

Fig. 17 Band Edges (802.11ac-HT40 Ch38, 5190MHz)

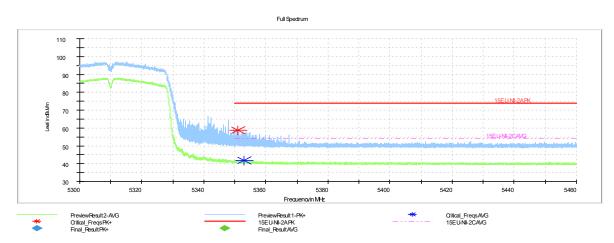


Fig. 18 Band Edges (802.11ac-HT40 Ch62, 5310MHz)

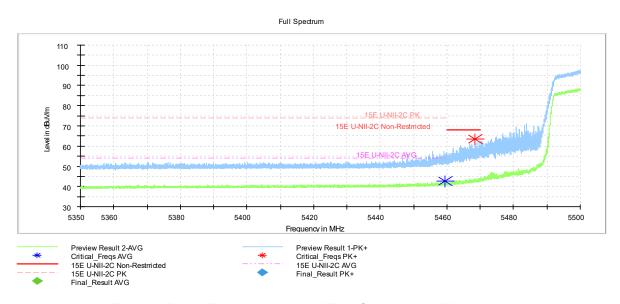


Fig. 19 Band Edges (802.11ac-HT40 Ch102, 5510MHz)

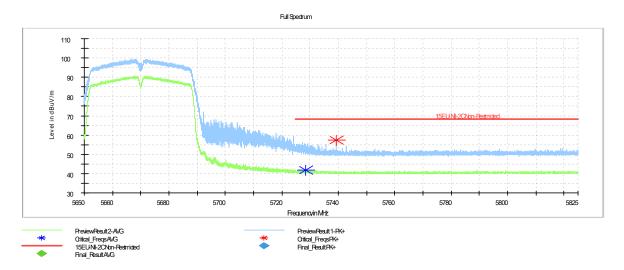


Fig. 20 Band Edges (802.11ac-HT40 Ch134, 5670MHz)

Fig. 21 Band Edges (802.11ac-HT80 Ch42, 5210MHz)

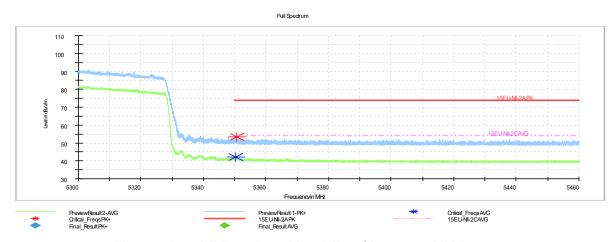


Fig. 22 Band Edges (802.11ac-HT80 Ch58, 5290MHz)

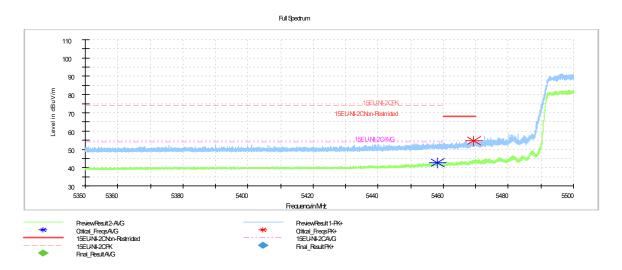


Fig. 23 Band Edges (802.11ac-HT80 Ch106, 5530MHz)

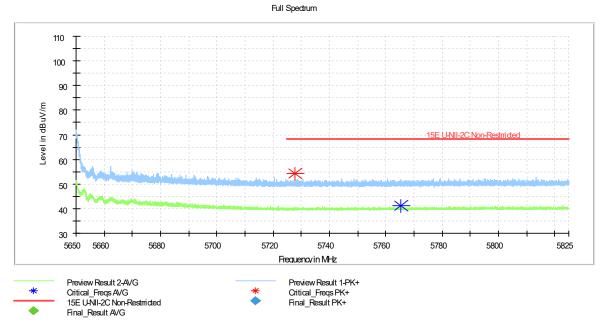


Fig. 24 Band Edges (802.11ac-HT80 Ch122, 5610MHz)

A.6. AC Powerline Conducted Emission (150kHz-30MHz)

A.6.1 Summary

All AC line conducted spurious emissions are measured with a receiver connected to a grounded LISN while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for conducted spurious emissions. Only the conducted emissions of the configuration that produced the worst case emissions are reported in this section

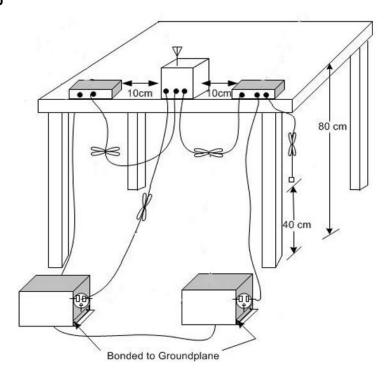
A.6.2 Method of Measurement

See Clause 6.2 of ANSI C63.10 specifically.

See Clause 4 and Clause 5 of ANSI C63.10 generally.

The conducted emissions from the AC port of the EUT are measured in a shielding room. The EUT is connected to a Line Impedance Stabilization Network (LISN). An overview sweep with peak detection was performed. The measurements were performed with a quasi-peak detector and if required, an average detector.

The conducted emission measurements were made with the following detector of the test receiver: Quasi-Peak / Average Detector.


The measurement bandwidth is:

Frequency of Emission (MHz)	RBW/IF bandwidth			
0.15-30	9kHz			

A.6.3 Test Condition

Voltage (V)	Frequency (Hz)			
120	60			

A.6.4 Test setup

Measurement Result and limit:

WLAN (Quasi-peak Limit)

Frequency range (MHz)	Quasi-peak Limit (dBμV)	Result (dBμV) With charger 11a mode		Conclusion
0.15 to 0.5	66 to 56			
0.5 to 5	56	Fig.25		Р
5 to 30	60			

NOTE: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

WLAN (Average Limit)

Frequency range (MHz)	Average Limit (dBμV)	Result (dB _µ V) With charger 11a mode	Conclusion
0.15 to 0.5	56 to 46		
0.5 to 5	46	Fig.25	Р
5 to 30	50		

NOTE: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

Conclusion: PASS Test graphs as below:

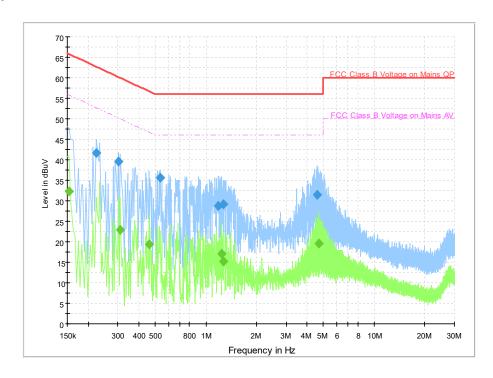


Fig.25 Conducted Emission(802.11a, Ch36, TX)

Measurement Result:

Frequency	QuasiPeak	Meas.	Bandwidth	Filter	Line	Corr.	Margin	Limit
(MHz)	(dBµV)	Time	(kHz)			(dB)	(dB)	(dBµV)
		(ms)						
0.222000	41.8	2000.0	9.000	On	N	19.8	21.0	62.7
0.302000	39.6	2000.0	9.000	On	L1	19.9	20.6	60.2
0.538000	35.7	2000.0	9.000	On	N	19.9	20.3	56.0
1.190000	28.8	2000.0	9.000	On	N	19.7	27.2	56.0
1.266000	29.1	2000.0	9.000	On	N	19.7	26.9	56.0
4.606000	31.5	2000.0	9.000	On	L1	19.8	24.5	56.0

Measurement Result:

Frequency	CAverage	Meas.	Bandwidth	Filter	Line	Corr.	Margin	Limit
(MHz)	(dBuV)	Time	(kHz)			(dB)	(dB)	(dBuV)
		(ms)						
0.154000	32.2	2000.0	9.000	On	L1	20.0	23.6	55.8
0.310000	22.9	2000.0	9.000	On	L1	19.9	27.0	50.0
0.458000	19.3	2000.0	9.000	On	N	19.9	27.4	46.7
1.238000	17.1	2000.0	9.000	On	N	19.7	28.9	46.0
1.266000	15.2	2000.0	9.000	On	N	19.7	30.8	46.0
4.686000	19.6	2000.0	9.000	On	N	19.6	26.4	46.0

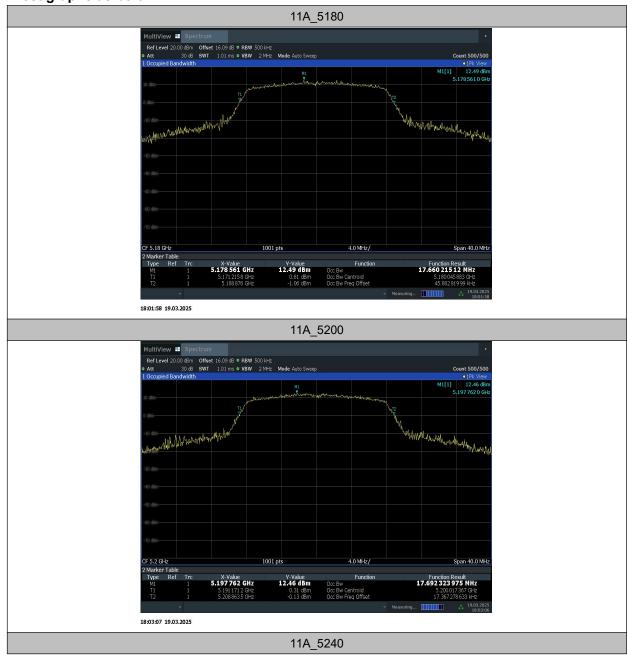
A.7. 99% Occupied bandwidth

Method of Measurement: See ANSI C63.10-2013-clause 12.4.2.

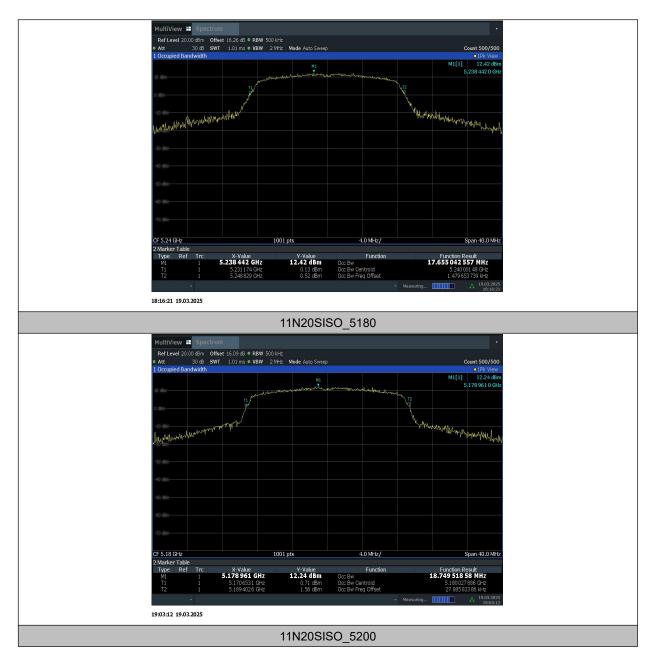
- a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.
- b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.
- c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.
- d) Step a) through step c) might require iteration to adjust within the specified range.
- e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
- f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.
- g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% ofthe total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies.
- h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

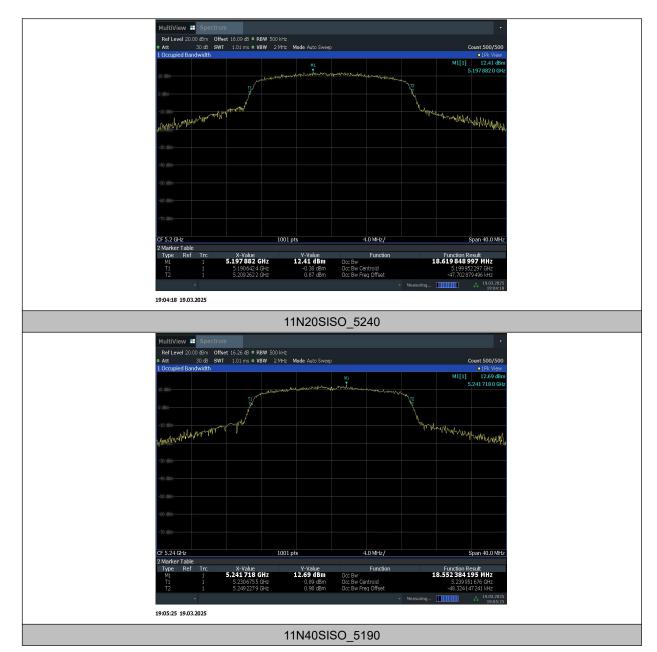
Measurement Uncertainty:

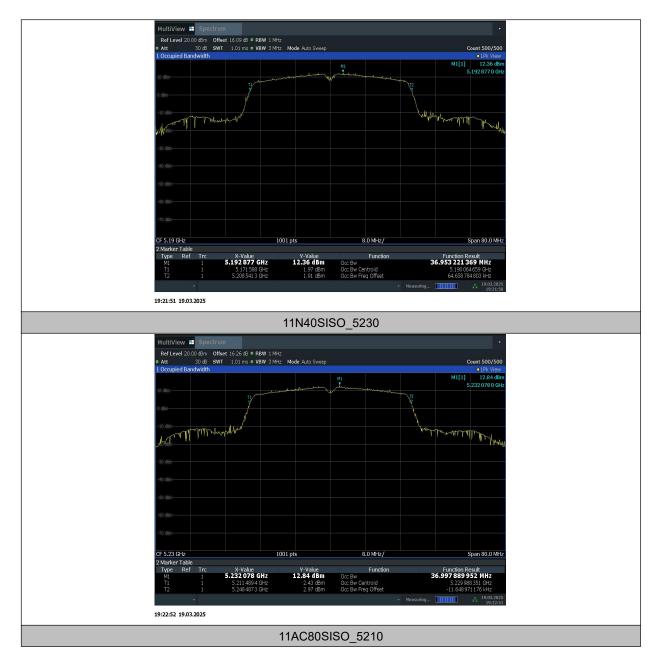
EUT ID: UT13a


Measurement Result:

TestMode	Frequency[MHz]	OCB [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
	5180	17.66	5171.2158	5188.8760		
11A	5200	17.692	5191.1712	5208.8635		
	5240	17.655	5231.1740	5248.8290		
	5180	18.75	5170.6531	5189.4026		
11N20SISO	5200	18.62	5190.6424	5209.2622		
	5240	18.552	5230.6755	5249.2279		
11N40SISO	5190	36.953	5171.5880	5208.5413		
1111403130	5230	36.998	5211.4894	5248.4873		
11AC80SISO	5210	75.367	5172.3922	5247.7592		




Test graphs as below:



Conclusion: PASS

A.8. Antenna Requirement

The antenna of the device is permanently attached. There are no provisions for connection to an external antenna.

The unit complies with the requirement of FCC Part 15.203.

A.9. Power control

A Transmission Power Control mechanism is not required for systems with an e.i.r.p. of less than 27dBm (500 mW).

ANNEX B: EUT parameters

Disclaimer: The antenna gain and worse case provided by the client may affect the validity of the measurement results in this report, and the client shall bear the impact and consequences arising therefrom.

ANNEX C: Accreditation Certificate

Accredited Laboratory

A2LA has accredited

TELECOMMUNICATION TECHNOLOGY LABS, CAICT

Beijing, People's Republic of China

for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017

General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Presented this 23rd day of July 2024.

Mr. Trace McInturff, Vice President, Accreditation Services For the Accreditation Council Certificate Number 7049.01 Valid to July 31, 2026

For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.

*** END OF REPORT BODY ***