

FCC PART 15.247

TEST REPORT

For

Shenzhen Huafurui Technology Co., Ltd

Unit 1401 14/F, Jin qi zhi gu mansion Liu xian street, Xili, Nan shan district, Shenzhen, China

FCC ID: 2AHZ5SW10

Report Type: Original Report		Product Type: Projector
Report Number:	SZ1210918-489	3944E-00A
Report Date:	2021-11-02	
Reviewed By:	Candy Li RF Engineer	Candy. Li
Prepared By:	T	

Note: This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "★".

Shenzhen Accurate Technology Co., Ltd. is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk '*'. Customer model name, addresses, names, trademarks etc. are not considered data.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE	
Test Methodology Measurement Uncertainty	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION EUT Exercise Software	
EUT EXERCISE SOFTWARE	
EQUIPMENT MODIFICATIONS	
SUPPORT EQUIPMENT LIST AND DETAILS	6
EXTERNAL I/O CABLE	
BLOCK DIAGRAM OF TEST SETUP	7
SUMMARY OF TEST RESULTS	9
TEST EQUIPMENT LIST	10
FCC §1.1310 & §2.1091 –MAXIMUM PERMISSIBLE EXPOSURE (MPE)	
FCC §15.203 – ANTENNA REQUIREMENT	
APPLICABLE STANDARD	
APPLICABLE STANDARD	
FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS	
Applicable Standard EUT Setup	
EUT SETUP EMI TEST RECEIVER SETUP	
Test Procedure	
TRANSD FACTOR & MARGIN CALCULATION	14
TEST DATA	14
FCC §15.205, §15.209 & §15.247(d) - RADIATED EMISSIONS	17
APPLICABLE STANDARD	
EUT SETUP	
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	
Test Procedure Factor & Margin Calculation	
TEST DATA	
FCC §15.247(a) (1)-CHANNEL SEPARATION TEST	
APPLICABLE STANDARD	
APPLICABLE STANDARD	
TEST DATA	
FCC §15.247(a) (1) – 20 dB EMISSION BANDWIDTH & 99% OCCUPIED BANDWIDTH	26
APPLICABLE STANDARD	
Test Procedure	
TEST DATA	27
FCC §15.247(a) (1) (iii)-QUANTITY OF HOPPING CHANNEL TEST	
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST DATA	

Shenzhen Accurate Technology Co., Ltd.	Report No.: SZ1210918-48944E-00A
FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME)	41
APPLICABLE STANDARD	41
Test Procedure	41
TEST DATA	41
FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT	51
APPLICABLE STANDARD	
Test Procedure	
TEST DATA	51
FCC §15.247(d) - BAND EDGES TESTING	
APPLICABLE STANDARD	
Test Procedure	
TEST DATA	

GENERAL INFORMATION

Product	Projector
Tested Model	SW10
Frequency Range	Bluetooth: 2402~2480MHz
Maximum conducted Peak output power	Bluetooth: 8.98dBm
Modulation Technique	Bluetooth: GFSK, $\pi/4$ -DQPSK, 8DPSK
Antenna Specification*	Internal Antenna: -0.76dBi(provided by the applicant)
Voltage Range	AC 100-240V, 50-60Hz
Date of Test	2021-10-12 to 2021-10-31
Sample number	SZ1210918-48944E-RF-S1 (Assigned by ATC)
Received date	2021-09-18
Sample/EUT Status	Good condition

Product Description for Equipment under Test (EUT)

Objective

This test report is in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commission rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

All emissions measurement was performed at Shenzhen Accurate Technology Co., Ltd. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement Uncertainty

Parameter		Uncertainty	
Occupied Char	nnel Bandwidth	5%	
RF output pov	wer, conducted	0.73dB	
Unwanted Emi	ssion, conducted	1.6dB	
AC Power Lines Conducted Emissions		2.72dB	
	30MHz - 1GHz	4.28dB	
Emissions, Radiated	1GHz - 18GHz	4.98dB	
Rudiated	18GHz - 26.5GHz	5.06dB	
Temperature		1℃	
Humidity		6%	
Supply	voltages	0.4%	

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The test site used by Shenzhen Accurate Technology Co., Ltd. to collect test data is located on the 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 708358, the FCC Designation No.: CN1189. Accredited by American Association for Laboratory Accreditation (A2LA) The Certificate Number is 429 7.01.

Listed by Innovation, Science and Economic Development Canada (ISEDC), the Registration Number is 5077A.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in an engineering mode.

EUT Exercise Software

"RTLBTAPP"* software was used during testing, the power level is 36*.

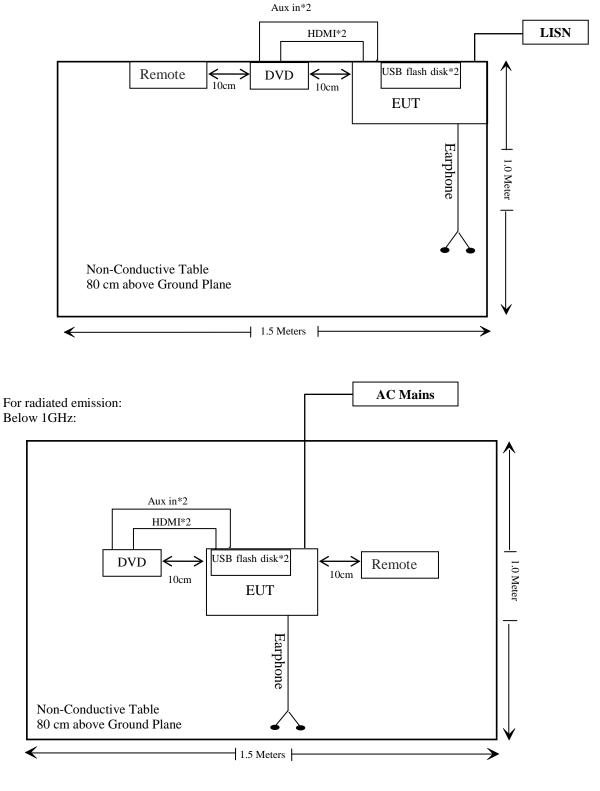
Special Accessories

No special accessory.

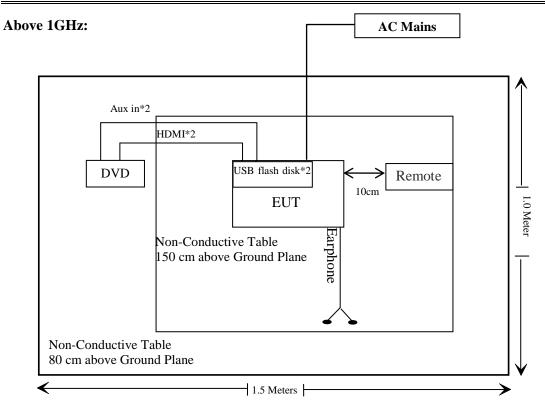
Equipment Modifications

No modification was made to the EUT tested.

Support Equipment List and Details


Manufacturer	Description	Model	Serial Number	
GIEC	DVD	BDP-G4308	Unknown	
HUAWEI	Earphone	Unknown	Unknown	
Unknown	USB flash disk*2	Unknown	Unknown	

External I/O Cable


Cable Description	Length (m)	From/Port	То
Un-Shielding Detachable AC power Cable	1.5	EUT	LISN
Un-Shielding Detachable AUX IN Cable 1	0.2	EUT	AUX IN Cable 2
Un-Shielding Detachable AUX IN Cable 2	1.0	AUX IN Cable 1	DVD
Un-Shielding Detachable Earphone Cable	0.75	EUT	Earphone
Un-Shielding Detachable HDMI Cable*2	1.45	EUT	DVD

Block Diagram of Test Setup

For conducted emission:

Report No.: SZ1210918-48944E-00A

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.247 (I), §1.1310 & §2.1091	Maximum Permissible Exposure (MPE)	Compliant
§15.203	Antenna Requirement	Compliant
§15.207(a)	AC Line Conducted Emissions	Compliant
§15.205, §15.209 & §15.247(d)	Radiated Emissions	Compliant
§15.247(a)(1)	20 dB Emission Bandwidth & 99% Occupied Bandwidth	Compliant
§15.247(a)(1)	Channel Separation Test	Compliant
§15.247(a)(1)(iii)	Time of Occupancy (Dwell Time)	Compliant
§15.247(a)(1)(iii)	Quantity of hopping channel Test	Compliant
§15.247(b)(1)	Peak Output Power Measurement	Compliant
§15.247(d)	Band edges	Compliant

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date		
Conducted Emissions Test							
Rohde& Schwarz	Test Receiver	ESPI3	100396	2020/12/24	2021/12/23		
R & S	L.I.S.N.	ENV216	101314	2020/12/25	2021/12/24		
Anritsu Corp	50Ω Coaxial Switch	MP59B	6200506474	2020/12/25	2021/12/24		
Unknown	RF Coaxial Cable	N-2m	No.2	2020/12/25	2021/12/24		
	Conducted E	mission Test Soft	ware: e3 19821b(V	/9)			
		Radiated Emissi	ons Test				
Rohde&Schwarz	Test Receiver	ESR	101817	2020/12/24	2021/12/23		
Rohde & Schwarz	Spectrum Analyzer	FSV-40	101495	2020/12/24	2021/12/23		
A.H. Systems, inc.	Preamplifier	PAM-0118P	531	2021/07/08	2022/07/07		
SONOMA INSTRUMENT	Amplifier	310 N	186131	2020/12/25	2021/12/24		
Quinstar	Amplifier	QLW-184055 36-J0	15964001002	2020/11/28	2021/11/27		
Anritsu Corp	50 Coaxial Switch	MP59B	6100237248	2020/12/25	2021/12/24		
Schwarzbeck	Bilog Antenna	VULB9163	9163-323	2020/01/05	2023/01/04		
Schwarzbeck	Horn Antenna	BBHA9120D	9120D-1067	2020/01/05	2023/01/04		
Schwarzbeck	HORN ANTENNA	BBHA9170	9170-359	2020/01/05	2023/01/04		
Unknown	RF Coaxial Cable	N-5m	No.3	2020/12/25	2021/12/24		
Unknown	RF Coaxial Cable	N-5m	No.4	2020/12/25	2021/12/24		
Unknown	RF Coaxial Cable	N-1m	No.5	2020/12/25	2021/12/24		
Unknown	RF Coaxial Cable	N-1m	No.6	2020/12/25	2021/12/24		
	Radiated Emission Test Software: EZ_EMC V 1.1.4.2 & e3 19821b(V9)						
		RF Conducted	d Test		1		
Rohde&Schwarz	Spectrum Analyzer	FSV40	101495	2020/12/24	2021/12/23		
Rohde & Schwarz	Open Switch and Control Unit	OSP120 +OSP -B157	101244 + 100866	2020/12/24	2021/12/23		
OREGON SCIENTIFIC	Temperature & Humidity Meter	JB913R	GZ-WS004	2020/01/02	2023/01/01		

* **Statement of Traceability:** Shenzhen Accurate Technology Co., Ltd. attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC §1.1310 & §2.1091 –MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Applicable Standard

According to subpart §2.1091 and subpart §1.1310, systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

(B) Limits for General Population/Uncontrolled Exposure						
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Averaging Time (minutes)		
0.3-1.34	614	1.63	*(100)	30		
1.34-30	824/f	2.19/f	*(180/f ²)	30		
30-300	27.5	0.073	0.2	30		
300-1500	/	/	f/1500	30		
1500-100,000	/	/	1.0	30		

f = frequency in MHz; * = Plane-wave equivalent power density;

According to §1.1310 and §2.1091 RF exposure is calculated.

Calculated Formulary:

Predication of MPE limit at a given distance

 $S = PG/4\pi R^2$ = power density (in appropriate units, e.g. mW/cm²);

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

Calculated Data:

For worst case:

Mode	Frequency Range	Anten	19 (Output wer	Evaluation Distance	Power Density	MPE Limit
	(MHz)	(dBi)	(numeric)	(dBm)	(mW)	(cm)	$(\mathrm{mW/cm}^2)$	(mW/cm ²)
BT	2402-2480	-0.76	0.84	9.0	7.94	20	0.0013	1.0

To maintain compliance with the FCC's RF exposure guidelines, place the equipment at least 20cm from nearby persons.

Result: Compliant.

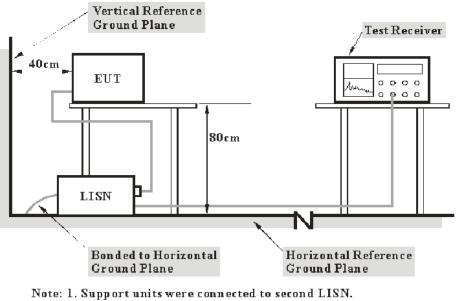
FCC §15.203 – ANTENNA REQUIREMENT

Applicable Standard

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Antenna Connector Construction

The EUT has one internal antenna arrangement for Bluetooth, which was permanently attached and the antenna gain is -0.76dBi, fulfill the requirement of this section. Please refer to the EUT photos.


Result: Compliant.

FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC §15.207(a)

EUT Setup

Support units were connected to second LISN.
 Both of LISNs (AMIN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The measurement procedure of EUT setup is according with ANSI C63.10-2013. The related limit was specified in FCC Part 15.207.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W	
150 kHz – 30 MHz	9 kHz	

Test Procedure

During the conducted emission test, the device was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

Transd Factor & Margin Calculation

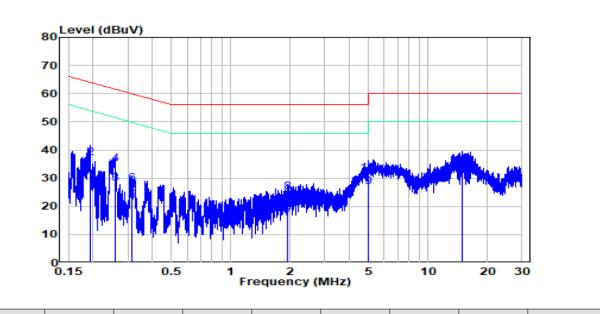
The Transd factor is calculated by adding LISN VDF (Voltage Division Factor), Cable Loss and Transient Limiter Attenuation. The basic equation is as follows:

Correct Factor = LISN VDF + Cable Loss

The "**Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

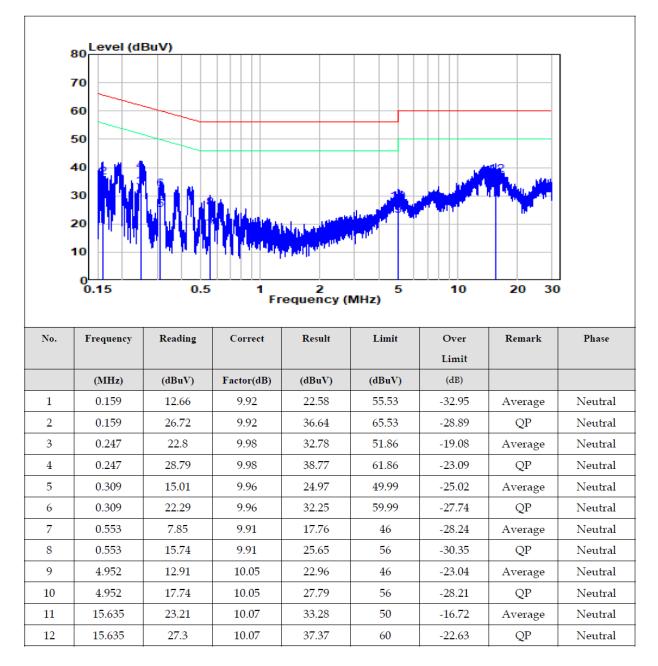
Over Limit = Result – Limit Result= Reading + Correct Factor

Test Data


Environmental Conditions

Temperature:	23 °C		
Relative Humidity:	48 %		
ATM Pressure:	101.0 kPa		

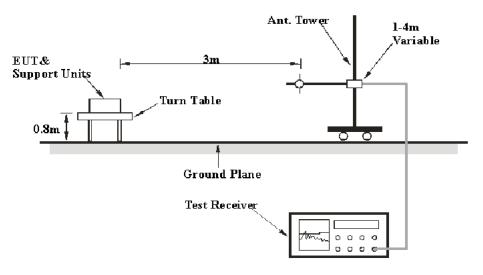
The testing was performed by Fan Yang on 2021-10-29.


EUT operation mode: BT Transmitting (the worst case is GFSK Mode, Middle channel)

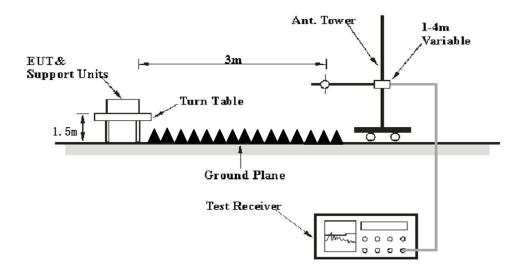
AC 120V/60 Hz, Line

No.	Frequency	Reading	Correct	Result	Limit	Over	Remark	Phase
						Limit		
	(MHz)	(dBuV)	Factor(dB)	(dBuV)	(dBuV)	(dB)		
1	0.193	19.5	9.81	29.31	53.92	-24.61	Average	Line
2	0.193	27.35	9.81	37.16	63.92	-26.76	QP	Line
3	0.259	18.34	9.8	28.14	51.48	-23.34	Average	Line
4	0.259	25.24	9.8	35.04	61.48	-26.44	QP	Line
5	0.313	12.25	9.8	22.05	49.89	-27.84	Average	Line
6	0.313	18.4	9.8	28.2	59.89	-31.69	QP	Line
7	1.951	5.72	9.92	15.64	46	-30.36	Average	Line
8	1.951	15.02	9.92	24.94	56	-31.06	QP	Line
9	4.952	16.86	9.99	26.85	46	-19.15	Average	Line
10	4.952	21.83	9.99	31.82	56	-24.18	QP	Line
11	14.996	19.11	10.05	29.16	50	-20.84	Average	Line
12	14.996	24.41	10.05	34.46	60	-25.54	QP	Line

AC 120V/60 Hz, Neutral


FCC §15.205, §15.209 & §15.247(d) - RADIATED EMISSIONS

Applicable Standard


FCC §15.205; §15.209; §15.247(d)

EUT Setup

Below 1 GHz:

Above 1GHz:

The radiated emission tests were performed in the 3 meters, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209 and FCC 15.247 limits.

EMI Test Receiver & Spectrum Analyzer Setup

Frequency Range	RBW	Video B/W	IF B/W	Measurement	
30 MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP	
Above 1 GHz	1 MHz	3 MHz	/	РК	
Above I GHZ	1 MHz	10 Hz	/	Average	

The EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All final data was recorded in Quasi-peak detection mode for frequency range of 30 MHz -1 GHz and peak and Average detection modes for frequencies above 1 GHz.

Factor & Margin Calculation

The Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

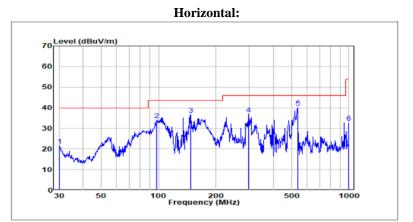
Factor = Antenna Factor + Cable Loss - Amplifier Gain

The "**Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

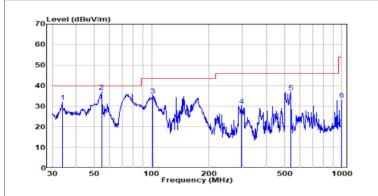
Margin = Result / Corrected Amplitude - Limit Result / Corrected Amplitude = Reading + Factor

Test Data

Environmental Conditions


Temperature:	23-25 °C		
Relative Humidity:	48-52 %		
ATM Pressure:	101.0 kPa		

The testing was performed by Fan Yang on 2021-10-31 for below 1GHz and 2021-10-13 for above 1GHz.


EUT operation mode: Transmitting

(Scan with GFSK, $\pi/4$ -DQPSK, 8DPSK mode, the worst case is GFSK Mode)

30MHz-1GHz:

No.	Frequency	Reading	Correct	Result	Limit	Over	Detector	Phase
						Limit		
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dE)		
1	30.000	42.32	-20.55	21.77	40.00	-18.23	QP	HORIZONTAL
2	97.798	53.76	-19.62	34.14	43.50	-9.36	QP	HORIZONTAL
3	147.404	58.34	-21.68	36.66	43.50	-6.84	QP	HORIZONTAL
4	297.224	53.81	-16.75	37.06	46.00	-8.94	QP	HORIZONTAL
5	537.589	53.40	-13.15	40.25	46.00	-5.75	QP	HORIZONTAL
6	1000.000	40.14	-7.34	32.80	54.00	-21.20	QP	HORIZONTAL

No.	Frequency	Reading	Correct	Result	Limit	Över	Detector	Phase
						Limit		
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dE)		
1	33.799	52.02	-19.71	32.31	40.00	-7.69	QP	VERTICAL
2	54.452	55.49	-18.25	37.24	40.00	-2.76	QP	VERTICAL
3	101.644	54.65	-19.17	35.48	43.50	-8.02	QP	VERTICAL
4	297.224	47.00	-16.75	30.25	46.00	-15.75	QP	VERTICAL
5	537.589	50.12	-13.15	36.97	46.00	-9.03	QP	VERTICAL
6	1000.000	40.70	-7.34	33.36	54.00	-20.64	QP	VERTICAL

Vertical

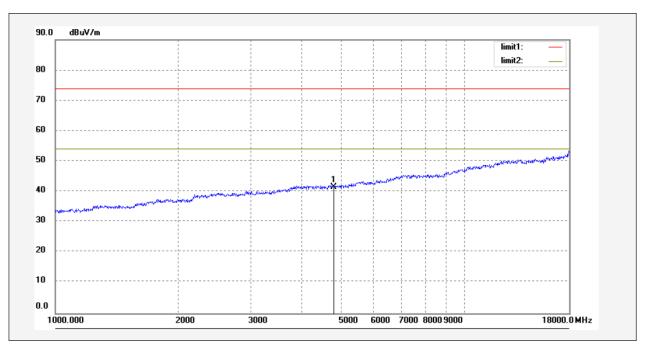
	Receiver		T (11	Rx An	itenna	Corrected	Corrected				
Frequency (MHz)	Reading (dBµV)	PK/QP/Ave.	Turntable Degree	Height (m)	Polar (H/V)	Factor (dB/m)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)		
	Low Channel (2402 MHz)										
2310	45.98	РК	214	1.6	Н	-6.84	39.14	74	-34.86		
2310	44.27	РК	266	1.4	V	-6.84	37.43	74	-36.57		
2390	46.92	РК	167	1.3	Н	-6.44	40.48	74	-33.52		
2390	46.17	РК	86	1.2	V	-6.44	39.73	74	-34.27		
4804	38.65	РК	210	1.4	Н	2.81	41.46	74	-32.54		
4804	39.91	РК	234	1.7	V	2.81	42.72	74	-31.28		
			Middle (Channel (2441 M	Hz)					
4882	38.07	РК	232	2.1	Н	3.04	41.11	74	-32.89		
4882	39.26	РК	285	1.6	V	3.04	42.3	74	-31.7		
			High C	hannel (2	480 MH	z)					
2483.5	44.32	РК	164	2.2	Н	-5.96	38.36	74	-35.64		
2483.5	42.9	РК	321	1.5	V	-5.96	36.94	74	-37.06		
2500	46	РК	289	1	Н	-5.88	40.12	74	-33.88		
2500	45.51	РК	292	1.2	V	-5.88	39.63	74	-34.37		
4960	37.77	РК	134	1.6	Н	3.29	41.06	74	-32.94		
4960	39.18	РК	171	1.1	V	3.29	42.47	74	-31.53		

Above 1GHz:

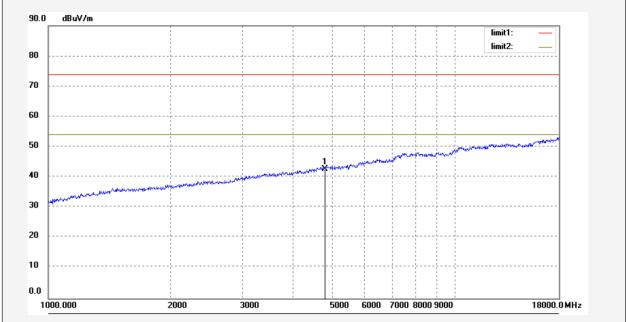
Note:

Corrected Factor = Antenna factor (RX) + Cable Loss – Amplifier Factor

Corrected Amplitude = Corrected Factor + Reading Margin = Corrected Amplitude – Limit The other spurious emission which is in the noise floor level was not recorded.

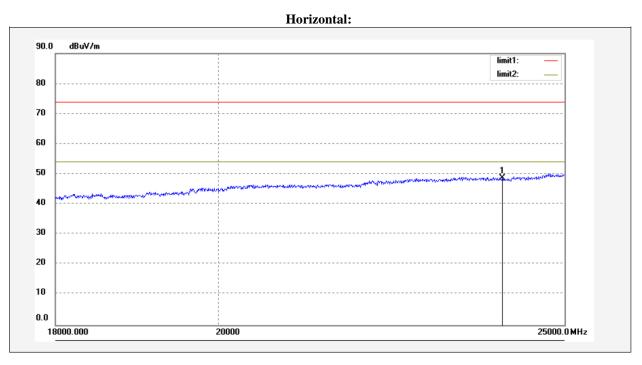

The test result of peak was less than the limit of average, so just peak value were recorded.

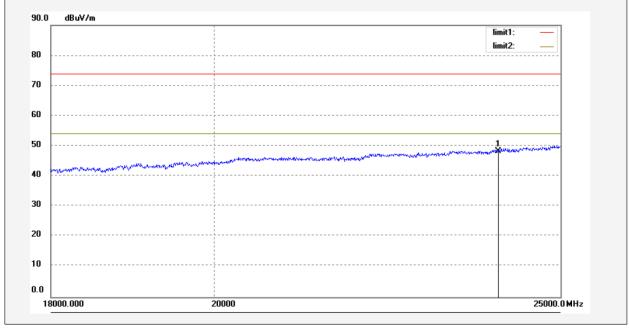
1-18GHz


Pre-scan for Peak

Low Channel

Horizontal:




18-25GHz

Pre-scan for Peak

Low Channel

Vertical:

FCC §15.247(a) (1)-CHANNEL SEPARATION TEST

Applicable Standard

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Test Procedure

- 1. Set the EUT in transmitting mode, maxhold the channel.
- 2. Set the adjacent channel of the EUT and maxhold another trace.
- 3. Measure the channel separation.

Test Data

Environmental Conditions

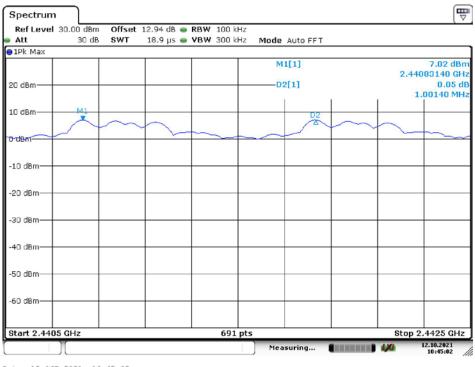
Temperature:	24 °C	
Relative Humidity:	48 %	
ATM Pressure:	101.0 kPa	

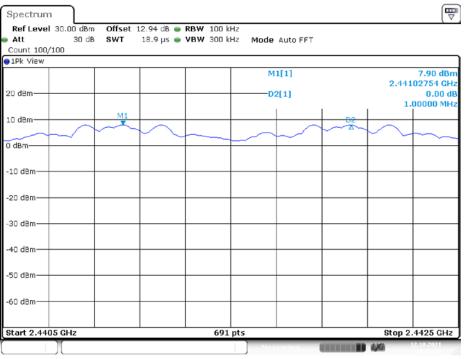
The testing was performed by Fan Yang on 2021-10-12.


EUT operation mode: Transmitting

Test Result: Compliant.

Test Mode	Antenna	Channel	Result[MHz]	Limit[MHz]	Verdict
DH1	Ant1	Нор	1	>=0.640	PASS
2DH1	Ant1	Нор	1.0014	>=0.910	PASS
3DH1	Ant1	Нор	1	>=0.900	PASS


Please refer to the below plots:



Date: 12.0CT.2021 18:38:25

2DH1_Ant1_Hop

Date: 12.0CT.2021 10:45:02

3DH1_Ant1_Hop

Date: 12.0CT.2021 18:21:57

FCC §15.247(a) (1) – 20 dB EMISSION BANDWIDTH & 99% OCCUPIED BANDWIDTH

Applicable Standard

Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Test Procedure

The following conditions shall be observed for measuring the occupied bandwidth and 20 dB bandwidth:

• The transmitter shall be operated at its maximum carrier power measured under normal test conditions.

• The span of the spectrum analyzer shall be set large enough to capture all products of the modulation process, including the emission skirts, around the carrier frequency, but small enough to avoid having other emissions (e.g. on adjacent channels) within the span.

• The detector of the spectrum analyzer shall be set to "Sample". However, a peak, or peak hold, may be used in place of the sampling detector since this usually produces a wider bandwidth than the actual bandwidth (worst-case measurement). Use of a peak hold (or "Max Hold") may be necessary to determine the occupied / 20 dB bandwidth if the device is not transmitting continuously.

• The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the actual occupied / 20 dB bandwidth and the video bandwidth (VBW) shall not be smaller than three times the RBW value. Video averaging is not permitted.

Note: It may be necessary to repeat the measurement a few times until the RBW and VBW are in compliance with the above requirement.

For the 99% emission bandwidth, the trace data points are recovered and directly summed in linear power level terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached, and that frequency recorded. The process is repeated for the highest frequency data points (starting at the highest frequency, at the right side of the span, and going down in frequency). This frequency is then recorded. The difference between the two recorded frequencies is the occupied bandwidth (or the 99% emission bandwidth).

EUT		Attenuator		EMI Test Receiver
-----	--	------------	--	-------------------

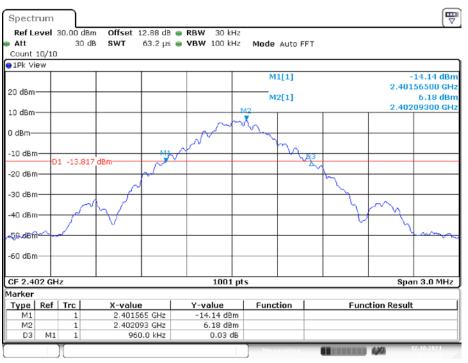
Test Data

Environmental Conditions

Temperature:	24 °C
Relative Humidity:	48 %
ATM Pressure:	101.0 kPa

The testing was performed by Fan Yang on 2021-10-12.

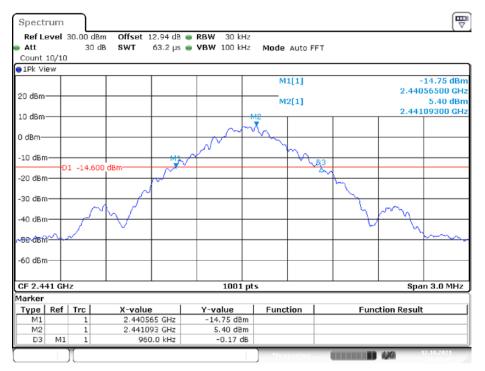
EUT operation mode: Transmitting

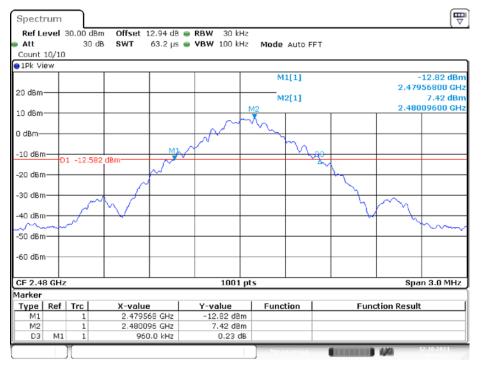

Test Result: Compliant.

Test Mode	Antenna	Channel[MHz]	20db EBW[MHz]	Limit[MHz]	Verdict
		2402	0.960		PASS
DH1	Ant1	2441	0.960		PASS
		2480	0.960		PASS
	Ant1	2402	1.365		PASS
2DH1		2441	1.365		PASS
		2480	1.365		PASS
		2402	1.347		PASS
3DH1	Ant1	2441	1.347		PASS
		2480	1.350		PASS

Test Mode	Antenna	Channel[MHz]	99% Occupied Bandwidth [MHz]	Limit[MHz]	Verdict
DH1	Ant1	2402	0.893		PASS
		2441	0.893		PASS
		2480	0.899		PASS
2DH1	Ant1	2402	1.193		PASS
		2441	1.193		PASS
		2480	1.193		PASS
3DH1	Ant1	2402	1.196		PASS
		2441	1.196		PASS
		2480	1.199		PASS

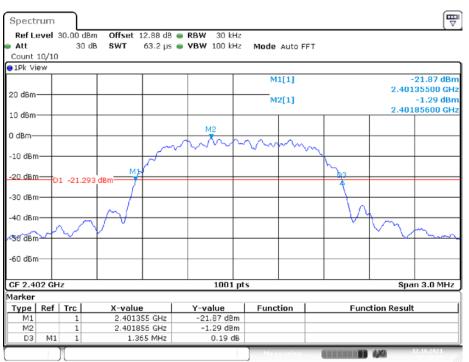
Please refer to the below plots:

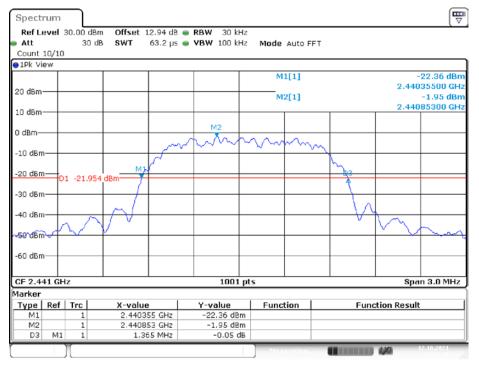

20 dB EMISSION BANDWIDTH


DH1_Ant1_2402MHz

Date: 12.0CT.2021 17:42:29

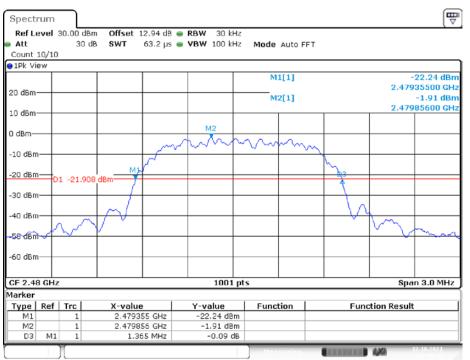
DH1_Ant1_2441MHz

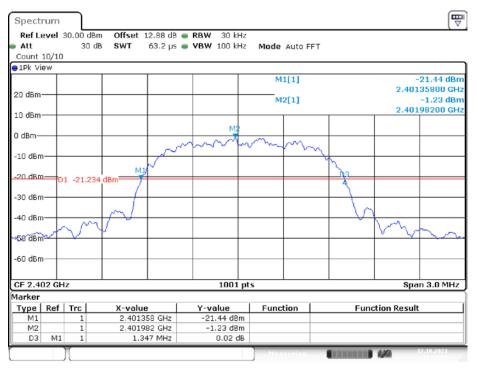

Date: 12.0CT.2021 17:43:47


DH1_Ant1_2480MHz

Date: 12.0CT.2021 18:54:55

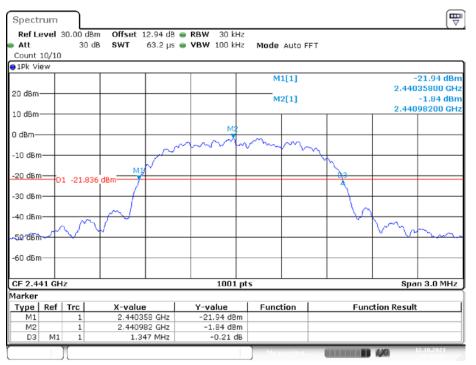
2DH1_Ant1_2402MHz

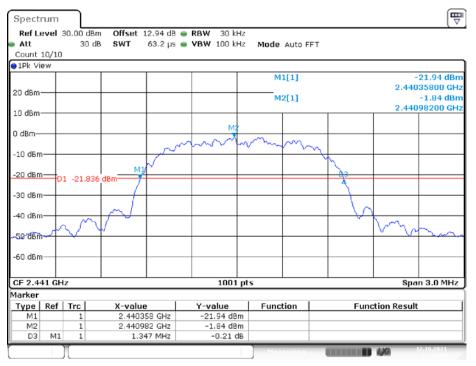

Date: 12.0CT.2021 17:48:05


2DH1_Ant1_2441MHz

Date: 12.0CT.2021 17:49:40

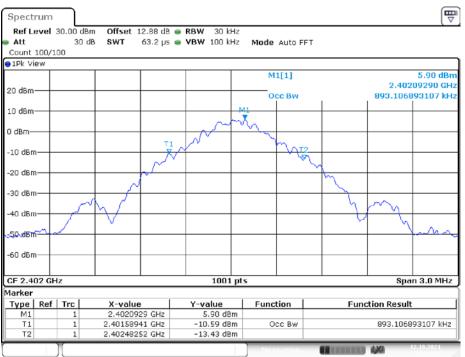
2DH1_Ant1_2480MHz


Date: 12.0CT.2021 17:50:49


3DH1_Ant1_2402MHz

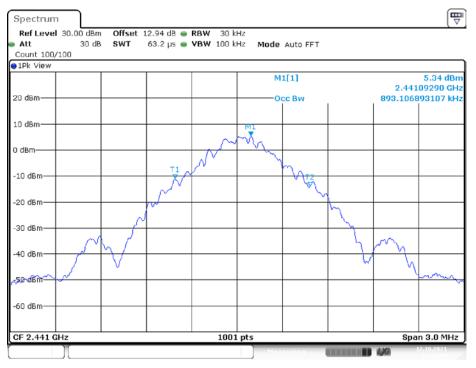
Date: 12.0CT.2021 17:52:38

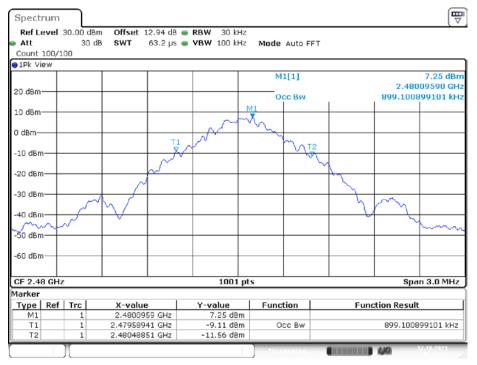
3DH1_Ant1_2441MHz


Date: 12.0CT.2021 17:54:08

3DH1_Ant1_2480MHz

Date: 12.0CT.2021 17:54:08

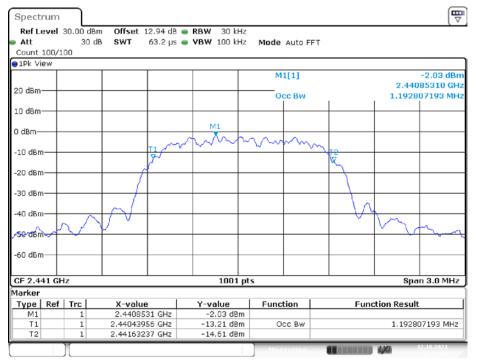

99% OCCUPIED BANDWIDTH


DH1_Ant1_2402MHz

Date: 12.0CT.2021 17:42:50

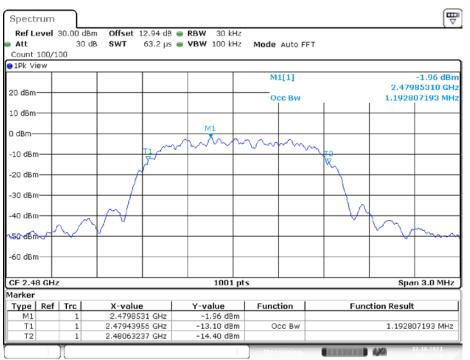
DH1_Ant1_2441MHz

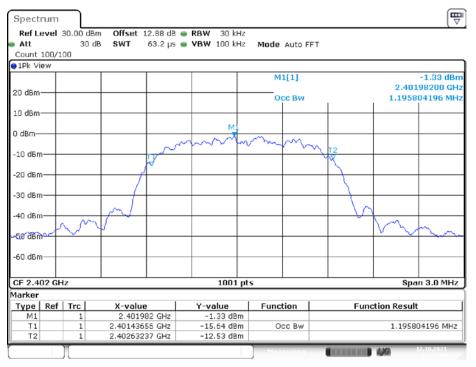
Date: 12.0CT.2021 17:44:04


DH1_Ant1_2480MHz

Date: 12.0CT.2021 18:37:23

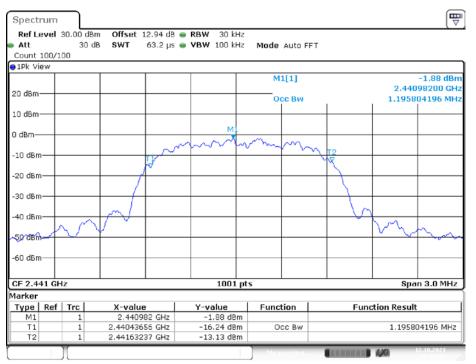
2DH1_Ant1_2402MHz

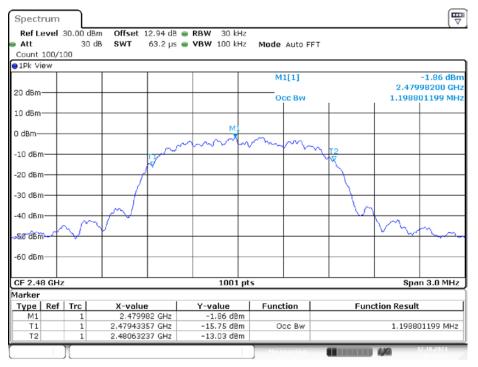

Date: 12.0CT.2021 17:48:31


2DH1_Ant1_2441MHz

Date: 12.0CT.2021 17:50:04

2DH1_Ant1_2480MHz


Date: 12.0CT.2021 17:51:09


3DH1_Ant1_2402MHz

Date: 12.0CT.2021 17:53:02

3DH1_Ant1_2441MHz

Date: 12.0CT.2021 17:54:31

3DH1_Ant1_2480MHz

Date: 12.0CT.2021 17:56:28

FCC §15.247(a) (1) (iii)-QUANTITY OF HOPPING CHANNEL TEST

Applicable Standard

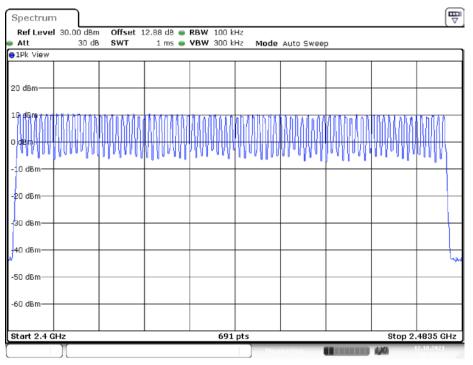
Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test Procedure

- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Set the EUT in hopping mode from first channel to last.
- 3. By using the max-hold function record the quantity of the channel.

Test Data

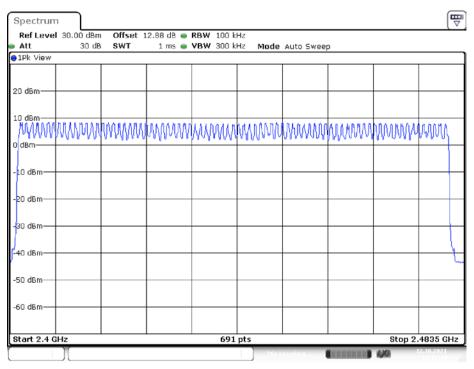
Environmental Conditions


Temperature:	24 °C
Relative Humidity:	48 %
ATM Pressure:	101.0 kPa

The testing was performed by Fan Yang on 2021-10-12.

EUT operation mode: Transmitting

Test Result: Compliant.


TestMode	Antenna	Channel	Result[Num]	Limit[Num]	Verdict
DH1	Ant1	Нор	79	>=15	PASS
2DH1	Ant1	Нор	79	>=15	PASS
3DH1	Ant1	Нор	79	>=15	PASS

DH1_Ant1_Hop

Date: 12.0CT.2021 18:07:52

2DH1_Ant1_Hop

Date: 12.0CT.2021 18:12:10

30 dB	SWT		RBW 100 k VBW 300 k		Auto Sweep	n			
00 40		1 115	1011 0001	ine mode	A010 0 1100	, 			_
									_
www	WWW	MANAN	www	mm	MMM	MMM	NMMM	WWW	
									-
									Į,
									Ļ
									_
	4z								12 691 pts Stop 2.4835 G

3DH1_Ant1_Hop

Date: 12.0CT.2021 18:41:22

FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME)

Applicable Standard

Frequency hopping systems in the 2400-2483.5 MHz shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test Procedure

- 1. The EUT was worked in channel hopping.
- 2. Set the RBW to: 1MHz.
- 3. Set the VBW \geq 3×RBW.
- 4. Set the span to 0Hz.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Recorded the time of single pulses

Test Data

Environmental Conditions

Temperature:	24 °C
Relative Humidity:	48 %
ATM Pressure:	101.0 kPa

The testing was performed by Fan Yang on 2021-10-12.

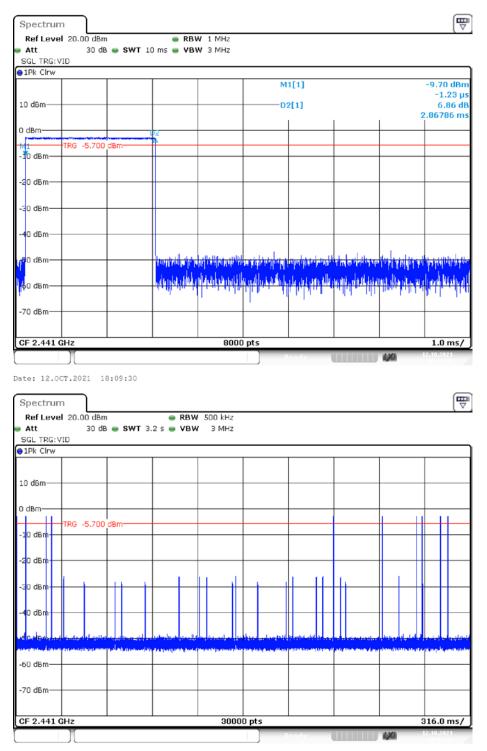
EUT operation mode: Transmitting

Test Result: Compliant.

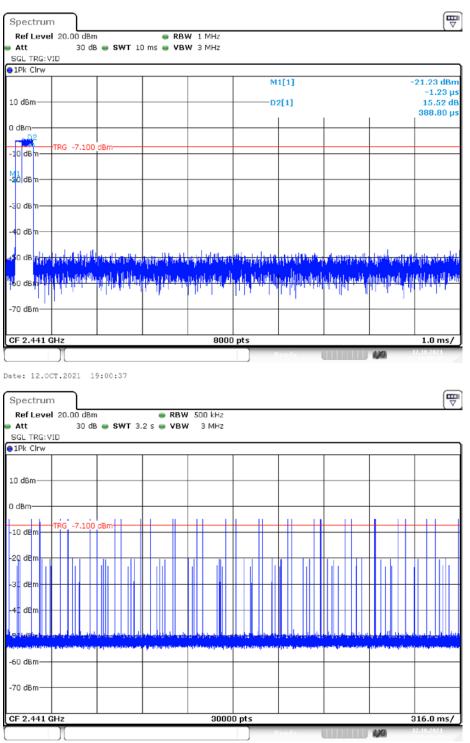
Test Mode	Antenna	Channel	BurstWidth [ms]	TotalHops [Num]	Result[s]	Limit[s]	Verdict
DH1	Ant1	Нор	0.38	330	0.125	<=0.4	PASS
DH3	Ant1	Нор	1.63	140	0.228	<=0.4	PASS
DH5	Ant1	Нор	2.87	100	0.287	<=0.4	PASS
2DH1	Ant1	Нор	0.39	330	0.128	<=0.4	PASS
2DH3	Ant1	Нор	1.64	160	0.262	<=0.4	PASS
2DH5	Ant1	Нор	2.87	110	0.316	<=0.4	PASS
3DH1	Ant1	Нор	0.39	330	0.127	<=0.4	PASS
3DH3	Ant1	Нор	1.63	170	0.277	<=0.4	PASS
3DH5	Ant1	Нор	2.88	90	0.259	<=0.4	PASS

[₩ Spectrum Ref Level 20.00 dBm RBW 1 MHz Att 30 dB 👄 SWT 10 ms 👄 VBW 3 MHz SGL TRG: VID ●1Pk Clrw M1[1] 6.84 dBn -1.23 µs 10 dBm-D2[1] 4.24 dE 378.80 µs 0 dBrog 2 2 TRG -5.800 dBm 10 dBm 20 dBm 0 dB 0 dBn a sain san alina a china a daga ka diga ka sain ila dan dan dan sa na mina dan di ila sa ka k al dista 0 dB aus, ha di di di si di la di si d -60 dB -70 dBm-CF 2.441 GHz 8000 pts 1.0 ms/ 1,00 Date: 12.0CT.2021 18:55:23 Spectrum Ref Level 20.00 dBm RBW 500 kHz 30 dB 👄 SWT 3.2 s 👄 VBW 3 MHz Att SGL TRG: VID ⊖1Pk Clrw 10 dBm-0 dBm 1.1 -5.800 Br -10 dB n 20 dB an He -60 dBm 70 dBm 316.0 ms/ CF 2.441 GHz 30000 pts i ya

DH1_Ant1_Hop


Date: 12.0CT.2021 18:55:28

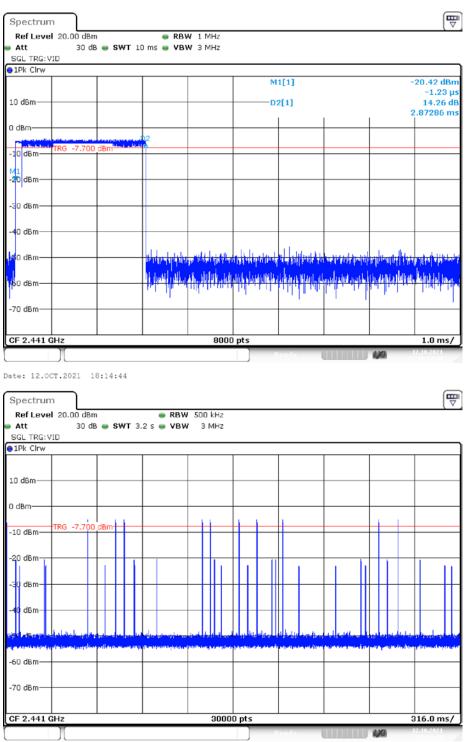
₽ Spectrum Ref Level 20.00 dBm RBW 1 MHz Att 30 dB 👄 SWT 10 ms 👄 VBW 3 MHz SGL TRG: VID ●1Pk Clrw M1[1] -8.29 dBn -1.23 µs 10 dBm-D2[1] 5.52 dE 1.62770 ms 0 dBm-TRG -6.000 ſï iBm 10 dBm· -20 dBm-0 dBm· 0 dBm 0 dBm hainteine féisnea ine i di d tatin ani di la bashi a lan kudala ku klum kuliko barran ta piwanan indakin ka ny ilah l بالأبوار والألو a. 6 a A altılır. Millari 60 dBm 1111 -70 dBm-CF 2.441 GHz 8000 pts 1.0 ms/ 1,00 Date: 12.0CT.2021 18:08:48 ♥ Spectrum Ref Level 20.00 dBm RBW 500 kHz 30 dB 🖷 SWT 3.2 s 🖶 VBW 3 MHz Att SGL TRG: VID ●1Pk Clrw 10 dBm-0 dBmь -6.000 -10 dBm -20 dBn 30 **d**B 40 -60 dBm-70 dBm-316.0 ms/ CF 2.441 GHz 30000 pts i ya


DH3_Ant1_Hop

Date: 12.0CT.2021 18:08:54

DH5_Ant1_Hop

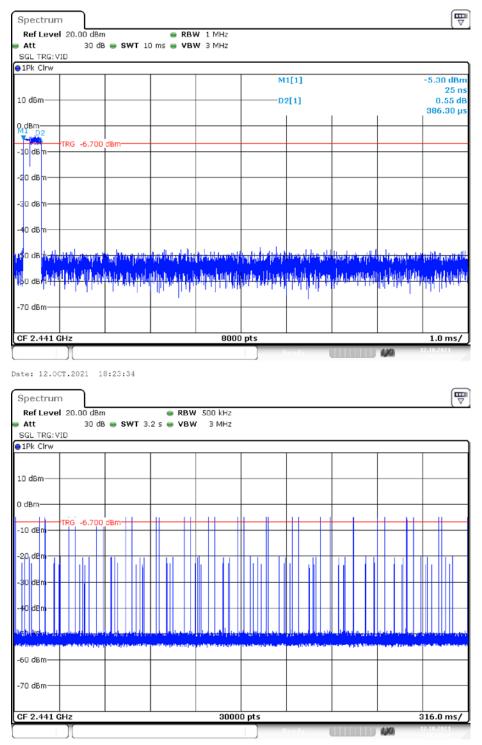
Date: 12.0CT.2021 18:09:36

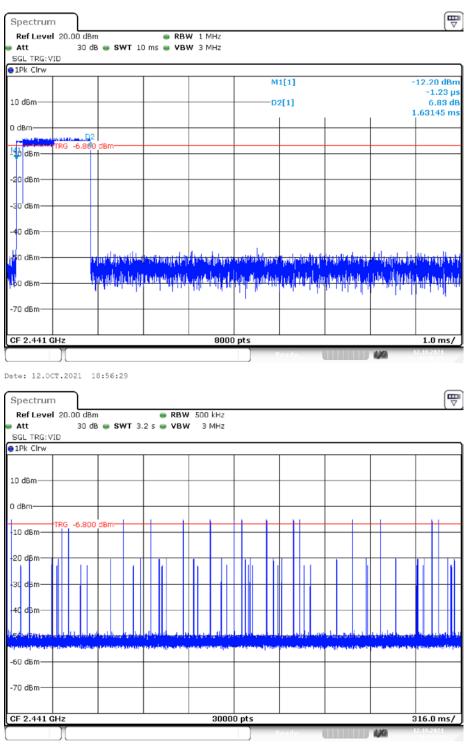

2DH1_Ant1_Hop

Date: 12.0CT.2021 19:00:42

₽ Spectrum Ref Level 20.00 dBm RBW 1 MHz Att 30 dB 👄 SWT 15 ms 👄 VBW 3 MHz SGL TRG: VID ●1Pk Clrw M1[1] -10.27 dBn -3.10 µs 10 dBm-D2[1] 4.03 dE 1.63520 ms 0 dBm--7.600 TRIG 10 dBm 20 dBm 30 dBm· 40 dBm a discussion in particular in the second structure of the second structure of the second structure second structure of the second s 50 dBm , atal panakatnah julikusi ainter aku akuta birki terbirki pisto, ku jab, ku jah aku, hatome terbilke birki sik ditt Mode din ta da 60 dBm -70 dBm-CF 2.441 GHz 8000 pts 1.5 ms/ 1,00 Date: 12.0CT.2021 18:14:04 ♥ Spectrum Ref Level 20.00 dBm RBW 500 kHz 30 dB 🖷 SWT 3.2 s 🖶 VBW 3 MHz Att SGL TRG: VID ●1Pk Clrw 10 dBm-0 dBm--7.600 -10 dB m -20 dB 1 -30 HB 40 -60 dBm-70 dBm 316.0 ms/ CF 2.441 GHz 30000 pts i ya

2DH3_Ant1_Hop


Date: 12.0CT.2021 18:14:10


2DH5_Ant1_Hop

Date: 12.0CT.2021 18:14:50

3DH1_Ant1_Hop

Date: 12.0CT.2021 18:23:39

3DH3_Ant1_Hop

Date: 12.0CT.2021 18:56:34

₽ Spectrum Ref Level 20.00 dBm RBW 1 MHz 30 dB 🖷 SWT 20 ms 🖷 VBW 3 MHz Att SGL TRG: VID ●1Pk Clrw M1[1] -5.21 dBrr 25 n: 10 dBm-D2[1] -0.04 dB 2.88036 ms 0 dBm-**D**2 10 dBm· 20 dBm 30 dBm· 40 dBm and the late of th ين بع ايام 50 dBm նում, բիսի հարտ վորտալստոն, որդը և էլ էլ դիմիս ոչ նոր կերել եր, քու հետև գետքի, երվերոնի էլ հերոն էլ երերոն է հոր են հունը թա deset politice -60 dBm· -70 dBm-8000 pts 2.0 ms/ CF 2.441 GHz 110 Date: 12.0CT.2021 18:41:55 Spectrum Ref Level 20.00 dBm 👄 RBW 500 kHz 30 dB 👄 SWT 3.2 s 👄 VBW 3 MHz 🕨 Att SGL TRG: VID ●1Pk Clrw 10 dBm-0 dBm--7.200 -10 dBm -20 dBn 30 dBr 40 dBr -60 dBm -70 dBm 316.0 ms/ CF 2.441 GHz 30000 pts 4,40

3DH5_Ant1_Hop

Date: 12.0CT.2021 18:42:00

FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT

Applicable Standard

According to §15.247(b) (1), for frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. And for all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

Test Procedure

1. Place the EUT on a bench and set in transmitting mode.

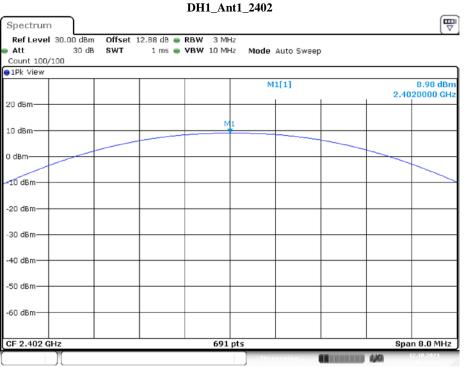
2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.

3. Add a correction factor to the display.

Test Data

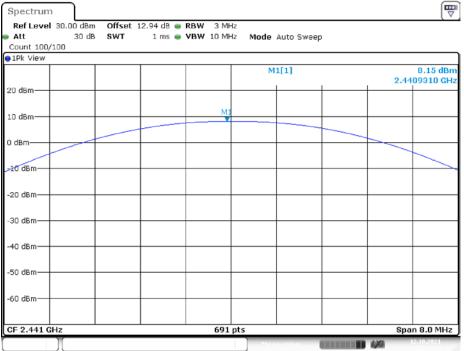
Environmental Conditions

Temperature:	24 °C
Relative Humidity:	48 %
ATM Pressure:	101.0 kPa

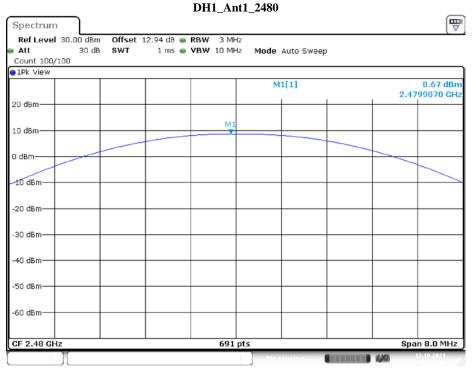

The testing was performed by Fan Yang on 2021-10-12

EUT operation mode: Transmitting

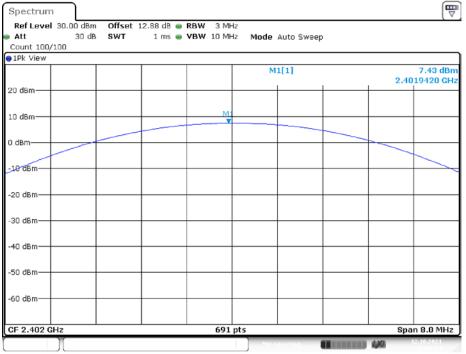
Test Result: Compliant.


TestMode	Antenna	Channel	Result[dBm]	Limit[dBm]	Verdict
		2402	8.98	<=20.97	PASS
DH1	Ant1	2441	8.15	<=20.97	PASS
		2480	8.67	<=20.97	PASS
		2402	7.43	<=20.97	PASS
2DH1	Ant1	Ant1 2441 6.88 <=20	<=20.97	PASS	
		2480	6.85	<=20.97	PASS
		2402	8.02	<=20.97	PASS
3DH1	Ant1	2441	7.48	<=20.97	PASS
		2480	7.95	<=20.97	PASS

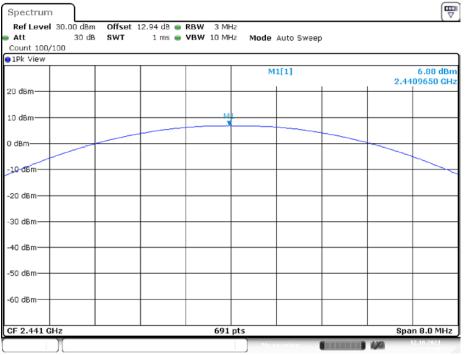
Report No.: SZ1210918-48944E-00A


Date: 12.0CT.2021 17:36:50

DH1_Ant1_2441

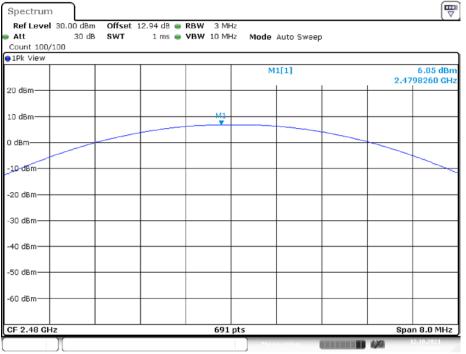

Date: 12.0CT.2021 17:37:24

Report No.: SZ1210918-48944E-00A

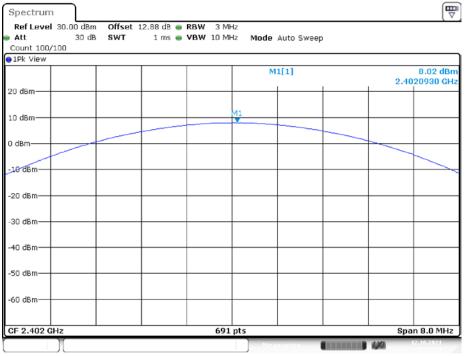

Date: 12.0CT.2021 17:37:47

2DH1_Ant1_2402

Date: 12.0CT.2021 17:38:14


Report No.: SZ1210918-48944E-00A

2DH1_Ant1_2441

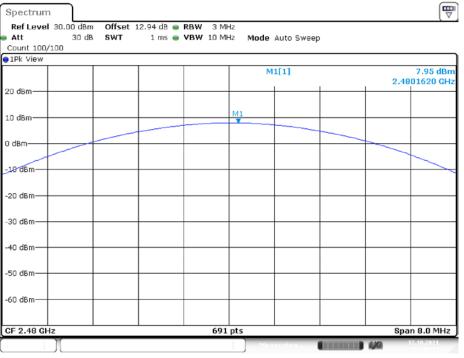

Date: 12.0CT.2021 17:38:48

2DH1_Ant1_2480

Date: 12.0CT.2021 17:39:06

Report No.: SZ1210918-48944E-00A

3DH1_Ant1_2402


Date: 12.0CT.2021 17:39:31

3DH1_Ant1_2441

Date: 12.0CT.2021 17:39:53

Report No.: SZ1210918-48944E-00A

3DH1_Ant1_2480

Date: 12.0CT.2021 17:40:15

FCC §15.247(d) - BAND EDGES TESTING

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Data

Environmental Conditions

Temperature:	24°C
Relative Humidity:	48 %
ATM Pressure:	101.0 kPa

The testing was performed by Fan Yang on 2021-10-12.

EUT operation mode: Transmitting

Test Result: Compliant.

Conducted Band Edge Result:

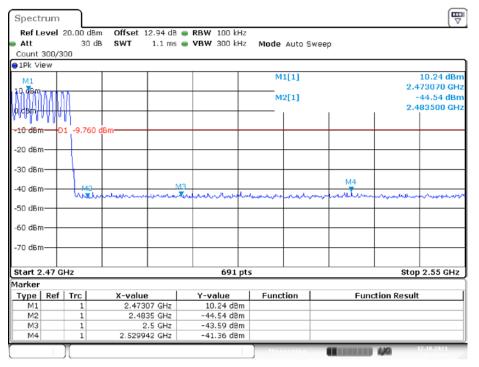
DH1_Ant1_Low_2402MHz

Spect	rum											ſ	₩
Att Count	300/3	20.00 dB 30 (00			 RBW 100 k VBW 300 k 		Mode	Auto F	FT				
😑 1Pk Vi	ew												\neg
10 dBm	_							1[1] 2[1]				8.24 dt 402040 4 -47.90 dt 400000 d	iHz Bm
0 dBm-	D	1 -11.76	0 dBm										
-20 dBn -30 dBn													
-40 dBn ^{1_} 50 dBn		للطبحهما	M4 Nahanana	م انڈ _م یرانور پر	and and the section		y	مياساريه		4alka-mart	M3 مريقارليونكروه	M2	L.
-60 dBn -70 dBn													_
Start 2	.3 GH	Iz	•		691	pts					Stop	2.405 GH	١z
Marker													
Туре	Ref	Trc	X-value		Y-value		Func	tion		Fun	ction Resu	lt	
M1		1		04 GHz	8.24 de								
M2		1		.4 GHz	-47.90 de								
M3 M4		1	2.2.3208	39 GHz 48 GHz	-49.48 d£ -46.67 d£								
)(Mea	suring.			1,00	12.10.2021	

Date: 12.0CT.2021 17:43:05

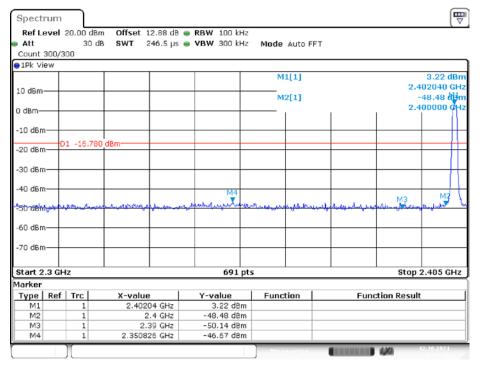
DH1_Ant1_High_2480MHz

Spect	rum														
Ref L	evel	20.00	dBm	Offset	12.94 d8	e RB	N 100 k	Hz							
👄 Att		3	0 dB	SWT	1.1 ms	VBY	W 300 ki	Hz Mo	ode	Auto S	Sweep)			
Count		00													
😑 1Pk Vi	iew														
		м1							M	1[1]					9.55 dBm
10 dBm		NIL NIL							_						480010 GHz
		11							M	2[1]					-44.17 dBm
0 dBm-	\rightarrow	Н.	\rightarrow			_			_					2.4	483500 GHz
		11 -													
10 dBn	n-to	1 -10	.450 d	Bm											
-20 dBn	∩														
		11													
-30 dBn	n — 🕂	4								<u> </u>			_		
	- 17											M4			
-40 dBn		- \	42	and the second		43	anus		a 14		1	The second second			mangal
				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		man	runnom	and Carry and	~~~~	- marine			~ m		Jan Same
-50 dBn															
-60 dBn	∩														
00 000	"														
-70 dBn	n——												_		
Start 2	2.47 G	Hz			I		691	nts		I				Stor	p 2.55 GHz
Marker															
Туре	Ref	Trc		X-valu	e	Y-	value	F	unc	tion		F	unctio	n Resul	t l
M1		1		2.480	01 GHz		9.55 dB	m							
M2		1			35 GHz		44.17 dB								
MЗ		1			2.5 GHz		44.20 dB								
M4		1		2.5286	67 GHz	-	42.09 dB	m							
		][							Mee	suring.	-			0	12.10.2021


Date: 12.0CT.2021 18:37:39

Spectrum						
Ref Level	20.00 dB	m Offset 13.10 d	8 🖷 RBW 100 kHz			,
Att	30 d	B SWT 246.5 µ	s 😑 <b>VBW</b> 300 kHz	Mode Auto F	FT	
Count 300/3	:00					
1Pk View						
				M1[1]		9.91 dBn
						2.402040 GH
10 dBm				M2[1]		-48.68 dBh
				and all		2.400000 00
) dBm					1	
-10 dBm						
10 0000 0	1 -10.09	u usin				
20 dBm						
30 dBm						
SU GBIII						
40 dBm						
			MA			M3 M2
So de riteration	MUNAN	montes more thank the performance	why when mental the me	للتهط ومسهد المستعمل والمستعمل والمستوس والمستعمل والمستعمل والمستوس والمستعمل والمستعمل والمستعمل و	الشريب والمستعمل المستعم المست	de men X ma
60 dBm —		<u>↓                                    </u>				
-70 dBm		<u>↓                                    </u>				
Start 2.3 GH	1-		691 pt	-		Stop 2.405 GHz
	12		par br	>		Stup 2.405 GH2
larker						
	Trc	X-value	Y-value	Function	Fun	ction Result
M1	1	2.40204 GHz				
M2	1	2.4 GHz				
MЗ	1	2.39 GHz				
M4	1	2.341543 GHz	-46.17 dBm			
	1				<b>A</b> CONTRACTOR	12 10 2021

#### DH1_Ant1_Low_Hop_2402MHz


Date: 12.0CT.2021 18:05:55

#### DH1_Ant1_High_Hop_2480MHz



Date: 12.0CT.2021 18:10:03

#### 2DH1_Ant1_Low_2402MHz



Date: 12.0CT.2021 17:48:46

#### 2DH1_Ant1_High_2480MHz

Spectru	m											
Ref Lev Att Count 30		30			<ul><li>RBW</li><li>VBW</li></ul>		Mode	Auto S	Sweep			
😑 1Pk Viev	v											
							М	1[1]				2.61 dBn
10 dBm—	+										2	.480130 GH
	M	11					м	2[1]				-44.04 dBm
0 dBm	+	}	-					I	1		1 2	.483500 GH:
-10 dBm—	╢											
-20 dBm-	-D1	-17.39	90 dBm						-			
-30 dBm—	╢											
-40 dBm-	+	1 M2	M4		M3 Junear	meren	وسقيه العطريان	mun	ma	man	hanner	
-50 dBm—	+											
-60 dBm—	+				_							
-70 dBm—	+											
Start 2.4	7 GH	łz				691 pts	;				St	op 2.55 GHz
Marker		Trc	X-value		Y-va	due 1	Func	tion	1	Euro	tion Resu	.14
Type F M1	er	1		9 13 GHz		.61 dBm	Func	uon		Fund	aion kest	ant.
M2		1		35 GHz		.04 dBm						
M3		1		.5 GHz		.76 dBm						
M4		1	2.4916	81 GHz	-42	.15 dBm						
							Mee	suring.			4,40	12.10.2021

Date: 12.0CT.2021 17:51:24

#### ₽ Spectrum Ref Level 20.00 dBm Offset 13.10 dB 🖷 RBW 100 kHz Att 30 dB SWT 246.5 µs 🖷 VBW 300 kHz Mode Auto FFT Count 300/300 ⊖1Pk View M1[1] 8.04 dBm 2.404160 GP 10 dBm-M2[1] -49.90 dBr 2.400000 GH 0 dBm--10 dBm D1 -11.960 dBm -20 dBm--30 dBm· 40 dBm МЗ M2 X. ut.a 30 USH--60 dBm--70 dBm-Stop 2.405 GHz Start 2.3 GHz 691 pts Marker Y-value 8.04 dBm -49.90 dBm Function Function Result Type Ref Trc X-value 2.40416 GHz 2.4 GHz M1 M2 1 1 ΜЗ 2.39 GHz -49.17 dBm 1 2.356152 GHz M4 1 -46.09 dBm

#### 2DH1_Ant1_Low_Hop_2402MHz

Date: 12.0CT.2021 18:10:34

#### 2DH1_Ant1_High_Hop_2480MHz

Spectrum							
Ref Level			12.94 dB	🖷 RBW 100 kHz			· · · · · · · · · · · · · · · · · · ·
Att	3	OdB SWT	1.1 ms	🔵 <b>VBW</b> 300 kHz	Mode Auto 9	Sweep	
Count 300/	'300						
⊖1Pk View							
					M1[1]		7.64 dBm
10 dBm	M1						2.480010 GHz
Lon As 14	ц¥ —				M2[1]		-43.81 dBm
9/18ADWH	<u>M</u>				<u> </u>		2.483500 GHz
-10 dBm	01 10	.360 dBm					
	01 -12	.300 ubm					
-20 dBm			+				
	1						
-30 dBm							
-40 dBm	1.0	12	м	3 14			
-40 UBIII	hej	-monder aber	amound		wellow wellow and	mansterday	mound
-50 dBm-							
-60 dBm		_					
-70 dBm			+				+ +
Start 2.47	GHz			691 pts		I	Stop 2.55 GHz
Marker					-		
Type   Ref	E Tro	X-valu		Y-value	Function	Eur	nction Result
M1	1		001 GHz	7.64 dBm	runction	rui	iction Result
M2	1		B35 GHz	-43.81 dBm			
M3	1		2.5 GHz	-43.45 dBm			
M4	1	2.50	258 GHz	-41.61 dBm			
	1					COLUMN 1	ID #MA 12.10.2021
					Measuring		agent to the test

Date: 12.0CT.2021 18:17:14

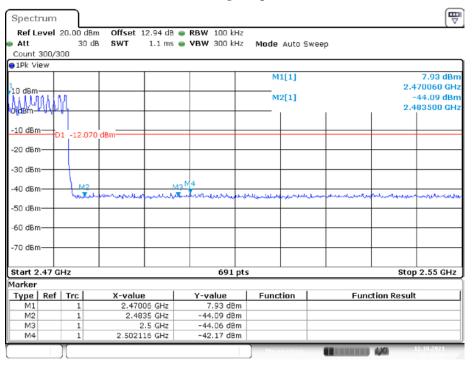
Spectrum							
Ref Level	20.00 dBr	n Offset 12.88 d	8 😑 RBW 100 kHz				
Att	30 d	B SWT 246.5µ	is 🖷 <b>VBW</b> 300 kHz	Mode Auto R	FFT		
Count 300/3	00						
1Pk View							
				M1[1]		2.95 dBn	
10 dBm						2.402190 GH	
				M2[1]		-49.21 d <mark>i</mark> bn	
D dBm						2.400000 GH	
-10 dBm							
-20 dBm	1 -17.050	J dBm					
						1 1 11	
30 dBm							
						1 1 1	
-40 dBm		<u> </u>	M4			+ + / \	
		and announcement	me includes stress			M3 M2	
5048m4244	hand the set of the set	And all a series of the series	The beautiful the second	Jernew Derfinstrace	والمتقاد والمستحد المحالية المحافظ المح	the should be a series of the	
-60 dBm							
-70 dBm							
-70 dBm							
Start 2.3 GH	Iz		691 pt	s		Stop 2.405 GHz	
1arker							
Type   Ref	Ref Trc X-value		Y-value	Function	Function Result		
M1	1	2.40219 GHz	2.95 dBm				
M2	1	2.4 GHz	-49.21 dBm				
MЗ	1	2.39 GHz	-49.36 dBm				
M4	1	2.344283 GHz	-46.49 dBm				

### 3DH1_Ant1_Low_2402MHz

Date: 12.0CT.2021 17:53:17

#### 3DH1_Ant1_High_2480MHz

Spectrun	n										Ē
Ref Leve Att Count 300	30	dBm Offset I dB SWT		<ul> <li>RBW 100</li> <li>VBW 300</li> </ul>		Mode	Auto S	Sweep			
⊖1Pk View											
10 dBm							1[1]			2	2.53 dBn .480010 GH:
0 dBm	M1 A	_				M:	2[1]			2	-44.35 dBn 483500 GH:
-10 dBm					+			_			
-20 dBm—	D1 -17.	470 dBm			+			-			
-30 dBm	H.			NR.		Inchan	- abatahar	when		M4	- eduction of the second
-50 dBm—											
-60 dBm					+						
-70 dBm		_			+						
Start 2.47	GHz			69	1 pts					St	op 2.55 GHz
Marker								-			
Type Re		X-valu		Y-value		Func	tion		Fun	ction Res	ult
M1	1		01 GHz	2.53 c							
M2	1		35 GHz	-44.35 c							
M3 M4	1		2.5 GHz 28 GHz	-43.68 c -41.34 c							
	)(					Mea	suring.			4,40	12.10.2021


Date: 12.0CT.2021 17:56:43

Spectrum							(₩
Ref Level				RBW 100 kHz			
Att	30 d	18 <b>SWT</b> 24	46.5μs (	VBW 300 kHz	Mode Auto P	FT	
Count 300/3	300						
1Pk View							
I					M1[1]		6.72 dBr
LO dBm		+					2.404010 GM
					M2[1]		-49.44 dBr
) dBm		+ +					2.400000 00
I							
10 dBm							
	01 -13.28	U dBm					
20 dBm		+ +					
30 dBm							
40 dBm							
40 asm				M4			M3 M2
Southing	ungunge	under some		mountain	Mahrierand	marger al aleman	
				·			
60 dBm							
70 dBm							
tart 2.3 G	la.	1 1		691 pt			Stop 2.405 GHz
	12			091 ht	>		atup 2.403 GH2
larker	1 - 1					-	
Type Ref		X-value		Y-value	Function	Fur	nction Result
M1	1	2.4040		6.72 dBm			
M2 M3		1 2.4 GHz 1 2.39 GHz		-49.44 dBm -48.13 dBm			
	1	2.34945		-48.13 dBm -46.61 dBm			
M4							

#### 3DH1_Ant1_Low_Hop_2402MHz

Date: 12.0CT.2021 18:18:33

#### 3DH1_Ant1_High_Hop_2480MHz



Date: 12.0CT.2021 18:25:47

### ***** END OF REPORT *****