

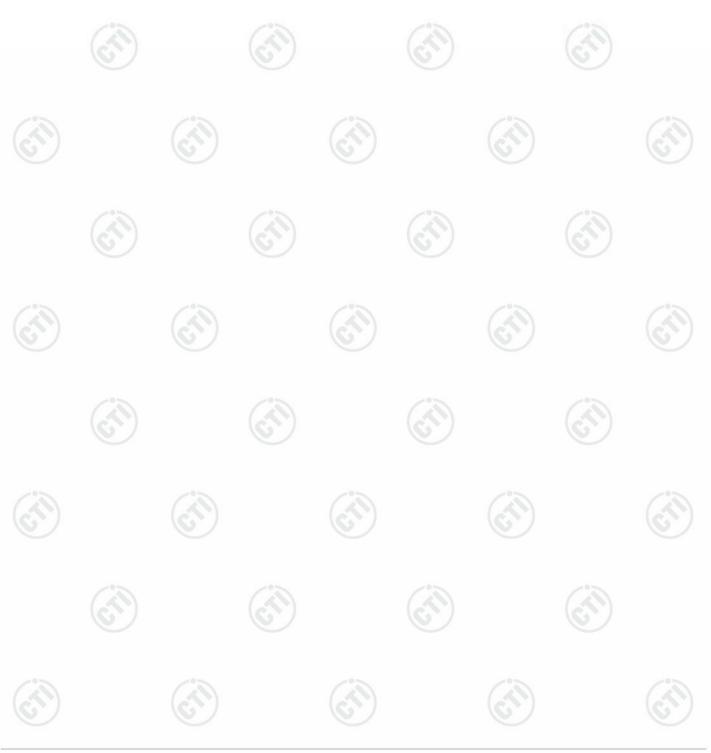
Report No.: EED32P80431602

Page 1 of 47

		(JE	ST F	REPOR	RT		
	Product	e.	Dinosa	aur Series V	/ireless H	eadset	
	Trade mark	:	MINIS	0			
	Model/Type refere	nce :	2304				
	Serial Number		N/A				
	Report Number	:	EED32	2P80431602	2		
	FCC ID	:	2A2H6	62304			
	Date of Issue	(2):	May 0	5, 2023			
	Test Standards	(\mathcal{O})	47 CFI	R Part 15 S	ubpart C		
	Test result	:	PASS				
			Prep	ared for:			
	Shenzh	en Bao	Tianh	ua Techn	ology C	o., Ltd	
	Hongw	Testing ei Indus Shenzh TEL:	Prepa Interr strial Z en, Gu +86-7	ared by: national G one, Bao' angdong 55-3368 3 55-3368 3	roup Co an 70 D , China 6668	o., Ltd.	(in the second
	Compiled by:	nark.c	hen.	Reviewed I	oy:	Tom Che	~
	INTERNATION	Mark Cher	 ו		/	Tom Chen	
	Approved by:	Lavon /	vΛ	Date:		May 05, 2023	
C	Report Seal	Aaron Ma	(X		Ċ	Check No.: 18503	00323

1 Contents

		Page
2 VERSION		
3 TEST SUMMARY		
4 GENERAL INFORMATION		 5
4.1 CLIENT INFORMATION		
4.2 GENERAL DESCRIPTION OF EUT		
4.3 PRODUCT SPECIFICATION SUBJEC		
4.4 TEST CONFIGURATION		
4.5 Test Environment 4.6 Description of Support Units		
5 TEST RESULTS AND MEASUREM		
5.1 ANTENNA REQUIREMENT		
5.2 MAXIMUM CONDUCTED OUTPUT PO		
5.3 20DB EMISSION BANDWIDTH		
5.4 CARRIER FREQUENCY SEPARATION 5.5 NUMBER OF HOPPING CHANNEL		
5.5 NUMBER OF HOPPING CHANNEL 5.6 TIME OF OCCUPANCY		
5.7 BAND EDGE MEASUREMENTS		
5.8 CONDUCTED SPURIOUS EMISSIONS		
5.9 PSEUDORANDOM FREQUENCY HOPI		
5.10 RADIATED SPURIOUS EMISSION &		
6 APPENDIX BT CLASSIC		
PHOTOGRAPHS OF TEST SETUP		
PHOTOGRAPHS OF EUT CONSTRU	CTIONAL DETAILS	



2 Version

Version No.	Date	Description	
00	May 05, 2023	Original	
5			
	(N)	(L) (L)	6

3 Test Summary

Test Item	Test Requirement	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	N/A
Maximum Conducted Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(1)	PASS
20dB Emission Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Carrier Frequency Separation	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Number of Hopping Channels	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Time of Occupancy	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15, Subpart C Section 15.247(b)(4)	PASS
Band Edge Measurements	47 CFR Part 15, Subpart C Section 15.247(d)	PASS
Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	PASS
Radiated Spurious emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	PASS
Restricted bands around fundamental frequency	47 CFR Part 15, Subpart C Section 15.205/15.209	PASS

N/A: When the EUT charging, BT will not work, So Not Applicable. Remark:

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

4 General Information

4.1 Client Information

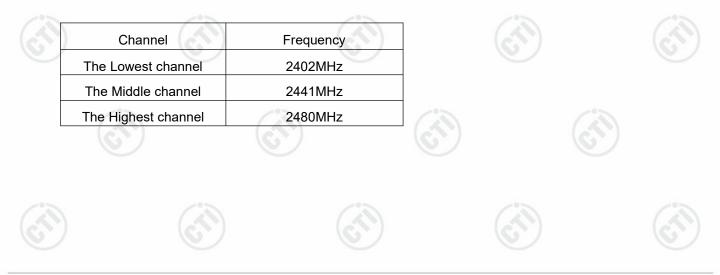

Applicant:	Shenzhen Bao Tianhua Technology Co., Ltd
Address of Applicant:	201, Building Plant No.6 Baidajie Road, Xi Keng Community Yuanshan Sub-district, Longgang district, Shenzhen, Guangdong, China
Manufacturer:	Shenzhen Bao Tianhua Technology Co., Ltd
Address of Manufacturer:	201, Building Plant No.6 Baidajie Road, Xi Keng Community Yuanshan Sub-district, Longgang district, Shenzhen, Guangdong, China
Factory:	Shenzhen Bao Tianhua Technology Co., Ltd
Address of Factory:	201, Building Plant No.6 Baidajie Road, Xi Keng Community Yuanshan Sub-district, Longgang district, Shenzhen, Guangdong, China

4.2 General Description of EUT

Product Name:	Dinosaur Series Wireless Headset	2
Model No.(EUT):	2304	-)
Trade mark:	MINISO	-
Product Type:	☐ Mobile	
Test software of EUT:	FCC_assist_1.0.2.2	
Power Supply:	Battery DC 3.7V	
Test Voltage:	DC 3.7V	
Sample Received Date:	Mar. 30, 2023	
Sample tested Date:	Mar. 30, 2023 to Apr. 11, 2023	

4.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)
Modulation Type:	GFSK, π/4DQPSK, 8DPSK
Number of Channel:	79
Hopping Channel Type:	Adaptive Frequency Hopping systems
Antenna Type:	PCB Antenna
Antenna Gain:	1.9dBi
Antenna Gain.	1.9001



Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

4.4 Test Configuration

:	
FCC_assist_1.0.2.2	
Class2 (Power level is built-in set parame selected)	eters and cannot be changed and
owest frequency, the middle frequency and th	e highest frequency keep
Channel	Frequency(MHz)
СНО	2402
CH39	2441
CH78	2480
СНО	2402
CH39	2441
CH78	2480
СНО	2402
СН39	2441
CH78	2480
	FCC_assist_1.0.2.2 Class2 (Power level is built-in set parame selected) owest frequency, the middle frequency and th Channel CH0 CH39 CH78 CH0 CH39 CH78 CH0 CH39 CH39 CH78 CH39 CH39 CH39 CH39 CH39 CH39 CH39 CH39

4.5 Test Environment

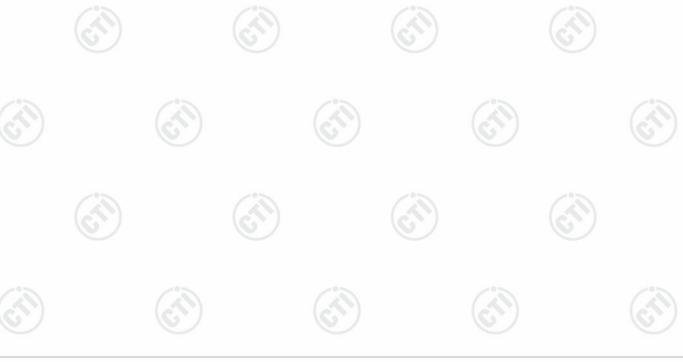
	Operating Environment	t:				
	Radiated Spurious Emi	ssions:				
2	Temperature:	22~25.0 °C			13	2
N)	Humidity:	50~55 % RH		(6)	6	•)
_	Atmospheric Pressure:	1010mbar		\bigcirc	C C	/
	RF Conducted:					
	Temperature:	22~25.0 °C	~		~	
	Humidity:	50~55 % RH	(\mathcal{A})			
	Atmospheric Pressure:	1010mbar	S	1	S	

4.6 Description of Support Units

The EUT has been tested with associated equipment below.

1) support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
Notebook	DELL	DELL 3490	FCC&CE	СТІ
7 Teet Lee	(\land)			


.7 Test Location

All tests were performed at:

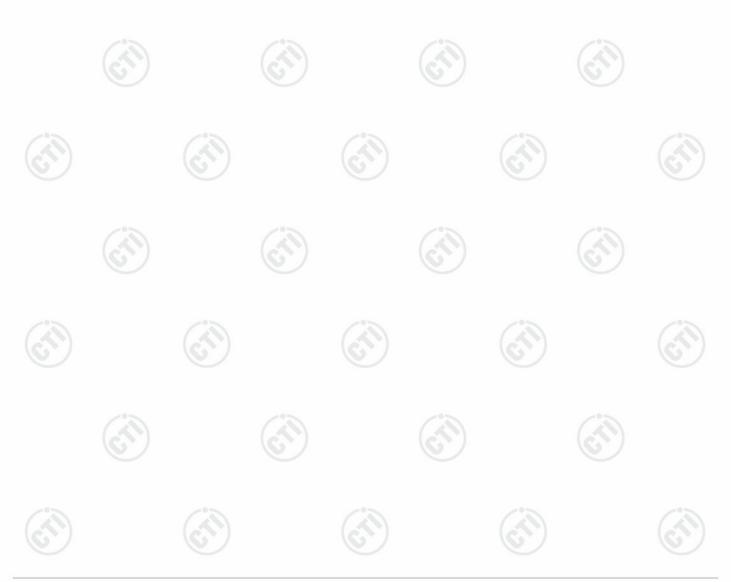
Centre Testing International Group Co., Ltd Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385 No tests were sub-contracted. FCC Designation No.: CN1164

4.8 Measurement Uncertainty (95% confidence levels, k=2)

No.	ltem	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2		0.46dB (30MHz-1GHz)
2 RF power, conducted		0.55dB (1GHz-40GHz)
(\mathbf{x})	(e ⁿ)	3.3dB (9kHz-30MHz)
3	Padiated Spurious amission test	4.3dB (30MHz-1GHz)
	Radiated Spurious emission test	4.5dB (1GHz-18GHz)
		3.4dB (18GHz-40GHz)
4	Temperature test	0.64°C
5	Humidity test	3.8%
6	DC power voltages	0.026%

4.9 Equipment List

RF test system						
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Spectrum Analyzer	Keysight	N9010A	MY54510339	12-23-2022	12-22-2023	
Signal Generator	Keysight	N5182B	MY53051549	12-19-2022	12-18-2023	
Signal Generator	Agilent	N5181A	MY46240094	12-19-2022	12-18-2023	
DC Power	Keysight	E3642A	MY56376072	12-19-2022	12-18-2023	
Wi-Fi 7GHz Band Extendder	JS Tonscend	TS-WF7U2	2206200002	06-11-2022	06-10-2023	
RF control unit	JS Tonscend	JS0806-2	158060006	12-23-2022	12-22-2023	
Communication test set	R&S	CMW500	120765	12-23-2022	12-22-2023	
high-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	12-19-2022	12-18-2023	
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	07-01-2022	06-15-2023	
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3	2.6.77.0518		<u>-</u>	



Page 10 of 47

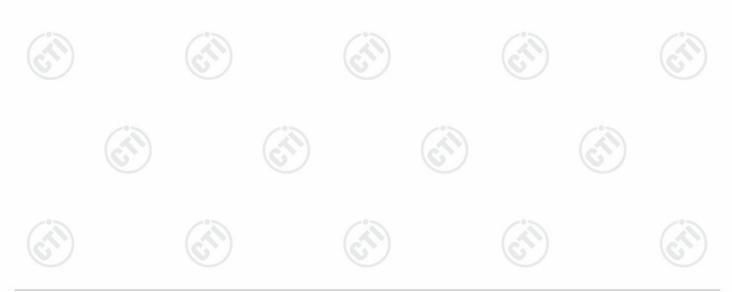
3M Semi-an	echoic Chamber (2)	- Radiated distu	rbance Test	
Manufacturer	Model	Serial No.	Cal. Date	Due Date
TDK	SAC-3		05-22-2022	05-21-2025
R&S	ESCI7	100938-003	09-28-2022	09-27-2023
schwarzbeck	VULB 9163	9163-618	05-22-2022	05-21-2023
maturo	NCD/070/10711112			
ETS-LINGREN	BBHA 9120D	9120D-1869	04-15-2021	04-14-2024
Schwarzbeck	FMZB 1519B	1519B-076	04-17-2021	04-16-2024
Agilent	8449B	3008A02425	06-20-2022	06-19-2023
	Manufacturer TDK R&S schwarzbeck maturo ETS-LINGREN Schwarzbeck	ManufacturerModelTDKSAC-3R&SESCI7schwarzbeckVULB 9163maturoNCD/070/10711112ETS-LINGRENBBHA 9120DSchwarzbeckFMZB 1519B	ManufacturerModelSerial No.TDKSAC-3R&SESCI7100938-003schwarzbeckVULB 91639163-618maturoNCD/070/10711112ETS-LINGRENBBHA 9120D9120D-1869SchwarzbeckFMZB 1519B1519B-076	TDK SAC-3 05-22-2022 R&S ESCI7 100938-003 09-28-2022 schwarzbeck VULB 9163 9163-618 05-22-2022 maturo NCD/070/10711112 ETS-LINGREN BBHA 9120D 9120D-1869 04-15-2021 Schwarzbeck FMZB 1519B 1519B-076 04-17-2021

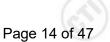
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
RSE Automatic test software	JS Tonscend	JS36-RSE	10166	(B)	(2
Receiver	Keysight	N9038A	MY57290136	02-27-2023	02-26-2024
Spectrum Analyzer	Keysight	N9020B	MY57111112	02-21-2023	02-20-2024
Spectrum Analyzer	Keysight	N9030B	MY57140871	02-21-2023	02-20-2024
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2021	04-27-2024
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-15-2021	04-14-2024
Horn Antenna	ETS-LINDGREN	3117	57407	07-04-2021	07-03-2024
Preamplifier	EMCI	EMC184055SE	980597	04-20-2022	04-19-2023
Preamplifier	EMCI	EMC001330	980563	04-13-2022	04-12-2023
Preamplifier	JS Tonscend	TAP-011858	AP21B806112	07-29-2022	07-28-2023
Communication test set	R&S	CMW500	102898	12-23-2022	12-22-2023
Temperature/ Humidity Indicator	biaozhi	GM1360	EJ1611459	02-15-2023	02-14-2024
Fully Anechoic Chamber	TDK	FAC-3		01-09-2021	01-08-2024
Cable line	Times	SFT205-NMSM-2.50M	394812-0001	(<u>()</u>
Cable line	Times	SFT205-NMSM-2.50M	394812-0002		
Cable line	Times	SFT205-NMSM-2.50M	394812-0003		
Cable line	Times	SFT205-NMSM-2.50M	393495-0001	(\mathcal{A})	(&
Cable line	Times	EMC104-NMNM-1000	SN160710		
Cable line	Times	SFT205-NMSM-3.00M	394813-0001		
Cable line	Times	SFT205-NMNM-1.50M	381964-0001	(S)
Cable line	Times	SFT205-NMSM-7.00M	394815-0001		
Cable line	Times	HF160-KMKM-3.00M	393493-0001	<u></u>	
)	(\mathcal{A})	(25)	1	(25)	(

5 Test results and Measurement Data

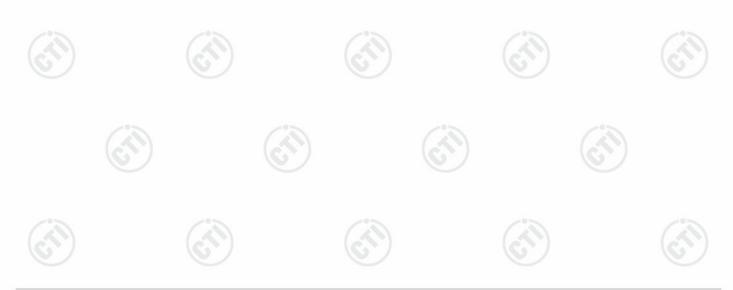
5.1 Antenna Requirement

5 . I	Antenna Requ	irement					
	Standard require	ment: 47	CFR Part 15C Se	ection 15.203 /2	247(c)		
	15.203 requirement An intentional radii responsible party se antenna that uses so that a broken a electrical connector 15.247(b) (4) require The conducted our antennas with dire section, if transmitt power from the int (b)(2), and (b)(3) or antenna exceeds	ator shall be o shall be used a unique cou ntenna can be or is prohibited irement: tput power lim ctional gains ting antennas entional radia of this section,	with the device. T pling to the intention e replaced by the u l. hit specified in para that do not exceed of directional gain tor shall be reduce	he use of a per onal radiator, the user, but the us agraph (b) of th 6 dBi. Except greater than 6 ed below the sta	rmanently atta ne manufactur e of a standar is section is b as shown in p dBi are used ated values in	ached antenna er may design a antenna jac ased on the u paragraph (c) , the conductor paragraphs (a or of an h the unit ck or use of of this ed output b)(1),
	EUT Antenna:	Ple	ease see Internal p				
The	antenna is PCB ante	enna. The bes	t case gain of the	antenna is 1.90	<u>авı.</u>		




5.2 Maximum Conducted Output Power

Test Requirement:	47 CFR Part 15C Section 15.247 (b)(1)
Test Method:	ANSI C63.10:2013
Test Setup:	Control Computer Control Power Supply TemPerature casher Table
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW > the 20 dB bandwidth of the emission being measured VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission.
Limit:	21dBm
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of π /4DQPSK modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.
Test Results:	Refer to Appendix BT Classic
C)	



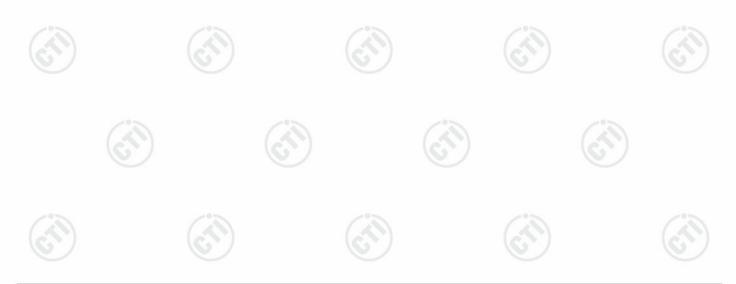
5.3 20dB Emission Bandwidth

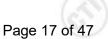
	Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
	Test Method:	ANSI C63.10:2013
<u>s</u> t	Test Setup:	Control Computer Computer Computer Computer Power Supply Table RF test System Instrument
	Test Procedure:	 Remark: Offset=Cable loss+ attenuation factor. 1. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; 1%≤RBW ≤5% of the 20 dB bandwidth; VBW≥3RBW; Sweep = auto; Detector function = peak; Trace = max hold. 4. Measure and record the results in the test report.
	Limit:	NA
	Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type
<u>ି</u>	Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of $\pi/4DQPSK$ modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.
	Test Results:	Refer to Appendix BT Classic
	C	



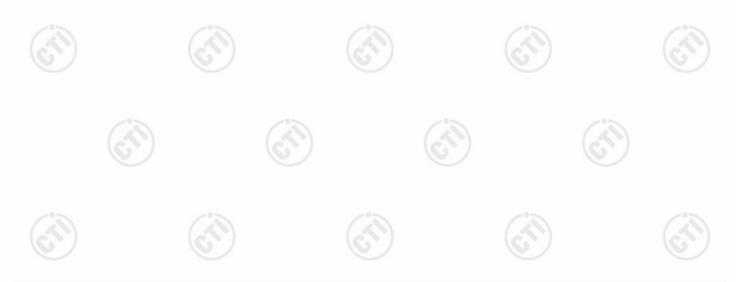
5.4 Carrier Frequency Separation

••••	ounierriequonoy	
	Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
	Test Method:	ANSI C63.10:2013
	Test Setup:	Control Control Computer Power Power Supply TemPERATURE CABINET Table
		Remark: Offset=Cable loss+ attenuation factor.
	Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report.
	Limit:	Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.
	Exploratory Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type
	Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of π /4DQPSK modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.
Ć	Test Results:	Refer to Appendix BT Classic



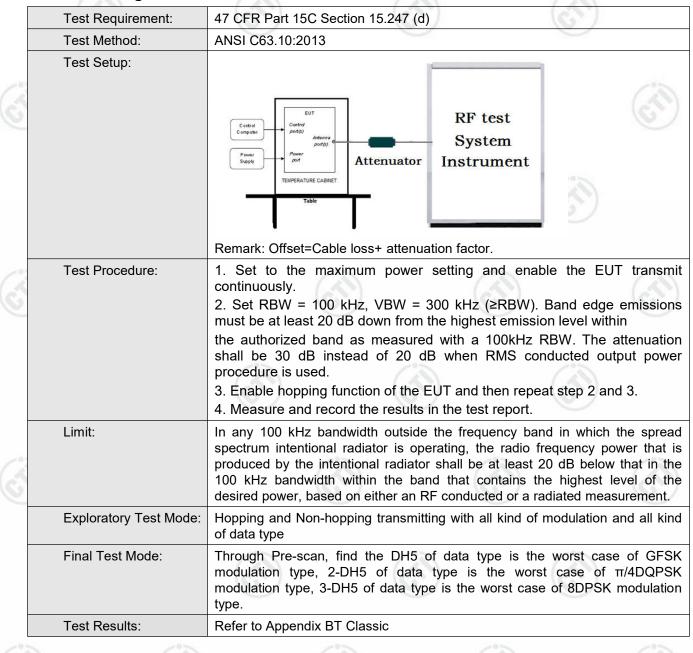

5.5 Number of Hopping Channel

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013
Test Setup:	Control Congruent Congruen
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously.
	 3. Enable the EUT hopping function. 4. Use the following spectrum analyzer settings: Span = the frequency band of operation; set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller; VBW≥RBW; Sweep= auto Detector function = peak; Trace = max hold.
	5. The number of hopping frequency used is defined as the number of total channel.
<u> </u>	6. Record the measurement data in report.
Limit:	Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.
Test Mode:	Hopping transmitting with all kind of modulation
Test Results:	Refer to Appendix BT Classic



5.6 Time of Occupancy

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013
Test Setup:	Control Composer Power Suppy TehneRature Cabnet Table
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold. Measure and record the results in the test report.
Limit:	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.
Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type.
Test Results:	Refer to Appendix BT Classic
G	



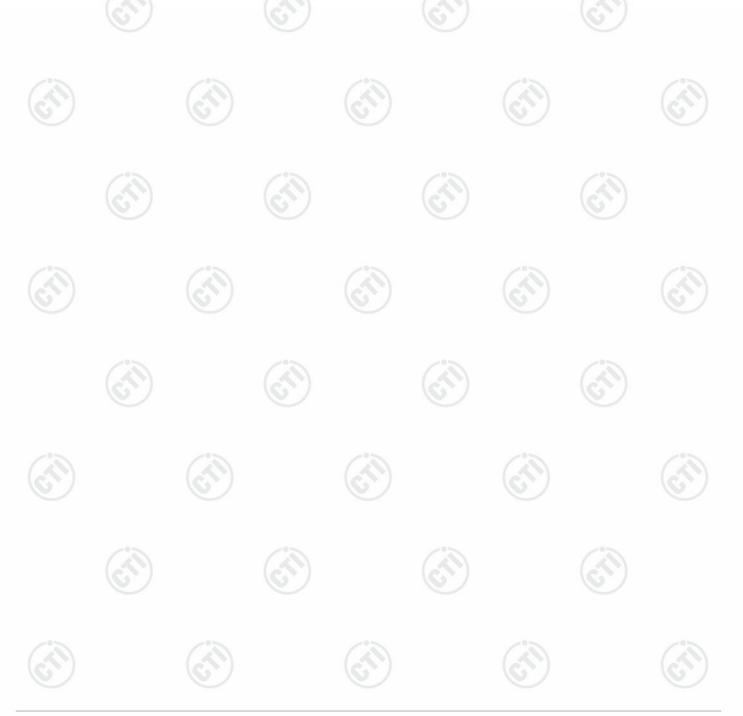
5.7 Band edge Measurements

5.8 Conducted Spurious Emissions

	Test Requirement:	47 CFR Part 15C Section 15.247 (d)
	Test Method:	ANSI C63.10:2013
(N	Test Setup:	Control Computer Computer Power Supph Tele Table RF test System Instrument
		Remark: Offset=Cable loss+ attenuation factor.
3	Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
Ś	Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
	Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type
	Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of π /4DQPSK modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.

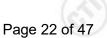
Page 20 of 47

5.9 **Pseudorandom Frequency Hopping Sequence** 47 CFR Part 15C Section 15.247 (a)(1), (h) requirement: Test Requirement: The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section. The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted. Compliance for section 15.247(a)(1) According to Bluetooth Core Specification, the pseudorandom sequence may be generated in a ninestage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones. • Number of shift register stages: 9 • Length of pseudo-random sequence: 29 -1 = 511 bits · Longest sequence of zeros: 8 (non-inverted signal) Linear Feedback Shift Register for Generation of the PRBS sequence An example of Pseudorandom Frequency Hopping Sequence as follow: 20 62 46 77 7 64 16 75 1 8 73 Each frequency used equally on the average by each transmitter. According to Bluetooth Core Specification, Bluetooth receivers are designed to have input and IF bandwidths that match the hopping channel bandwidths of any Bluetooth transmitters and shift frequencies in synchronization with the transmitted signals.


Compliance for section 15.247(g)

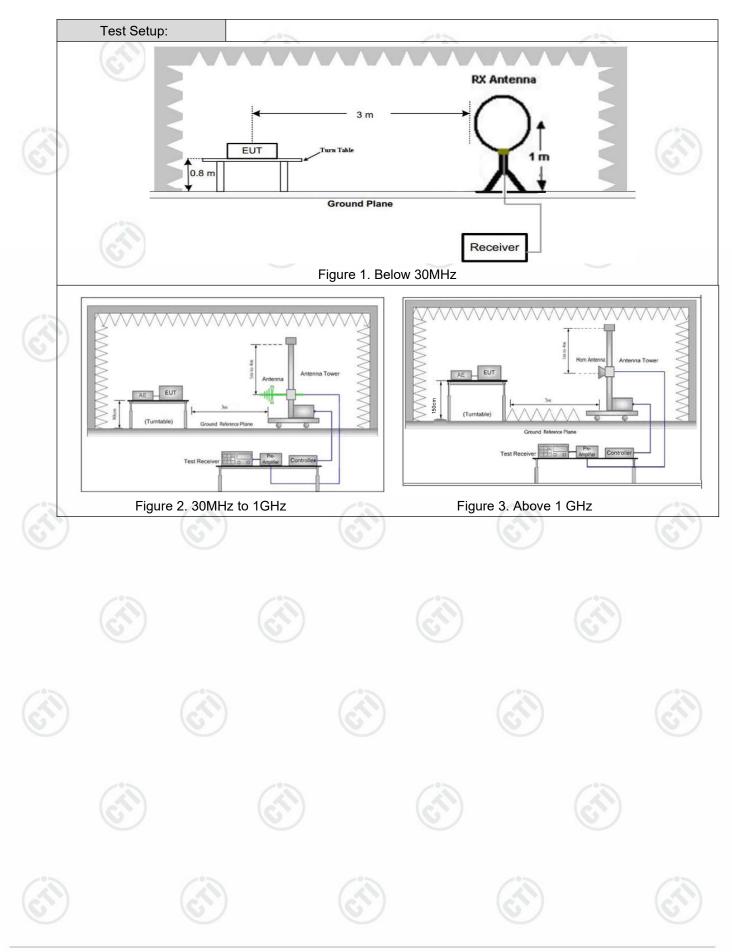
According to Bluetooth Core Specification, the Bluetooth system transmits the packet with the pseudorandom hopping frequency with a continuous data and the short burst transmission from the Bluetooth system is also transmitted under the frequency hopping system with the pseudorandom hopping frequency system.

Compliance for section 15.247(h)


According to Bluetooth Core specification, the Bluetooth system incorporates with an adaptive system to detect other user within the spectrum band so that it individually and independently to avoid hopping on the occupied channels.

According to the Bluetooth Core specification, the Bluetooth system is designed not have the ability to coordinated with other FHSS System in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitter.

5.10 Radiated Spurious Emission & Restricted bands

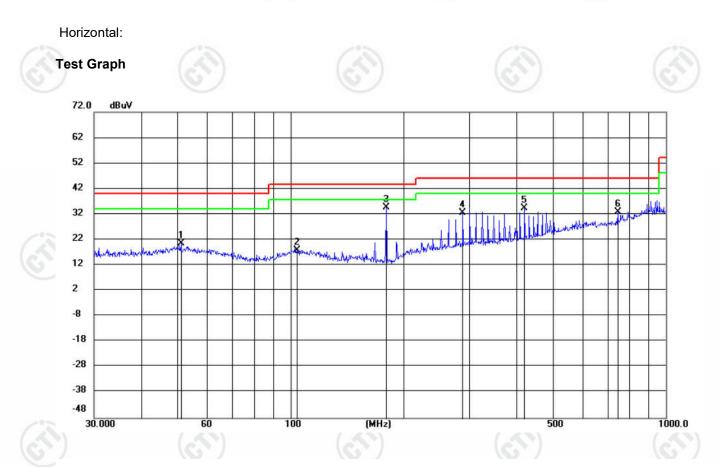

	Test Requirement:	47 CFR Part 15C Sect	on 15.209 and 15	.205	6	1
-	Test Method:	ANSI C63.10: 2013			(V)	
	Test Site:	Measurement Distance	: 3m (Semi-Anech	oic Cham	per)	
		Frequency	Detector	RBW	VBW	Remark
		0.009MHz-0.090MH		10kHz		Peak
20		0.009MHz-0.090MH		10kHz		Average
2		0.090MHz-0.110MH	v v			Quasi-peak
<u> </u>	D : 0 (0.110MHz-0.490MH		10kHz		Peak
	Receiver Setup:	0.110MHz-0.490MH		10kHz		Average
		0.490MHz -30MHz	· · · · · · · · · · · · · · · · · · ·			Quasi-peak
		30MHz-1GHz	Peak	100 kH		Peak
			Peak	1MHz	3MHz	Peak
		Above 1GHz	Peak	1MHz	10kHz	Average
		Frequency	Field strength	Limit (dBuV/m)	Remark	Measuremen distance (m)
		0.009MHz-0.490MHz	2400/F(kHz)	-	_	300
		0.490MHz-1.705MHz	24000/F(kHz)		_	30
		1.705MHz-30MHz	30		-	30
3		30MHz-88MHz	100	40.0	Quasi-peak	3
_		88MHz-216MHz	150	43.5	Quasi-peak	3
	Limit:	216MHz-960MHz	200	46.0	Quasi-peak	3
	Linnt.	960MHz-1GHz	500	54.0	Quasi-peak	3
		Above 1GHz	500	54.0	Average	3
	(.4	Note: 15.35(b), Unless emissions is 20d applicable to the	otherwise specifie 3 above the maxin equipment under t vel radiated by the	num permi æst. This p	tted average	emission limit
	J.	Note: 15.35(b), Unless emissions is 20d applicable to the	B above the maxin equipment under t	num permi æst. This p	tted average	emission limit
	CT CT	Note: 15.35(b), Unless emissions is 20d applicable to the peak emission le	3 above the maxin equipment under t vel radiated by the	num permi æst. This p	tted average eak limit app	emission limit
		Note: 15.35(b), Unless emissions is 20d applicable to the peak emission le	3 above the maxin equipment under t vel radiated by the	num permi est. This p device.	tted average eak limit app	emission limit lies to the total

Page 23 of 47

Report No.: EED32P80431602

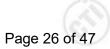
Page 24 of 47

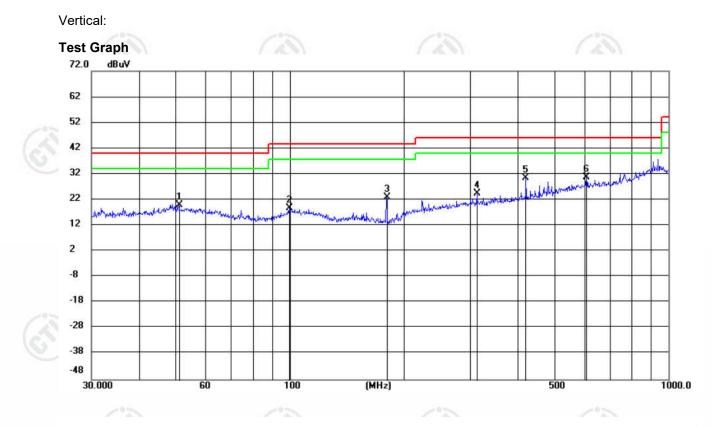
Test Results:	Pass
Exploratory Test Mode:	data type.
Test Procedure:	 a. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. Note: For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was used to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna awas tuned to heights 1 meter) and the rotatable table was tored prove tha meter in a data sheet. g. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If

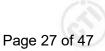


Radiated Spurious Emission below 1GHz:

During the test, the Radiated Spurious Emission from 30MHz to 1GHz was performed in all modes, only the worst case lowest channel of DH5 for GFSK was recorded in the report.




No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		51.1209	5.94	14.65	20.59	40.00	-19.41	peak	100	307	
2		104.1701	4.36	13.60	17.96	43.50	-25.54	peak	200	4	
3	*	180.0164	24.45	10.20	34.65	43.50	-8.85	peak	100	356	
4		287.9904	16.22	16.37	32.59	46.00	-13.41	peak	100	144	
5		420.5803	15.52	18.79	34.31	46.00	-11.69	peak	200	129	
6		744.8660	8.83	24.10	32.93	46.00	-13.07	peak	200	4	


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		50.9420	5.23	14.67	19.90	40.00	-20.10	peak	200	157	
2		99.8777	5.01	13.62	18.63	43.50	-24.87	peak	200	113	
3)	180.0165	12.61	10.20	22.81	43.50	-20.69	peak	200	318	
4		312.1794	7.56	17.02	24.58	46.00	-21.42	peak	100	75	
5	ł	420.5803	11.59	18.79	30.38	46.00	-15.62	peak	200	211	
6	*	607.7867	8.09	22.67	30.76	46.00	-15.24	peak	100	4	

Radiated Spurious Emission above 1GHz

	Mode	:		GFSK	Transmit	tting		Channel:		2402 MHz	<u>:</u>
	NO	Freq. [MHz]	Factor [dB]	Re	eading IBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
- 10	1	1269.2269	0.98	3	39.32	40.30	74.00	33.70	Pass	Н	PK
1	2	1908.2908	4.07	3	38.44	42.51	74.00	31.49	Pass	Н	PK
2	3	4804.1203	-16.23	5 5	57.22	40.99	74.00	33.01	Pass	Н	PK
	4	7053.2702	-11.70) 4	19.37	37.67	74.00	36.33	Pass	Н	PK
	5	9601.4401	-7.35	5	51.80	44.45	74.00	29.55	Pass	Н	PK
	6	13746.7164	-1.70	4	6.76	45.06	74.00	28.94	Pass	Н	PK
	7	1331.0331	1.16	3	38.94	40.10	74.00	33.90	Pass	V	PK
	8	1891.2891	3.96	3	37.99	41.95	74.00	32.05	Pass	V	PK
	9	4804.1203	-16.23	5 5	53.79	37.56	74.00	36.44	Pass	V	PK
	10	6953.2636	-11.83	5 5	50.32	38.49	74.00	35.51	Pass	V	PK
1	11	9601.4401	-7.35	5	52.76	45.41	74.00	28.59	Pass	V	PK
6	12	17379.9587	2.78	4	6.51	49.29	74.00	24.71	Pass	V	PK
	11			1			· · · · · · · · · · · · · · · · · · ·		/		

N	/lode	:		GFSK Transmi	tting		Channel:		2441 MH	2
1	10	Freq. [MHz]	Factor [dB]	Reading [dBμV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1351.0351	1.23	39.14	40.37	74.00	33.63	Pass	Н	PK
	2	2067.1067	4.77	37.77	42.54	74.00	31.46	Pass	Н	PK
	3	4882.1255	-16.21	58.65	42.44	74.00	31.56	Pass	н	PK
-	4	7769.318	-11.28	3 49.77	38.49	74.00	35.51	Pass	Н	PK
	5	9758.4506	-7.52	51.61	44.09	74.00	29.91	Pass	н	PK
4	6	14360.7574	0.57	44.70	45.27	74.00	28.73	Pass	н	PK
	7	1226.6227	0.87	40.31	41.18	74.00	32.82	Pass	V	PK
	8	1755.4755	3.13	39.00	42.13	74.00	31.87	Pass	V	PK
	9	4882.1255	-16.21	54.57	38.36	74.00	35.64	Pass	V	PK
	10	7451.2968	-11.30) 49.26	37.96	74.00	36.04	Pass	V	PK
	11	9758.4506	-7.52	52.86	45.34	74.00	28.66	Pass	V	PK
	12	14381.7588	0.92	44.66	45.58	74.00	28.42	Pass	V	PK

CTI华测检测 Report No.: EED32P80431602

Page 28 of 47

	Mode	:		GFSK Transm	itting		Channel:		2480 MHz	2
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
Γ	1	1324.4324	1.14	38.88	40.02	74.00	33.98	Pass	н	PK
- 62	2	1899.2899	4.03	37.75	41.78	74.00	32.22	Pass	Н	PK
5	3	4960.1307	-15.97	57.09	41.12	74.00	32.88	Pass	н	PK
2	4	7345.2897	-11.60	49.67	38.07	74.00	35.93	Pass	Н	PK
Ī	5	9914.461	-7.09	51.36	44.27	74.00	29.73	Pass	н	PK
Ī	6	13380.692	-2.92	46.10	43.18	74.00	30.82	Pass	Н	PK
Ī	7	1341.8342	1.20	39.09	40.29	74.00	33.71	Pass	V	PK
Ī	8	1860.086	3.73	38.28	42.01	74.00	31.99	Pass	V	PK
ſ	9	4960.1307	-15.97	55.84	39.87	74.00	34.13	Pass	V	PK
Ī	10	6706.2471	-12.48	49.99	37.51	74.00	36.49	Pass	V	PK
	11	9913.4609	-7.09	51.03	43.94	74.00	30.06	Pass	V	PK
10	12	13751.7168	-1.70	47.48	45.78	74.00	28.22	Pass	V	PK
5			16.	1	6]	(G)*	1		67
-	Mode	:		π/4DQPSK Tra	ansmitting		Channel:		2402 MHz	Z
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1281.8282	1.01	40.12	41.13	74.00	32.87	Pass	Н	PK
	2	2082.9083	4.83	38.86	43.69	74.00	30.31	Pass	Н	PK
	3	4804.1203	-16.23	57.17	40.94	74.00	33.06	Pass	Н	PK
	4	7451.2968	-11.30	51.17	39.87	74.00	34.13	Pass	Н	PK
2	5	9602.4402	-7.35	51.76	44.41	74.00	29.59	Pass	Н	PK
5	6	14356.7571	0.51	44.87	45.38	74.00	28.62	Pass	Н	PK
	7	1291.4291	1.04	39.06	40.10	74.00	33.90	Pass	V	PK
Ī	8	1977.4978	4.43	38.70	43.13	74.00	30.87	Pass	V	PK
Ī	9	4804.1203	-16.23	53.00	36.77	74.00	37.23	Pass	V	PK
f	10	7830.322	-11.24	49.19	37.95	74.00	36.05	Pass	V	PK
Ē	11	9601.4401	-7.35	53.01	45.66	74.00	28.34	Pass	V	PK

12

13721.7148

-1.74

46.35

44.61

29.39

74.00

Pass

V

ΡK

CTI华测检测 Report No.: EED32P80431602

Page 29 of 47

	Mode	:		π/4DQPSK Tra	nsmitting		Channel:		2441 MHz	2
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1401.8402	1.39	39.39	40.78	74.00	33.22	Pass	Н	PK
- 60	2	2061.7062	4.76	38.68	43.44	74.00	30.56	Pass	Н	PK
5	3	4882.1255	-16.21	57.20	40.99	74.00	33.01	Pass	Н	PK
2	4	7267.2845	-11.74	51.06	39.32	74.00	34.68	Pass	Н	PK
	5	9758.4506	-7.52	52.07	44.55	74.00	29.45	Pass	Н	PK
Γ	6	13768.7179	-1.68	46.54	44.86	74.00	29.14	Pass	н	PK
	7	1325.6326	1.15	39.16	40.31	74.00	33.69	Pass	V	PK
Ī	8	1838.8839	3.57	39.76	43.33	74.00	30.67	Pass	V	PK
Ī	9	4782.1188	-16.29	62.55	46.26	74.00	27.74	Pass	V	PK
Ī	10	7413.2942	-11.46	49.60	38.14	74.00	35.86	Pass	V	PK
	11	9757.4505	-7.52	53.04	45.52	74.00	28.48	Pass	V	PK
1	12	14408.7606	1.10	44.65	45.75	74.00	28.25	Pass	V	PK
			10.7							
Ωп	- /		10.0	/	10.0	/	16.3	1		10.5
4	Mode	:		π/4DQPSK Tra	nsmitting	7	Channel:		2480 MHz	2
4	Mode NO	Freq. [MHz]	Factor [dB]	π/4DQPSK Tra Reading [dBµV]	nsmitting Level [dBµV/m]	Limit [dBµV/m]	Channel: Margin [dB]	Result	2480 MHz Polarity	z Remark
		Freq.	Factor	Reading	Level			Result		
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	[dBµV/m]	Margin [dB]		Polarity	Remark
	NO 1	Freq. [MHz] 1320.8321	Factor [dB]	Reading [dBµV] 40.24	Level [dBµV/m] 41.37	[dBµV/m] 74.00	Margin [dB] 32.63	Pass	Polarity H	Remark PK
	NO 1 2	Freq. [MHz] 1320.8321 1974.6975	Factor [dB] 1.13 4.42	Reading [dBμV] 40.24 38.76	Level [dBµV/m] 41.37 43.18	[dBµV/m] 74.00 74.00	Margin [dB] 32.63 30.82	Pass Pass	Polarity H H	Remark PK PK
	NO 1 2 3	Freq. [MHz] 1320.8321 1974.6975 4960.1307	Factor [dB] 1.13 4.42 -15.97	Reading [dBµV] 40.24 38.76 56.78	Level [dBµV/m] 41.37 43.18 40.81	[dBµV/m] 74.00 74.00 74.00	Margin [dB] 32.63 30.82 33.19	Pass Pass Pass	Polarity H H H	Remark PK PK PK
	NO 1 2 3 4	Freq. [MHz] 1320.8321 1974.6975 4960.1307 7776.3184	Factor [dB] 1.13 4.42 -15.97 -11.30	Reading [dBμV] 40.24 38.76 56.78 50.02	Level [dBµV/m] 41.37 43.18 40.81 38.72	[dBµV/m] 74.00 74.00 74.00 74.00	Margin [dB] 32.63 30.82 33.19 35.28	Pass Pass Pass Pass	Polarity H H H H	Remark PK PK PK PK
	NO 1 2 3 4 5	Freq. [MHz] 1320.8321 1974.6975 4960.1307 7776.3184 9914.461	Factor [dB] 1.13 4.42 -15.97 -11.30 -7.09	Reading [dBµV] 40.24 38.76 56.78 50.02 51.57	Level [dBµV/m] 41.37 43.18 40.81 38.72 44.48	[dBµV/m] 74.00 74.00 74.00 74.00 74.00	Margin [dB] 32.63 30.82 33.19 35.28 29.52	Pass Pass Pass Pass Pass	Polarity H H H H H	Remark PK PK PK PK PK
	NO 1 2 3 4 5 6	Freq. [MHz] 1320.8321 1974.6975 4960.1307 7776.3184 9914.461 13287.6858	Factor [dB] 1.13 4.42 -15.97 -11.30 -7.09 -3.42	Reading [dBμV] 40.24 38.76 56.78 50.02 51.57 46.66	Level [dBµV/m] 41.37 43.18 40.81 38.72 44.48 43.24	[dBµV/m] 74.00 74.00 74.00 74.00 74.00 74.00	Margin [dB] 32.63 30.82 33.19 35.28 29.52 30.76	Pass Pass Pass Pass Pass Pass	Polarity H H H H H H H	Remark PK PK PK PK PK PK
	NO 1 2 3 4 5 6 7	Freq. [MHz] 1320.8321 1974.6975 4960.1307 7776.3184 9914.461 13287.6858 1321.6322	Factor [dB] 1.13 4.42 -15.97 -11.30 -7.09 -3.42 1.13	Reading [dBµV] 40.24 38.76 56.78 50.02 51.57 46.66 39.52	Level [dBµV/m] 41.37 43.18 40.81 38.72 44.48 43.24 40.65	[dBµV/m] 74.00 74.00 74.00 74.00 74.00 74.00 74.00	Margin [dB] 32.63 30.82 33.19 35.28 29.52 30.76 33.35	Pass Pass Pass Pass Pass Pass Pass	Polarity H H H H H H V	Remark PK PK PK PK PK PK PK
	NO 1 2 3 4 5 6 7 8	Freq. [MHz] 1320.8321 1974.6975 4960.1307 7776.3184 9914.461 13287.6858 1321.6322 1849.2849	Factor [dB] 1.13 4.42 -15.97 -11.30 -7.09 -3.42 1.13 3.65	Reading [dBμV] 40.24 38.76 56.78 50.02 51.57 46.66 39.52 38.65	Level [dBµV/m] 41.37 43.18 40.81 38.72 44.48 43.24 40.65 42.30	[dBµV/m] 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00	Margin [dB] 32.63 30.82 33.19 35.28 29.52 30.76 33.35 31.70	Pass Pass Pass Pass Pass Pass Pass Pass	Polarity H H H H H H V V V	Remark PK PK PK PK PK PK PK PK
	NO 1 2 3 4 5 6 7 8 9	Freq. [MHz] 1320.8321 1974.6975 4960.1307 7776.3184 9914.461 13287.6858 1321.6322 1849.2849 4960.1307	Factor [dB] 1.13 4.42 -15.97 -11.30 -7.09 -3.42 1.13 3.65 -15.97	Reading [dBµV] 40.24 38.76 56.78 50.02 51.57 46.66 39.52 38.65 55.39	Level [dBµV/m] 41.37 43.18 40.81 38.72 44.48 43.24 40.65 42.30 39.42	[dBµV/m] 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00	Margin [dB] 32.63 30.82 33.19 35.28 29.52 30.76 33.35 31.70 34.58	Pass Pass Pass Pass Pass Pass Pass Pass	Polarity H H H H H H V V V V	Remark PK PK PK PK PK PK PK PK

CTI华测检测 Report No.: EED32P80431602

Page 30 of 47

Mode	:		8DPSK Transm	itting		Channel:		2402 MHz	<u>.</u>
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1376.4376	1.32	39.32	40.64	74.00	33.36	Pass	Н	PK
2	1980.8981	4.45	38.23	42.68	74.00	31.32	Pass	Н	PK
3	4804.1203	-16.23	56.62	40.39	74.00	33.61	Pass	н	PK
4	6657.2438	-12.63	50.64	38.01	74.00	35.99	Pass	Н	PK
5	9602.4402	-7.35	51.92	44.57	74.00	29.43	Pass	Н	PK
6	12100.6067	-5.86	49.27	43.41	74.00	30.59	Pass	Н	PK
7	1205.4205	0.82	39.89	40.71	74.00	33.29	Pass	V	PK
8	1979.698	4.45	38.17	42.62	74.00	31.38	Pass	V	PK
9	4804.1203	-16.23	52.80	36.57	74.00	37.43	Pass	V	PK
10	7719.3146	-11.11	49.28	38.17	74.00	35.83	Pass	V	PK
11	9602.4402	-7.35	53.14	45.79	74.00	28.21	Pass	V	PK
12	13275.685	-3.37	46.44	43.07	74.00	30.93	Pass	V	PK
					/		1		

Mode	e:		8DPSK Transm	itting		Channel:		2441 MHz	2
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1362.2362	1.26	39.10	40.36	74.00	33.64	Pass	Н	PK
2	1869.687	3.80	38.65	42.45	74.00	31.55	Pass	н	PK
3	4882.1255	-16.21	56.66	40.45	74.00	33.55	Pass	н	PK
4	7349.29	-11.60	50.80	39.20	74.00	34.80	Pass	Н	PK
5	9757.4505	-7.52	52.51	44.99	74.00	29.01	Pass	Н	PK
6	14379.7587	0.88	44.18	45.06	74.00	28.94	Pass	Н	PK
7	1317.8318	1.12	39.45	40.57	74.00	33.43	Pass	V	PK
8	1898.0898	4.02	37.92	41.94	74.00	32.06	Pass	V	PK
9	4882.1255	-16.21	53.73	37.52	74.00	36.48	Pass	V	PK
10	7815.321	-11.31	49.83	38.52	74.00	35.48	Pass	V	PK
11	9758.4506	-7.52	51.94	44.42	74.00	29.58	Pass	V	PK
12	13682.7122	-1.75	45.92	44.17	74.00	29.83	Pass	V	PK

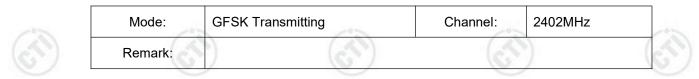
CTI 华测检测 Report No.: EED32P80431602

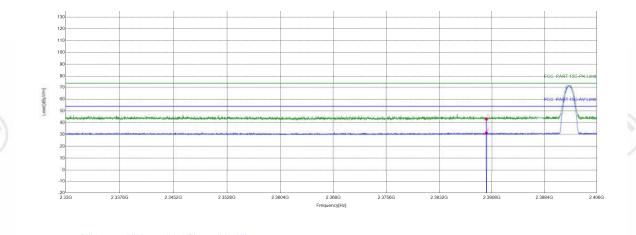
Page 31 of 47

Mode	e:		8DPSK Transm	nitting		Channel:		2480 MHz	2
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1351.8352	1.23	38.90	40.13	74.00	33.87	Pass	Н	PK
2	1782.0782	3.22	39.09	42.31	74.00	31.69	Pass	н	PK
3	4960.1307	-15.97	57.07	41.10	74.00	32.90	Pass	Н	PK
4	7195.2797	-11.82	50.12	38.30	74.00	35.70	Pass	Н	PK
5	9914.461	-7.09	51.38	44.29	74.00	29.71	Pass	н	PK
6	13835.7224	-1.75	46.37	44.62	74.00	29.38	Pass	н	PK
7	1269.0269	0.98	39.07	40.05	74.00	33.95	Pass	V	PK
8	1662.0662	2.69	38.78	41.47	74.00	32.53	Pass	V	PK
9	4960.1307	-15.97	55.87	39.90	74.00	34.10	Pass	V	PK
10	7730.3154	-11.14	49.56	38.42	74.00	35.58	Pass	V	PK
11	9914.461	-7.09	51.57	44.48	74.00	29.52	Pass	V	PK
12	13818.7212	-1.69	45.73	44.04	74.00	29.96	Pass	V	PK
		Sec. Sec. Sec. Sec. Sec. Sec. Sec. Sec.	1		7	Sec. Sec. Sec. Sec. Sec. Sec. Sec. Sec.	7	-	

Remark:

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level = Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, the disturbance above 18GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.





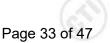
Restricted bands:

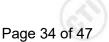
Test plot as follows:

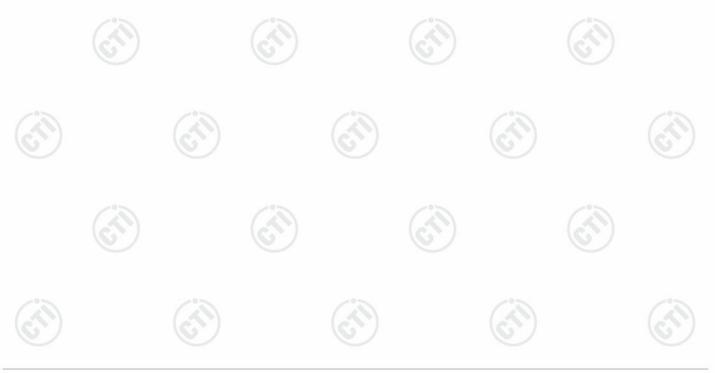
Test Graph

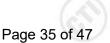
PK Limit AV Limit Horizontal PK Horizontal AV PK Detector AV Detector

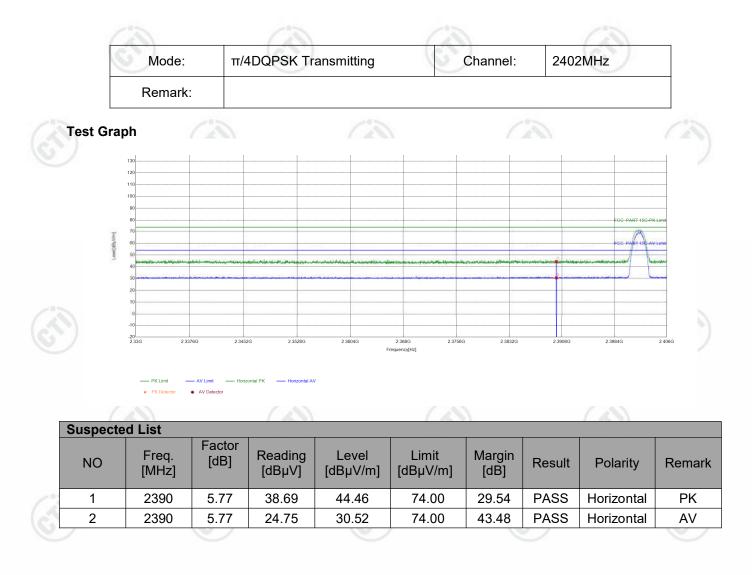
	Suspecte	d List								
3	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2390	5.77	37.46	43.23	74.00	30.77	PASS	Horizontal	PK
	2	2390	5.77	25.40	31.17	74.00	42.83	PASS	Horizontal	AV

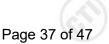


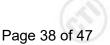


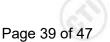




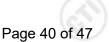


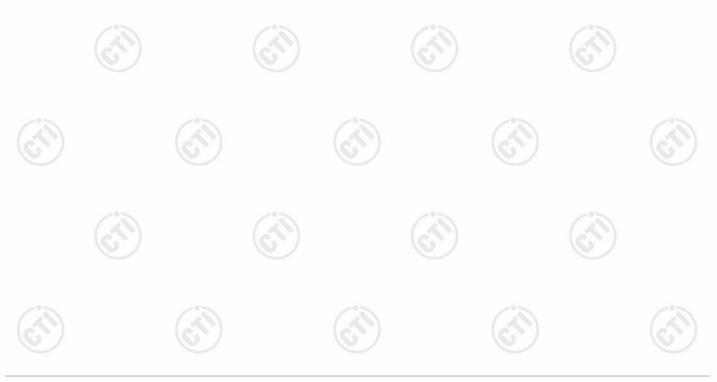


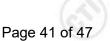


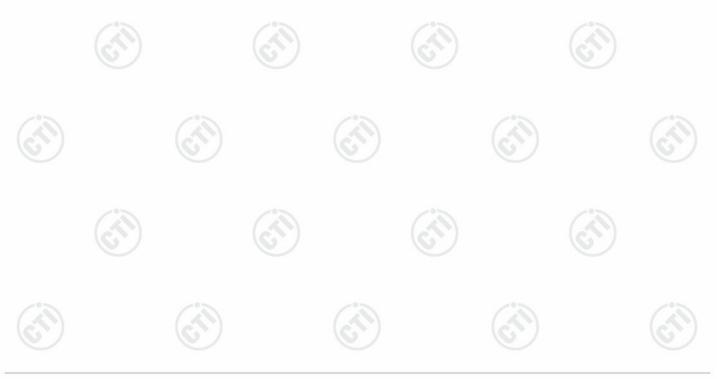


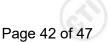












Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows: Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor



Page 44 of 47

6 Appendix BT Classic

Refer to Appendix: Bluetooth Classic of EED32P80431602.

