.9 0.0 0.5 20.0 44.4 46.0 -1.6 2.796 23.7 0.0 0.5 20.0 44.2 46.0 -1.8 3.021 0.0 20.0 46.0 -2.0 23.5 0.5 44.0 -2.2 5 622 27 1 0.0 0.7 20.0 47 8 50.0 46.0 4.547 23.1 0.0 0.7 20.0 43.8 -2.2 6.273 26.7 0.0 8.0 20.0 47.5 50.0 -2.5 4.322 22.8 0.6 20.0 43.4 46.0 -2.6 0.647 20.0 43.4 46.0 23.2 0.0 0.2 -2.6 -2.7 4.122 22.7 0.0 0.6 20.0 43.3 46.0 0.0 20.0 42.9 46.0 4.972 22.2 0.7 -3.1 22.0 46.0 2.596 0.0 0.5 20.0 42.5 -3.5 46.0 1.495 22.0 0.0 0.4 20.0 42.4 -3.6 5.822 25.4 0.0 0.7 20.0 46.1 50.0 -3.9 9.030 25.0 0.0 0.9 20.0 45.9 50.0 -4.1 6.048 25.0 0.0 0.7 20.0 45.7 50.0 -4.3

9.299

24.7

0.0

0.9

20.0

45.6

50.0

CONDUCTED EMISSIONS DATA SHEET EMC 08/10/2004 EUT: Zoom Latitude Programming System, Model 3120 Work Order: GDMN0018 Serial Number: 050342 Date: 08/25/04 Customer: Guidant Imc. Temperature: 75 Attendees: none Humidity: 45% Cust. Ref. No.: Barometric Pressure 30.05 Power: 120VAC/60Hz Tested by: Jonathan Peng Job Site: OC10 SPECIFICATIONS Specification: FCC 15.107 Class B Year: 2003 Method: ANSI C63.4 Year: 2001 SAMPLE CALCULATIONS Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation Typical Operation, Conducted Emissions modifications installed - Digital emissions excluded **EUT OPERATING MODES** US Radio - High Band - Receive Mode **DEVIATIONS FROM TEST STANDARD** No deviations RESULTS 22 Pass L1 Other Tested By: 80 70 60 50 dBuV 40 MMMM 30 20 10 0 0.1 1 10 100 MHz External Compared to Amplitude Cable Adjusted Spec. Limit Frea Transducer Attenuation Detector Spec. (dB) (dBuV) (dB) (dB) (dB) blank equal peak [PK] from scan) dBuV dBuV (MHz) 0.431 31.9 0.0 0.2 20.0 52 1 47 2 4.9 0.866 30.5 0.0 0.3 20.0 50.8 46.0 4.8 45.3 2.821 0.0 20.0 46.0 -0.7 2.596 24.7 0.0 0.5 20.0 45.2 46.0 -0.8 4.747 24.5 0.0 0.7 20.0 45.2 46.0 -0.8 0.0 20.0 46.0 -0.8 4.547 0.7 45.2 24.5 -0.9 1 295 24 7 0.0 0.4 20.0 45 1 46.0 46.0 1.070 23.8 0.0 0.3 20.0 44.1 -1.9 4.322 22.9 0.0 0.6 20.0 43.5 46.0 -2.5 6.048 26.7 0.7 20.0 47.4 50.0 -2.6 4.972 20.0 43.1 46.0 -2.9 22.4 0.0 0.7 5.197 26.3 0.0 0.7 20.0 47.0 50.0 -3.0 3.021 0.0 20.0 42.9 46.0 22.4 0.5 -3.1 22.2 0.0 0.5 20.0 42.7 46.0 -3.3 3.221 46.0 3.671 21.8 0.0 0.6 20.0 42.4 -3.6 1.520 21.8 0.0 0.4 20.0 42.2 46.0 -3.8 5.822 24.9 0.0 0.7 20.0 45.6 50.0 -4.4 9.074 24.7 0.0 0.9 20.0 45.6 50.0 -4.4 6.248 24.7 0.0 0.7 20.0 45.4 50.0 -4.6

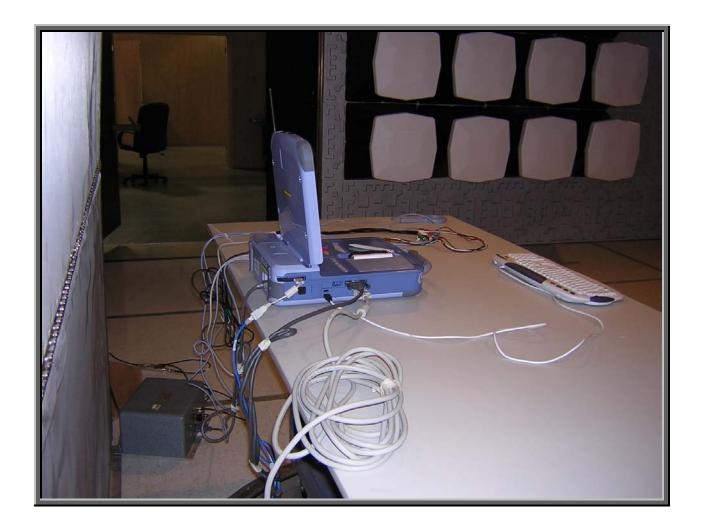
CONDUCTED EMISSIONS DATA SHEET EMC 08/10/200 EUT: Zoom Latitude Programming System, Model 3120 Work Order: GDMN0018 Serial Number: 050342 Date: 08/25/04 Customer: Guidant Imc. Temperature: 75 Attendees: none Humidity: 45% Cust. Ref. No.: Barometric Pressure 30.05 Power: 120VAC/60Hz Tested by: Jonathan Peng Job Site: OC10 SPECIFICATIONS Specification: FCC 15.107 Class B Year: 2003 Method: ANSI C63.4 Year: 2001 SAMPLE CALCULATIONS Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation Typical Operation, Conducted Emissions modifications installed - Digital emissions excluded **EUT OPERATING MODES** US Radio - High Band - Receive Mode **DEVIATIONS FROM TEST STANDARD** No deviations RESULTS 25 Pass L2 Other Tested By: 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0.0 0.100 1.000 10.000 100.000 MHz External Compared to Frea Amplitude Transducer Cable Adjusted Spec. Limit Attenuation Detector Spec. (blank equal peak [PK] from scan) (dB) (dBuV) (dB) (dB) (dB) dBuV dBuV (MHz) 1.292 23.2 0.0 0.4 20.0 ΑV 43.6 46.0 -24 4.728 19.7 0.0 0.7 20.0 ΑV 40.4 46.0 -5.6 1.070 0.0 20.0 45.2 46.0 -0.8 3.246 23.6 0.0 0.5 20.0 44.1 46.0 -1.9 5.622 27.2 0.0 0.7 20.0 47.9 50.0 -2.1 2.821 20.0 46.0 23.0 0.0 0.5 43.5 -2.5 0.649 -2.6 23 2 0.0 0.2 20.0 43 4 46.0 46.0 3.021 22.9 0.0 0.5 20.0 43.4 -2.6 6.273 26.4 0.0 8.0 20.0 47.2 50.0 -2.8 2.596 22.6 0.5 20.0 43.1 46.0 -2.9 4.547 20.0 43.1 46.0 -2.9 22.4 0.0 0.7 4.322 22.1 0.0 0.6 20.0 42.7 46.0 -3.3 4.097 0.0 0.6 20.0 46.0 -3.4 22.0 42.6 46.0 4.972 21.9 0.0 0.7 20.0 42.6 -3.4 50.0 46.4 9.074 25.5 0.0 0.9 20.0 -3.6 1.495 21.6 0.0 0.4 20.0 42.0 46.0 -4.0 6.048 25.0 0.0 0.7 20.0 45.7 50.0 -4.3 5.822 24.7 0.0 0.7 20.0 45.4 50.0 -4.6

2.371

20.7

0.0

0.5


20.0

41.2

46.0

